2154 lines
73 KiB
C
2154 lines
73 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Endpoint Function Driver to implement Non-Transparent Bridge functionality
|
|
*
|
|
* Copyright (C) 2020 Texas Instruments
|
|
* Author: Kishon Vijay Abraham I <kishon@ti.com>
|
|
*/
|
|
|
|
/*
|
|
* The PCI NTB function driver configures the SoC with multiple PCIe Endpoint
|
|
* (EP) controller instances (see diagram below) in such a way that
|
|
* transactions from one EP controller are routed to the other EP controller.
|
|
* Once PCI NTB function driver configures the SoC with multiple EP instances,
|
|
* HOST1 and HOST2 can communicate with each other using SoC as a bridge.
|
|
*
|
|
* +-------------+ +-------------+
|
|
* | | | |
|
|
* | HOST1 | | HOST2 |
|
|
* | | | |
|
|
* +------^------+ +------^------+
|
|
* | |
|
|
* | |
|
|
* +---------|-------------------------------------------------|---------+
|
|
* | +------v------+ +------v------+ |
|
|
* | | | | | |
|
|
* | | EP | | EP | |
|
|
* | | CONTROLLER1 | | CONTROLLER2 | |
|
|
* | | <-----------------------------------> | |
|
|
* | | | | | |
|
|
* | | | | | |
|
|
* | | | SoC With Multiple EP Instances | | |
|
|
* | | | (Configured using NTB Function) | | |
|
|
* | +-------------+ +-------------+ |
|
|
* +---------------------------------------------------------------------+
|
|
*/
|
|
|
|
#include <linux/delay.h>
|
|
#include <linux/io.h>
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <linux/pci-epc.h>
|
|
#include <linux/pci-epf.h>
|
|
|
|
static struct workqueue_struct *kpcintb_workqueue;
|
|
|
|
#define COMMAND_CONFIGURE_DOORBELL 1
|
|
#define COMMAND_TEARDOWN_DOORBELL 2
|
|
#define COMMAND_CONFIGURE_MW 3
|
|
#define COMMAND_TEARDOWN_MW 4
|
|
#define COMMAND_LINK_UP 5
|
|
#define COMMAND_LINK_DOWN 6
|
|
|
|
#define COMMAND_STATUS_OK 1
|
|
#define COMMAND_STATUS_ERROR 2
|
|
|
|
#define LINK_STATUS_UP BIT(0)
|
|
|
|
#define SPAD_COUNT 64
|
|
#define DB_COUNT 4
|
|
#define NTB_MW_OFFSET 2
|
|
#define DB_COUNT_MASK GENMASK(15, 0)
|
|
#define MSIX_ENABLE BIT(16)
|
|
#define MAX_DB_COUNT 32
|
|
#define MAX_MW 4
|
|
|
|
enum epf_ntb_bar {
|
|
BAR_CONFIG,
|
|
BAR_PEER_SPAD,
|
|
BAR_DB_MW1,
|
|
BAR_MW2,
|
|
BAR_MW3,
|
|
BAR_MW4,
|
|
};
|
|
|
|
struct epf_ntb {
|
|
u32 num_mws;
|
|
u32 db_count;
|
|
u32 spad_count;
|
|
struct pci_epf *epf;
|
|
u64 mws_size[MAX_MW];
|
|
struct config_group group;
|
|
struct epf_ntb_epc *epc[2];
|
|
};
|
|
|
|
#define to_epf_ntb(epf_group) container_of((epf_group), struct epf_ntb, group)
|
|
|
|
struct epf_ntb_epc {
|
|
u8 func_no;
|
|
u8 vfunc_no;
|
|
bool linkup;
|
|
bool is_msix;
|
|
int msix_bar;
|
|
u32 spad_size;
|
|
struct pci_epc *epc;
|
|
struct epf_ntb *epf_ntb;
|
|
void __iomem *mw_addr[6];
|
|
size_t msix_table_offset;
|
|
struct epf_ntb_ctrl *reg;
|
|
struct pci_epf_bar *epf_bar;
|
|
enum pci_barno epf_ntb_bar[6];
|
|
struct delayed_work cmd_handler;
|
|
enum pci_epc_interface_type type;
|
|
const struct pci_epc_features *epc_features;
|
|
};
|
|
|
|
struct epf_ntb_ctrl {
|
|
u32 command;
|
|
u32 argument;
|
|
u16 command_status;
|
|
u16 link_status;
|
|
u32 topology;
|
|
u64 addr;
|
|
u64 size;
|
|
u32 num_mws;
|
|
u32 mw1_offset;
|
|
u32 spad_offset;
|
|
u32 spad_count;
|
|
u32 db_entry_size;
|
|
u32 db_data[MAX_DB_COUNT];
|
|
u32 db_offset[MAX_DB_COUNT];
|
|
} __packed;
|
|
|
|
static struct pci_epf_header epf_ntb_header = {
|
|
.vendorid = PCI_ANY_ID,
|
|
.deviceid = PCI_ANY_ID,
|
|
.baseclass_code = PCI_BASE_CLASS_MEMORY,
|
|
.interrupt_pin = PCI_INTERRUPT_INTA,
|
|
};
|
|
|
|
/**
|
|
* epf_ntb_link_up() - Raise link_up interrupt to both the hosts
|
|
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
|
|
* @link_up: true or false indicating Link is UP or Down
|
|
*
|
|
* Once NTB function in HOST1 and the NTB function in HOST2 invoke
|
|
* ntb_link_enable(), this NTB function driver will trigger a link event to
|
|
* the NTB client in both the hosts.
|
|
*/
|
|
static int epf_ntb_link_up(struct epf_ntb *ntb, bool link_up)
|
|
{
|
|
enum pci_epc_interface_type type;
|
|
enum pci_epc_irq_type irq_type;
|
|
struct epf_ntb_epc *ntb_epc;
|
|
struct epf_ntb_ctrl *ctrl;
|
|
struct pci_epc *epc;
|
|
u8 func_no, vfunc_no;
|
|
bool is_msix;
|
|
int ret;
|
|
|
|
for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) {
|
|
ntb_epc = ntb->epc[type];
|
|
epc = ntb_epc->epc;
|
|
func_no = ntb_epc->func_no;
|
|
vfunc_no = ntb_epc->vfunc_no;
|
|
is_msix = ntb_epc->is_msix;
|
|
ctrl = ntb_epc->reg;
|
|
if (link_up)
|
|
ctrl->link_status |= LINK_STATUS_UP;
|
|
else
|
|
ctrl->link_status &= ~LINK_STATUS_UP;
|
|
irq_type = is_msix ? PCI_EPC_IRQ_MSIX : PCI_EPC_IRQ_MSI;
|
|
ret = pci_epc_raise_irq(epc, func_no, vfunc_no, irq_type, 1);
|
|
if (ret) {
|
|
dev_err(&epc->dev,
|
|
"%s intf: Failed to raise Link Up IRQ\n",
|
|
pci_epc_interface_string(type));
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* epf_ntb_configure_mw() - Configure the Outbound Address Space for one host
|
|
* to access the memory window of other host
|
|
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
|
|
* @type: PRIMARY interface or SECONDARY interface
|
|
* @mw: Index of the memory window (either 0, 1, 2 or 3)
|
|
*
|
|
* +-----------------+ +---->+----------------+-----------+-----------------+
|
|
* | BAR0 | | | Doorbell 1 +-----------> MSI|X ADDRESS 1 |
|
|
* +-----------------+ | +----------------+ +-----------------+
|
|
* | BAR1 | | | Doorbell 2 +---------+ | |
|
|
* +-----------------+----+ +----------------+ | | |
|
|
* | BAR2 | | Doorbell 3 +-------+ | +-----------------+
|
|
* +-----------------+----+ +----------------+ | +-> MSI|X ADDRESS 2 |
|
|
* | BAR3 | | | Doorbell 4 +-----+ | +-----------------+
|
|
* +-----------------+ | |----------------+ | | | |
|
|
* | BAR4 | | | | | | +-----------------+
|
|
* +-----------------+ | | MW1 +---+ | +-->+ MSI|X ADDRESS 3||
|
|
* | BAR5 | | | | | | +-----------------+
|
|
* +-----------------+ +---->-----------------+ | | | |
|
|
* EP CONTROLLER 1 | | | | +-----------------+
|
|
* | | | +---->+ MSI|X ADDRESS 4 |
|
|
* +----------------+ | +-----------------+
|
|
* (A) EP CONTROLLER 2 | | |
|
|
* (OB SPACE) | | |
|
|
* +-------> MW1 |
|
|
* | |
|
|
* | |
|
|
* (B) +-----------------+
|
|
* | |
|
|
* | |
|
|
* | |
|
|
* | |
|
|
* | |
|
|
* +-----------------+
|
|
* PCI Address Space
|
|
* (Managed by HOST2)
|
|
*
|
|
* This function performs stage (B) in the above diagram (see MW1) i.e., map OB
|
|
* address space of memory window to PCI address space.
|
|
*
|
|
* This operation requires 3 parameters
|
|
* 1) Address in the outbound address space
|
|
* 2) Address in the PCI Address space
|
|
* 3) Size of the address region to be mapped
|
|
*
|
|
* The address in the outbound address space (for MW1, MW2, MW3 and MW4) is
|
|
* stored in epf_bar corresponding to BAR_DB_MW1 for MW1 and BAR_MW2, BAR_MW3
|
|
* BAR_MW4 for rest of the BARs of epf_ntb_epc that is connected to HOST1. This
|
|
* is populated in epf_ntb_alloc_peer_mem() in this driver.
|
|
*
|
|
* The address and size of the PCI address region that has to be mapped would
|
|
* be provided by HOST2 in ctrl->addr and ctrl->size of epf_ntb_epc that is
|
|
* connected to HOST2.
|
|
*
|
|
* Please note Memory window1 (MW1) and Doorbell registers together will be
|
|
* mapped to a single BAR (BAR2) above for 32-bit BARs. The exact BAR that's
|
|
* used for Memory window (MW) can be obtained from epf_ntb_bar[BAR_DB_MW1],
|
|
* epf_ntb_bar[BAR_MW2], epf_ntb_bar[BAR_MW2], epf_ntb_bar[BAR_MW2].
|
|
*/
|
|
static int epf_ntb_configure_mw(struct epf_ntb *ntb,
|
|
enum pci_epc_interface_type type, u32 mw)
|
|
{
|
|
struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
|
|
struct pci_epf_bar *peer_epf_bar;
|
|
enum pci_barno peer_barno;
|
|
struct epf_ntb_ctrl *ctrl;
|
|
phys_addr_t phys_addr;
|
|
u8 func_no, vfunc_no;
|
|
struct pci_epc *epc;
|
|
u64 addr, size;
|
|
int ret = 0;
|
|
|
|
ntb_epc = ntb->epc[type];
|
|
epc = ntb_epc->epc;
|
|
|
|
peer_ntb_epc = ntb->epc[!type];
|
|
peer_barno = peer_ntb_epc->epf_ntb_bar[mw + NTB_MW_OFFSET];
|
|
peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno];
|
|
|
|
phys_addr = peer_epf_bar->phys_addr;
|
|
ctrl = ntb_epc->reg;
|
|
addr = ctrl->addr;
|
|
size = ctrl->size;
|
|
if (mw + NTB_MW_OFFSET == BAR_DB_MW1)
|
|
phys_addr += ctrl->mw1_offset;
|
|
|
|
if (size > ntb->mws_size[mw]) {
|
|
dev_err(&epc->dev,
|
|
"%s intf: MW: %d Req Sz:%llxx > Supported Sz:%llx\n",
|
|
pci_epc_interface_string(type), mw, size,
|
|
ntb->mws_size[mw]);
|
|
ret = -EINVAL;
|
|
goto err_invalid_size;
|
|
}
|
|
|
|
func_no = ntb_epc->func_no;
|
|
vfunc_no = ntb_epc->vfunc_no;
|
|
|
|
ret = pci_epc_map_addr(epc, func_no, vfunc_no, phys_addr, addr, size);
|
|
if (ret)
|
|
dev_err(&epc->dev,
|
|
"%s intf: Failed to map memory window %d address\n",
|
|
pci_epc_interface_string(type), mw);
|
|
|
|
err_invalid_size:
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* epf_ntb_teardown_mw() - Teardown the configured OB ATU
|
|
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
|
|
* @type: PRIMARY interface or SECONDARY interface
|
|
* @mw: Index of the memory window (either 0, 1, 2 or 3)
|
|
*
|
|
* Teardown the configured OB ATU configured in epf_ntb_configure_mw() using
|
|
* pci_epc_unmap_addr()
|
|
*/
|
|
static void epf_ntb_teardown_mw(struct epf_ntb *ntb,
|
|
enum pci_epc_interface_type type, u32 mw)
|
|
{
|
|
struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
|
|
struct pci_epf_bar *peer_epf_bar;
|
|
enum pci_barno peer_barno;
|
|
struct epf_ntb_ctrl *ctrl;
|
|
phys_addr_t phys_addr;
|
|
u8 func_no, vfunc_no;
|
|
struct pci_epc *epc;
|
|
|
|
ntb_epc = ntb->epc[type];
|
|
epc = ntb_epc->epc;
|
|
|
|
peer_ntb_epc = ntb->epc[!type];
|
|
peer_barno = peer_ntb_epc->epf_ntb_bar[mw + NTB_MW_OFFSET];
|
|
peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno];
|
|
|
|
phys_addr = peer_epf_bar->phys_addr;
|
|
ctrl = ntb_epc->reg;
|
|
if (mw + NTB_MW_OFFSET == BAR_DB_MW1)
|
|
phys_addr += ctrl->mw1_offset;
|
|
func_no = ntb_epc->func_no;
|
|
vfunc_no = ntb_epc->vfunc_no;
|
|
|
|
pci_epc_unmap_addr(epc, func_no, vfunc_no, phys_addr);
|
|
}
|
|
|
|
/**
|
|
* epf_ntb_configure_msi() - Map OB address space to MSI address
|
|
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
|
|
* @type: PRIMARY interface or SECONDARY interface
|
|
* @db_count: Number of doorbell interrupts to map
|
|
*
|
|
*+-----------------+ +----->+----------------+-----------+-----------------+
|
|
*| BAR0 | | | Doorbell 1 +---+-------> MSI ADDRESS |
|
|
*+-----------------+ | +----------------+ | +-----------------+
|
|
*| BAR1 | | | Doorbell 2 +---+ | |
|
|
*+-----------------+----+ +----------------+ | | |
|
|
*| BAR2 | | Doorbell 3 +---+ | |
|
|
*+-----------------+----+ +----------------+ | | |
|
|
*| BAR3 | | | Doorbell 4 +---+ | |
|
|
*+-----------------+ | |----------------+ | |
|
|
*| BAR4 | | | | | |
|
|
*+-----------------+ | | MW1 | | |
|
|
*| BAR5 | | | | | |
|
|
*+-----------------+ +----->-----------------+ | |
|
|
* EP CONTROLLER 1 | | | |
|
|
* | | | |
|
|
* +----------------+ +-----------------+
|
|
* (A) EP CONTROLLER 2 | |
|
|
* (OB SPACE) | |
|
|
* | MW1 |
|
|
* | |
|
|
* | |
|
|
* (B) +-----------------+
|
|
* | |
|
|
* | |
|
|
* | |
|
|
* | |
|
|
* | |
|
|
* +-----------------+
|
|
* PCI Address Space
|
|
* (Managed by HOST2)
|
|
*
|
|
*
|
|
* This function performs stage (B) in the above diagram (see Doorbell 1,
|
|
* Doorbell 2, Doorbell 3, Doorbell 4) i.e map OB address space corresponding to
|
|
* doorbell to MSI address in PCI address space.
|
|
*
|
|
* This operation requires 3 parameters
|
|
* 1) Address reserved for doorbell in the outbound address space
|
|
* 2) MSI-X address in the PCIe Address space
|
|
* 3) Number of MSI-X interrupts that has to be configured
|
|
*
|
|
* The address in the outbound address space (for the Doorbell) is stored in
|
|
* epf_bar corresponding to BAR_DB_MW1 of epf_ntb_epc that is connected to
|
|
* HOST1. This is populated in epf_ntb_alloc_peer_mem() in this driver along
|
|
* with address for MW1.
|
|
*
|
|
* pci_epc_map_msi_irq() takes the MSI address from MSI capability register
|
|
* and maps the OB address (obtained in epf_ntb_alloc_peer_mem()) to the MSI
|
|
* address.
|
|
*
|
|
* epf_ntb_configure_msi() also stores the MSI data to raise each interrupt
|
|
* in db_data of the peer's control region. This helps the peer to raise
|
|
* doorbell of the other host by writing db_data to the BAR corresponding to
|
|
* BAR_DB_MW1.
|
|
*/
|
|
static int epf_ntb_configure_msi(struct epf_ntb *ntb,
|
|
enum pci_epc_interface_type type, u16 db_count)
|
|
{
|
|
struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
|
|
u32 db_entry_size, db_data, db_offset;
|
|
struct pci_epf_bar *peer_epf_bar;
|
|
struct epf_ntb_ctrl *peer_ctrl;
|
|
enum pci_barno peer_barno;
|
|
phys_addr_t phys_addr;
|
|
u8 func_no, vfunc_no;
|
|
struct pci_epc *epc;
|
|
int ret, i;
|
|
|
|
ntb_epc = ntb->epc[type];
|
|
epc = ntb_epc->epc;
|
|
|
|
peer_ntb_epc = ntb->epc[!type];
|
|
peer_barno = peer_ntb_epc->epf_ntb_bar[BAR_DB_MW1];
|
|
peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno];
|
|
peer_ctrl = peer_ntb_epc->reg;
|
|
db_entry_size = peer_ctrl->db_entry_size;
|
|
|
|
phys_addr = peer_epf_bar->phys_addr;
|
|
func_no = ntb_epc->func_no;
|
|
vfunc_no = ntb_epc->vfunc_no;
|
|
|
|
ret = pci_epc_map_msi_irq(epc, func_no, vfunc_no, phys_addr, db_count,
|
|
db_entry_size, &db_data, &db_offset);
|
|
if (ret) {
|
|
dev_err(&epc->dev, "%s intf: Failed to map MSI IRQ\n",
|
|
pci_epc_interface_string(type));
|
|
return ret;
|
|
}
|
|
|
|
for (i = 0; i < db_count; i++) {
|
|
peer_ctrl->db_data[i] = db_data | i;
|
|
peer_ctrl->db_offset[i] = db_offset;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* epf_ntb_configure_msix() - Map OB address space to MSI-X address
|
|
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
|
|
* @type: PRIMARY interface or SECONDARY interface
|
|
* @db_count: Number of doorbell interrupts to map
|
|
*
|
|
*+-----------------+ +----->+----------------+-----------+-----------------+
|
|
*| BAR0 | | | Doorbell 1 +-----------> MSI-X ADDRESS 1 |
|
|
*+-----------------+ | +----------------+ +-----------------+
|
|
*| BAR1 | | | Doorbell 2 +---------+ | |
|
|
*+-----------------+----+ +----------------+ | | |
|
|
*| BAR2 | | Doorbell 3 +-------+ | +-----------------+
|
|
*+-----------------+----+ +----------------+ | +-> MSI-X ADDRESS 2 |
|
|
*| BAR3 | | | Doorbell 4 +-----+ | +-----------------+
|
|
*+-----------------+ | |----------------+ | | | |
|
|
*| BAR4 | | | | | | +-----------------+
|
|
*+-----------------+ | | MW1 + | +-->+ MSI-X ADDRESS 3||
|
|
*| BAR5 | | | | | +-----------------+
|
|
*+-----------------+ +----->-----------------+ | | |
|
|
* EP CONTROLLER 1 | | | +-----------------+
|
|
* | | +---->+ MSI-X ADDRESS 4 |
|
|
* +----------------+ +-----------------+
|
|
* (A) EP CONTROLLER 2 | |
|
|
* (OB SPACE) | |
|
|
* | MW1 |
|
|
* | |
|
|
* | |
|
|
* (B) +-----------------+
|
|
* | |
|
|
* | |
|
|
* | |
|
|
* | |
|
|
* | |
|
|
* +-----------------+
|
|
* PCI Address Space
|
|
* (Managed by HOST2)
|
|
*
|
|
* This function performs stage (B) in the above diagram (see Doorbell 1,
|
|
* Doorbell 2, Doorbell 3, Doorbell 4) i.e map OB address space corresponding to
|
|
* doorbell to MSI-X address in PCI address space.
|
|
*
|
|
* This operation requires 3 parameters
|
|
* 1) Address reserved for doorbell in the outbound address space
|
|
* 2) MSI-X address in the PCIe Address space
|
|
* 3) Number of MSI-X interrupts that has to be configured
|
|
*
|
|
* The address in the outbound address space (for the Doorbell) is stored in
|
|
* epf_bar corresponding to BAR_DB_MW1 of epf_ntb_epc that is connected to
|
|
* HOST1. This is populated in epf_ntb_alloc_peer_mem() in this driver along
|
|
* with address for MW1.
|
|
*
|
|
* The MSI-X address is in the MSI-X table of EP CONTROLLER 2 and
|
|
* the count of doorbell is in ctrl->argument of epf_ntb_epc that is connected
|
|
* to HOST2. MSI-X table is stored memory mapped to ntb_epc->msix_bar and the
|
|
* offset is in ntb_epc->msix_table_offset. From this epf_ntb_configure_msix()
|
|
* gets the MSI-X address and data.
|
|
*
|
|
* epf_ntb_configure_msix() also stores the MSI-X data to raise each interrupt
|
|
* in db_data of the peer's control region. This helps the peer to raise
|
|
* doorbell of the other host by writing db_data to the BAR corresponding to
|
|
* BAR_DB_MW1.
|
|
*/
|
|
static int epf_ntb_configure_msix(struct epf_ntb *ntb,
|
|
enum pci_epc_interface_type type,
|
|
u16 db_count)
|
|
{
|
|
const struct pci_epc_features *epc_features;
|
|
struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
|
|
struct pci_epf_bar *peer_epf_bar, *epf_bar;
|
|
struct pci_epf_msix_tbl *msix_tbl;
|
|
struct epf_ntb_ctrl *peer_ctrl;
|
|
u32 db_entry_size, msg_data;
|
|
enum pci_barno peer_barno;
|
|
phys_addr_t phys_addr;
|
|
u8 func_no, vfunc_no;
|
|
struct pci_epc *epc;
|
|
size_t align;
|
|
u64 msg_addr;
|
|
int ret, i;
|
|
|
|
ntb_epc = ntb->epc[type];
|
|
epc = ntb_epc->epc;
|
|
|
|
epf_bar = &ntb_epc->epf_bar[ntb_epc->msix_bar];
|
|
msix_tbl = epf_bar->addr + ntb_epc->msix_table_offset;
|
|
|
|
peer_ntb_epc = ntb->epc[!type];
|
|
peer_barno = peer_ntb_epc->epf_ntb_bar[BAR_DB_MW1];
|
|
peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno];
|
|
phys_addr = peer_epf_bar->phys_addr;
|
|
peer_ctrl = peer_ntb_epc->reg;
|
|
epc_features = ntb_epc->epc_features;
|
|
align = epc_features->align;
|
|
|
|
func_no = ntb_epc->func_no;
|
|
vfunc_no = ntb_epc->vfunc_no;
|
|
db_entry_size = peer_ctrl->db_entry_size;
|
|
|
|
for (i = 0; i < db_count; i++) {
|
|
msg_addr = ALIGN_DOWN(msix_tbl[i].msg_addr, align);
|
|
msg_data = msix_tbl[i].msg_data;
|
|
ret = pci_epc_map_addr(epc, func_no, vfunc_no, phys_addr, msg_addr,
|
|
db_entry_size);
|
|
if (ret) {
|
|
dev_err(&epc->dev,
|
|
"%s intf: Failed to configure MSI-X IRQ\n",
|
|
pci_epc_interface_string(type));
|
|
return ret;
|
|
}
|
|
phys_addr = phys_addr + db_entry_size;
|
|
peer_ctrl->db_data[i] = msg_data;
|
|
peer_ctrl->db_offset[i] = msix_tbl[i].msg_addr & (align - 1);
|
|
}
|
|
ntb_epc->is_msix = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* epf_ntb_configure_db() - Configure the Outbound Address Space for one host
|
|
* to ring the doorbell of other host
|
|
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
|
|
* @type: PRIMARY interface or SECONDARY interface
|
|
* @db_count: Count of the number of doorbells that has to be configured
|
|
* @msix: Indicates whether MSI-X or MSI should be used
|
|
*
|
|
* Invokes epf_ntb_configure_msix() or epf_ntb_configure_msi() required for
|
|
* one HOST to ring the doorbell of other HOST.
|
|
*/
|
|
static int epf_ntb_configure_db(struct epf_ntb *ntb,
|
|
enum pci_epc_interface_type type,
|
|
u16 db_count, bool msix)
|
|
{
|
|
struct epf_ntb_epc *ntb_epc;
|
|
struct pci_epc *epc;
|
|
int ret;
|
|
|
|
if (db_count > MAX_DB_COUNT)
|
|
return -EINVAL;
|
|
|
|
ntb_epc = ntb->epc[type];
|
|
epc = ntb_epc->epc;
|
|
|
|
if (msix)
|
|
ret = epf_ntb_configure_msix(ntb, type, db_count);
|
|
else
|
|
ret = epf_ntb_configure_msi(ntb, type, db_count);
|
|
|
|
if (ret)
|
|
dev_err(&epc->dev, "%s intf: Failed to configure DB\n",
|
|
pci_epc_interface_string(type));
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* epf_ntb_teardown_db() - Unmap address in OB address space to MSI/MSI-X
|
|
* address
|
|
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
|
|
* @type: PRIMARY interface or SECONDARY interface
|
|
*
|
|
* Invoke pci_epc_unmap_addr() to unmap OB address to MSI/MSI-X address.
|
|
*/
|
|
static void
|
|
epf_ntb_teardown_db(struct epf_ntb *ntb, enum pci_epc_interface_type type)
|
|
{
|
|
struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
|
|
struct pci_epf_bar *peer_epf_bar;
|
|
enum pci_barno peer_barno;
|
|
phys_addr_t phys_addr;
|
|
u8 func_no, vfunc_no;
|
|
struct pci_epc *epc;
|
|
|
|
ntb_epc = ntb->epc[type];
|
|
epc = ntb_epc->epc;
|
|
|
|
peer_ntb_epc = ntb->epc[!type];
|
|
peer_barno = peer_ntb_epc->epf_ntb_bar[BAR_DB_MW1];
|
|
peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno];
|
|
phys_addr = peer_epf_bar->phys_addr;
|
|
func_no = ntb_epc->func_no;
|
|
vfunc_no = ntb_epc->vfunc_no;
|
|
|
|
pci_epc_unmap_addr(epc, func_no, vfunc_no, phys_addr);
|
|
}
|
|
|
|
/**
|
|
* epf_ntb_cmd_handler() - Handle commands provided by the NTB Host
|
|
* @work: work_struct for the two epf_ntb_epc (PRIMARY and SECONDARY)
|
|
*
|
|
* Workqueue function that gets invoked for the two epf_ntb_epc
|
|
* periodically (once every 5ms) to see if it has received any commands
|
|
* from NTB host. The host can send commands to configure doorbell or
|
|
* configure memory window or to update link status.
|
|
*/
|
|
static void epf_ntb_cmd_handler(struct work_struct *work)
|
|
{
|
|
enum pci_epc_interface_type type;
|
|
struct epf_ntb_epc *ntb_epc;
|
|
struct epf_ntb_ctrl *ctrl;
|
|
u32 command, argument;
|
|
struct epf_ntb *ntb;
|
|
struct device *dev;
|
|
u16 db_count;
|
|
bool is_msix;
|
|
int ret;
|
|
|
|
ntb_epc = container_of(work, struct epf_ntb_epc, cmd_handler.work);
|
|
ctrl = ntb_epc->reg;
|
|
command = ctrl->command;
|
|
if (!command)
|
|
goto reset_handler;
|
|
argument = ctrl->argument;
|
|
|
|
ctrl->command = 0;
|
|
ctrl->argument = 0;
|
|
|
|
ctrl = ntb_epc->reg;
|
|
type = ntb_epc->type;
|
|
ntb = ntb_epc->epf_ntb;
|
|
dev = &ntb->epf->dev;
|
|
|
|
switch (command) {
|
|
case COMMAND_CONFIGURE_DOORBELL:
|
|
db_count = argument & DB_COUNT_MASK;
|
|
is_msix = argument & MSIX_ENABLE;
|
|
ret = epf_ntb_configure_db(ntb, type, db_count, is_msix);
|
|
if (ret < 0)
|
|
ctrl->command_status = COMMAND_STATUS_ERROR;
|
|
else
|
|
ctrl->command_status = COMMAND_STATUS_OK;
|
|
break;
|
|
case COMMAND_TEARDOWN_DOORBELL:
|
|
epf_ntb_teardown_db(ntb, type);
|
|
ctrl->command_status = COMMAND_STATUS_OK;
|
|
break;
|
|
case COMMAND_CONFIGURE_MW:
|
|
ret = epf_ntb_configure_mw(ntb, type, argument);
|
|
if (ret < 0)
|
|
ctrl->command_status = COMMAND_STATUS_ERROR;
|
|
else
|
|
ctrl->command_status = COMMAND_STATUS_OK;
|
|
break;
|
|
case COMMAND_TEARDOWN_MW:
|
|
epf_ntb_teardown_mw(ntb, type, argument);
|
|
ctrl->command_status = COMMAND_STATUS_OK;
|
|
break;
|
|
case COMMAND_LINK_UP:
|
|
ntb_epc->linkup = true;
|
|
if (ntb->epc[PRIMARY_INTERFACE]->linkup &&
|
|
ntb->epc[SECONDARY_INTERFACE]->linkup) {
|
|
ret = epf_ntb_link_up(ntb, true);
|
|
if (ret < 0)
|
|
ctrl->command_status = COMMAND_STATUS_ERROR;
|
|
else
|
|
ctrl->command_status = COMMAND_STATUS_OK;
|
|
goto reset_handler;
|
|
}
|
|
ctrl->command_status = COMMAND_STATUS_OK;
|
|
break;
|
|
case COMMAND_LINK_DOWN:
|
|
ntb_epc->linkup = false;
|
|
ret = epf_ntb_link_up(ntb, false);
|
|
if (ret < 0)
|
|
ctrl->command_status = COMMAND_STATUS_ERROR;
|
|
else
|
|
ctrl->command_status = COMMAND_STATUS_OK;
|
|
break;
|
|
default:
|
|
dev_err(dev, "%s intf UNKNOWN command: %d\n",
|
|
pci_epc_interface_string(type), command);
|
|
break;
|
|
}
|
|
|
|
reset_handler:
|
|
queue_delayed_work(kpcintb_workqueue, &ntb_epc->cmd_handler,
|
|
msecs_to_jiffies(5));
|
|
}
|
|
|
|
/**
|
|
* epf_ntb_peer_spad_bar_clear() - Clear Peer Scratchpad BAR
|
|
* @ntb_epc: EPC associated with one of the HOST which holds peer's outbound
|
|
* address.
|
|
*
|
|
*+-----------------+------->+------------------+ +-----------------+
|
|
*| BAR0 | | CONFIG REGION | | BAR0 |
|
|
*+-----------------+----+ +------------------+<-------+-----------------+
|
|
*| BAR1 | | |SCRATCHPAD REGION | | BAR1 |
|
|
*+-----------------+ +-->+------------------+<-------+-----------------+
|
|
*| BAR2 | Local Memory | BAR2 |
|
|
*+-----------------+ +-----------------+
|
|
*| BAR3 | | BAR3 |
|
|
*+-----------------+ +-----------------+
|
|
*| BAR4 | | BAR4 |
|
|
*+-----------------+ +-----------------+
|
|
*| BAR5 | | BAR5 |
|
|
*+-----------------+ +-----------------+
|
|
* EP CONTROLLER 1 EP CONTROLLER 2
|
|
*
|
|
* Clear BAR1 of EP CONTROLLER 2 which contains the HOST2's peer scratchpad
|
|
* region. While BAR1 is the default peer scratchpad BAR, an NTB could have
|
|
* other BARs for peer scratchpad (because of 64-bit BARs or reserved BARs).
|
|
* This function can get the exact BAR used for peer scratchpad from
|
|
* epf_ntb_bar[BAR_PEER_SPAD].
|
|
*
|
|
* Since HOST2's peer scratchpad is also HOST1's self scratchpad, this function
|
|
* gets the address of peer scratchpad from
|
|
* peer_ntb_epc->epf_ntb_bar[BAR_CONFIG].
|
|
*/
|
|
static void epf_ntb_peer_spad_bar_clear(struct epf_ntb_epc *ntb_epc)
|
|
{
|
|
struct pci_epf_bar *epf_bar;
|
|
enum pci_barno barno;
|
|
u8 func_no, vfunc_no;
|
|
struct pci_epc *epc;
|
|
|
|
epc = ntb_epc->epc;
|
|
func_no = ntb_epc->func_no;
|
|
vfunc_no = ntb_epc->vfunc_no;
|
|
barno = ntb_epc->epf_ntb_bar[BAR_PEER_SPAD];
|
|
epf_bar = &ntb_epc->epf_bar[barno];
|
|
pci_epc_clear_bar(epc, func_no, vfunc_no, epf_bar);
|
|
}
|
|
|
|
/**
|
|
* epf_ntb_peer_spad_bar_set() - Set peer scratchpad BAR
|
|
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
|
|
* @type: PRIMARY interface or SECONDARY interface
|
|
*
|
|
*+-----------------+------->+------------------+ +-----------------+
|
|
*| BAR0 | | CONFIG REGION | | BAR0 |
|
|
*+-----------------+----+ +------------------+<-------+-----------------+
|
|
*| BAR1 | | |SCRATCHPAD REGION | | BAR1 |
|
|
*+-----------------+ +-->+------------------+<-------+-----------------+
|
|
*| BAR2 | Local Memory | BAR2 |
|
|
*+-----------------+ +-----------------+
|
|
*| BAR3 | | BAR3 |
|
|
*+-----------------+ +-----------------+
|
|
*| BAR4 | | BAR4 |
|
|
*+-----------------+ +-----------------+
|
|
*| BAR5 | | BAR5 |
|
|
*+-----------------+ +-----------------+
|
|
* EP CONTROLLER 1 EP CONTROLLER 2
|
|
*
|
|
* Set BAR1 of EP CONTROLLER 2 which contains the HOST2's peer scratchpad
|
|
* region. While BAR1 is the default peer scratchpad BAR, an NTB could have
|
|
* other BARs for peer scratchpad (because of 64-bit BARs or reserved BARs).
|
|
* This function can get the exact BAR used for peer scratchpad from
|
|
* epf_ntb_bar[BAR_PEER_SPAD].
|
|
*
|
|
* Since HOST2's peer scratchpad is also HOST1's self scratchpad, this function
|
|
* gets the address of peer scratchpad from
|
|
* peer_ntb_epc->epf_ntb_bar[BAR_CONFIG].
|
|
*/
|
|
static int epf_ntb_peer_spad_bar_set(struct epf_ntb *ntb,
|
|
enum pci_epc_interface_type type)
|
|
{
|
|
struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
|
|
struct pci_epf_bar *peer_epf_bar, *epf_bar;
|
|
enum pci_barno peer_barno, barno;
|
|
u32 peer_spad_offset;
|
|
u8 func_no, vfunc_no;
|
|
struct pci_epc *epc;
|
|
struct device *dev;
|
|
int ret;
|
|
|
|
dev = &ntb->epf->dev;
|
|
|
|
peer_ntb_epc = ntb->epc[!type];
|
|
peer_barno = peer_ntb_epc->epf_ntb_bar[BAR_CONFIG];
|
|
peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno];
|
|
|
|
ntb_epc = ntb->epc[type];
|
|
barno = ntb_epc->epf_ntb_bar[BAR_PEER_SPAD];
|
|
epf_bar = &ntb_epc->epf_bar[barno];
|
|
func_no = ntb_epc->func_no;
|
|
vfunc_no = ntb_epc->vfunc_no;
|
|
epc = ntb_epc->epc;
|
|
|
|
peer_spad_offset = peer_ntb_epc->reg->spad_offset;
|
|
epf_bar->phys_addr = peer_epf_bar->phys_addr + peer_spad_offset;
|
|
epf_bar->size = peer_ntb_epc->spad_size;
|
|
epf_bar->barno = barno;
|
|
epf_bar->flags = PCI_BASE_ADDRESS_MEM_TYPE_32;
|
|
|
|
ret = pci_epc_set_bar(epc, func_no, vfunc_no, epf_bar);
|
|
if (ret) {
|
|
dev_err(dev, "%s intf: peer SPAD BAR set failed\n",
|
|
pci_epc_interface_string(type));
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* epf_ntb_config_sspad_bar_clear() - Clear Config + Self scratchpad BAR
|
|
* @ntb_epc: EPC associated with one of the HOST which holds peer's outbound
|
|
* address.
|
|
*
|
|
* +-----------------+------->+------------------+ +-----------------+
|
|
* | BAR0 | | CONFIG REGION | | BAR0 |
|
|
* +-----------------+----+ +------------------+<-------+-----------------+
|
|
* | BAR1 | | |SCRATCHPAD REGION | | BAR1 |
|
|
* +-----------------+ +-->+------------------+<-------+-----------------+
|
|
* | BAR2 | Local Memory | BAR2 |
|
|
* +-----------------+ +-----------------+
|
|
* | BAR3 | | BAR3 |
|
|
* +-----------------+ +-----------------+
|
|
* | BAR4 | | BAR4 |
|
|
* +-----------------+ +-----------------+
|
|
* | BAR5 | | BAR5 |
|
|
* +-----------------+ +-----------------+
|
|
* EP CONTROLLER 1 EP CONTROLLER 2
|
|
*
|
|
* Clear BAR0 of EP CONTROLLER 1 which contains the HOST1's config and
|
|
* self scratchpad region (removes inbound ATU configuration). While BAR0 is
|
|
* the default self scratchpad BAR, an NTB could have other BARs for self
|
|
* scratchpad (because of reserved BARs). This function can get the exact BAR
|
|
* used for self scratchpad from epf_ntb_bar[BAR_CONFIG].
|
|
*
|
|
* Please note the self scratchpad region and config region is combined to
|
|
* a single region and mapped using the same BAR. Also note HOST2's peer
|
|
* scratchpad is HOST1's self scratchpad.
|
|
*/
|
|
static void epf_ntb_config_sspad_bar_clear(struct epf_ntb_epc *ntb_epc)
|
|
{
|
|
struct pci_epf_bar *epf_bar;
|
|
enum pci_barno barno;
|
|
u8 func_no, vfunc_no;
|
|
struct pci_epc *epc;
|
|
|
|
epc = ntb_epc->epc;
|
|
func_no = ntb_epc->func_no;
|
|
vfunc_no = ntb_epc->vfunc_no;
|
|
barno = ntb_epc->epf_ntb_bar[BAR_CONFIG];
|
|
epf_bar = &ntb_epc->epf_bar[barno];
|
|
pci_epc_clear_bar(epc, func_no, vfunc_no, epf_bar);
|
|
}
|
|
|
|
/**
|
|
* epf_ntb_config_sspad_bar_set() - Set Config + Self scratchpad BAR
|
|
* @ntb_epc: EPC associated with one of the HOST which holds peer's outbound
|
|
* address.
|
|
*
|
|
* +-----------------+------->+------------------+ +-----------------+
|
|
* | BAR0 | | CONFIG REGION | | BAR0 |
|
|
* +-----------------+----+ +------------------+<-------+-----------------+
|
|
* | BAR1 | | |SCRATCHPAD REGION | | BAR1 |
|
|
* +-----------------+ +-->+------------------+<-------+-----------------+
|
|
* | BAR2 | Local Memory | BAR2 |
|
|
* +-----------------+ +-----------------+
|
|
* | BAR3 | | BAR3 |
|
|
* +-----------------+ +-----------------+
|
|
* | BAR4 | | BAR4 |
|
|
* +-----------------+ +-----------------+
|
|
* | BAR5 | | BAR5 |
|
|
* +-----------------+ +-----------------+
|
|
* EP CONTROLLER 1 EP CONTROLLER 2
|
|
*
|
|
* Map BAR0 of EP CONTROLLER 1 which contains the HOST1's config and
|
|
* self scratchpad region. While BAR0 is the default self scratchpad BAR, an
|
|
* NTB could have other BARs for self scratchpad (because of reserved BARs).
|
|
* This function can get the exact BAR used for self scratchpad from
|
|
* epf_ntb_bar[BAR_CONFIG].
|
|
*
|
|
* Please note the self scratchpad region and config region is combined to
|
|
* a single region and mapped using the same BAR. Also note HOST2's peer
|
|
* scratchpad is HOST1's self scratchpad.
|
|
*/
|
|
static int epf_ntb_config_sspad_bar_set(struct epf_ntb_epc *ntb_epc)
|
|
{
|
|
struct pci_epf_bar *epf_bar;
|
|
enum pci_barno barno;
|
|
u8 func_no, vfunc_no;
|
|
struct epf_ntb *ntb;
|
|
struct pci_epc *epc;
|
|
struct device *dev;
|
|
int ret;
|
|
|
|
ntb = ntb_epc->epf_ntb;
|
|
dev = &ntb->epf->dev;
|
|
|
|
epc = ntb_epc->epc;
|
|
func_no = ntb_epc->func_no;
|
|
vfunc_no = ntb_epc->vfunc_no;
|
|
barno = ntb_epc->epf_ntb_bar[BAR_CONFIG];
|
|
epf_bar = &ntb_epc->epf_bar[barno];
|
|
|
|
ret = pci_epc_set_bar(epc, func_no, vfunc_no, epf_bar);
|
|
if (ret) {
|
|
dev_err(dev, "%s inft: Config/Status/SPAD BAR set failed\n",
|
|
pci_epc_interface_string(ntb_epc->type));
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* epf_ntb_config_spad_bar_free() - Free the physical memory associated with
|
|
* config + scratchpad region
|
|
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
|
|
*
|
|
* +-----------------+------->+------------------+ +-----------------+
|
|
* | BAR0 | | CONFIG REGION | | BAR0 |
|
|
* +-----------------+----+ +------------------+<-------+-----------------+
|
|
* | BAR1 | | |SCRATCHPAD REGION | | BAR1 |
|
|
* +-----------------+ +-->+------------------+<-------+-----------------+
|
|
* | BAR2 | Local Memory | BAR2 |
|
|
* +-----------------+ +-----------------+
|
|
* | BAR3 | | BAR3 |
|
|
* +-----------------+ +-----------------+
|
|
* | BAR4 | | BAR4 |
|
|
* +-----------------+ +-----------------+
|
|
* | BAR5 | | BAR5 |
|
|
* +-----------------+ +-----------------+
|
|
* EP CONTROLLER 1 EP CONTROLLER 2
|
|
*
|
|
* Free the Local Memory mentioned in the above diagram. After invoking this
|
|
* function, any of config + self scratchpad region of HOST1 or peer scratchpad
|
|
* region of HOST2 should not be accessed.
|
|
*/
|
|
static void epf_ntb_config_spad_bar_free(struct epf_ntb *ntb)
|
|
{
|
|
enum pci_epc_interface_type type;
|
|
struct epf_ntb_epc *ntb_epc;
|
|
enum pci_barno barno;
|
|
struct pci_epf *epf;
|
|
|
|
epf = ntb->epf;
|
|
for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) {
|
|
ntb_epc = ntb->epc[type];
|
|
barno = ntb_epc->epf_ntb_bar[BAR_CONFIG];
|
|
if (ntb_epc->reg)
|
|
pci_epf_free_space(epf, ntb_epc->reg, barno, type);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* epf_ntb_config_spad_bar_alloc() - Allocate memory for config + scratchpad
|
|
* region
|
|
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
|
|
* @type: PRIMARY interface or SECONDARY interface
|
|
*
|
|
* +-----------------+------->+------------------+ +-----------------+
|
|
* | BAR0 | | CONFIG REGION | | BAR0 |
|
|
* +-----------------+----+ +------------------+<-------+-----------------+
|
|
* | BAR1 | | |SCRATCHPAD REGION | | BAR1 |
|
|
* +-----------------+ +-->+------------------+<-------+-----------------+
|
|
* | BAR2 | Local Memory | BAR2 |
|
|
* +-----------------+ +-----------------+
|
|
* | BAR3 | | BAR3 |
|
|
* +-----------------+ +-----------------+
|
|
* | BAR4 | | BAR4 |
|
|
* +-----------------+ +-----------------+
|
|
* | BAR5 | | BAR5 |
|
|
* +-----------------+ +-----------------+
|
|
* EP CONTROLLER 1 EP CONTROLLER 2
|
|
*
|
|
* Allocate the Local Memory mentioned in the above diagram. The size of
|
|
* CONFIG REGION is sizeof(struct epf_ntb_ctrl) and size of SCRATCHPAD REGION
|
|
* is obtained from "spad-count" configfs entry.
|
|
*
|
|
* The size of both config region and scratchpad region has to be aligned,
|
|
* since the scratchpad region will also be mapped as PEER SCRATCHPAD of
|
|
* other host using a separate BAR.
|
|
*/
|
|
static int epf_ntb_config_spad_bar_alloc(struct epf_ntb *ntb,
|
|
enum pci_epc_interface_type type)
|
|
{
|
|
const struct pci_epc_features *peer_epc_features, *epc_features;
|
|
struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
|
|
size_t msix_table_size, pba_size, align;
|
|
enum pci_barno peer_barno, barno;
|
|
struct epf_ntb_ctrl *ctrl;
|
|
u32 spad_size, ctrl_size;
|
|
u64 size, peer_size;
|
|
struct pci_epf *epf;
|
|
struct device *dev;
|
|
bool msix_capable;
|
|
u32 spad_count;
|
|
void *base;
|
|
|
|
epf = ntb->epf;
|
|
dev = &epf->dev;
|
|
ntb_epc = ntb->epc[type];
|
|
|
|
epc_features = ntb_epc->epc_features;
|
|
barno = ntb_epc->epf_ntb_bar[BAR_CONFIG];
|
|
size = epc_features->bar_fixed_size[barno];
|
|
align = epc_features->align;
|
|
|
|
peer_ntb_epc = ntb->epc[!type];
|
|
peer_epc_features = peer_ntb_epc->epc_features;
|
|
peer_barno = ntb_epc->epf_ntb_bar[BAR_PEER_SPAD];
|
|
peer_size = peer_epc_features->bar_fixed_size[peer_barno];
|
|
|
|
/* Check if epc_features is populated incorrectly */
|
|
if ((!IS_ALIGNED(size, align)))
|
|
return -EINVAL;
|
|
|
|
spad_count = ntb->spad_count;
|
|
|
|
ctrl_size = sizeof(struct epf_ntb_ctrl);
|
|
spad_size = spad_count * 4;
|
|
|
|
msix_capable = epc_features->msix_capable;
|
|
if (msix_capable) {
|
|
msix_table_size = PCI_MSIX_ENTRY_SIZE * ntb->db_count;
|
|
ctrl_size = ALIGN(ctrl_size, 8);
|
|
ntb_epc->msix_table_offset = ctrl_size;
|
|
ntb_epc->msix_bar = barno;
|
|
/* Align to QWORD or 8 Bytes */
|
|
pba_size = ALIGN(DIV_ROUND_UP(ntb->db_count, 8), 8);
|
|
ctrl_size = ctrl_size + msix_table_size + pba_size;
|
|
}
|
|
|
|
if (!align) {
|
|
ctrl_size = roundup_pow_of_two(ctrl_size);
|
|
spad_size = roundup_pow_of_two(spad_size);
|
|
} else {
|
|
ctrl_size = ALIGN(ctrl_size, align);
|
|
spad_size = ALIGN(spad_size, align);
|
|
}
|
|
|
|
if (peer_size) {
|
|
if (peer_size < spad_size)
|
|
spad_count = peer_size / 4;
|
|
spad_size = peer_size;
|
|
}
|
|
|
|
/*
|
|
* In order to make sure SPAD offset is aligned to its size,
|
|
* expand control region size to the size of SPAD if SPAD size
|
|
* is greater than control region size.
|
|
*/
|
|
if (spad_size > ctrl_size)
|
|
ctrl_size = spad_size;
|
|
|
|
if (!size)
|
|
size = ctrl_size + spad_size;
|
|
else if (size < ctrl_size + spad_size)
|
|
return -EINVAL;
|
|
|
|
base = pci_epf_alloc_space(epf, size, barno, align, type);
|
|
if (!base) {
|
|
dev_err(dev, "%s intf: Config/Status/SPAD alloc region fail\n",
|
|
pci_epc_interface_string(type));
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ntb_epc->reg = base;
|
|
|
|
ctrl = ntb_epc->reg;
|
|
ctrl->spad_offset = ctrl_size;
|
|
ctrl->spad_count = spad_count;
|
|
ctrl->num_mws = ntb->num_mws;
|
|
ctrl->db_entry_size = align ? align : 4;
|
|
ntb_epc->spad_size = spad_size;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* epf_ntb_config_spad_bar_alloc_interface() - Allocate memory for config +
|
|
* scratchpad region for each of PRIMARY and SECONDARY interface
|
|
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
|
|
*
|
|
* Wrapper for epf_ntb_config_spad_bar_alloc() which allocates memory for
|
|
* config + scratchpad region for a specific interface
|
|
*/
|
|
static int epf_ntb_config_spad_bar_alloc_interface(struct epf_ntb *ntb)
|
|
{
|
|
enum pci_epc_interface_type type;
|
|
struct device *dev;
|
|
int ret;
|
|
|
|
dev = &ntb->epf->dev;
|
|
|
|
for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) {
|
|
ret = epf_ntb_config_spad_bar_alloc(ntb, type);
|
|
if (ret) {
|
|
dev_err(dev, "%s intf: Config/SPAD BAR alloc failed\n",
|
|
pci_epc_interface_string(type));
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* epf_ntb_free_peer_mem() - Free memory allocated in peers outbound address
|
|
* space
|
|
* @ntb_epc: EPC associated with one of the HOST which holds peers outbound
|
|
* address regions
|
|
*
|
|
* +-----------------+ +---->+----------------+-----------+-----------------+
|
|
* | BAR0 | | | Doorbell 1 +-----------> MSI|X ADDRESS 1 |
|
|
* +-----------------+ | +----------------+ +-----------------+
|
|
* | BAR1 | | | Doorbell 2 +---------+ | |
|
|
* +-----------------+----+ +----------------+ | | |
|
|
* | BAR2 | | Doorbell 3 +-------+ | +-----------------+
|
|
* +-----------------+----+ +----------------+ | +-> MSI|X ADDRESS 2 |
|
|
* | BAR3 | | | Doorbell 4 +-----+ | +-----------------+
|
|
* +-----------------+ | |----------------+ | | | |
|
|
* | BAR4 | | | | | | +-----------------+
|
|
* +-----------------+ | | MW1 +---+ | +-->+ MSI|X ADDRESS 3||
|
|
* | BAR5 | | | | | | +-----------------+
|
|
* +-----------------+ +---->-----------------+ | | | |
|
|
* EP CONTROLLER 1 | | | | +-----------------+
|
|
* | | | +---->+ MSI|X ADDRESS 4 |
|
|
* +----------------+ | +-----------------+
|
|
* (A) EP CONTROLLER 2 | | |
|
|
* (OB SPACE) | | |
|
|
* +-------> MW1 |
|
|
* | |
|
|
* | |
|
|
* (B) +-----------------+
|
|
* | |
|
|
* | |
|
|
* | |
|
|
* | |
|
|
* | |
|
|
* +-----------------+
|
|
* PCI Address Space
|
|
* (Managed by HOST2)
|
|
*
|
|
* Free memory allocated in EP CONTROLLER 2 (OB SPACE) in the above diagram.
|
|
* It'll free Doorbell 1, Doorbell 2, Doorbell 3, Doorbell 4, MW1 (and MW2, MW3,
|
|
* MW4).
|
|
*/
|
|
static void epf_ntb_free_peer_mem(struct epf_ntb_epc *ntb_epc)
|
|
{
|
|
struct pci_epf_bar *epf_bar;
|
|
void __iomem *mw_addr;
|
|
phys_addr_t phys_addr;
|
|
enum epf_ntb_bar bar;
|
|
enum pci_barno barno;
|
|
struct pci_epc *epc;
|
|
size_t size;
|
|
|
|
epc = ntb_epc->epc;
|
|
|
|
for (bar = BAR_DB_MW1; bar < BAR_MW4; bar++) {
|
|
barno = ntb_epc->epf_ntb_bar[bar];
|
|
mw_addr = ntb_epc->mw_addr[barno];
|
|
epf_bar = &ntb_epc->epf_bar[barno];
|
|
phys_addr = epf_bar->phys_addr;
|
|
size = epf_bar->size;
|
|
if (mw_addr) {
|
|
pci_epc_mem_free_addr(epc, phys_addr, mw_addr, size);
|
|
ntb_epc->mw_addr[barno] = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* epf_ntb_db_mw_bar_clear() - Clear doorbell and memory BAR
|
|
* @ntb_epc: EPC associated with one of the HOST which holds peer's outbound
|
|
* address
|
|
*
|
|
* +-----------------+ +---->+----------------+-----------+-----------------+
|
|
* | BAR0 | | | Doorbell 1 +-----------> MSI|X ADDRESS 1 |
|
|
* +-----------------+ | +----------------+ +-----------------+
|
|
* | BAR1 | | | Doorbell 2 +---------+ | |
|
|
* +-----------------+----+ +----------------+ | | |
|
|
* | BAR2 | | Doorbell 3 +-------+ | +-----------------+
|
|
* +-----------------+----+ +----------------+ | +-> MSI|X ADDRESS 2 |
|
|
* | BAR3 | | | Doorbell 4 +-----+ | +-----------------+
|
|
* +-----------------+ | |----------------+ | | | |
|
|
* | BAR4 | | | | | | +-----------------+
|
|
* +-----------------+ | | MW1 +---+ | +-->+ MSI|X ADDRESS 3||
|
|
* | BAR5 | | | | | | +-----------------+
|
|
* +-----------------+ +---->-----------------+ | | | |
|
|
* EP CONTROLLER 1 | | | | +-----------------+
|
|
* | | | +---->+ MSI|X ADDRESS 4 |
|
|
* +----------------+ | +-----------------+
|
|
* (A) EP CONTROLLER 2 | | |
|
|
* (OB SPACE) | | |
|
|
* +-------> MW1 |
|
|
* | |
|
|
* | |
|
|
* (B) +-----------------+
|
|
* | |
|
|
* | |
|
|
* | |
|
|
* | |
|
|
* | |
|
|
* +-----------------+
|
|
* PCI Address Space
|
|
* (Managed by HOST2)
|
|
*
|
|
* Clear doorbell and memory BARs (remove inbound ATU configuration). In the above
|
|
* diagram it clears BAR2 TO BAR5 of EP CONTROLLER 1 (Doorbell BAR, MW1 BAR, MW2
|
|
* BAR, MW3 BAR and MW4 BAR).
|
|
*/
|
|
static void epf_ntb_db_mw_bar_clear(struct epf_ntb_epc *ntb_epc)
|
|
{
|
|
struct pci_epf_bar *epf_bar;
|
|
enum epf_ntb_bar bar;
|
|
enum pci_barno barno;
|
|
u8 func_no, vfunc_no;
|
|
struct pci_epc *epc;
|
|
|
|
epc = ntb_epc->epc;
|
|
|
|
func_no = ntb_epc->func_no;
|
|
vfunc_no = ntb_epc->vfunc_no;
|
|
|
|
for (bar = BAR_DB_MW1; bar < BAR_MW4; bar++) {
|
|
barno = ntb_epc->epf_ntb_bar[bar];
|
|
epf_bar = &ntb_epc->epf_bar[barno];
|
|
pci_epc_clear_bar(epc, func_no, vfunc_no, epf_bar);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* epf_ntb_db_mw_bar_cleanup() - Clear doorbell/memory BAR and free memory
|
|
* allocated in peers outbound address space
|
|
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
|
|
* @type: PRIMARY interface or SECONDARY interface
|
|
*
|
|
* Wrapper for epf_ntb_db_mw_bar_clear() to clear HOST1's BAR and
|
|
* epf_ntb_free_peer_mem() which frees up HOST2 outbound memory.
|
|
*/
|
|
static void epf_ntb_db_mw_bar_cleanup(struct epf_ntb *ntb,
|
|
enum pci_epc_interface_type type)
|
|
{
|
|
struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
|
|
|
|
ntb_epc = ntb->epc[type];
|
|
peer_ntb_epc = ntb->epc[!type];
|
|
|
|
epf_ntb_db_mw_bar_clear(ntb_epc);
|
|
epf_ntb_free_peer_mem(peer_ntb_epc);
|
|
}
|
|
|
|
/**
|
|
* epf_ntb_configure_interrupt() - Configure MSI/MSI-X capaiblity
|
|
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
|
|
* @type: PRIMARY interface or SECONDARY interface
|
|
*
|
|
* Configure MSI/MSI-X capability for each interface with number of
|
|
* interrupts equal to "db_count" configfs entry.
|
|
*/
|
|
static int epf_ntb_configure_interrupt(struct epf_ntb *ntb,
|
|
enum pci_epc_interface_type type)
|
|
{
|
|
const struct pci_epc_features *epc_features;
|
|
bool msix_capable, msi_capable;
|
|
struct epf_ntb_epc *ntb_epc;
|
|
u8 func_no, vfunc_no;
|
|
struct pci_epc *epc;
|
|
struct device *dev;
|
|
u32 db_count;
|
|
int ret;
|
|
|
|
ntb_epc = ntb->epc[type];
|
|
dev = &ntb->epf->dev;
|
|
|
|
epc_features = ntb_epc->epc_features;
|
|
msix_capable = epc_features->msix_capable;
|
|
msi_capable = epc_features->msi_capable;
|
|
|
|
if (!(msix_capable || msi_capable)) {
|
|
dev_err(dev, "MSI or MSI-X is required for doorbell\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
func_no = ntb_epc->func_no;
|
|
vfunc_no = ntb_epc->vfunc_no;
|
|
|
|
db_count = ntb->db_count;
|
|
if (db_count > MAX_DB_COUNT) {
|
|
dev_err(dev, "DB count cannot be more than %d\n", MAX_DB_COUNT);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ntb->db_count = db_count;
|
|
epc = ntb_epc->epc;
|
|
|
|
if (msi_capable) {
|
|
ret = pci_epc_set_msi(epc, func_no, vfunc_no, db_count);
|
|
if (ret) {
|
|
dev_err(dev, "%s intf: MSI configuration failed\n",
|
|
pci_epc_interface_string(type));
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (msix_capable) {
|
|
ret = pci_epc_set_msix(epc, func_no, vfunc_no, db_count,
|
|
ntb_epc->msix_bar,
|
|
ntb_epc->msix_table_offset);
|
|
if (ret) {
|
|
dev_err(dev, "MSI configuration failed\n");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* epf_ntb_alloc_peer_mem() - Allocate memory in peer's outbound address space
|
|
* @dev: The PCI device.
|
|
* @ntb_epc: EPC associated with one of the HOST whose BAR holds peer's outbound
|
|
* address
|
|
* @bar: BAR of @ntb_epc in for which memory has to be allocated (could be
|
|
* BAR_DB_MW1, BAR_MW2, BAR_MW3, BAR_MW4)
|
|
* @peer_ntb_epc: EPC associated with HOST whose outbound address space is
|
|
* used by @ntb_epc
|
|
* @size: Size of the address region that has to be allocated in peers OB SPACE
|
|
*
|
|
*
|
|
* +-----------------+ +---->+----------------+-----------+-----------------+
|
|
* | BAR0 | | | Doorbell 1 +-----------> MSI|X ADDRESS 1 |
|
|
* +-----------------+ | +----------------+ +-----------------+
|
|
* | BAR1 | | | Doorbell 2 +---------+ | |
|
|
* +-----------------+----+ +----------------+ | | |
|
|
* | BAR2 | | Doorbell 3 +-------+ | +-----------------+
|
|
* +-----------------+----+ +----------------+ | +-> MSI|X ADDRESS 2 |
|
|
* | BAR3 | | | Doorbell 4 +-----+ | +-----------------+
|
|
* +-----------------+ | |----------------+ | | | |
|
|
* | BAR4 | | | | | | +-----------------+
|
|
* +-----------------+ | | MW1 +---+ | +-->+ MSI|X ADDRESS 3||
|
|
* | BAR5 | | | | | | +-----------------+
|
|
* +-----------------+ +---->-----------------+ | | | |
|
|
* EP CONTROLLER 1 | | | | +-----------------+
|
|
* | | | +---->+ MSI|X ADDRESS 4 |
|
|
* +----------------+ | +-----------------+
|
|
* (A) EP CONTROLLER 2 | | |
|
|
* (OB SPACE) | | |
|
|
* +-------> MW1 |
|
|
* | |
|
|
* | |
|
|
* (B) +-----------------+
|
|
* | |
|
|
* | |
|
|
* | |
|
|
* | |
|
|
* | |
|
|
* +-----------------+
|
|
* PCI Address Space
|
|
* (Managed by HOST2)
|
|
*
|
|
* Allocate memory in OB space of EP CONTROLLER 2 in the above diagram. Allocate
|
|
* for Doorbell 1, Doorbell 2, Doorbell 3, Doorbell 4, MW1 (and MW2, MW3, MW4).
|
|
*/
|
|
static int epf_ntb_alloc_peer_mem(struct device *dev,
|
|
struct epf_ntb_epc *ntb_epc,
|
|
enum epf_ntb_bar bar,
|
|
struct epf_ntb_epc *peer_ntb_epc,
|
|
size_t size)
|
|
{
|
|
const struct pci_epc_features *epc_features;
|
|
struct pci_epf_bar *epf_bar;
|
|
struct pci_epc *peer_epc;
|
|
phys_addr_t phys_addr;
|
|
void __iomem *mw_addr;
|
|
enum pci_barno barno;
|
|
size_t align;
|
|
|
|
epc_features = ntb_epc->epc_features;
|
|
align = epc_features->align;
|
|
|
|
if (size < 128)
|
|
size = 128;
|
|
|
|
if (align)
|
|
size = ALIGN(size, align);
|
|
else
|
|
size = roundup_pow_of_two(size);
|
|
|
|
peer_epc = peer_ntb_epc->epc;
|
|
mw_addr = pci_epc_mem_alloc_addr(peer_epc, &phys_addr, size);
|
|
if (!mw_addr) {
|
|
dev_err(dev, "%s intf: Failed to allocate OB address\n",
|
|
pci_epc_interface_string(peer_ntb_epc->type));
|
|
return -ENOMEM;
|
|
}
|
|
|
|
barno = ntb_epc->epf_ntb_bar[bar];
|
|
epf_bar = &ntb_epc->epf_bar[barno];
|
|
ntb_epc->mw_addr[barno] = mw_addr;
|
|
|
|
epf_bar->phys_addr = phys_addr;
|
|
epf_bar->size = size;
|
|
epf_bar->barno = barno;
|
|
epf_bar->flags = PCI_BASE_ADDRESS_MEM_TYPE_32;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* epf_ntb_db_mw_bar_init() - Configure Doorbell and Memory window BARs
|
|
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
|
|
* @type: PRIMARY interface or SECONDARY interface
|
|
*
|
|
* Wrapper for epf_ntb_alloc_peer_mem() and pci_epc_set_bar() that allocates
|
|
* memory in OB address space of HOST2 and configures BAR of HOST1
|
|
*/
|
|
static int epf_ntb_db_mw_bar_init(struct epf_ntb *ntb,
|
|
enum pci_epc_interface_type type)
|
|
{
|
|
const struct pci_epc_features *epc_features;
|
|
struct epf_ntb_epc *peer_ntb_epc, *ntb_epc;
|
|
struct pci_epf_bar *epf_bar;
|
|
struct epf_ntb_ctrl *ctrl;
|
|
u32 num_mws, db_count;
|
|
enum epf_ntb_bar bar;
|
|
enum pci_barno barno;
|
|
u8 func_no, vfunc_no;
|
|
struct pci_epc *epc;
|
|
struct device *dev;
|
|
size_t align;
|
|
int ret, i;
|
|
u64 size;
|
|
|
|
ntb_epc = ntb->epc[type];
|
|
peer_ntb_epc = ntb->epc[!type];
|
|
|
|
dev = &ntb->epf->dev;
|
|
epc_features = ntb_epc->epc_features;
|
|
align = epc_features->align;
|
|
func_no = ntb_epc->func_no;
|
|
vfunc_no = ntb_epc->vfunc_no;
|
|
epc = ntb_epc->epc;
|
|
num_mws = ntb->num_mws;
|
|
db_count = ntb->db_count;
|
|
|
|
for (bar = BAR_DB_MW1, i = 0; i < num_mws; bar++, i++) {
|
|
if (bar == BAR_DB_MW1) {
|
|
align = align ? align : 4;
|
|
size = db_count * align;
|
|
size = ALIGN(size, ntb->mws_size[i]);
|
|
ctrl = ntb_epc->reg;
|
|
ctrl->mw1_offset = size;
|
|
size += ntb->mws_size[i];
|
|
} else {
|
|
size = ntb->mws_size[i];
|
|
}
|
|
|
|
ret = epf_ntb_alloc_peer_mem(dev, ntb_epc, bar,
|
|
peer_ntb_epc, size);
|
|
if (ret) {
|
|
dev_err(dev, "%s intf: DoorBell mem alloc failed\n",
|
|
pci_epc_interface_string(type));
|
|
goto err_alloc_peer_mem;
|
|
}
|
|
|
|
barno = ntb_epc->epf_ntb_bar[bar];
|
|
epf_bar = &ntb_epc->epf_bar[barno];
|
|
|
|
ret = pci_epc_set_bar(epc, func_no, vfunc_no, epf_bar);
|
|
if (ret) {
|
|
dev_err(dev, "%s intf: DoorBell BAR set failed\n",
|
|
pci_epc_interface_string(type));
|
|
goto err_alloc_peer_mem;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_alloc_peer_mem:
|
|
epf_ntb_db_mw_bar_cleanup(ntb, type);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* epf_ntb_epc_destroy_interface() - Cleanup NTB EPC interface
|
|
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
|
|
* @type: PRIMARY interface or SECONDARY interface
|
|
*
|
|
* Unbind NTB function device from EPC and relinquish reference to pci_epc
|
|
* for each of the interface.
|
|
*/
|
|
static void epf_ntb_epc_destroy_interface(struct epf_ntb *ntb,
|
|
enum pci_epc_interface_type type)
|
|
{
|
|
struct epf_ntb_epc *ntb_epc;
|
|
struct pci_epc *epc;
|
|
struct pci_epf *epf;
|
|
|
|
if (type < 0)
|
|
return;
|
|
|
|
epf = ntb->epf;
|
|
ntb_epc = ntb->epc[type];
|
|
if (!ntb_epc)
|
|
return;
|
|
epc = ntb_epc->epc;
|
|
pci_epc_remove_epf(epc, epf, type);
|
|
pci_epc_put(epc);
|
|
}
|
|
|
|
/**
|
|
* epf_ntb_epc_destroy() - Cleanup NTB EPC interface
|
|
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
|
|
*
|
|
* Wrapper for epf_ntb_epc_destroy_interface() to cleanup all the NTB interfaces
|
|
*/
|
|
static void epf_ntb_epc_destroy(struct epf_ntb *ntb)
|
|
{
|
|
enum pci_epc_interface_type type;
|
|
|
|
for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++)
|
|
epf_ntb_epc_destroy_interface(ntb, type);
|
|
}
|
|
|
|
/**
|
|
* epf_ntb_epc_create_interface() - Create and initialize NTB EPC interface
|
|
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
|
|
* @epc: struct pci_epc to which a particular NTB interface should be associated
|
|
* @type: PRIMARY interface or SECONDARY interface
|
|
*
|
|
* Allocate memory for NTB EPC interface and initialize it.
|
|
*/
|
|
static int epf_ntb_epc_create_interface(struct epf_ntb *ntb,
|
|
struct pci_epc *epc,
|
|
enum pci_epc_interface_type type)
|
|
{
|
|
const struct pci_epc_features *epc_features;
|
|
struct pci_epf_bar *epf_bar;
|
|
struct epf_ntb_epc *ntb_epc;
|
|
u8 func_no, vfunc_no;
|
|
struct pci_epf *epf;
|
|
struct device *dev;
|
|
|
|
dev = &ntb->epf->dev;
|
|
|
|
ntb_epc = devm_kzalloc(dev, sizeof(*ntb_epc), GFP_KERNEL);
|
|
if (!ntb_epc)
|
|
return -ENOMEM;
|
|
|
|
epf = ntb->epf;
|
|
vfunc_no = epf->vfunc_no;
|
|
if (type == PRIMARY_INTERFACE) {
|
|
func_no = epf->func_no;
|
|
epf_bar = epf->bar;
|
|
} else {
|
|
func_no = epf->sec_epc_func_no;
|
|
epf_bar = epf->sec_epc_bar;
|
|
}
|
|
|
|
ntb_epc->linkup = false;
|
|
ntb_epc->epc = epc;
|
|
ntb_epc->func_no = func_no;
|
|
ntb_epc->vfunc_no = vfunc_no;
|
|
ntb_epc->type = type;
|
|
ntb_epc->epf_bar = epf_bar;
|
|
ntb_epc->epf_ntb = ntb;
|
|
|
|
epc_features = pci_epc_get_features(epc, func_no, vfunc_no);
|
|
if (!epc_features)
|
|
return -EINVAL;
|
|
ntb_epc->epc_features = epc_features;
|
|
|
|
ntb->epc[type] = ntb_epc;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* epf_ntb_epc_create() - Create and initialize NTB EPC interface
|
|
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
|
|
*
|
|
* Get a reference to EPC device and bind NTB function device to that EPC
|
|
* for each of the interface. It is also a wrapper to
|
|
* epf_ntb_epc_create_interface() to allocate memory for NTB EPC interface
|
|
* and initialize it
|
|
*/
|
|
static int epf_ntb_epc_create(struct epf_ntb *ntb)
|
|
{
|
|
struct pci_epf *epf;
|
|
struct device *dev;
|
|
int ret;
|
|
|
|
epf = ntb->epf;
|
|
dev = &epf->dev;
|
|
|
|
ret = epf_ntb_epc_create_interface(ntb, epf->epc, PRIMARY_INTERFACE);
|
|
if (ret) {
|
|
dev_err(dev, "PRIMARY intf: Fail to create NTB EPC\n");
|
|
return ret;
|
|
}
|
|
|
|
ret = epf_ntb_epc_create_interface(ntb, epf->sec_epc,
|
|
SECONDARY_INTERFACE);
|
|
if (ret) {
|
|
dev_err(dev, "SECONDARY intf: Fail to create NTB EPC\n");
|
|
goto err_epc_create;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_epc_create:
|
|
epf_ntb_epc_destroy_interface(ntb, PRIMARY_INTERFACE);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* epf_ntb_init_epc_bar_interface() - Identify BARs to be used for each of
|
|
* the NTB constructs (scratchpad region, doorbell, memorywindow)
|
|
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
|
|
* @type: PRIMARY interface or SECONDARY interface
|
|
*
|
|
* Identify the free BARs to be used for each of BAR_CONFIG, BAR_PEER_SPAD,
|
|
* BAR_DB_MW1, BAR_MW2, BAR_MW3 and BAR_MW4.
|
|
*/
|
|
static int epf_ntb_init_epc_bar_interface(struct epf_ntb *ntb,
|
|
enum pci_epc_interface_type type)
|
|
{
|
|
const struct pci_epc_features *epc_features;
|
|
struct epf_ntb_epc *ntb_epc;
|
|
enum pci_barno barno;
|
|
enum epf_ntb_bar bar;
|
|
struct device *dev;
|
|
u32 num_mws;
|
|
int i;
|
|
|
|
barno = BAR_0;
|
|
ntb_epc = ntb->epc[type];
|
|
num_mws = ntb->num_mws;
|
|
dev = &ntb->epf->dev;
|
|
epc_features = ntb_epc->epc_features;
|
|
|
|
/* These are required BARs which are mandatory for NTB functionality */
|
|
for (bar = BAR_CONFIG; bar <= BAR_DB_MW1; bar++, barno++) {
|
|
barno = pci_epc_get_next_free_bar(epc_features, barno);
|
|
if (barno < 0) {
|
|
dev_err(dev, "%s intf: Fail to get NTB function BAR\n",
|
|
pci_epc_interface_string(type));
|
|
return barno;
|
|
}
|
|
ntb_epc->epf_ntb_bar[bar] = barno;
|
|
}
|
|
|
|
/* These are optional BARs which don't impact NTB functionality */
|
|
for (bar = BAR_MW2, i = 1; i < num_mws; bar++, barno++, i++) {
|
|
barno = pci_epc_get_next_free_bar(epc_features, barno);
|
|
if (barno < 0) {
|
|
ntb->num_mws = i;
|
|
dev_dbg(dev, "BAR not available for > MW%d\n", i + 1);
|
|
}
|
|
ntb_epc->epf_ntb_bar[bar] = barno;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* epf_ntb_init_epc_bar() - Identify BARs to be used for each of the NTB
|
|
* constructs (scratchpad region, doorbell, memorywindow)
|
|
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
|
|
*
|
|
* Wrapper to epf_ntb_init_epc_bar_interface() to identify the free BARs
|
|
* to be used for each of BAR_CONFIG, BAR_PEER_SPAD, BAR_DB_MW1, BAR_MW2,
|
|
* BAR_MW3 and BAR_MW4 for all the interfaces.
|
|
*/
|
|
static int epf_ntb_init_epc_bar(struct epf_ntb *ntb)
|
|
{
|
|
enum pci_epc_interface_type type;
|
|
struct device *dev;
|
|
int ret;
|
|
|
|
dev = &ntb->epf->dev;
|
|
for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) {
|
|
ret = epf_ntb_init_epc_bar_interface(ntb, type);
|
|
if (ret) {
|
|
dev_err(dev, "Fail to init EPC bar for %s interface\n",
|
|
pci_epc_interface_string(type));
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* epf_ntb_epc_init_interface() - Initialize NTB interface
|
|
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
|
|
* @type: PRIMARY interface or SECONDARY interface
|
|
*
|
|
* Wrapper to initialize a particular EPC interface and start the workqueue
|
|
* to check for commands from host. This function will write to the
|
|
* EP controller HW for configuring it.
|
|
*/
|
|
static int epf_ntb_epc_init_interface(struct epf_ntb *ntb,
|
|
enum pci_epc_interface_type type)
|
|
{
|
|
struct epf_ntb_epc *ntb_epc;
|
|
u8 func_no, vfunc_no;
|
|
struct pci_epc *epc;
|
|
struct pci_epf *epf;
|
|
struct device *dev;
|
|
int ret;
|
|
|
|
ntb_epc = ntb->epc[type];
|
|
epf = ntb->epf;
|
|
dev = &epf->dev;
|
|
epc = ntb_epc->epc;
|
|
func_no = ntb_epc->func_no;
|
|
vfunc_no = ntb_epc->vfunc_no;
|
|
|
|
ret = epf_ntb_config_sspad_bar_set(ntb->epc[type]);
|
|
if (ret) {
|
|
dev_err(dev, "%s intf: Config/self SPAD BAR init failed\n",
|
|
pci_epc_interface_string(type));
|
|
return ret;
|
|
}
|
|
|
|
ret = epf_ntb_peer_spad_bar_set(ntb, type);
|
|
if (ret) {
|
|
dev_err(dev, "%s intf: Peer SPAD BAR init failed\n",
|
|
pci_epc_interface_string(type));
|
|
goto err_peer_spad_bar_init;
|
|
}
|
|
|
|
ret = epf_ntb_configure_interrupt(ntb, type);
|
|
if (ret) {
|
|
dev_err(dev, "%s intf: Interrupt configuration failed\n",
|
|
pci_epc_interface_string(type));
|
|
goto err_peer_spad_bar_init;
|
|
}
|
|
|
|
ret = epf_ntb_db_mw_bar_init(ntb, type);
|
|
if (ret) {
|
|
dev_err(dev, "%s intf: DB/MW BAR init failed\n",
|
|
pci_epc_interface_string(type));
|
|
goto err_db_mw_bar_init;
|
|
}
|
|
|
|
if (vfunc_no <= 1) {
|
|
ret = pci_epc_write_header(epc, func_no, vfunc_no, epf->header);
|
|
if (ret) {
|
|
dev_err(dev, "%s intf: Configuration header write failed\n",
|
|
pci_epc_interface_string(type));
|
|
goto err_write_header;
|
|
}
|
|
}
|
|
|
|
INIT_DELAYED_WORK(&ntb->epc[type]->cmd_handler, epf_ntb_cmd_handler);
|
|
queue_work(kpcintb_workqueue, &ntb->epc[type]->cmd_handler.work);
|
|
|
|
return 0;
|
|
|
|
err_write_header:
|
|
epf_ntb_db_mw_bar_cleanup(ntb, type);
|
|
|
|
err_db_mw_bar_init:
|
|
epf_ntb_peer_spad_bar_clear(ntb->epc[type]);
|
|
|
|
err_peer_spad_bar_init:
|
|
epf_ntb_config_sspad_bar_clear(ntb->epc[type]);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* epf_ntb_epc_cleanup_interface() - Cleanup NTB interface
|
|
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
|
|
* @type: PRIMARY interface or SECONDARY interface
|
|
*
|
|
* Wrapper to cleanup a particular NTB interface.
|
|
*/
|
|
static void epf_ntb_epc_cleanup_interface(struct epf_ntb *ntb,
|
|
enum pci_epc_interface_type type)
|
|
{
|
|
struct epf_ntb_epc *ntb_epc;
|
|
|
|
if (type < 0)
|
|
return;
|
|
|
|
ntb_epc = ntb->epc[type];
|
|
cancel_delayed_work(&ntb_epc->cmd_handler);
|
|
epf_ntb_db_mw_bar_cleanup(ntb, type);
|
|
epf_ntb_peer_spad_bar_clear(ntb_epc);
|
|
epf_ntb_config_sspad_bar_clear(ntb_epc);
|
|
}
|
|
|
|
/**
|
|
* epf_ntb_epc_cleanup() - Cleanup all NTB interfaces
|
|
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
|
|
*
|
|
* Wrapper to cleanup all NTB interfaces.
|
|
*/
|
|
static void epf_ntb_epc_cleanup(struct epf_ntb *ntb)
|
|
{
|
|
enum pci_epc_interface_type type;
|
|
|
|
for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++)
|
|
epf_ntb_epc_cleanup_interface(ntb, type);
|
|
}
|
|
|
|
/**
|
|
* epf_ntb_epc_init() - Initialize all NTB interfaces
|
|
* @ntb: NTB device that facilitates communication between HOST1 and HOST2
|
|
*
|
|
* Wrapper to initialize all NTB interface and start the workqueue
|
|
* to check for commands from host.
|
|
*/
|
|
static int epf_ntb_epc_init(struct epf_ntb *ntb)
|
|
{
|
|
enum pci_epc_interface_type type;
|
|
struct device *dev;
|
|
int ret;
|
|
|
|
dev = &ntb->epf->dev;
|
|
|
|
for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) {
|
|
ret = epf_ntb_epc_init_interface(ntb, type);
|
|
if (ret) {
|
|
dev_err(dev, "%s intf: Failed to initialize\n",
|
|
pci_epc_interface_string(type));
|
|
goto err_init_type;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_init_type:
|
|
epf_ntb_epc_cleanup_interface(ntb, type - 1);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* epf_ntb_bind() - Initialize endpoint controller to provide NTB functionality
|
|
* @epf: NTB endpoint function device
|
|
*
|
|
* Initialize both the endpoint controllers associated with NTB function device.
|
|
* Invoked when a primary interface or secondary interface is bound to EPC
|
|
* device. This function will succeed only when EPC is bound to both the
|
|
* interfaces.
|
|
*/
|
|
static int epf_ntb_bind(struct pci_epf *epf)
|
|
{
|
|
struct epf_ntb *ntb = epf_get_drvdata(epf);
|
|
struct device *dev = &epf->dev;
|
|
int ret;
|
|
|
|
if (!epf->epc) {
|
|
dev_dbg(dev, "PRIMARY EPC interface not yet bound\n");
|
|
return 0;
|
|
}
|
|
|
|
if (!epf->sec_epc) {
|
|
dev_dbg(dev, "SECONDARY EPC interface not yet bound\n");
|
|
return 0;
|
|
}
|
|
|
|
ret = epf_ntb_epc_create(ntb);
|
|
if (ret) {
|
|
dev_err(dev, "Failed to create NTB EPC\n");
|
|
return ret;
|
|
}
|
|
|
|
ret = epf_ntb_init_epc_bar(ntb);
|
|
if (ret) {
|
|
dev_err(dev, "Failed to create NTB EPC\n");
|
|
goto err_bar_init;
|
|
}
|
|
|
|
ret = epf_ntb_config_spad_bar_alloc_interface(ntb);
|
|
if (ret) {
|
|
dev_err(dev, "Failed to allocate BAR memory\n");
|
|
goto err_bar_alloc;
|
|
}
|
|
|
|
ret = epf_ntb_epc_init(ntb);
|
|
if (ret) {
|
|
dev_err(dev, "Failed to initialize EPC\n");
|
|
goto err_bar_alloc;
|
|
}
|
|
|
|
epf_set_drvdata(epf, ntb);
|
|
|
|
return 0;
|
|
|
|
err_bar_alloc:
|
|
epf_ntb_config_spad_bar_free(ntb);
|
|
|
|
err_bar_init:
|
|
epf_ntb_epc_destroy(ntb);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* epf_ntb_unbind() - Cleanup the initialization from epf_ntb_bind()
|
|
* @epf: NTB endpoint function device
|
|
*
|
|
* Cleanup the initialization from epf_ntb_bind()
|
|
*/
|
|
static void epf_ntb_unbind(struct pci_epf *epf)
|
|
{
|
|
struct epf_ntb *ntb = epf_get_drvdata(epf);
|
|
|
|
epf_ntb_epc_cleanup(ntb);
|
|
epf_ntb_config_spad_bar_free(ntb);
|
|
epf_ntb_epc_destroy(ntb);
|
|
}
|
|
|
|
#define EPF_NTB_R(_name) \
|
|
static ssize_t epf_ntb_##_name##_show(struct config_item *item, \
|
|
char *page) \
|
|
{ \
|
|
struct config_group *group = to_config_group(item); \
|
|
struct epf_ntb *ntb = to_epf_ntb(group); \
|
|
\
|
|
return sprintf(page, "%d\n", ntb->_name); \
|
|
}
|
|
|
|
#define EPF_NTB_W(_name) \
|
|
static ssize_t epf_ntb_##_name##_store(struct config_item *item, \
|
|
const char *page, size_t len) \
|
|
{ \
|
|
struct config_group *group = to_config_group(item); \
|
|
struct epf_ntb *ntb = to_epf_ntb(group); \
|
|
u32 val; \
|
|
int ret; \
|
|
\
|
|
ret = kstrtou32(page, 0, &val); \
|
|
if (ret) \
|
|
return ret; \
|
|
\
|
|
ntb->_name = val; \
|
|
\
|
|
return len; \
|
|
}
|
|
|
|
#define EPF_NTB_MW_R(_name) \
|
|
static ssize_t epf_ntb_##_name##_show(struct config_item *item, \
|
|
char *page) \
|
|
{ \
|
|
struct config_group *group = to_config_group(item); \
|
|
struct epf_ntb *ntb = to_epf_ntb(group); \
|
|
int win_no; \
|
|
\
|
|
sscanf(#_name, "mw%d", &win_no); \
|
|
\
|
|
return sprintf(page, "%lld\n", ntb->mws_size[win_no - 1]); \
|
|
}
|
|
|
|
#define EPF_NTB_MW_W(_name) \
|
|
static ssize_t epf_ntb_##_name##_store(struct config_item *item, \
|
|
const char *page, size_t len) \
|
|
{ \
|
|
struct config_group *group = to_config_group(item); \
|
|
struct epf_ntb *ntb = to_epf_ntb(group); \
|
|
struct device *dev = &ntb->epf->dev; \
|
|
int win_no; \
|
|
u64 val; \
|
|
int ret; \
|
|
\
|
|
ret = kstrtou64(page, 0, &val); \
|
|
if (ret) \
|
|
return ret; \
|
|
\
|
|
if (sscanf(#_name, "mw%d", &win_no) != 1) \
|
|
return -EINVAL; \
|
|
\
|
|
if (ntb->num_mws < win_no) { \
|
|
dev_err(dev, "Invalid num_nws: %d value\n", ntb->num_mws); \
|
|
return -EINVAL; \
|
|
} \
|
|
\
|
|
ntb->mws_size[win_no - 1] = val; \
|
|
\
|
|
return len; \
|
|
}
|
|
|
|
static ssize_t epf_ntb_num_mws_store(struct config_item *item,
|
|
const char *page, size_t len)
|
|
{
|
|
struct config_group *group = to_config_group(item);
|
|
struct epf_ntb *ntb = to_epf_ntb(group);
|
|
u32 val;
|
|
int ret;
|
|
|
|
ret = kstrtou32(page, 0, &val);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (val > MAX_MW)
|
|
return -EINVAL;
|
|
|
|
ntb->num_mws = val;
|
|
|
|
return len;
|
|
}
|
|
|
|
EPF_NTB_R(spad_count)
|
|
EPF_NTB_W(spad_count)
|
|
EPF_NTB_R(db_count)
|
|
EPF_NTB_W(db_count)
|
|
EPF_NTB_R(num_mws)
|
|
EPF_NTB_MW_R(mw1)
|
|
EPF_NTB_MW_W(mw1)
|
|
EPF_NTB_MW_R(mw2)
|
|
EPF_NTB_MW_W(mw2)
|
|
EPF_NTB_MW_R(mw3)
|
|
EPF_NTB_MW_W(mw3)
|
|
EPF_NTB_MW_R(mw4)
|
|
EPF_NTB_MW_W(mw4)
|
|
|
|
CONFIGFS_ATTR(epf_ntb_, spad_count);
|
|
CONFIGFS_ATTR(epf_ntb_, db_count);
|
|
CONFIGFS_ATTR(epf_ntb_, num_mws);
|
|
CONFIGFS_ATTR(epf_ntb_, mw1);
|
|
CONFIGFS_ATTR(epf_ntb_, mw2);
|
|
CONFIGFS_ATTR(epf_ntb_, mw3);
|
|
CONFIGFS_ATTR(epf_ntb_, mw4);
|
|
|
|
static struct configfs_attribute *epf_ntb_attrs[] = {
|
|
&epf_ntb_attr_spad_count,
|
|
&epf_ntb_attr_db_count,
|
|
&epf_ntb_attr_num_mws,
|
|
&epf_ntb_attr_mw1,
|
|
&epf_ntb_attr_mw2,
|
|
&epf_ntb_attr_mw3,
|
|
&epf_ntb_attr_mw4,
|
|
NULL,
|
|
};
|
|
|
|
static const struct config_item_type ntb_group_type = {
|
|
.ct_attrs = epf_ntb_attrs,
|
|
.ct_owner = THIS_MODULE,
|
|
};
|
|
|
|
/**
|
|
* epf_ntb_add_cfs() - Add configfs directory specific to NTB
|
|
* @epf: NTB endpoint function device
|
|
* @group: A pointer to the config_group structure referencing a group of
|
|
* config_items of a specific type that belong to a specific sub-system.
|
|
*
|
|
* Add configfs directory specific to NTB. This directory will hold
|
|
* NTB specific properties like db_count, spad_count, num_mws etc.,
|
|
*/
|
|
static struct config_group *epf_ntb_add_cfs(struct pci_epf *epf,
|
|
struct config_group *group)
|
|
{
|
|
struct epf_ntb *ntb = epf_get_drvdata(epf);
|
|
struct config_group *ntb_group = &ntb->group;
|
|
struct device *dev = &epf->dev;
|
|
|
|
config_group_init_type_name(ntb_group, dev_name(dev), &ntb_group_type);
|
|
|
|
return ntb_group;
|
|
}
|
|
|
|
/**
|
|
* epf_ntb_probe() - Probe NTB function driver
|
|
* @epf: NTB endpoint function device
|
|
*
|
|
* Probe NTB function driver when endpoint function bus detects a NTB
|
|
* endpoint function.
|
|
*/
|
|
static int epf_ntb_probe(struct pci_epf *epf)
|
|
{
|
|
struct epf_ntb *ntb;
|
|
struct device *dev;
|
|
|
|
dev = &epf->dev;
|
|
|
|
ntb = devm_kzalloc(dev, sizeof(*ntb), GFP_KERNEL);
|
|
if (!ntb)
|
|
return -ENOMEM;
|
|
|
|
epf->header = &epf_ntb_header;
|
|
ntb->epf = epf;
|
|
epf_set_drvdata(epf, ntb);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct pci_epf_ops epf_ntb_ops = {
|
|
.bind = epf_ntb_bind,
|
|
.unbind = epf_ntb_unbind,
|
|
.add_cfs = epf_ntb_add_cfs,
|
|
};
|
|
|
|
static const struct pci_epf_device_id epf_ntb_ids[] = {
|
|
{
|
|
.name = "pci_epf_ntb",
|
|
},
|
|
{},
|
|
};
|
|
|
|
static struct pci_epf_driver epf_ntb_driver = {
|
|
.driver.name = "pci_epf_ntb",
|
|
.probe = epf_ntb_probe,
|
|
.id_table = epf_ntb_ids,
|
|
.ops = &epf_ntb_ops,
|
|
.owner = THIS_MODULE,
|
|
};
|
|
|
|
static int __init epf_ntb_init(void)
|
|
{
|
|
int ret;
|
|
|
|
kpcintb_workqueue = alloc_workqueue("kpcintb", WQ_MEM_RECLAIM |
|
|
WQ_HIGHPRI, 0);
|
|
ret = pci_epf_register_driver(&epf_ntb_driver);
|
|
if (ret) {
|
|
destroy_workqueue(kpcintb_workqueue);
|
|
pr_err("Failed to register pci epf ntb driver --> %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
module_init(epf_ntb_init);
|
|
|
|
static void __exit epf_ntb_exit(void)
|
|
{
|
|
pci_epf_unregister_driver(&epf_ntb_driver);
|
|
destroy_workqueue(kpcintb_workqueue);
|
|
}
|
|
module_exit(epf_ntb_exit);
|
|
|
|
MODULE_DESCRIPTION("PCI EPF NTB DRIVER");
|
|
MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>");
|
|
MODULE_LICENSE("GPL v2");
|