kernel/drivers/parisc/lba_pci.c
2024-07-22 17:22:30 +08:00

1759 lines
51 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
**
** PCI Lower Bus Adapter (LBA) manager
**
** (c) Copyright 1999,2000 Grant Grundler
** (c) Copyright 1999,2000 Hewlett-Packard Company
**
**
**
** This module primarily provides access to PCI bus (config/IOport
** spaces) on platforms with an SBA/LBA chipset. A/B/C/J/L/N-class
** with 4 digit model numbers - eg C3000 (and A400...sigh).
**
** LBA driver isn't as simple as the Dino driver because:
** (a) this chip has substantial bug fixes between revisions
** (Only one Dino bug has a software workaround :^( )
** (b) has more options which we don't (yet) support (DMA hints, OLARD)
** (c) IRQ support lives in the I/O SAPIC driver (not with PCI driver)
** (d) play nicely with both PAT and "Legacy" PA-RISC firmware (PDC).
** (dino only deals with "Legacy" PDC)
**
** LBA driver passes the I/O SAPIC HPA to the I/O SAPIC driver.
** (I/O SAPIC is integratd in the LBA chip).
**
** FIXME: Add support to SBA and LBA drivers for DMA hint sets
** FIXME: Add support for PCI card hot-plug (OLARD).
*/
#include <linux/delay.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/spinlock.h>
#include <linux/init.h> /* for __init */
#include <linux/pci.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <asm/byteorder.h>
#include <asm/pdc.h>
#include <asm/pdcpat.h>
#include <asm/page.h>
#include <asm/ropes.h>
#include <asm/hardware.h> /* for register_parisc_driver() stuff */
#include <asm/parisc-device.h>
#include <asm/io.h> /* read/write stuff */
#include "iommu.h"
#undef DEBUG_LBA /* general stuff */
#undef DEBUG_LBA_PORT /* debug I/O Port access */
#undef DEBUG_LBA_CFG /* debug Config Space Access (ie PCI Bus walk) */
#undef DEBUG_LBA_PAT /* debug PCI Resource Mgt code - PDC PAT only */
#undef FBB_SUPPORT /* Fast Back-Back xfers - NOT READY YET */
#ifdef DEBUG_LBA
#define DBG(x...) printk(x)
#else
#define DBG(x...)
#endif
#ifdef DEBUG_LBA_PORT
#define DBG_PORT(x...) printk(x)
#else
#define DBG_PORT(x...)
#endif
#ifdef DEBUG_LBA_CFG
#define DBG_CFG(x...) printk(x)
#else
#define DBG_CFG(x...)
#endif
#ifdef DEBUG_LBA_PAT
#define DBG_PAT(x...) printk(x)
#else
#define DBG_PAT(x...)
#endif
/*
** Config accessor functions only pass in the 8-bit bus number and not
** the 8-bit "PCI Segment" number. Each LBA will be assigned a PCI bus
** number based on what firmware wrote into the scratch register.
**
** The "secondary" bus number is set to this before calling
** pci_register_ops(). If any PPB's are present, the scan will
** discover them and update the "secondary" and "subordinate"
** fields in the pci_bus structure.
**
** Changes in the configuration *may* result in a different
** bus number for each LBA depending on what firmware does.
*/
#define MODULE_NAME "LBA"
/* non-postable I/O port space, densely packed */
#define LBA_PORT_BASE (PCI_F_EXTEND | 0xfee00000UL)
static void __iomem *astro_iop_base __read_mostly;
static u32 lba_t32;
/* lba flags */
#define LBA_FLAG_SKIP_PROBE 0x10
#define LBA_SKIP_PROBE(d) ((d)->flags & LBA_FLAG_SKIP_PROBE)
static inline struct lba_device *LBA_DEV(struct pci_hba_data *hba)
{
return container_of(hba, struct lba_device, hba);
}
/*
** Only allow 8 subsidiary busses per LBA
** Problem is the PCI bus numbering is globally shared.
*/
#define LBA_MAX_NUM_BUSES 8
/************************************
* LBA register read and write support
*
* BE WARNED: register writes are posted.
* (ie follow writes which must reach HW with a read)
*/
#define READ_U8(addr) __raw_readb(addr)
#define READ_U16(addr) __raw_readw(addr)
#define READ_U32(addr) __raw_readl(addr)
#define WRITE_U8(value, addr) __raw_writeb(value, addr)
#define WRITE_U16(value, addr) __raw_writew(value, addr)
#define WRITE_U32(value, addr) __raw_writel(value, addr)
#define READ_REG8(addr) readb(addr)
#define READ_REG16(addr) readw(addr)
#define READ_REG32(addr) readl(addr)
#define READ_REG64(addr) readq(addr)
#define WRITE_REG8(value, addr) writeb(value, addr)
#define WRITE_REG16(value, addr) writew(value, addr)
#define WRITE_REG32(value, addr) writel(value, addr)
#define LBA_CFG_TOK(bus,dfn) ((u32) ((bus)<<16 | (dfn)<<8))
#define LBA_CFG_BUS(tok) ((u8) ((tok)>>16))
#define LBA_CFG_DEV(tok) ((u8) ((tok)>>11) & 0x1f)
#define LBA_CFG_FUNC(tok) ((u8) ((tok)>>8 ) & 0x7)
/*
** Extract LBA (Rope) number from HPA
** REVISIT: 16 ropes for Stretch/Ike?
*/
#define ROPES_PER_IOC 8
#define LBA_NUM(x) ((((unsigned long) x) >> 13) & (ROPES_PER_IOC-1))
static void
lba_dump_res(struct resource *r, int d)
{
int i;
if (NULL == r)
return;
printk(KERN_DEBUG "(%p)", r->parent);
for (i = d; i ; --i) printk(" ");
printk(KERN_DEBUG "%p [%lx,%lx]/%lx\n", r,
(long)r->start, (long)r->end, r->flags);
lba_dump_res(r->child, d+2);
lba_dump_res(r->sibling, d);
}
/*
** LBA rev 2.0, 2.1, 2.2, and 3.0 bus walks require a complex
** workaround for cfg cycles:
** -- preserve LBA state
** -- prevent any DMA from occurring
** -- turn on smart mode
** -- probe with config writes before doing config reads
** -- check ERROR_STATUS
** -- clear ERROR_STATUS
** -- restore LBA state
**
** The workaround is only used for device discovery.
*/
static int lba_device_present(u8 bus, u8 dfn, struct lba_device *d)
{
u8 first_bus = d->hba.hba_bus->busn_res.start;
u8 last_sub_bus = d->hba.hba_bus->busn_res.end;
if ((bus < first_bus) ||
(bus > last_sub_bus) ||
((bus - first_bus) >= LBA_MAX_NUM_BUSES)) {
return 0;
}
return 1;
}
#define LBA_CFG_SETUP(d, tok) { \
/* Save contents of error config register. */ \
error_config = READ_REG32(d->hba.base_addr + LBA_ERROR_CONFIG); \
\
/* Save contents of status control register. */ \
status_control = READ_REG32(d->hba.base_addr + LBA_STAT_CTL); \
\
/* For LBA rev 2.0, 2.1, 2.2, and 3.0, we must disable DMA \
** arbitration for full bus walks. \
*/ \
/* Save contents of arb mask register. */ \
arb_mask = READ_REG32(d->hba.base_addr + LBA_ARB_MASK); \
\
/* \
* Turn off all device arbitration bits (i.e. everything \
* except arbitration enable bit). \
*/ \
WRITE_REG32(0x1, d->hba.base_addr + LBA_ARB_MASK); \
\
/* \
* Set the smart mode bit so that master aborts don't cause \
* LBA to go into PCI fatal mode (required). \
*/ \
WRITE_REG32(error_config | LBA_SMART_MODE, d->hba.base_addr + LBA_ERROR_CONFIG); \
}
#define LBA_CFG_PROBE(d, tok) { \
/* \
* Setup Vendor ID write and read back the address register \
* to make sure that LBA is the bus master. \
*/ \
WRITE_REG32(tok | PCI_VENDOR_ID, (d)->hba.base_addr + LBA_PCI_CFG_ADDR);\
/* \
* Read address register to ensure that LBA is the bus master, \
* which implies that DMA traffic has stopped when DMA arb is off. \
*/ \
lba_t32 = READ_REG32((d)->hba.base_addr + LBA_PCI_CFG_ADDR); \
/* \
* Generate a cfg write cycle (will have no affect on \
* Vendor ID register since read-only). \
*/ \
WRITE_REG32(~0, (d)->hba.base_addr + LBA_PCI_CFG_DATA); \
/* \
* Make sure write has completed before proceeding further, \
* i.e. before setting clear enable. \
*/ \
lba_t32 = READ_REG32((d)->hba.base_addr + LBA_PCI_CFG_ADDR); \
}
/*
* HPREVISIT:
* -- Can't tell if config cycle got the error.
*
* OV bit is broken until rev 4.0, so can't use OV bit and
* LBA_ERROR_LOG_ADDR to tell if error belongs to config cycle.
*
* As of rev 4.0, no longer need the error check.
*
* -- Even if we could tell, we still want to return -1
* for **ANY** error (not just master abort).
*
* -- Only clear non-fatal errors (we don't want to bring
* LBA out of pci-fatal mode).
*
* Actually, there is still a race in which
* we could be clearing a fatal error. We will
* live with this during our initial bus walk
* until rev 4.0 (no driver activity during
* initial bus walk). The initial bus walk
* has race conditions concerning the use of
* smart mode as well.
*/
#define LBA_MASTER_ABORT_ERROR 0xc
#define LBA_FATAL_ERROR 0x10
#define LBA_CFG_MASTER_ABORT_CHECK(d, base, tok, error) { \
u32 error_status = 0; \
/* \
* Set clear enable (CE) bit. Unset by HW when new \
* errors are logged -- LBA HW ERS section 14.3.3). \
*/ \
WRITE_REG32(status_control | CLEAR_ERRLOG_ENABLE, base + LBA_STAT_CTL); \
error_status = READ_REG32(base + LBA_ERROR_STATUS); \
if ((error_status & 0x1f) != 0) { \
/* \
* Fail the config read request. \
*/ \
error = 1; \
if ((error_status & LBA_FATAL_ERROR) == 0) { \
/* \
* Clear error status (if fatal bit not set) by setting \
* clear error log bit (CL). \
*/ \
WRITE_REG32(status_control | CLEAR_ERRLOG, base + LBA_STAT_CTL); \
} \
} \
}
#define LBA_CFG_TR4_ADDR_SETUP(d, addr) \
WRITE_REG32(((addr) & ~3), (d)->hba.base_addr + LBA_PCI_CFG_ADDR);
#define LBA_CFG_ADDR_SETUP(d, addr) { \
WRITE_REG32(((addr) & ~3), (d)->hba.base_addr + LBA_PCI_CFG_ADDR); \
/* \
* Read address register to ensure that LBA is the bus master, \
* which implies that DMA traffic has stopped when DMA arb is off. \
*/ \
lba_t32 = READ_REG32((d)->hba.base_addr + LBA_PCI_CFG_ADDR); \
}
#define LBA_CFG_RESTORE(d, base) { \
/* \
* Restore status control register (turn off clear enable). \
*/ \
WRITE_REG32(status_control, base + LBA_STAT_CTL); \
/* \
* Restore error config register (turn off smart mode). \
*/ \
WRITE_REG32(error_config, base + LBA_ERROR_CONFIG); \
/* \
* Restore arb mask register (reenables DMA arbitration). \
*/ \
WRITE_REG32(arb_mask, base + LBA_ARB_MASK); \
}
static unsigned int
lba_rd_cfg(struct lba_device *d, u32 tok, u8 reg, u32 size)
{
u32 data = ~0U;
int error = 0;
u32 arb_mask = 0; /* used by LBA_CFG_SETUP/RESTORE */
u32 error_config = 0; /* used by LBA_CFG_SETUP/RESTORE */
u32 status_control = 0; /* used by LBA_CFG_SETUP/RESTORE */
LBA_CFG_SETUP(d, tok);
LBA_CFG_PROBE(d, tok);
LBA_CFG_MASTER_ABORT_CHECK(d, d->hba.base_addr, tok, error);
if (!error) {
void __iomem *data_reg = d->hba.base_addr + LBA_PCI_CFG_DATA;
LBA_CFG_ADDR_SETUP(d, tok | reg);
switch (size) {
case 1: data = (u32) READ_REG8(data_reg + (reg & 3)); break;
case 2: data = (u32) READ_REG16(data_reg+ (reg & 2)); break;
case 4: data = READ_REG32(data_reg); break;
}
}
LBA_CFG_RESTORE(d, d->hba.base_addr);
return(data);
}
static int elroy_cfg_read(struct pci_bus *bus, unsigned int devfn, int pos, int size, u32 *data)
{
struct lba_device *d = LBA_DEV(parisc_walk_tree(bus->bridge));
u32 local_bus = (bus->parent == NULL) ? 0 : bus->busn_res.start;
u32 tok = LBA_CFG_TOK(local_bus, devfn);
void __iomem *data_reg = d->hba.base_addr + LBA_PCI_CFG_DATA;
if ((pos > 255) || (devfn > 255))
return -EINVAL;
/* FIXME: B2K/C3600 workaround is always use old method... */
/* if (!LBA_SKIP_PROBE(d)) */ {
/* original - Generate config cycle on broken elroy
with risk we will miss PCI bus errors. */
*data = lba_rd_cfg(d, tok, pos, size);
DBG_CFG("%s(%x+%2x) -> 0x%x (a)\n", __func__, tok, pos, *data);
return 0;
}
if (LBA_SKIP_PROBE(d) && !lba_device_present(bus->busn_res.start, devfn, d)) {
DBG_CFG("%s(%x+%2x) -> -1 (b)\n", __func__, tok, pos);
/* either don't want to look or know device isn't present. */
*data = ~0U;
return(0);
}
/* Basic Algorithm
** Should only get here on fully working LBA rev.
** This is how simple the code should have been.
*/
LBA_CFG_ADDR_SETUP(d, tok | pos);
switch(size) {
case 1: *data = READ_REG8 (data_reg + (pos & 3)); break;
case 2: *data = READ_REG16(data_reg + (pos & 2)); break;
case 4: *data = READ_REG32(data_reg); break;
}
DBG_CFG("%s(%x+%2x) -> 0x%x (c)\n", __func__, tok, pos, *data);
return 0;
}
static void
lba_wr_cfg(struct lba_device *d, u32 tok, u8 reg, u32 data, u32 size)
{
int error = 0;
u32 arb_mask = 0;
u32 error_config = 0;
u32 status_control = 0;
void __iomem *data_reg = d->hba.base_addr + LBA_PCI_CFG_DATA;
LBA_CFG_SETUP(d, tok);
LBA_CFG_ADDR_SETUP(d, tok | reg);
switch (size) {
case 1: WRITE_REG8 (data, data_reg + (reg & 3)); break;
case 2: WRITE_REG16(data, data_reg + (reg & 2)); break;
case 4: WRITE_REG32(data, data_reg); break;
}
LBA_CFG_MASTER_ABORT_CHECK(d, d->hba.base_addr, tok, error);
LBA_CFG_RESTORE(d, d->hba.base_addr);
}
/*
* LBA 4.0 config write code implements non-postable semantics
* by doing a read of CONFIG ADDR after the write.
*/
static int elroy_cfg_write(struct pci_bus *bus, unsigned int devfn, int pos, int size, u32 data)
{
struct lba_device *d = LBA_DEV(parisc_walk_tree(bus->bridge));
u32 local_bus = (bus->parent == NULL) ? 0 : bus->busn_res.start;
u32 tok = LBA_CFG_TOK(local_bus,devfn);
if ((pos > 255) || (devfn > 255))
return -EINVAL;
if (!LBA_SKIP_PROBE(d)) {
/* Original Workaround */
lba_wr_cfg(d, tok, pos, (u32) data, size);
DBG_CFG("%s(%x+%2x) = 0x%x (a)\n", __func__, tok, pos,data);
return 0;
}
if (LBA_SKIP_PROBE(d) && (!lba_device_present(bus->busn_res.start, devfn, d))) {
DBG_CFG("%s(%x+%2x) = 0x%x (b)\n", __func__, tok, pos,data);
return 1; /* New Workaround */
}
DBG_CFG("%s(%x+%2x) = 0x%x (c)\n", __func__, tok, pos, data);
/* Basic Algorithm */
LBA_CFG_ADDR_SETUP(d, tok | pos);
switch(size) {
case 1: WRITE_REG8 (data, d->hba.base_addr + LBA_PCI_CFG_DATA + (pos & 3));
break;
case 2: WRITE_REG16(data, d->hba.base_addr + LBA_PCI_CFG_DATA + (pos & 2));
break;
case 4: WRITE_REG32(data, d->hba.base_addr + LBA_PCI_CFG_DATA);
break;
}
/* flush posted write */
lba_t32 = READ_REG32(d->hba.base_addr + LBA_PCI_CFG_ADDR);
return 0;
}
static struct pci_ops elroy_cfg_ops = {
.read = elroy_cfg_read,
.write = elroy_cfg_write,
};
/*
* The mercury_cfg_ops are slightly misnamed; they're also used for Elroy
* TR4.0 as no additional bugs were found in this areea between Elroy and
* Mercury
*/
static int mercury_cfg_read(struct pci_bus *bus, unsigned int devfn, int pos, int size, u32 *data)
{
struct lba_device *d = LBA_DEV(parisc_walk_tree(bus->bridge));
u32 local_bus = (bus->parent == NULL) ? 0 : bus->busn_res.start;
u32 tok = LBA_CFG_TOK(local_bus, devfn);
void __iomem *data_reg = d->hba.base_addr + LBA_PCI_CFG_DATA;
if ((pos > 255) || (devfn > 255))
return -EINVAL;
LBA_CFG_TR4_ADDR_SETUP(d, tok | pos);
switch(size) {
case 1:
*data = READ_REG8(data_reg + (pos & 3));
break;
case 2:
*data = READ_REG16(data_reg + (pos & 2));
break;
case 4:
*data = READ_REG32(data_reg); break;
break;
}
DBG_CFG("mercury_cfg_read(%x+%2x) -> 0x%x\n", tok, pos, *data);
return 0;
}
/*
* LBA 4.0 config write code implements non-postable semantics
* by doing a read of CONFIG ADDR after the write.
*/
static int mercury_cfg_write(struct pci_bus *bus, unsigned int devfn, int pos, int size, u32 data)
{
struct lba_device *d = LBA_DEV(parisc_walk_tree(bus->bridge));
void __iomem *data_reg = d->hba.base_addr + LBA_PCI_CFG_DATA;
u32 local_bus = (bus->parent == NULL) ? 0 : bus->busn_res.start;
u32 tok = LBA_CFG_TOK(local_bus,devfn);
if ((pos > 255) || (devfn > 255))
return -EINVAL;
DBG_CFG("%s(%x+%2x) <- 0x%x (c)\n", __func__, tok, pos, data);
LBA_CFG_TR4_ADDR_SETUP(d, tok | pos);
switch(size) {
case 1:
WRITE_REG8 (data, data_reg + (pos & 3));
break;
case 2:
WRITE_REG16(data, data_reg + (pos & 2));
break;
case 4:
WRITE_REG32(data, data_reg);
break;
}
/* flush posted write */
lba_t32 = READ_U32(d->hba.base_addr + LBA_PCI_CFG_ADDR);
return 0;
}
static struct pci_ops mercury_cfg_ops = {
.read = mercury_cfg_read,
.write = mercury_cfg_write,
};
static void
lba_bios_init(void)
{
DBG(MODULE_NAME ": lba_bios_init\n");
}
#ifdef CONFIG_64BIT
/*
* truncate_pat_collision: Deal with overlaps or outright collisions
* between PAT PDC reported ranges.
*
* Broken PA8800 firmware will report lmmio range that
* overlaps with CPU HPA. Just truncate the lmmio range.
*
* BEWARE: conflicts with this lmmio range may be an
* elmmio range which is pointing down another rope.
*
* FIXME: only deals with one collision per range...theoretically we
* could have several. Supporting more than one collision will get messy.
*/
static unsigned long
truncate_pat_collision(struct resource *root, struct resource *new)
{
unsigned long start = new->start;
unsigned long end = new->end;
struct resource *tmp = root->child;
if (end <= start || start < root->start || !tmp)
return 0;
/* find first overlap */
while (tmp && tmp->end < start)
tmp = tmp->sibling;
/* no entries overlap */
if (!tmp) return 0;
/* found one that starts behind the new one
** Don't need to do anything.
*/
if (tmp->start >= end) return 0;
if (tmp->start <= start) {
/* "front" of new one overlaps */
new->start = tmp->end + 1;
if (tmp->end >= end) {
/* AACCKK! totally overlaps! drop this range. */
return 1;
}
}
if (tmp->end < end ) {
/* "end" of new one overlaps */
new->end = tmp->start - 1;
}
printk(KERN_WARNING "LBA: Truncating lmmio_space [%lx/%lx] "
"to [%lx,%lx]\n",
start, end,
(long)new->start, (long)new->end );
return 0; /* truncation successful */
}
/*
* extend_lmmio_len: extend lmmio range to maximum length
*
* This is needed at least on C8000 systems to get the ATI FireGL card
* working. On other systems we will currently not extend the lmmio space.
*/
static unsigned long
extend_lmmio_len(unsigned long start, unsigned long end, unsigned long lba_len)
{
struct resource *tmp;
/* exit if not a C8000 */
if (boot_cpu_data.cpu_type < mako)
return end;
pr_debug("LMMIO mismatch: PAT length = 0x%lx, MASK register = 0x%lx\n",
end - start, lba_len);
lba_len = min(lba_len+1, 256UL*1024*1024); /* limit to 256 MB */
pr_debug("LBA: lmmio_space [0x%lx-0x%lx] - original\n", start, end);
end += lba_len;
if (end < start) /* fix overflow */
end = -1ULL;
pr_debug("LBA: lmmio_space [0x%lx-0x%lx] - current\n", start, end);
/* first overlap */
for (tmp = iomem_resource.child; tmp; tmp = tmp->sibling) {
pr_debug("LBA: testing %pR\n", tmp);
if (tmp->start == start)
continue; /* ignore ourself */
if (tmp->end < start)
continue;
if (tmp->start > end)
continue;
if (end >= tmp->start)
end = tmp->start - 1;
}
pr_info("LBA: lmmio_space [0x%lx-0x%lx] - new\n", start, end);
/* return new end */
return end;
}
#else
#define truncate_pat_collision(r,n) (0)
#endif
static void pcibios_allocate_bridge_resources(struct pci_dev *dev)
{
int idx;
struct resource *r;
for (idx = PCI_BRIDGE_RESOURCES; idx < PCI_NUM_RESOURCES; idx++) {
r = &dev->resource[idx];
if (!r->flags)
continue;
if (r->parent) /* Already allocated */
continue;
if (!r->start || pci_claim_bridge_resource(dev, idx) < 0) {
/*
* Something is wrong with the region.
* Invalidate the resource to prevent
* child resource allocations in this
* range.
*/
r->start = r->end = 0;
r->flags = 0;
}
}
}
static void pcibios_allocate_bus_resources(struct pci_bus *bus)
{
struct pci_bus *child;
/* Depth-First Search on bus tree */
if (bus->self)
pcibios_allocate_bridge_resources(bus->self);
list_for_each_entry(child, &bus->children, node)
pcibios_allocate_bus_resources(child);
}
/*
** The algorithm is generic code.
** But it needs to access local data structures to get the IRQ base.
** Could make this a "pci_fixup_irq(bus, region)" but not sure
** it's worth it.
**
** Called by do_pci_scan_bus() immediately after each PCI bus is walked.
** Resources aren't allocated until recursive buswalk below HBA is completed.
*/
static void
lba_fixup_bus(struct pci_bus *bus)
{
struct pci_dev *dev;
#ifdef FBB_SUPPORT
u16 status;
#endif
struct lba_device *ldev = LBA_DEV(parisc_walk_tree(bus->bridge));
DBG("lba_fixup_bus(0x%p) bus %d platform_data 0x%p\n",
bus, (int)bus->busn_res.start, bus->bridge->platform_data);
/*
** Properly Setup MMIO resources for this bus.
** pci_alloc_primary_bus() mangles this.
*/
if (bus->parent) {
/* PCI-PCI Bridge */
pci_read_bridge_bases(bus);
/* check and allocate bridge resources */
pcibios_allocate_bus_resources(bus);
} else {
/* Host-PCI Bridge */
int err;
DBG("lba_fixup_bus() %s [%lx/%lx]/%lx\n",
ldev->hba.io_space.name,
ldev->hba.io_space.start, ldev->hba.io_space.end,
ldev->hba.io_space.flags);
DBG("lba_fixup_bus() %s [%lx/%lx]/%lx\n",
ldev->hba.lmmio_space.name,
ldev->hba.lmmio_space.start, ldev->hba.lmmio_space.end,
ldev->hba.lmmio_space.flags);
err = request_resource(&ioport_resource, &(ldev->hba.io_space));
if (err < 0) {
lba_dump_res(&ioport_resource, 2);
BUG();
}
if (ldev->hba.elmmio_space.flags) {
err = request_resource(&iomem_resource,
&(ldev->hba.elmmio_space));
if (err < 0) {
printk("FAILED: lba_fixup_bus() request for "
"elmmio_space [%lx/%lx]\n",
(long)ldev->hba.elmmio_space.start,
(long)ldev->hba.elmmio_space.end);
/* lba_dump_res(&iomem_resource, 2); */
/* BUG(); */
}
}
if (ldev->hba.lmmio_space.flags) {
err = request_resource(&iomem_resource, &(ldev->hba.lmmio_space));
if (err < 0) {
printk(KERN_ERR "FAILED: lba_fixup_bus() request for "
"lmmio_space [%lx/%lx]\n",
(long)ldev->hba.lmmio_space.start,
(long)ldev->hba.lmmio_space.end);
}
}
#ifdef CONFIG_64BIT
/* GMMIO is distributed range. Every LBA/Rope gets part it. */
if (ldev->hba.gmmio_space.flags) {
err = request_resource(&iomem_resource, &(ldev->hba.gmmio_space));
if (err < 0) {
printk("FAILED: lba_fixup_bus() request for "
"gmmio_space [%lx/%lx]\n",
(long)ldev->hba.gmmio_space.start,
(long)ldev->hba.gmmio_space.end);
lba_dump_res(&iomem_resource, 2);
BUG();
}
}
#endif
}
list_for_each_entry(dev, &bus->devices, bus_list) {
int i;
DBG("lba_fixup_bus() %s\n", pci_name(dev));
/* Virtualize Device/Bridge Resources. */
for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
struct resource *res = &dev->resource[i];
/* If resource not allocated - skip it */
if (!res->start)
continue;
/*
** FIXME: this will result in whinging for devices
** that share expansion ROMs (think quad tulip), but
** isn't harmful.
*/
pci_claim_resource(dev, i);
}
#ifdef FBB_SUPPORT
/*
** If one device does not support FBB transfers,
** No one on the bus can be allowed to use them.
*/
(void) pci_read_config_word(dev, PCI_STATUS, &status);
bus->bridge_ctl &= ~(status & PCI_STATUS_FAST_BACK);
#endif
/*
** P2PB's have no IRQs. ignore them.
*/
if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
pcibios_init_bridge(dev);
continue;
}
/* Adjust INTERRUPT_LINE for this dev */
iosapic_fixup_irq(ldev->iosapic_obj, dev);
}
#ifdef FBB_SUPPORT
/* FIXME/REVISIT - finish figuring out to set FBB on both
** pci_setup_bridge() clobbers PCI_BRIDGE_CONTROL.
** Can't fixup here anyway....garr...
*/
if (fbb_enable) {
if (bus->parent) {
u8 control;
/* enable on PPB */
(void) pci_read_config_byte(bus->self, PCI_BRIDGE_CONTROL, &control);
(void) pci_write_config_byte(bus->self, PCI_BRIDGE_CONTROL, control | PCI_STATUS_FAST_BACK);
} else {
/* enable on LBA */
}
fbb_enable = PCI_COMMAND_FAST_BACK;
}
/* Lastly enable FBB/PERR/SERR on all devices too */
list_for_each_entry(dev, &bus->devices, bus_list) {
(void) pci_read_config_word(dev, PCI_COMMAND, &status);
status |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR | fbb_enable;
(void) pci_write_config_word(dev, PCI_COMMAND, status);
}
#endif
}
static struct pci_bios_ops lba_bios_ops = {
.init = lba_bios_init,
.fixup_bus = lba_fixup_bus,
};
/*******************************************************
**
** LBA Sprockets "I/O Port" Space Accessor Functions
**
** This set of accessor functions is intended for use with
** "legacy firmware" (ie Sprockets on Allegro/Forte boxes).
**
** Many PCI devices don't require use of I/O port space (eg Tulip,
** NCR720) since they export the same registers to both MMIO and
** I/O port space. In general I/O port space is slower than
** MMIO since drivers are designed so PIO writes can be posted.
**
********************************************************/
#define LBA_PORT_IN(size, mask) \
static u##size lba_astro_in##size (struct pci_hba_data *d, u16 addr) \
{ \
u##size t; \
t = READ_REG##size(astro_iop_base + addr); \
DBG_PORT(" 0x%x\n", t); \
return (t); \
}
LBA_PORT_IN( 8, 3)
LBA_PORT_IN(16, 2)
LBA_PORT_IN(32, 0)
/*
** BUG X4107: Ordering broken - DMA RD return can bypass PIO WR
**
** Fixed in Elroy 2.2. The READ_U32(..., LBA_FUNC_ID) below is
** guarantee non-postable completion semantics - not avoid X4107.
** The READ_U32 only guarantees the write data gets to elroy but
** out to the PCI bus. We can't read stuff from I/O port space
** since we don't know what has side-effects. Attempting to read
** from configuration space would be suicidal given the number of
** bugs in that elroy functionality.
**
** Description:
** DMA read results can improperly pass PIO writes (X4107). The
** result of this bug is that if a processor modifies a location in
** memory after having issued PIO writes, the PIO writes are not
** guaranteed to be completed before a PCI device is allowed to see
** the modified data in a DMA read.
**
** Note that IKE bug X3719 in TR1 IKEs will result in the same
** symptom.
**
** Workaround:
** The workaround for this bug is to always follow a PIO write with
** a PIO read to the same bus before starting DMA on that PCI bus.
**
*/
#define LBA_PORT_OUT(size, mask) \
static void lba_astro_out##size (struct pci_hba_data *d, u16 addr, u##size val) \
{ \
DBG_PORT("%s(0x%p, 0x%x, 0x%x)\n", __func__, d, addr, val); \
WRITE_REG##size(val, astro_iop_base + addr); \
if (LBA_DEV(d)->hw_rev < 3) \
lba_t32 = READ_U32(d->base_addr + LBA_FUNC_ID); \
}
LBA_PORT_OUT( 8, 3)
LBA_PORT_OUT(16, 2)
LBA_PORT_OUT(32, 0)
static struct pci_port_ops lba_astro_port_ops = {
.inb = lba_astro_in8,
.inw = lba_astro_in16,
.inl = lba_astro_in32,
.outb = lba_astro_out8,
.outw = lba_astro_out16,
.outl = lba_astro_out32
};
#ifdef CONFIG_64BIT
#define PIOP_TO_GMMIO(lba, addr) \
((lba)->iop_base + (((addr)&0xFFFC)<<10) + ((addr)&3))
/*******************************************************
**
** LBA PAT "I/O Port" Space Accessor Functions
**
** This set of accessor functions is intended for use with
** "PAT PDC" firmware (ie Prelude/Rhapsody/Piranha boxes).
**
** This uses the PIOP space located in the first 64MB of GMMIO.
** Each rope gets a full 64*KB* (ie 4 bytes per page) this way.
** bits 1:0 stay the same. bits 15:2 become 25:12.
** Then add the base and we can generate an I/O Port cycle.
********************************************************/
#undef LBA_PORT_IN
#define LBA_PORT_IN(size, mask) \
static u##size lba_pat_in##size (struct pci_hba_data *l, u16 addr) \
{ \
u##size t; \
DBG_PORT("%s(0x%p, 0x%x) ->", __func__, l, addr); \
t = READ_REG##size(PIOP_TO_GMMIO(LBA_DEV(l), addr)); \
DBG_PORT(" 0x%x\n", t); \
return (t); \
}
LBA_PORT_IN( 8, 3)
LBA_PORT_IN(16, 2)
LBA_PORT_IN(32, 0)
#undef LBA_PORT_OUT
#define LBA_PORT_OUT(size, mask) \
static void lba_pat_out##size (struct pci_hba_data *l, u16 addr, u##size val) \
{ \
void __iomem *where = PIOP_TO_GMMIO(LBA_DEV(l), addr); \
DBG_PORT("%s(0x%p, 0x%x, 0x%x)\n", __func__, l, addr, val); \
WRITE_REG##size(val, where); \
/* flush the I/O down to the elroy at least */ \
lba_t32 = READ_U32(l->base_addr + LBA_FUNC_ID); \
}
LBA_PORT_OUT( 8, 3)
LBA_PORT_OUT(16, 2)
LBA_PORT_OUT(32, 0)
static struct pci_port_ops lba_pat_port_ops = {
.inb = lba_pat_in8,
.inw = lba_pat_in16,
.inl = lba_pat_in32,
.outb = lba_pat_out8,
.outw = lba_pat_out16,
.outl = lba_pat_out32
};
/*
** make range information from PDC available to PCI subsystem.
** We make the PDC call here in order to get the PCI bus range
** numbers. The rest will get forwarded in pcibios_fixup_bus().
** We don't have a struct pci_bus assigned to us yet.
*/
static void
lba_pat_resources(struct parisc_device *pa_dev, struct lba_device *lba_dev)
{
unsigned long bytecnt;
long io_count;
long status; /* PDC return status */
long pa_count;
pdc_pat_cell_mod_maddr_block_t *pa_pdc_cell; /* PA_VIEW */
pdc_pat_cell_mod_maddr_block_t *io_pdc_cell; /* IO_VIEW */
int i;
pa_pdc_cell = kzalloc(sizeof(pdc_pat_cell_mod_maddr_block_t), GFP_KERNEL);
if (!pa_pdc_cell)
return;
io_pdc_cell = kzalloc(sizeof(pdc_pat_cell_mod_maddr_block_t), GFP_KERNEL);
if (!io_pdc_cell) {
kfree(pa_pdc_cell);
return;
}
/* return cell module (IO view) */
status = pdc_pat_cell_module(&bytecnt, pa_dev->pcell_loc, pa_dev->mod_index,
PA_VIEW, pa_pdc_cell);
pa_count = pa_pdc_cell->mod[1];
status |= pdc_pat_cell_module(&bytecnt, pa_dev->pcell_loc, pa_dev->mod_index,
IO_VIEW, io_pdc_cell);
io_count = io_pdc_cell->mod[1];
/* We've already done this once for device discovery...*/
if (status != PDC_OK) {
panic("pdc_pat_cell_module() call failed for LBA!\n");
}
if (PAT_GET_ENTITY(pa_pdc_cell->mod_info) != PAT_ENTITY_LBA) {
panic("pdc_pat_cell_module() entity returned != PAT_ENTITY_LBA!\n");
}
/*
** Inspect the resources PAT tells us about
*/
for (i = 0; i < pa_count; i++) {
struct {
unsigned long type;
unsigned long start;
unsigned long end; /* aka finish */
} *p, *io;
struct resource *r;
p = (void *) &(pa_pdc_cell->mod[2+i*3]);
io = (void *) &(io_pdc_cell->mod[2+i*3]);
/* Convert the PAT range data to PCI "struct resource" */
switch(p->type & 0xff) {
case PAT_PBNUM:
lba_dev->hba.bus_num.start = p->start;
lba_dev->hba.bus_num.end = p->end;
lba_dev->hba.bus_num.flags = IORESOURCE_BUS;
break;
case PAT_LMMIO:
/* used to fix up pre-initialized MEM BARs */
if (!lba_dev->hba.lmmio_space.flags) {
unsigned long lba_len;
lba_len = ~READ_REG32(lba_dev->hba.base_addr
+ LBA_LMMIO_MASK);
if ((p->end - p->start) != lba_len)
p->end = extend_lmmio_len(p->start,
p->end, lba_len);
sprintf(lba_dev->hba.lmmio_name,
"PCI%02x LMMIO",
(int)lba_dev->hba.bus_num.start);
lba_dev->hba.lmmio_space_offset = p->start -
io->start;
r = &lba_dev->hba.lmmio_space;
r->name = lba_dev->hba.lmmio_name;
} else if (!lba_dev->hba.elmmio_space.flags) {
sprintf(lba_dev->hba.elmmio_name,
"PCI%02x ELMMIO",
(int)lba_dev->hba.bus_num.start);
r = &lba_dev->hba.elmmio_space;
r->name = lba_dev->hba.elmmio_name;
} else {
printk(KERN_WARNING MODULE_NAME
" only supports 2 LMMIO resources!\n");
break;
}
r->start = p->start;
r->end = p->end;
r->flags = IORESOURCE_MEM;
r->parent = r->sibling = r->child = NULL;
break;
case PAT_GMMIO:
/* MMIO space > 4GB phys addr; for 64-bit BAR */
sprintf(lba_dev->hba.gmmio_name, "PCI%02x GMMIO",
(int)lba_dev->hba.bus_num.start);
r = &lba_dev->hba.gmmio_space;
r->name = lba_dev->hba.gmmio_name;
r->start = p->start;
r->end = p->end;
r->flags = IORESOURCE_MEM;
r->parent = r->sibling = r->child = NULL;
break;
case PAT_NPIOP:
printk(KERN_WARNING MODULE_NAME
" range[%d] : ignoring NPIOP (0x%lx)\n",
i, p->start);
break;
case PAT_PIOP:
/*
** Postable I/O port space is per PCI host adapter.
** base of 64MB PIOP region
*/
lba_dev->iop_base = ioremap(p->start, 64 * 1024 * 1024);
sprintf(lba_dev->hba.io_name, "PCI%02x Ports",
(int)lba_dev->hba.bus_num.start);
r = &lba_dev->hba.io_space;
r->name = lba_dev->hba.io_name;
r->start = HBA_PORT_BASE(lba_dev->hba.hba_num);
r->end = r->start + HBA_PORT_SPACE_SIZE - 1;
r->flags = IORESOURCE_IO;
r->parent = r->sibling = r->child = NULL;
break;
default:
printk(KERN_WARNING MODULE_NAME
" range[%d] : unknown pat range type (0x%lx)\n",
i, p->type & 0xff);
break;
}
}
kfree(pa_pdc_cell);
kfree(io_pdc_cell);
}
#else
/* keep compiler from complaining about missing declarations */
#define lba_pat_port_ops lba_astro_port_ops
#define lba_pat_resources(pa_dev, lba_dev)
#endif /* CONFIG_64BIT */
extern void sba_distributed_lmmio(struct parisc_device *, struct resource *);
extern void sba_directed_lmmio(struct parisc_device *, struct resource *);
static void
lba_legacy_resources(struct parisc_device *pa_dev, struct lba_device *lba_dev)
{
struct resource *r;
int lba_num;
lba_dev->hba.lmmio_space_offset = PCI_F_EXTEND;
/*
** With "legacy" firmware, the lowest byte of FW_SCRATCH
** represents bus->secondary and the second byte represents
** bus->subsidiary (i.e. highest PPB programmed by firmware).
** PCI bus walk *should* end up with the same result.
** FIXME: But we don't have sanity checks in PCI or LBA.
*/
lba_num = READ_REG32(lba_dev->hba.base_addr + LBA_FW_SCRATCH);
r = &(lba_dev->hba.bus_num);
r->name = "LBA PCI Busses";
r->start = lba_num & 0xff;
r->end = (lba_num>>8) & 0xff;
r->flags = IORESOURCE_BUS;
/* Set up local PCI Bus resources - we don't need them for
** Legacy boxes but it's nice to see in /proc/iomem.
*/
r = &(lba_dev->hba.lmmio_space);
sprintf(lba_dev->hba.lmmio_name, "PCI%02x LMMIO",
(int)lba_dev->hba.bus_num.start);
r->name = lba_dev->hba.lmmio_name;
#if 1
/* We want the CPU -> IO routing of addresses.
* The SBA BASE/MASK registers control CPU -> IO routing.
* Ask SBA what is routed to this rope/LBA.
*/
sba_distributed_lmmio(pa_dev, r);
#else
/*
* The LBA BASE/MASK registers control IO -> System routing.
*
* The following code works but doesn't get us what we want.
* Well, only because firmware (v5.0) on C3000 doesn't program
* the LBA BASE/MASE registers to be the exact inverse of
* the corresponding SBA registers. Other Astro/Pluto
* based platform firmware may do it right.
*
* Should someone want to mess with MSI, they may need to
* reprogram LBA BASE/MASK registers. Thus preserve the code
* below until MSI is known to work on C3000/A500/N4000/RP3440.
*
* Using the code below, /proc/iomem shows:
* ...
* f0000000-f0ffffff : PCI00 LMMIO
* f05d0000-f05d0000 : lcd_data
* f05d0008-f05d0008 : lcd_cmd
* f1000000-f1ffffff : PCI01 LMMIO
* f4000000-f4ffffff : PCI02 LMMIO
* f4000000-f4001fff : sym53c8xx
* f4002000-f4003fff : sym53c8xx
* f4004000-f40043ff : sym53c8xx
* f4005000-f40053ff : sym53c8xx
* f4007000-f4007fff : ohci_hcd
* f4008000-f40083ff : tulip
* f6000000-f6ffffff : PCI03 LMMIO
* f8000000-fbffffff : PCI00 ELMMIO
* fa100000-fa4fffff : stifb mmio
* fb000000-fb1fffff : stifb fb
*
* But everything listed under PCI02 actually lives under PCI00.
* This is clearly wrong.
*
* Asking SBA how things are routed tells the correct story:
* LMMIO_BASE/MASK/ROUTE f4000001 fc000000 00000000
* DIR0_BASE/MASK/ROUTE fa000001 fe000000 00000006
* DIR1_BASE/MASK/ROUTE f9000001 ff000000 00000004
* DIR2_BASE/MASK/ROUTE f0000000 fc000000 00000000
* DIR3_BASE/MASK/ROUTE f0000000 fc000000 00000000
*
* Which looks like this in /proc/iomem:
* f4000000-f47fffff : PCI00 LMMIO
* f4000000-f4001fff : sym53c8xx
* ...[deteled core devices - same as above]...
* f4008000-f40083ff : tulip
* f4800000-f4ffffff : PCI01 LMMIO
* f6000000-f67fffff : PCI02 LMMIO
* f7000000-f77fffff : PCI03 LMMIO
* f9000000-f9ffffff : PCI02 ELMMIO
* fa000000-fbffffff : PCI03 ELMMIO
* fa100000-fa4fffff : stifb mmio
* fb000000-fb1fffff : stifb fb
*
* ie all Built-in core are under now correctly under PCI00.
* The "PCI02 ELMMIO" directed range is for:
* +-[02]---03.0 3Dfx Interactive, Inc. Voodoo 2
*
* All is well now.
*/
r->start = READ_REG32(lba_dev->hba.base_addr + LBA_LMMIO_BASE);
if (r->start & 1) {
unsigned long rsize;
r->flags = IORESOURCE_MEM;
/* mmio_mask also clears Enable bit */
r->start &= mmio_mask;
r->start = PCI_HOST_ADDR(&lba_dev->hba, r->start);
rsize = ~ READ_REG32(lba_dev->hba.base_addr + LBA_LMMIO_MASK);
/*
** Each rope only gets part of the distributed range.
** Adjust "window" for this rope.
*/
rsize /= ROPES_PER_IOC;
r->start += (rsize + 1) * LBA_NUM(pa_dev->hpa.start);
r->end = r->start + rsize;
} else {
r->end = r->start = 0; /* Not enabled. */
}
#endif
/*
** "Directed" ranges are used when the "distributed range" isn't
** sufficient for all devices below a given LBA. Typically devices
** like graphics cards or X25 may need a directed range when the
** bus has multiple slots (ie multiple devices) or the device
** needs more than the typical 4 or 8MB a distributed range offers.
**
** The main reason for ignoring it now frigging complications.
** Directed ranges may overlap (and have precedence) over
** distributed ranges. Or a distributed range assigned to a unused
** rope may be used by a directed range on a different rope.
** Support for graphics devices may require fixing this
** since they may be assigned a directed range which overlaps
** an existing (but unused portion of) distributed range.
*/
r = &(lba_dev->hba.elmmio_space);
sprintf(lba_dev->hba.elmmio_name, "PCI%02x ELMMIO",
(int)lba_dev->hba.bus_num.start);
r->name = lba_dev->hba.elmmio_name;
#if 1
/* See comment which precedes call to sba_directed_lmmio() */
sba_directed_lmmio(pa_dev, r);
#else
r->start = READ_REG32(lba_dev->hba.base_addr + LBA_ELMMIO_BASE);
if (r->start & 1) {
unsigned long rsize;
r->flags = IORESOURCE_MEM;
/* mmio_mask also clears Enable bit */
r->start &= mmio_mask;
r->start = PCI_HOST_ADDR(&lba_dev->hba, r->start);
rsize = READ_REG32(lba_dev->hba.base_addr + LBA_ELMMIO_MASK);
r->end = r->start + ~rsize;
}
#endif
r = &(lba_dev->hba.io_space);
sprintf(lba_dev->hba.io_name, "PCI%02x Ports",
(int)lba_dev->hba.bus_num.start);
r->name = lba_dev->hba.io_name;
r->flags = IORESOURCE_IO;
r->start = READ_REG32(lba_dev->hba.base_addr + LBA_IOS_BASE) & ~1L;
r->end = r->start + (READ_REG32(lba_dev->hba.base_addr + LBA_IOS_MASK) ^ (HBA_PORT_SPACE_SIZE - 1));
/* Virtualize the I/O Port space ranges */
lba_num = HBA_PORT_BASE(lba_dev->hba.hba_num);
r->start |= lba_num;
r->end |= lba_num;
}
/**************************************************************************
**
** LBA initialization code (HW and SW)
**
** o identify LBA chip itself
** o initialize LBA chip modes (HardFail)
** o FIXME: initialize DMA hints for reasonable defaults
** o enable configuration functions
** o call pci_register_ops() to discover devs (fixup/fixup_bus get invoked)
**
**************************************************************************/
static int __init
lba_hw_init(struct lba_device *d)
{
u32 stat;
u32 bus_reset; /* PDC_PAT_BUG */
#if 0
printk(KERN_DEBUG "LBA %lx STAT_CTL %Lx ERROR_CFG %Lx STATUS %Lx DMA_CTL %Lx\n",
d->hba.base_addr,
READ_REG64(d->hba.base_addr + LBA_STAT_CTL),
READ_REG64(d->hba.base_addr + LBA_ERROR_CONFIG),
READ_REG64(d->hba.base_addr + LBA_ERROR_STATUS),
READ_REG64(d->hba.base_addr + LBA_DMA_CTL) );
printk(KERN_DEBUG " ARB mask %Lx pri %Lx mode %Lx mtlt %Lx\n",
READ_REG64(d->hba.base_addr + LBA_ARB_MASK),
READ_REG64(d->hba.base_addr + LBA_ARB_PRI),
READ_REG64(d->hba.base_addr + LBA_ARB_MODE),
READ_REG64(d->hba.base_addr + LBA_ARB_MTLT) );
printk(KERN_DEBUG " HINT cfg 0x%Lx\n",
READ_REG64(d->hba.base_addr + LBA_HINT_CFG));
printk(KERN_DEBUG " HINT reg ");
{ int i;
for (i=LBA_HINT_BASE; i< (14*8 + LBA_HINT_BASE); i+=8)
printk(" %Lx", READ_REG64(d->hba.base_addr + i));
}
printk("\n");
#endif /* DEBUG_LBA_PAT */
#ifdef CONFIG_64BIT
/*
* FIXME add support for PDC_PAT_IO "Get slot status" - OLAR support
* Only N-Class and up can really make use of Get slot status.
* maybe L-class too but I've never played with it there.
*/
#endif
/* PDC_PAT_BUG: exhibited in rev 40.48 on L2000 */
bus_reset = READ_REG32(d->hba.base_addr + LBA_STAT_CTL + 4) & 1;
if (bus_reset) {
printk(KERN_DEBUG "NOTICE: PCI bus reset still asserted! (clearing)\n");
}
stat = READ_REG32(d->hba.base_addr + LBA_ERROR_CONFIG);
if (stat & LBA_SMART_MODE) {
printk(KERN_DEBUG "NOTICE: LBA in SMART mode! (cleared)\n");
stat &= ~LBA_SMART_MODE;
WRITE_REG32(stat, d->hba.base_addr + LBA_ERROR_CONFIG);
}
/*
* Hard Fail vs. Soft Fail on PCI "Master Abort".
*
* "Master Abort" means the MMIO transaction timed out - usually due to
* the device not responding to an MMIO read. We would like HF to be
* enabled to find driver problems, though it means the system will
* crash with a HPMC.
*
* In SoftFail mode "~0L" is returned as a result of a timeout on the
* pci bus. This is like how PCI busses on x86 and most other
* architectures behave. In order to increase compatibility with
* existing (x86) PCI hardware and existing Linux drivers we enable
* Soft Faul mode on PA-RISC now too.
*/
stat = READ_REG32(d->hba.base_addr + LBA_STAT_CTL);
#if defined(ENABLE_HARDFAIL)
WRITE_REG32(stat | HF_ENABLE, d->hba.base_addr + LBA_STAT_CTL);
#else
WRITE_REG32(stat & ~HF_ENABLE, d->hba.base_addr + LBA_STAT_CTL);
#endif
/*
** Writing a zero to STAT_CTL.rf (bit 0) will clear reset signal
** if it's not already set. If we just cleared the PCI Bus Reset
** signal, wait a bit for the PCI devices to recover and setup.
*/
if (bus_reset)
mdelay(pci_post_reset_delay);
if (0 == READ_REG32(d->hba.base_addr + LBA_ARB_MASK)) {
/*
** PDC_PAT_BUG: PDC rev 40.48 on L2000.
** B2000/C3600/J6000 also have this problem?
**
** Elroys with hot pluggable slots don't get configured
** correctly if the slot is empty. ARB_MASK is set to 0
** and we can't master transactions on the bus if it's
** not at least one. 0x3 enables elroy and first slot.
*/
printk(KERN_DEBUG "NOTICE: Enabling PCI Arbitration\n");
WRITE_REG32(0x3, d->hba.base_addr + LBA_ARB_MASK);
}
/*
** FIXME: Hint registers are programmed with default hint
** values by firmware. Hints should be sane even if we
** can't reprogram them the way drivers want.
*/
return 0;
}
/*
* Unfortunately, when firmware numbers busses, it doesn't take into account
* Cardbus bridges. So we have to renumber the busses to suit ourselves.
* Elroy/Mercury don't actually know what bus number they're attached to;
* we use bus 0 to indicate the directly attached bus and any other bus
* number will be taken care of by the PCI-PCI bridge.
*/
static unsigned int lba_next_bus = 0;
/*
* Determine if lba should claim this chip (return 0) or not (return 1).
* If so, initialize the chip and tell other partners in crime they
* have work to do.
*/
static int __init
lba_driver_probe(struct parisc_device *dev)
{
struct lba_device *lba_dev;
LIST_HEAD(resources);
struct pci_bus *lba_bus;
struct pci_ops *cfg_ops;
u32 func_class;
void *tmp_obj;
char *version;
void __iomem *addr;
int max;
addr = ioremap(dev->hpa.start, 4096);
if (addr == NULL)
return -ENOMEM;
/* Read HW Rev First */
func_class = READ_REG32(addr + LBA_FCLASS);
if (IS_ELROY(dev)) {
func_class &= 0xf;
switch (func_class) {
case 0: version = "TR1.0"; break;
case 1: version = "TR2.0"; break;
case 2: version = "TR2.1"; break;
case 3: version = "TR2.2"; break;
case 4: version = "TR3.0"; break;
case 5: version = "TR4.0"; break;
default: version = "TR4+";
}
printk(KERN_INFO "Elroy version %s (0x%x) found at 0x%lx\n",
version, func_class & 0xf, (long)dev->hpa.start);
if (func_class < 2) {
printk(KERN_WARNING "Can't support LBA older than "
"TR2.1 - continuing under adversity.\n");
}
#if 0
/* Elroy TR4.0 should work with simple algorithm.
But it doesn't. Still missing something. *sigh*
*/
if (func_class > 4) {
cfg_ops = &mercury_cfg_ops;
} else
#endif
{
cfg_ops = &elroy_cfg_ops;
}
} else if (IS_MERCURY(dev) || IS_QUICKSILVER(dev)) {
int major, minor;
func_class &= 0xff;
major = func_class >> 4, minor = func_class & 0xf;
/* We could use one printk for both Elroy and Mercury,
* but for the mask for func_class.
*/
printk(KERN_INFO "%s version TR%d.%d (0x%x) found at 0x%lx\n",
IS_MERCURY(dev) ? "Mercury" : "Quicksilver", major,
minor, func_class, (long)dev->hpa.start);
cfg_ops = &mercury_cfg_ops;
} else {
printk(KERN_ERR "Unknown LBA found at 0x%lx\n",
(long)dev->hpa.start);
return -ENODEV;
}
/* Tell I/O SAPIC driver we have a IRQ handler/region. */
tmp_obj = iosapic_register(dev->hpa.start + LBA_IOSAPIC_BASE);
/* NOTE: PCI devices (e.g. 103c:1005 graphics card) which don't
** have an IRT entry will get NULL back from iosapic code.
*/
lba_dev = kzalloc(sizeof(struct lba_device), GFP_KERNEL);
if (!lba_dev) {
printk(KERN_ERR "lba_init_chip - couldn't alloc lba_device\n");
return(1);
}
/* ---------- First : initialize data we already have --------- */
lba_dev->hw_rev = func_class;
lba_dev->hba.base_addr = addr;
lba_dev->hba.dev = dev;
lba_dev->iosapic_obj = tmp_obj; /* save interrupt handle */
lba_dev->hba.iommu = sba_get_iommu(dev); /* get iommu data */
parisc_set_drvdata(dev, lba_dev);
/* ------------ Second : initialize common stuff ---------- */
pci_bios = &lba_bios_ops;
pcibios_register_hba(&lba_dev->hba);
spin_lock_init(&lba_dev->lba_lock);
if (lba_hw_init(lba_dev))
return(1);
/* ---------- Third : setup I/O Port and MMIO resources --------- */
if (is_pdc_pat()) {
/* PDC PAT firmware uses PIOP region of GMMIO space. */
pci_port = &lba_pat_port_ops;
/* Go ask PDC PAT what resources this LBA has */
lba_pat_resources(dev, lba_dev);
} else {
if (!astro_iop_base) {
/* Sprockets PDC uses NPIOP region */
astro_iop_base = ioremap(LBA_PORT_BASE, 64 * 1024);
pci_port = &lba_astro_port_ops;
}
/* Poke the chip a bit for /proc output */
lba_legacy_resources(dev, lba_dev);
}
if (lba_dev->hba.bus_num.start < lba_next_bus)
lba_dev->hba.bus_num.start = lba_next_bus;
/* Overlaps with elmmio can (and should) fail here.
* We will prune (or ignore) the distributed range.
*
* FIXME: SBA code should register all elmmio ranges first.
* that would take care of elmmio ranges routed
* to a different rope (already discovered) from
* getting registered *after* LBA code has already
* registered it's distributed lmmio range.
*/
if (truncate_pat_collision(&iomem_resource,
&(lba_dev->hba.lmmio_space))) {
printk(KERN_WARNING "LBA: lmmio_space [%lx/%lx] duplicate!\n",
(long)lba_dev->hba.lmmio_space.start,
(long)lba_dev->hba.lmmio_space.end);
lba_dev->hba.lmmio_space.flags = 0;
}
pci_add_resource_offset(&resources, &lba_dev->hba.io_space,
HBA_PORT_BASE(lba_dev->hba.hba_num));
if (lba_dev->hba.elmmio_space.flags)
pci_add_resource_offset(&resources, &lba_dev->hba.elmmio_space,
lba_dev->hba.lmmio_space_offset);
if (lba_dev->hba.lmmio_space.flags)
pci_add_resource_offset(&resources, &lba_dev->hba.lmmio_space,
lba_dev->hba.lmmio_space_offset);
if (lba_dev->hba.gmmio_space.flags) {
/* Not registering GMMIO space - according to docs it's not
* even used on HP-UX. */
/* pci_add_resource(&resources, &lba_dev->hba.gmmio_space); */
}
pci_add_resource(&resources, &lba_dev->hba.bus_num);
dev->dev.platform_data = lba_dev;
lba_bus = lba_dev->hba.hba_bus =
pci_create_root_bus(&dev->dev, lba_dev->hba.bus_num.start,
cfg_ops, NULL, &resources);
if (!lba_bus) {
pci_free_resource_list(&resources);
return 0;
}
max = pci_scan_child_bus(lba_bus);
/* This is in lieu of calling pci_assign_unassigned_resources() */
if (is_pdc_pat()) {
/* assign resources to un-initialized devices */
DBG_PAT("LBA pci_bus_size_bridges()\n");
pci_bus_size_bridges(lba_bus);
DBG_PAT("LBA pci_bus_assign_resources()\n");
pci_bus_assign_resources(lba_bus);
#ifdef DEBUG_LBA_PAT
DBG_PAT("\nLBA PIOP resource tree\n");
lba_dump_res(&lba_dev->hba.io_space, 2);
DBG_PAT("\nLBA LMMIO resource tree\n");
lba_dump_res(&lba_dev->hba.lmmio_space, 2);
#endif
}
/*
** Once PCI register ops has walked the bus, access to config
** space is restricted. Avoids master aborts on config cycles.
** Early LBA revs go fatal on *any* master abort.
*/
if (cfg_ops == &elroy_cfg_ops) {
lba_dev->flags |= LBA_FLAG_SKIP_PROBE;
}
lba_next_bus = max + 1;
pci_bus_add_devices(lba_bus);
/* Whew! Finally done! Tell services we got this one covered. */
return 0;
}
static const struct parisc_device_id lba_tbl[] __initconst = {
{ HPHW_BRIDGE, HVERSION_REV_ANY_ID, ELROY_HVERS, 0xa },
{ HPHW_BRIDGE, HVERSION_REV_ANY_ID, MERCURY_HVERS, 0xa },
{ HPHW_BRIDGE, HVERSION_REV_ANY_ID, QUICKSILVER_HVERS, 0xa },
{ 0, }
};
static struct parisc_driver lba_driver __refdata = {
.name = MODULE_NAME,
.id_table = lba_tbl,
.probe = lba_driver_probe,
};
/*
** One time initialization to let the world know the LBA was found.
** Must be called exactly once before pci_init().
*/
void __init lba_init(void)
{
register_parisc_driver(&lba_driver);
}
/*
** Initialize the IBASE/IMASK registers for LBA (Elroy).
** Only called from sba_iommu.c in order to route ranges (MMIO vs DMA).
** sba_iommu is responsible for locking (none needed at init time).
*/
void lba_set_iregs(struct parisc_device *lba, u32 ibase, u32 imask)
{
void __iomem * base_addr = ioremap(lba->hpa.start, 4096);
imask <<= 2; /* adjust for hints - 2 more bits */
/* Make sure we aren't trying to set bits that aren't writeable. */
WARN_ON((ibase & 0x001fffff) != 0);
WARN_ON((imask & 0x001fffff) != 0);
DBG("%s() ibase 0x%x imask 0x%x\n", __func__, ibase, imask);
WRITE_REG32( imask, base_addr + LBA_IMASK);
WRITE_REG32( ibase, base_addr + LBA_IBASE);
iounmap(base_addr);
}
/*
* The design of the Diva management card in rp34x0 machines (rp3410, rp3440)
* seems rushed, so that many built-in components simply don't work.
* The following quirks disable the serial AUX port and the built-in ATI RV100
* Radeon 7000 graphics card which both don't have any external connectors and
* thus are useless, and even worse, e.g. the AUX port occupies ttyS0 and as
* such makes those machines the only PARISC machines on which we can't use
* ttyS0 as boot console.
*/
static void quirk_diva_ati_card(struct pci_dev *dev)
{
if (dev->subsystem_vendor != PCI_VENDOR_ID_HP ||
dev->subsystem_device != 0x1292)
return;
dev_info(&dev->dev, "Hiding Diva built-in ATI card");
dev->device = 0;
}
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RADEON_QY,
quirk_diva_ati_card);
static void quirk_diva_aux_disable(struct pci_dev *dev)
{
if (dev->subsystem_vendor != PCI_VENDOR_ID_HP ||
dev->subsystem_device != 0x1291)
return;
dev_info(&dev->dev, "Hiding Diva built-in AUX serial device");
dev->device = 0;
}
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_DIVA_AUX,
quirk_diva_aux_disable);
static void quirk_tosca_aux_disable(struct pci_dev *dev)
{
if (dev->subsystem_vendor != PCI_VENDOR_ID_HP ||
dev->subsystem_device != 0x104a)
return;
dev_info(&dev->dev, "Hiding Tosca secondary built-in AUX serial device");
dev->device = 0;
}
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_DIVA,
quirk_tosca_aux_disable);