1025 lines
25 KiB
C
1025 lines
25 KiB
C
// SPDX-License-Identifier: MIT
|
|
/*
|
|
* Copyright © 2019 Intel Corporation
|
|
*/
|
|
|
|
#include "debugfs_gt.h"
|
|
|
|
#include "gem/i915_gem_lmem.h"
|
|
#include "i915_drv.h"
|
|
#include "intel_context.h"
|
|
#include "intel_gt.h"
|
|
#include "intel_gt_buffer_pool.h"
|
|
#include "intel_gt_clock_utils.h"
|
|
#include "intel_gt_pm.h"
|
|
#include "intel_gt_requests.h"
|
|
#include "intel_migrate.h"
|
|
#include "intel_mocs.h"
|
|
#include "intel_rc6.h"
|
|
#include "intel_renderstate.h"
|
|
#include "intel_rps.h"
|
|
#include "intel_uncore.h"
|
|
#include "intel_pm.h"
|
|
#include "shmem_utils.h"
|
|
|
|
void intel_gt_init_early(struct intel_gt *gt, struct drm_i915_private *i915)
|
|
{
|
|
gt->i915 = i915;
|
|
gt->uncore = &i915->uncore;
|
|
|
|
spin_lock_init(>->irq_lock);
|
|
|
|
mutex_init(>->tlb_invalidate_lock);
|
|
|
|
INIT_LIST_HEAD(>->closed_vma);
|
|
spin_lock_init(>->closed_lock);
|
|
|
|
init_llist_head(>->watchdog.list);
|
|
INIT_WORK(>->watchdog.work, intel_gt_watchdog_work);
|
|
|
|
intel_gt_init_buffer_pool(gt);
|
|
intel_gt_init_reset(gt);
|
|
intel_gt_init_requests(gt);
|
|
intel_gt_init_timelines(gt);
|
|
intel_gt_pm_init_early(gt);
|
|
|
|
intel_uc_init_early(>->uc);
|
|
intel_rps_init_early(>->rps);
|
|
}
|
|
|
|
int intel_gt_probe_lmem(struct intel_gt *gt)
|
|
{
|
|
struct drm_i915_private *i915 = gt->i915;
|
|
struct intel_memory_region *mem;
|
|
int id;
|
|
int err;
|
|
|
|
mem = intel_gt_setup_lmem(gt);
|
|
if (mem == ERR_PTR(-ENODEV))
|
|
mem = intel_gt_setup_fake_lmem(gt);
|
|
if (IS_ERR(mem)) {
|
|
err = PTR_ERR(mem);
|
|
if (err == -ENODEV)
|
|
return 0;
|
|
|
|
drm_err(&i915->drm,
|
|
"Failed to setup region(%d) type=%d\n",
|
|
err, INTEL_MEMORY_LOCAL);
|
|
return err;
|
|
}
|
|
|
|
id = INTEL_REGION_LMEM;
|
|
|
|
mem->id = id;
|
|
|
|
intel_memory_region_set_name(mem, "local%u", mem->instance);
|
|
|
|
GEM_BUG_ON(!HAS_REGION(i915, id));
|
|
GEM_BUG_ON(i915->mm.regions[id]);
|
|
i915->mm.regions[id] = mem;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void intel_gt_init_hw_early(struct intel_gt *gt, struct i915_ggtt *ggtt)
|
|
{
|
|
gt->ggtt = ggtt;
|
|
}
|
|
|
|
static const struct intel_mmio_range icl_l3bank_steering_table[] = {
|
|
{ 0x00B100, 0x00B3FF },
|
|
{},
|
|
};
|
|
|
|
static const struct intel_mmio_range xehpsdv_mslice_steering_table[] = {
|
|
{ 0x004000, 0x004AFF },
|
|
{ 0x00C800, 0x00CFFF },
|
|
{ 0x00DD00, 0x00DDFF },
|
|
{ 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */
|
|
{},
|
|
};
|
|
|
|
static const struct intel_mmio_range xehpsdv_lncf_steering_table[] = {
|
|
{ 0x00B000, 0x00B0FF },
|
|
{ 0x00D800, 0x00D8FF },
|
|
{},
|
|
};
|
|
|
|
static const struct intel_mmio_range dg2_lncf_steering_table[] = {
|
|
{ 0x00B000, 0x00B0FF },
|
|
{ 0x00D880, 0x00D8FF },
|
|
{},
|
|
};
|
|
|
|
static u16 slicemask(struct intel_gt *gt, int count)
|
|
{
|
|
u64 dss_mask = intel_sseu_get_subslices(>->info.sseu, 0);
|
|
|
|
return intel_slicemask_from_dssmask(dss_mask, count);
|
|
}
|
|
|
|
int intel_gt_init_mmio(struct intel_gt *gt)
|
|
{
|
|
struct drm_i915_private *i915 = gt->i915;
|
|
|
|
intel_gt_init_clock_frequency(gt);
|
|
|
|
intel_uc_init_mmio(>->uc);
|
|
intel_sseu_info_init(gt);
|
|
|
|
/*
|
|
* An mslice is unavailable only if both the meml3 for the slice is
|
|
* disabled *and* all of the DSS in the slice (quadrant) are disabled.
|
|
*/
|
|
if (HAS_MSLICES(i915))
|
|
gt->info.mslice_mask =
|
|
slicemask(gt, GEN_DSS_PER_MSLICE) |
|
|
(intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) &
|
|
GEN12_MEML3_EN_MASK);
|
|
|
|
if (IS_DG2(i915)) {
|
|
gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table;
|
|
gt->steering_table[LNCF] = dg2_lncf_steering_table;
|
|
} else if (IS_XEHPSDV(i915)) {
|
|
gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table;
|
|
gt->steering_table[LNCF] = xehpsdv_lncf_steering_table;
|
|
} else if (GRAPHICS_VER(i915) >= 11 &&
|
|
GRAPHICS_VER_FULL(i915) < IP_VER(12, 50)) {
|
|
gt->steering_table[L3BANK] = icl_l3bank_steering_table;
|
|
gt->info.l3bank_mask =
|
|
~intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) &
|
|
GEN10_L3BANK_MASK;
|
|
} else if (HAS_MSLICES(i915)) {
|
|
MISSING_CASE(INTEL_INFO(i915)->platform);
|
|
}
|
|
|
|
return intel_engines_init_mmio(gt);
|
|
}
|
|
|
|
static void init_unused_ring(struct intel_gt *gt, u32 base)
|
|
{
|
|
struct intel_uncore *uncore = gt->uncore;
|
|
|
|
intel_uncore_write(uncore, RING_CTL(base), 0);
|
|
intel_uncore_write(uncore, RING_HEAD(base), 0);
|
|
intel_uncore_write(uncore, RING_TAIL(base), 0);
|
|
intel_uncore_write(uncore, RING_START(base), 0);
|
|
}
|
|
|
|
static void init_unused_rings(struct intel_gt *gt)
|
|
{
|
|
struct drm_i915_private *i915 = gt->i915;
|
|
|
|
if (IS_I830(i915)) {
|
|
init_unused_ring(gt, PRB1_BASE);
|
|
init_unused_ring(gt, SRB0_BASE);
|
|
init_unused_ring(gt, SRB1_BASE);
|
|
init_unused_ring(gt, SRB2_BASE);
|
|
init_unused_ring(gt, SRB3_BASE);
|
|
} else if (GRAPHICS_VER(i915) == 2) {
|
|
init_unused_ring(gt, SRB0_BASE);
|
|
init_unused_ring(gt, SRB1_BASE);
|
|
} else if (GRAPHICS_VER(i915) == 3) {
|
|
init_unused_ring(gt, PRB1_BASE);
|
|
init_unused_ring(gt, PRB2_BASE);
|
|
}
|
|
}
|
|
|
|
int intel_gt_init_hw(struct intel_gt *gt)
|
|
{
|
|
struct drm_i915_private *i915 = gt->i915;
|
|
struct intel_uncore *uncore = gt->uncore;
|
|
int ret;
|
|
|
|
gt->last_init_time = ktime_get();
|
|
|
|
/* Double layer security blanket, see i915_gem_init() */
|
|
intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
|
|
|
|
if (HAS_EDRAM(i915) && GRAPHICS_VER(i915) < 9)
|
|
intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf));
|
|
|
|
if (IS_HASWELL(i915))
|
|
intel_uncore_write(uncore,
|
|
MI_PREDICATE_RESULT_2,
|
|
IS_HSW_GT3(i915) ?
|
|
LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
|
|
|
|
/* Apply the GT workarounds... */
|
|
intel_gt_apply_workarounds(gt);
|
|
/* ...and determine whether they are sticking. */
|
|
intel_gt_verify_workarounds(gt, "init");
|
|
|
|
intel_gt_init_swizzling(gt);
|
|
|
|
/*
|
|
* At least 830 can leave some of the unused rings
|
|
* "active" (ie. head != tail) after resume which
|
|
* will prevent c3 entry. Makes sure all unused rings
|
|
* are totally idle.
|
|
*/
|
|
init_unused_rings(gt);
|
|
|
|
ret = i915_ppgtt_init_hw(gt);
|
|
if (ret) {
|
|
DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
|
|
goto out;
|
|
}
|
|
|
|
/* We can't enable contexts until all firmware is loaded */
|
|
ret = intel_uc_init_hw(>->uc);
|
|
if (ret) {
|
|
i915_probe_error(i915, "Enabling uc failed (%d)\n", ret);
|
|
goto out;
|
|
}
|
|
|
|
intel_mocs_init(gt);
|
|
|
|
out:
|
|
intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
|
|
return ret;
|
|
}
|
|
|
|
static void rmw_set(struct intel_uncore *uncore, i915_reg_t reg, u32 set)
|
|
{
|
|
intel_uncore_rmw(uncore, reg, 0, set);
|
|
}
|
|
|
|
static void rmw_clear(struct intel_uncore *uncore, i915_reg_t reg, u32 clr)
|
|
{
|
|
intel_uncore_rmw(uncore, reg, clr, 0);
|
|
}
|
|
|
|
static void clear_register(struct intel_uncore *uncore, i915_reg_t reg)
|
|
{
|
|
intel_uncore_rmw(uncore, reg, 0, 0);
|
|
}
|
|
|
|
static void gen6_clear_engine_error_register(struct intel_engine_cs *engine)
|
|
{
|
|
GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0);
|
|
GEN6_RING_FAULT_REG_POSTING_READ(engine);
|
|
}
|
|
|
|
void
|
|
intel_gt_clear_error_registers(struct intel_gt *gt,
|
|
intel_engine_mask_t engine_mask)
|
|
{
|
|
struct drm_i915_private *i915 = gt->i915;
|
|
struct intel_uncore *uncore = gt->uncore;
|
|
u32 eir;
|
|
|
|
if (GRAPHICS_VER(i915) != 2)
|
|
clear_register(uncore, PGTBL_ER);
|
|
|
|
if (GRAPHICS_VER(i915) < 4)
|
|
clear_register(uncore, IPEIR(RENDER_RING_BASE));
|
|
else
|
|
clear_register(uncore, IPEIR_I965);
|
|
|
|
clear_register(uncore, EIR);
|
|
eir = intel_uncore_read(uncore, EIR);
|
|
if (eir) {
|
|
/*
|
|
* some errors might have become stuck,
|
|
* mask them.
|
|
*/
|
|
DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
|
|
rmw_set(uncore, EMR, eir);
|
|
intel_uncore_write(uncore, GEN2_IIR,
|
|
I915_MASTER_ERROR_INTERRUPT);
|
|
}
|
|
|
|
if (GRAPHICS_VER(i915) >= 12) {
|
|
rmw_clear(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID);
|
|
intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG);
|
|
} else if (GRAPHICS_VER(i915) >= 8) {
|
|
rmw_clear(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID);
|
|
intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG);
|
|
} else if (GRAPHICS_VER(i915) >= 6) {
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
|
|
for_each_engine_masked(engine, gt, engine_mask, id)
|
|
gen6_clear_engine_error_register(engine);
|
|
}
|
|
}
|
|
|
|
static void gen6_check_faults(struct intel_gt *gt)
|
|
{
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
u32 fault;
|
|
|
|
for_each_engine(engine, gt, id) {
|
|
fault = GEN6_RING_FAULT_REG_READ(engine);
|
|
if (fault & RING_FAULT_VALID) {
|
|
drm_dbg(&engine->i915->drm, "Unexpected fault\n"
|
|
"\tAddr: 0x%08lx\n"
|
|
"\tAddress space: %s\n"
|
|
"\tSource ID: %d\n"
|
|
"\tType: %d\n",
|
|
fault & PAGE_MASK,
|
|
fault & RING_FAULT_GTTSEL_MASK ?
|
|
"GGTT" : "PPGTT",
|
|
RING_FAULT_SRCID(fault),
|
|
RING_FAULT_FAULT_TYPE(fault));
|
|
}
|
|
}
|
|
}
|
|
|
|
static void gen8_check_faults(struct intel_gt *gt)
|
|
{
|
|
struct intel_uncore *uncore = gt->uncore;
|
|
i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg;
|
|
u32 fault;
|
|
|
|
if (GRAPHICS_VER(gt->i915) >= 12) {
|
|
fault_reg = GEN12_RING_FAULT_REG;
|
|
fault_data0_reg = GEN12_FAULT_TLB_DATA0;
|
|
fault_data1_reg = GEN12_FAULT_TLB_DATA1;
|
|
} else {
|
|
fault_reg = GEN8_RING_FAULT_REG;
|
|
fault_data0_reg = GEN8_FAULT_TLB_DATA0;
|
|
fault_data1_reg = GEN8_FAULT_TLB_DATA1;
|
|
}
|
|
|
|
fault = intel_uncore_read(uncore, fault_reg);
|
|
if (fault & RING_FAULT_VALID) {
|
|
u32 fault_data0, fault_data1;
|
|
u64 fault_addr;
|
|
|
|
fault_data0 = intel_uncore_read(uncore, fault_data0_reg);
|
|
fault_data1 = intel_uncore_read(uncore, fault_data1_reg);
|
|
|
|
fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
|
|
((u64)fault_data0 << 12);
|
|
|
|
drm_dbg(&uncore->i915->drm, "Unexpected fault\n"
|
|
"\tAddr: 0x%08x_%08x\n"
|
|
"\tAddress space: %s\n"
|
|
"\tEngine ID: %d\n"
|
|
"\tSource ID: %d\n"
|
|
"\tType: %d\n",
|
|
upper_32_bits(fault_addr), lower_32_bits(fault_addr),
|
|
fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
|
|
GEN8_RING_FAULT_ENGINE_ID(fault),
|
|
RING_FAULT_SRCID(fault),
|
|
RING_FAULT_FAULT_TYPE(fault));
|
|
}
|
|
}
|
|
|
|
void intel_gt_check_and_clear_faults(struct intel_gt *gt)
|
|
{
|
|
struct drm_i915_private *i915 = gt->i915;
|
|
|
|
/* From GEN8 onwards we only have one 'All Engine Fault Register' */
|
|
if (GRAPHICS_VER(i915) >= 8)
|
|
gen8_check_faults(gt);
|
|
else if (GRAPHICS_VER(i915) >= 6)
|
|
gen6_check_faults(gt);
|
|
else
|
|
return;
|
|
|
|
intel_gt_clear_error_registers(gt, ALL_ENGINES);
|
|
}
|
|
|
|
void intel_gt_flush_ggtt_writes(struct intel_gt *gt)
|
|
{
|
|
struct intel_uncore *uncore = gt->uncore;
|
|
intel_wakeref_t wakeref;
|
|
|
|
/*
|
|
* No actual flushing is required for the GTT write domain for reads
|
|
* from the GTT domain. Writes to it "immediately" go to main memory
|
|
* as far as we know, so there's no chipset flush. It also doesn't
|
|
* land in the GPU render cache.
|
|
*
|
|
* However, we do have to enforce the order so that all writes through
|
|
* the GTT land before any writes to the device, such as updates to
|
|
* the GATT itself.
|
|
*
|
|
* We also have to wait a bit for the writes to land from the GTT.
|
|
* An uncached read (i.e. mmio) seems to be ideal for the round-trip
|
|
* timing. This issue has only been observed when switching quickly
|
|
* between GTT writes and CPU reads from inside the kernel on recent hw,
|
|
* and it appears to only affect discrete GTT blocks (i.e. on LLC
|
|
* system agents we cannot reproduce this behaviour, until Cannonlake
|
|
* that was!).
|
|
*/
|
|
|
|
wmb();
|
|
|
|
if (INTEL_INFO(gt->i915)->has_coherent_ggtt)
|
|
return;
|
|
|
|
intel_gt_chipset_flush(gt);
|
|
|
|
with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) {
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&uncore->lock, flags);
|
|
intel_uncore_posting_read_fw(uncore,
|
|
RING_HEAD(RENDER_RING_BASE));
|
|
spin_unlock_irqrestore(&uncore->lock, flags);
|
|
}
|
|
}
|
|
|
|
void intel_gt_chipset_flush(struct intel_gt *gt)
|
|
{
|
|
wmb();
|
|
if (GRAPHICS_VER(gt->i915) < 6)
|
|
intel_gtt_chipset_flush();
|
|
}
|
|
|
|
void intel_gt_driver_register(struct intel_gt *gt)
|
|
{
|
|
intel_rps_driver_register(>->rps);
|
|
|
|
debugfs_gt_register(gt);
|
|
}
|
|
|
|
static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size)
|
|
{
|
|
struct drm_i915_private *i915 = gt->i915;
|
|
struct drm_i915_gem_object *obj;
|
|
struct i915_vma *vma;
|
|
int ret;
|
|
|
|
obj = i915_gem_object_create_lmem(i915, size, I915_BO_ALLOC_VOLATILE);
|
|
if (IS_ERR(obj))
|
|
obj = i915_gem_object_create_stolen(i915, size);
|
|
if (IS_ERR(obj))
|
|
obj = i915_gem_object_create_internal(i915, size);
|
|
if (IS_ERR(obj)) {
|
|
drm_err(&i915->drm, "Failed to allocate scratch page\n");
|
|
return PTR_ERR(obj);
|
|
}
|
|
|
|
vma = i915_vma_instance(obj, >->ggtt->vm, NULL);
|
|
if (IS_ERR(vma)) {
|
|
ret = PTR_ERR(vma);
|
|
goto err_unref;
|
|
}
|
|
|
|
ret = i915_ggtt_pin(vma, NULL, 0, PIN_HIGH);
|
|
if (ret)
|
|
goto err_unref;
|
|
|
|
gt->scratch = i915_vma_make_unshrinkable(vma);
|
|
|
|
return 0;
|
|
|
|
err_unref:
|
|
i915_gem_object_put(obj);
|
|
return ret;
|
|
}
|
|
|
|
static void intel_gt_fini_scratch(struct intel_gt *gt)
|
|
{
|
|
i915_vma_unpin_and_release(>->scratch, 0);
|
|
}
|
|
|
|
static struct i915_address_space *kernel_vm(struct intel_gt *gt)
|
|
{
|
|
if (INTEL_PPGTT(gt->i915) > INTEL_PPGTT_ALIASING)
|
|
return &i915_ppgtt_create(gt)->vm;
|
|
else
|
|
return i915_vm_get(>->ggtt->vm);
|
|
}
|
|
|
|
static int __engines_record_defaults(struct intel_gt *gt)
|
|
{
|
|
struct i915_request *requests[I915_NUM_ENGINES] = {};
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
int err = 0;
|
|
|
|
/*
|
|
* As we reset the gpu during very early sanitisation, the current
|
|
* register state on the GPU should reflect its defaults values.
|
|
* We load a context onto the hw (with restore-inhibit), then switch
|
|
* over to a second context to save that default register state. We
|
|
* can then prime every new context with that state so they all start
|
|
* from the same default HW values.
|
|
*/
|
|
|
|
for_each_engine(engine, gt, id) {
|
|
struct intel_renderstate so;
|
|
struct intel_context *ce;
|
|
struct i915_request *rq;
|
|
|
|
/* We must be able to switch to something! */
|
|
GEM_BUG_ON(!engine->kernel_context);
|
|
|
|
ce = intel_context_create(engine);
|
|
if (IS_ERR(ce)) {
|
|
err = PTR_ERR(ce);
|
|
goto out;
|
|
}
|
|
|
|
err = intel_renderstate_init(&so, ce);
|
|
if (err)
|
|
goto err;
|
|
|
|
rq = i915_request_create(ce);
|
|
if (IS_ERR(rq)) {
|
|
err = PTR_ERR(rq);
|
|
goto err_fini;
|
|
}
|
|
|
|
err = intel_engine_emit_ctx_wa(rq);
|
|
if (err)
|
|
goto err_rq;
|
|
|
|
err = intel_renderstate_emit(&so, rq);
|
|
if (err)
|
|
goto err_rq;
|
|
|
|
err_rq:
|
|
requests[id] = i915_request_get(rq);
|
|
i915_request_add(rq);
|
|
err_fini:
|
|
intel_renderstate_fini(&so, ce);
|
|
err:
|
|
if (err) {
|
|
intel_context_put(ce);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* Flush the default context image to memory, and enable powersaving. */
|
|
if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) {
|
|
err = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
for (id = 0; id < ARRAY_SIZE(requests); id++) {
|
|
struct i915_request *rq;
|
|
struct file *state;
|
|
|
|
rq = requests[id];
|
|
if (!rq)
|
|
continue;
|
|
|
|
if (rq->fence.error) {
|
|
err = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT, &rq->context->flags));
|
|
if (!rq->context->state)
|
|
continue;
|
|
|
|
/* Keep a copy of the state's backing pages; free the obj */
|
|
state = shmem_create_from_object(rq->context->state->obj);
|
|
if (IS_ERR(state)) {
|
|
err = PTR_ERR(state);
|
|
goto out;
|
|
}
|
|
rq->engine->default_state = state;
|
|
}
|
|
|
|
out:
|
|
/*
|
|
* If we have to abandon now, we expect the engines to be idle
|
|
* and ready to be torn-down. The quickest way we can accomplish
|
|
* this is by declaring ourselves wedged.
|
|
*/
|
|
if (err)
|
|
intel_gt_set_wedged(gt);
|
|
|
|
for (id = 0; id < ARRAY_SIZE(requests); id++) {
|
|
struct intel_context *ce;
|
|
struct i915_request *rq;
|
|
|
|
rq = requests[id];
|
|
if (!rq)
|
|
continue;
|
|
|
|
ce = rq->context;
|
|
i915_request_put(rq);
|
|
intel_context_put(ce);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static int __engines_verify_workarounds(struct intel_gt *gt)
|
|
{
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
int err = 0;
|
|
|
|
if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
|
|
return 0;
|
|
|
|
for_each_engine(engine, gt, id) {
|
|
if (intel_engine_verify_workarounds(engine, "load"))
|
|
err = -EIO;
|
|
}
|
|
|
|
/* Flush and restore the kernel context for safety */
|
|
if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME)
|
|
err = -EIO;
|
|
|
|
return err;
|
|
}
|
|
|
|
static void __intel_gt_disable(struct intel_gt *gt)
|
|
{
|
|
intel_gt_set_wedged_on_fini(gt);
|
|
|
|
intel_gt_suspend_prepare(gt);
|
|
intel_gt_suspend_late(gt);
|
|
|
|
GEM_BUG_ON(intel_gt_pm_is_awake(gt));
|
|
}
|
|
|
|
int intel_gt_wait_for_idle(struct intel_gt *gt, long timeout)
|
|
{
|
|
long remaining_timeout;
|
|
|
|
/* If the device is asleep, we have no requests outstanding */
|
|
if (!intel_gt_pm_is_awake(gt))
|
|
return 0;
|
|
|
|
while ((timeout = intel_gt_retire_requests_timeout(gt, timeout,
|
|
&remaining_timeout)) > 0) {
|
|
cond_resched();
|
|
if (signal_pending(current))
|
|
return -EINTR;
|
|
}
|
|
|
|
if (timeout)
|
|
return timeout;
|
|
|
|
if (remaining_timeout < 0)
|
|
remaining_timeout = 0;
|
|
|
|
return intel_uc_wait_for_idle(>->uc, remaining_timeout);
|
|
}
|
|
|
|
int intel_gt_init(struct intel_gt *gt)
|
|
{
|
|
int err;
|
|
|
|
err = i915_inject_probe_error(gt->i915, -ENODEV);
|
|
if (err)
|
|
return err;
|
|
|
|
/*
|
|
* This is just a security blanket to placate dragons.
|
|
* On some systems, we very sporadically observe that the first TLBs
|
|
* used by the CS may be stale, despite us poking the TLB reset. If
|
|
* we hold the forcewake during initialisation these problems
|
|
* just magically go away.
|
|
*/
|
|
intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
|
|
|
|
err = intel_gt_init_scratch(gt,
|
|
GRAPHICS_VER(gt->i915) == 2 ? SZ_256K : SZ_4K);
|
|
if (err)
|
|
goto out_fw;
|
|
|
|
intel_gt_pm_init(gt);
|
|
|
|
gt->vm = kernel_vm(gt);
|
|
if (!gt->vm) {
|
|
err = -ENOMEM;
|
|
goto err_pm;
|
|
}
|
|
|
|
err = intel_engines_init(gt);
|
|
if (err)
|
|
goto err_engines;
|
|
|
|
err = intel_uc_init(>->uc);
|
|
if (err)
|
|
goto err_engines;
|
|
|
|
err = intel_gt_resume(gt);
|
|
if (err)
|
|
goto err_uc_init;
|
|
|
|
err = __engines_record_defaults(gt);
|
|
if (err)
|
|
goto err_gt;
|
|
|
|
err = __engines_verify_workarounds(gt);
|
|
if (err)
|
|
goto err_gt;
|
|
|
|
err = i915_inject_probe_error(gt->i915, -EIO);
|
|
if (err)
|
|
goto err_gt;
|
|
|
|
intel_uc_init_late(>->uc);
|
|
|
|
intel_migrate_init(>->migrate, gt);
|
|
|
|
goto out_fw;
|
|
err_gt:
|
|
__intel_gt_disable(gt);
|
|
intel_uc_fini_hw(>->uc);
|
|
err_uc_init:
|
|
intel_uc_fini(>->uc);
|
|
err_engines:
|
|
intel_engines_release(gt);
|
|
i915_vm_put(fetch_and_zero(>->vm));
|
|
err_pm:
|
|
intel_gt_pm_fini(gt);
|
|
intel_gt_fini_scratch(gt);
|
|
out_fw:
|
|
if (err)
|
|
intel_gt_set_wedged_on_init(gt);
|
|
intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
|
|
return err;
|
|
}
|
|
|
|
void intel_gt_driver_remove(struct intel_gt *gt)
|
|
{
|
|
__intel_gt_disable(gt);
|
|
|
|
intel_migrate_fini(>->migrate);
|
|
intel_uc_driver_remove(>->uc);
|
|
|
|
intel_engines_release(gt);
|
|
}
|
|
|
|
void intel_gt_driver_unregister(struct intel_gt *gt)
|
|
{
|
|
intel_wakeref_t wakeref;
|
|
|
|
intel_rps_driver_unregister(>->rps);
|
|
|
|
/*
|
|
* Upon unregistering the device to prevent any new users, cancel
|
|
* all in-flight requests so that we can quickly unbind the active
|
|
* resources.
|
|
*/
|
|
intel_gt_set_wedged(gt);
|
|
|
|
/* Scrub all HW state upon release */
|
|
with_intel_runtime_pm(gt->uncore->rpm, wakeref)
|
|
__intel_gt_reset(gt, ALL_ENGINES);
|
|
}
|
|
|
|
void intel_gt_driver_release(struct intel_gt *gt)
|
|
{
|
|
struct i915_address_space *vm;
|
|
|
|
vm = fetch_and_zero(>->vm);
|
|
if (vm) /* FIXME being called twice on error paths :( */
|
|
i915_vm_put(vm);
|
|
|
|
intel_gt_pm_fini(gt);
|
|
intel_gt_fini_scratch(gt);
|
|
intel_gt_fini_buffer_pool(gt);
|
|
}
|
|
|
|
void intel_gt_driver_late_release(struct intel_gt *gt)
|
|
{
|
|
/* We need to wait for inflight RCU frees to release their grip */
|
|
rcu_barrier();
|
|
|
|
intel_uc_driver_late_release(>->uc);
|
|
intel_gt_fini_requests(gt);
|
|
intel_gt_fini_reset(gt);
|
|
intel_gt_fini_timelines(gt);
|
|
intel_engines_free(gt);
|
|
}
|
|
|
|
/**
|
|
* intel_gt_reg_needs_read_steering - determine whether a register read
|
|
* requires explicit steering
|
|
* @gt: GT structure
|
|
* @reg: the register to check steering requirements for
|
|
* @type: type of multicast steering to check
|
|
*
|
|
* Determines whether @reg needs explicit steering of a specific type for
|
|
* reads.
|
|
*
|
|
* Returns false if @reg does not belong to a register range of the given
|
|
* steering type, or if the default (subslice-based) steering IDs are suitable
|
|
* for @type steering too.
|
|
*/
|
|
static bool intel_gt_reg_needs_read_steering(struct intel_gt *gt,
|
|
i915_reg_t reg,
|
|
enum intel_steering_type type)
|
|
{
|
|
const u32 offset = i915_mmio_reg_offset(reg);
|
|
const struct intel_mmio_range *entry;
|
|
|
|
if (likely(!intel_gt_needs_read_steering(gt, type)))
|
|
return false;
|
|
|
|
for (entry = gt->steering_table[type]; entry->end; entry++) {
|
|
if (offset >= entry->start && offset <= entry->end)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* intel_gt_get_valid_steering - determines valid IDs for a class of MCR steering
|
|
* @gt: GT structure
|
|
* @type: multicast register type
|
|
* @sliceid: Slice ID returned
|
|
* @subsliceid: Subslice ID returned
|
|
*
|
|
* Determines sliceid and subsliceid values that will steer reads
|
|
* of a specific multicast register class to a valid value.
|
|
*/
|
|
static void intel_gt_get_valid_steering(struct intel_gt *gt,
|
|
enum intel_steering_type type,
|
|
u8 *sliceid, u8 *subsliceid)
|
|
{
|
|
switch (type) {
|
|
case L3BANK:
|
|
GEM_DEBUG_WARN_ON(!gt->info.l3bank_mask); /* should be impossible! */
|
|
|
|
*sliceid = 0; /* unused */
|
|
*subsliceid = __ffs(gt->info.l3bank_mask);
|
|
break;
|
|
case MSLICE:
|
|
GEM_DEBUG_WARN_ON(!gt->info.mslice_mask); /* should be impossible! */
|
|
|
|
*sliceid = __ffs(gt->info.mslice_mask);
|
|
*subsliceid = 0; /* unused */
|
|
break;
|
|
case LNCF:
|
|
GEM_DEBUG_WARN_ON(!gt->info.mslice_mask); /* should be impossible! */
|
|
|
|
/*
|
|
* An LNCF is always present if its mslice is present, so we
|
|
* can safely just steer to LNCF 0 in all cases.
|
|
*/
|
|
*sliceid = __ffs(gt->info.mslice_mask) << 1;
|
|
*subsliceid = 0; /* unused */
|
|
break;
|
|
default:
|
|
MISSING_CASE(type);
|
|
*sliceid = 0;
|
|
*subsliceid = 0;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* intel_gt_read_register_fw - reads a GT register with support for multicast
|
|
* @gt: GT structure
|
|
* @reg: register to read
|
|
*
|
|
* This function will read a GT register. If the register is a multicast
|
|
* register, the read will be steered to a valid instance (i.e., one that
|
|
* isn't fused off or powered down by power gating).
|
|
*
|
|
* Returns the value from a valid instance of @reg.
|
|
*/
|
|
u32 intel_gt_read_register_fw(struct intel_gt *gt, i915_reg_t reg)
|
|
{
|
|
int type;
|
|
u8 sliceid, subsliceid;
|
|
|
|
for (type = 0; type < NUM_STEERING_TYPES; type++) {
|
|
if (intel_gt_reg_needs_read_steering(gt, reg, type)) {
|
|
intel_gt_get_valid_steering(gt, type, &sliceid,
|
|
&subsliceid);
|
|
return intel_uncore_read_with_mcr_steering_fw(gt->uncore,
|
|
reg,
|
|
sliceid,
|
|
subsliceid);
|
|
}
|
|
}
|
|
|
|
return intel_uncore_read_fw(gt->uncore, reg);
|
|
}
|
|
|
|
void intel_gt_info_print(const struct intel_gt_info *info,
|
|
struct drm_printer *p)
|
|
{
|
|
drm_printf(p, "available engines: %x\n", info->engine_mask);
|
|
|
|
intel_sseu_dump(&info->sseu, p);
|
|
}
|
|
|
|
struct reg_and_bit {
|
|
i915_reg_t reg;
|
|
u32 bit;
|
|
};
|
|
|
|
static struct reg_and_bit
|
|
get_reg_and_bit(const struct intel_engine_cs *engine, const bool gen8,
|
|
const i915_reg_t *regs, const unsigned int num)
|
|
{
|
|
const unsigned int class = engine->class;
|
|
struct reg_and_bit rb = { };
|
|
|
|
if (drm_WARN_ON_ONCE(&engine->i915->drm,
|
|
class >= num || !regs[class].reg))
|
|
return rb;
|
|
|
|
rb.reg = regs[class];
|
|
if (gen8 && class == VIDEO_DECODE_CLASS)
|
|
rb.reg.reg += 4 * engine->instance; /* GEN8_M2TCR */
|
|
else
|
|
rb.bit = engine->instance;
|
|
|
|
rb.bit = BIT(rb.bit);
|
|
|
|
return rb;
|
|
}
|
|
|
|
void intel_gt_invalidate_tlbs(struct intel_gt *gt)
|
|
{
|
|
static const i915_reg_t gen8_regs[] = {
|
|
[RENDER_CLASS] = GEN8_RTCR,
|
|
[VIDEO_DECODE_CLASS] = GEN8_M1TCR, /* , GEN8_M2TCR */
|
|
[VIDEO_ENHANCEMENT_CLASS] = GEN8_VTCR,
|
|
[COPY_ENGINE_CLASS] = GEN8_BTCR,
|
|
};
|
|
static const i915_reg_t gen12_regs[] = {
|
|
[RENDER_CLASS] = GEN12_GFX_TLB_INV_CR,
|
|
[VIDEO_DECODE_CLASS] = GEN12_VD_TLB_INV_CR,
|
|
[VIDEO_ENHANCEMENT_CLASS] = GEN12_VE_TLB_INV_CR,
|
|
[COPY_ENGINE_CLASS] = GEN12_BLT_TLB_INV_CR,
|
|
};
|
|
struct drm_i915_private *i915 = gt->i915;
|
|
struct intel_uncore *uncore = gt->uncore;
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
const i915_reg_t *regs;
|
|
unsigned int num = 0;
|
|
|
|
if (I915_SELFTEST_ONLY(gt->awake == -ENODEV))
|
|
return;
|
|
|
|
if (intel_gt_is_wedged(gt))
|
|
return;
|
|
|
|
if (GRAPHICS_VER(i915) == 12) {
|
|
regs = gen12_regs;
|
|
num = ARRAY_SIZE(gen12_regs);
|
|
} else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) {
|
|
regs = gen8_regs;
|
|
num = ARRAY_SIZE(gen8_regs);
|
|
} else if (GRAPHICS_VER(i915) < 8) {
|
|
return;
|
|
}
|
|
|
|
if (drm_WARN_ONCE(&i915->drm, !num,
|
|
"Platform does not implement TLB invalidation!"))
|
|
return;
|
|
|
|
GEM_TRACE("\n");
|
|
|
|
assert_rpm_wakelock_held(&i915->runtime_pm);
|
|
|
|
mutex_lock(>->tlb_invalidate_lock);
|
|
intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
|
|
|
|
spin_lock_irq(&uncore->lock); /* serialise invalidate with GT reset */
|
|
|
|
for_each_engine(engine, gt, id) {
|
|
struct reg_and_bit rb;
|
|
|
|
rb = get_reg_and_bit(engine, regs == gen8_regs, regs, num);
|
|
if (!i915_mmio_reg_offset(rb.reg))
|
|
continue;
|
|
|
|
if (GRAPHICS_VER(i915) == 12 && (engine->class == VIDEO_DECODE_CLASS ||
|
|
engine->class == VIDEO_ENHANCEMENT_CLASS))
|
|
rb.bit = _MASKED_BIT_ENABLE(rb.bit);
|
|
|
|
intel_uncore_write_fw(uncore, rb.reg, rb.bit);
|
|
}
|
|
|
|
spin_unlock_irq(&uncore->lock);
|
|
|
|
for_each_engine(engine, gt, id) {
|
|
/*
|
|
* HW architecture suggest typical invalidation time at 40us,
|
|
* with pessimistic cases up to 100us and a recommendation to
|
|
* cap at 1ms. We go a bit higher just in case.
|
|
*/
|
|
const unsigned int timeout_us = 100;
|
|
const unsigned int timeout_ms = 4;
|
|
struct reg_and_bit rb;
|
|
|
|
rb = get_reg_and_bit(engine, regs == gen8_regs, regs, num);
|
|
if (!i915_mmio_reg_offset(rb.reg))
|
|
continue;
|
|
|
|
if (__intel_wait_for_register_fw(uncore,
|
|
rb.reg, rb.bit, 0,
|
|
timeout_us, timeout_ms,
|
|
NULL))
|
|
drm_err_ratelimited(>->i915->drm,
|
|
"%s TLB invalidation did not complete in %ums!\n",
|
|
engine->name, timeout_ms);
|
|
}
|
|
|
|
intel_uncore_forcewake_put_delayed(uncore, FORCEWAKE_ALL);
|
|
mutex_unlock(>->tlb_invalidate_lock);
|
|
}
|