882 lines
23 KiB
C
882 lines
23 KiB
C
// SPDX-License-Identifier: MIT
|
|
/*
|
|
* Copyright © 2019 Intel Corporation
|
|
*/
|
|
|
|
#include <drm/drm_atomic_state_helper.h>
|
|
|
|
#include "intel_atomic.h"
|
|
#include "intel_bw.h"
|
|
#include "intel_cdclk.h"
|
|
#include "intel_display_types.h"
|
|
#include "intel_pm.h"
|
|
#include "intel_sideband.h"
|
|
|
|
/* Parameters for Qclk Geyserville (QGV) */
|
|
struct intel_qgv_point {
|
|
u16 dclk, t_rp, t_rdpre, t_rc, t_ras, t_rcd;
|
|
};
|
|
|
|
struct intel_psf_gv_point {
|
|
u8 clk; /* clock in multiples of 16.6666 MHz */
|
|
};
|
|
|
|
struct intel_qgv_info {
|
|
struct intel_qgv_point points[I915_NUM_QGV_POINTS];
|
|
struct intel_psf_gv_point psf_points[I915_NUM_PSF_GV_POINTS];
|
|
u8 num_points;
|
|
u8 num_psf_points;
|
|
u8 t_bl;
|
|
};
|
|
|
|
static int dg1_mchbar_read_qgv_point_info(struct drm_i915_private *dev_priv,
|
|
struct intel_qgv_point *sp,
|
|
int point)
|
|
{
|
|
u32 dclk_ratio, dclk_reference;
|
|
u32 val;
|
|
|
|
val = intel_uncore_read(&dev_priv->uncore, SA_PERF_STATUS_0_0_0_MCHBAR_PC);
|
|
dclk_ratio = REG_FIELD_GET(DG1_QCLK_RATIO_MASK, val);
|
|
if (val & DG1_QCLK_REFERENCE)
|
|
dclk_reference = 6; /* 6 * 16.666 MHz = 100 MHz */
|
|
else
|
|
dclk_reference = 8; /* 8 * 16.666 MHz = 133 MHz */
|
|
sp->dclk = dclk_ratio * dclk_reference;
|
|
|
|
val = intel_uncore_read(&dev_priv->uncore, SKL_MC_BIOS_DATA_0_0_0_MCHBAR_PCU);
|
|
if (val & DG1_GEAR_TYPE)
|
|
sp->dclk *= 2;
|
|
|
|
if (sp->dclk == 0)
|
|
return -EINVAL;
|
|
|
|
val = intel_uncore_read(&dev_priv->uncore, MCHBAR_CH0_CR_TC_PRE_0_0_0_MCHBAR);
|
|
sp->t_rp = REG_FIELD_GET(DG1_DRAM_T_RP_MASK, val);
|
|
sp->t_rdpre = REG_FIELD_GET(DG1_DRAM_T_RDPRE_MASK, val);
|
|
|
|
val = intel_uncore_read(&dev_priv->uncore, MCHBAR_CH0_CR_TC_PRE_0_0_0_MCHBAR_HIGH);
|
|
sp->t_rcd = REG_FIELD_GET(DG1_DRAM_T_RCD_MASK, val);
|
|
sp->t_ras = REG_FIELD_GET(DG1_DRAM_T_RAS_MASK, val);
|
|
|
|
sp->t_rc = sp->t_rp + sp->t_ras;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int icl_pcode_read_qgv_point_info(struct drm_i915_private *dev_priv,
|
|
struct intel_qgv_point *sp,
|
|
int point)
|
|
{
|
|
u32 val = 0, val2 = 0;
|
|
int ret;
|
|
|
|
ret = sandybridge_pcode_read(dev_priv,
|
|
ICL_PCODE_MEM_SUBSYSYSTEM_INFO |
|
|
ICL_PCODE_MEM_SS_READ_QGV_POINT_INFO(point),
|
|
&val, &val2);
|
|
if (ret)
|
|
return ret;
|
|
|
|
sp->dclk = val & 0xffff;
|
|
sp->t_rp = (val & 0xff0000) >> 16;
|
|
sp->t_rcd = (val & 0xff000000) >> 24;
|
|
|
|
sp->t_rdpre = val2 & 0xff;
|
|
sp->t_ras = (val2 & 0xff00) >> 8;
|
|
|
|
sp->t_rc = sp->t_rp + sp->t_ras;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int adls_pcode_read_psf_gv_point_info(struct drm_i915_private *dev_priv,
|
|
struct intel_psf_gv_point *points)
|
|
{
|
|
u32 val = 0;
|
|
int ret;
|
|
int i;
|
|
|
|
ret = sandybridge_pcode_read(dev_priv,
|
|
ICL_PCODE_MEM_SUBSYSYSTEM_INFO |
|
|
ADL_PCODE_MEM_SS_READ_PSF_GV_INFO,
|
|
&val, NULL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = 0; i < I915_NUM_PSF_GV_POINTS; i++) {
|
|
points[i].clk = val & 0xff;
|
|
val >>= 8;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int icl_pcode_restrict_qgv_points(struct drm_i915_private *dev_priv,
|
|
u32 points_mask)
|
|
{
|
|
int ret;
|
|
|
|
/* bspec says to keep retrying for at least 1 ms */
|
|
ret = skl_pcode_request(dev_priv, ICL_PCODE_SAGV_DE_MEM_SS_CONFIG,
|
|
points_mask,
|
|
ICL_PCODE_POINTS_RESTRICTED_MASK,
|
|
ICL_PCODE_POINTS_RESTRICTED,
|
|
1);
|
|
|
|
if (ret < 0) {
|
|
drm_err(&dev_priv->drm, "Failed to disable qgv points (%d) points: 0x%x\n", ret, points_mask);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int icl_get_qgv_points(struct drm_i915_private *dev_priv,
|
|
struct intel_qgv_info *qi)
|
|
{
|
|
const struct dram_info *dram_info = &dev_priv->dram_info;
|
|
int i, ret;
|
|
|
|
qi->num_points = dram_info->num_qgv_points;
|
|
qi->num_psf_points = dram_info->num_psf_gv_points;
|
|
|
|
if (DISPLAY_VER(dev_priv) == 12)
|
|
switch (dram_info->type) {
|
|
case INTEL_DRAM_DDR4:
|
|
qi->t_bl = 4;
|
|
break;
|
|
case INTEL_DRAM_DDR5:
|
|
qi->t_bl = 8;
|
|
break;
|
|
default:
|
|
qi->t_bl = 16;
|
|
break;
|
|
}
|
|
else if (DISPLAY_VER(dev_priv) == 11)
|
|
qi->t_bl = dev_priv->dram_info.type == INTEL_DRAM_DDR4 ? 4 : 8;
|
|
|
|
if (drm_WARN_ON(&dev_priv->drm,
|
|
qi->num_points > ARRAY_SIZE(qi->points)))
|
|
qi->num_points = ARRAY_SIZE(qi->points);
|
|
|
|
for (i = 0; i < qi->num_points; i++) {
|
|
struct intel_qgv_point *sp = &qi->points[i];
|
|
|
|
if (IS_DG1(dev_priv))
|
|
ret = dg1_mchbar_read_qgv_point_info(dev_priv, sp, i);
|
|
else
|
|
ret = icl_pcode_read_qgv_point_info(dev_priv, sp, i);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
drm_dbg_kms(&dev_priv->drm,
|
|
"QGV %d: DCLK=%d tRP=%d tRDPRE=%d tRAS=%d tRCD=%d tRC=%d\n",
|
|
i, sp->dclk, sp->t_rp, sp->t_rdpre, sp->t_ras,
|
|
sp->t_rcd, sp->t_rc);
|
|
}
|
|
|
|
if (qi->num_psf_points > 0) {
|
|
ret = adls_pcode_read_psf_gv_point_info(dev_priv, qi->psf_points);
|
|
if (ret) {
|
|
drm_err(&dev_priv->drm, "Failed to read PSF point data; PSF points will not be considered in bandwidth calculations.\n");
|
|
qi->num_psf_points = 0;
|
|
}
|
|
|
|
for (i = 0; i < qi->num_psf_points; i++)
|
|
drm_dbg_kms(&dev_priv->drm,
|
|
"PSF GV %d: CLK=%d \n",
|
|
i, qi->psf_points[i].clk);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int icl_calc_bw(int dclk, int num, int den)
|
|
{
|
|
/* multiples of 16.666MHz (100/6) */
|
|
return DIV_ROUND_CLOSEST(num * dclk * 100, den * 6);
|
|
}
|
|
|
|
static int adl_calc_psf_bw(int clk)
|
|
{
|
|
/*
|
|
* clk is multiples of 16.666MHz (100/6)
|
|
* According to BSpec PSF GV bandwidth is
|
|
* calculated as BW = 64 * clk * 16.666Mhz
|
|
*/
|
|
return DIV_ROUND_CLOSEST(64 * clk * 100, 6);
|
|
}
|
|
|
|
static int icl_sagv_max_dclk(const struct intel_qgv_info *qi)
|
|
{
|
|
u16 dclk = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < qi->num_points; i++)
|
|
dclk = max(dclk, qi->points[i].dclk);
|
|
|
|
return dclk;
|
|
}
|
|
|
|
struct intel_sa_info {
|
|
u16 displayrtids;
|
|
u8 deburst, deprogbwlimit, derating;
|
|
};
|
|
|
|
static const struct intel_sa_info icl_sa_info = {
|
|
.deburst = 8,
|
|
.deprogbwlimit = 25, /* GB/s */
|
|
.displayrtids = 128,
|
|
.derating = 10,
|
|
};
|
|
|
|
static const struct intel_sa_info tgl_sa_info = {
|
|
.deburst = 16,
|
|
.deprogbwlimit = 34, /* GB/s */
|
|
.displayrtids = 256,
|
|
.derating = 10,
|
|
};
|
|
|
|
static const struct intel_sa_info rkl_sa_info = {
|
|
.deburst = 16,
|
|
.deprogbwlimit = 20, /* GB/s */
|
|
.displayrtids = 128,
|
|
.derating = 10,
|
|
};
|
|
|
|
static const struct intel_sa_info adls_sa_info = {
|
|
.deburst = 16,
|
|
.deprogbwlimit = 38, /* GB/s */
|
|
.displayrtids = 256,
|
|
.derating = 10,
|
|
};
|
|
|
|
static const struct intel_sa_info adlp_sa_info = {
|
|
.deburst = 16,
|
|
.deprogbwlimit = 38, /* GB/s */
|
|
.displayrtids = 256,
|
|
.derating = 20,
|
|
};
|
|
|
|
static int icl_get_bw_info(struct drm_i915_private *dev_priv, const struct intel_sa_info *sa)
|
|
{
|
|
struct intel_qgv_info qi = {};
|
|
bool is_y_tile = true; /* assume y tile may be used */
|
|
int num_channels = max_t(u8, 1, dev_priv->dram_info.num_channels);
|
|
int deinterleave;
|
|
int ipqdepth, ipqdepthpch;
|
|
int dclk_max;
|
|
int maxdebw;
|
|
int i, ret;
|
|
|
|
ret = icl_get_qgv_points(dev_priv, &qi);
|
|
if (ret) {
|
|
drm_dbg_kms(&dev_priv->drm,
|
|
"Failed to get memory subsystem information, ignoring bandwidth limits");
|
|
return ret;
|
|
}
|
|
|
|
deinterleave = DIV_ROUND_UP(num_channels, is_y_tile ? 4 : 2);
|
|
dclk_max = icl_sagv_max_dclk(&qi);
|
|
|
|
ipqdepthpch = 16;
|
|
|
|
maxdebw = min(sa->deprogbwlimit * 1000,
|
|
icl_calc_bw(dclk_max, 16, 1) * 6 / 10); /* 60% */
|
|
ipqdepth = min(ipqdepthpch, sa->displayrtids / num_channels);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(dev_priv->max_bw); i++) {
|
|
struct intel_bw_info *bi = &dev_priv->max_bw[i];
|
|
int clpchgroup;
|
|
int j;
|
|
|
|
clpchgroup = (sa->deburst * deinterleave / num_channels) << i;
|
|
bi->num_planes = (ipqdepth - clpchgroup) / clpchgroup + 1;
|
|
|
|
bi->num_qgv_points = qi.num_points;
|
|
bi->num_psf_gv_points = qi.num_psf_points;
|
|
|
|
for (j = 0; j < qi.num_points; j++) {
|
|
const struct intel_qgv_point *sp = &qi.points[j];
|
|
int ct, bw;
|
|
|
|
/*
|
|
* Max row cycle time
|
|
*
|
|
* FIXME what is the logic behind the
|
|
* assumed burst length?
|
|
*/
|
|
ct = max_t(int, sp->t_rc, sp->t_rp + sp->t_rcd +
|
|
(clpchgroup - 1) * qi.t_bl + sp->t_rdpre);
|
|
bw = icl_calc_bw(sp->dclk, clpchgroup * 32 * num_channels, ct);
|
|
|
|
bi->deratedbw[j] = min(maxdebw,
|
|
bw * (100 - sa->derating) / 100);
|
|
|
|
drm_dbg_kms(&dev_priv->drm,
|
|
"BW%d / QGV %d: num_planes=%d deratedbw=%u\n",
|
|
i, j, bi->num_planes, bi->deratedbw[j]);
|
|
}
|
|
|
|
for (j = 0; j < qi.num_psf_points; j++) {
|
|
const struct intel_psf_gv_point *sp = &qi.psf_points[j];
|
|
|
|
bi->psf_bw[j] = adl_calc_psf_bw(sp->clk);
|
|
|
|
drm_dbg_kms(&dev_priv->drm,
|
|
"BW%d / PSF GV %d: num_planes=%d bw=%u\n",
|
|
i, j, bi->num_planes, bi->psf_bw[j]);
|
|
}
|
|
|
|
if (bi->num_planes == 1)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* In case if SAGV is disabled in BIOS, we always get 1
|
|
* SAGV point, but we can't send PCode commands to restrict it
|
|
* as it will fail and pointless anyway.
|
|
*/
|
|
if (qi.num_points == 1)
|
|
dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
|
|
else
|
|
dev_priv->sagv_status = I915_SAGV_ENABLED;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void dg2_get_bw_info(struct drm_i915_private *i915)
|
|
{
|
|
struct intel_bw_info *bi = &i915->max_bw[0];
|
|
|
|
/*
|
|
* DG2 doesn't have SAGV or QGV points, just a constant max bandwidth
|
|
* that doesn't depend on the number of planes enabled. Create a
|
|
* single dummy QGV point to reflect that. DG2-G10 platforms have a
|
|
* constant 50 GB/s bandwidth, whereas DG2-G11 platforms have 38 GB/s.
|
|
*/
|
|
bi->num_planes = 1;
|
|
bi->num_qgv_points = 1;
|
|
if (IS_DG2_G11(i915))
|
|
bi->deratedbw[0] = 38000;
|
|
else
|
|
bi->deratedbw[0] = 50000;
|
|
|
|
i915->sagv_status = I915_SAGV_NOT_CONTROLLED;
|
|
}
|
|
|
|
static unsigned int icl_max_bw(struct drm_i915_private *dev_priv,
|
|
int num_planes, int qgv_point)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* Let's return max bw for 0 planes
|
|
*/
|
|
num_planes = max(1, num_planes);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(dev_priv->max_bw); i++) {
|
|
const struct intel_bw_info *bi =
|
|
&dev_priv->max_bw[i];
|
|
|
|
/*
|
|
* Pcode will not expose all QGV points when
|
|
* SAGV is forced to off/min/med/max.
|
|
*/
|
|
if (qgv_point >= bi->num_qgv_points)
|
|
return UINT_MAX;
|
|
|
|
if (num_planes >= bi->num_planes)
|
|
return bi->deratedbw[qgv_point];
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static unsigned int adl_psf_bw(struct drm_i915_private *dev_priv,
|
|
int psf_gv_point)
|
|
{
|
|
const struct intel_bw_info *bi =
|
|
&dev_priv->max_bw[0];
|
|
|
|
return bi->psf_bw[psf_gv_point];
|
|
}
|
|
|
|
void intel_bw_init_hw(struct drm_i915_private *dev_priv)
|
|
{
|
|
if (!HAS_DISPLAY(dev_priv))
|
|
return;
|
|
|
|
if (IS_DG2(dev_priv))
|
|
dg2_get_bw_info(dev_priv);
|
|
else if (IS_ALDERLAKE_P(dev_priv))
|
|
icl_get_bw_info(dev_priv, &adlp_sa_info);
|
|
else if (IS_ALDERLAKE_S(dev_priv))
|
|
icl_get_bw_info(dev_priv, &adls_sa_info);
|
|
else if (IS_ROCKETLAKE(dev_priv))
|
|
icl_get_bw_info(dev_priv, &rkl_sa_info);
|
|
else if (DISPLAY_VER(dev_priv) == 12)
|
|
icl_get_bw_info(dev_priv, &tgl_sa_info);
|
|
else if (DISPLAY_VER(dev_priv) == 11)
|
|
icl_get_bw_info(dev_priv, &icl_sa_info);
|
|
}
|
|
|
|
static unsigned int intel_bw_crtc_num_active_planes(const struct intel_crtc_state *crtc_state)
|
|
{
|
|
/*
|
|
* We assume cursors are small enough
|
|
* to not not cause bandwidth problems.
|
|
*/
|
|
return hweight8(crtc_state->active_planes & ~BIT(PLANE_CURSOR));
|
|
}
|
|
|
|
static unsigned int intel_bw_crtc_data_rate(const struct intel_crtc_state *crtc_state)
|
|
{
|
|
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
|
|
unsigned int data_rate = 0;
|
|
enum plane_id plane_id;
|
|
|
|
for_each_plane_id_on_crtc(crtc, plane_id) {
|
|
/*
|
|
* We assume cursors are small enough
|
|
* to not not cause bandwidth problems.
|
|
*/
|
|
if (plane_id == PLANE_CURSOR)
|
|
continue;
|
|
|
|
data_rate += crtc_state->data_rate[plane_id];
|
|
}
|
|
|
|
return data_rate;
|
|
}
|
|
|
|
void intel_bw_crtc_update(struct intel_bw_state *bw_state,
|
|
const struct intel_crtc_state *crtc_state)
|
|
{
|
|
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
|
|
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
|
|
|
|
bw_state->data_rate[crtc->pipe] =
|
|
intel_bw_crtc_data_rate(crtc_state);
|
|
bw_state->num_active_planes[crtc->pipe] =
|
|
intel_bw_crtc_num_active_planes(crtc_state);
|
|
|
|
drm_dbg_kms(&i915->drm, "pipe %c data rate %u num active planes %u\n",
|
|
pipe_name(crtc->pipe),
|
|
bw_state->data_rate[crtc->pipe],
|
|
bw_state->num_active_planes[crtc->pipe]);
|
|
}
|
|
|
|
static unsigned int intel_bw_num_active_planes(struct drm_i915_private *dev_priv,
|
|
const struct intel_bw_state *bw_state)
|
|
{
|
|
unsigned int num_active_planes = 0;
|
|
enum pipe pipe;
|
|
|
|
for_each_pipe(dev_priv, pipe)
|
|
num_active_planes += bw_state->num_active_planes[pipe];
|
|
|
|
return num_active_planes;
|
|
}
|
|
|
|
static unsigned int intel_bw_data_rate(struct drm_i915_private *dev_priv,
|
|
const struct intel_bw_state *bw_state)
|
|
{
|
|
unsigned int data_rate = 0;
|
|
enum pipe pipe;
|
|
|
|
for_each_pipe(dev_priv, pipe)
|
|
data_rate += bw_state->data_rate[pipe];
|
|
|
|
if (DISPLAY_VER(dev_priv) >= 13 && intel_vtd_active())
|
|
data_rate = data_rate * 105 / 100;
|
|
|
|
return data_rate;
|
|
}
|
|
|
|
struct intel_bw_state *
|
|
intel_atomic_get_old_bw_state(struct intel_atomic_state *state)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
|
|
struct intel_global_state *bw_state;
|
|
|
|
bw_state = intel_atomic_get_old_global_obj_state(state, &dev_priv->bw_obj);
|
|
|
|
return to_intel_bw_state(bw_state);
|
|
}
|
|
|
|
struct intel_bw_state *
|
|
intel_atomic_get_new_bw_state(struct intel_atomic_state *state)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
|
|
struct intel_global_state *bw_state;
|
|
|
|
bw_state = intel_atomic_get_new_global_obj_state(state, &dev_priv->bw_obj);
|
|
|
|
return to_intel_bw_state(bw_state);
|
|
}
|
|
|
|
struct intel_bw_state *
|
|
intel_atomic_get_bw_state(struct intel_atomic_state *state)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
|
|
struct intel_global_state *bw_state;
|
|
|
|
bw_state = intel_atomic_get_global_obj_state(state, &dev_priv->bw_obj);
|
|
if (IS_ERR(bw_state))
|
|
return ERR_CAST(bw_state);
|
|
|
|
return to_intel_bw_state(bw_state);
|
|
}
|
|
|
|
int skl_bw_calc_min_cdclk(struct intel_atomic_state *state)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
|
|
struct intel_bw_state *new_bw_state = NULL;
|
|
struct intel_bw_state *old_bw_state = NULL;
|
|
const struct intel_crtc_state *crtc_state;
|
|
struct intel_crtc *crtc;
|
|
int max_bw = 0;
|
|
enum pipe pipe;
|
|
int i;
|
|
|
|
for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
|
|
enum plane_id plane_id;
|
|
struct intel_dbuf_bw *crtc_bw;
|
|
|
|
new_bw_state = intel_atomic_get_bw_state(state);
|
|
if (IS_ERR(new_bw_state))
|
|
return PTR_ERR(new_bw_state);
|
|
|
|
old_bw_state = intel_atomic_get_old_bw_state(state);
|
|
|
|
crtc_bw = &new_bw_state->dbuf_bw[crtc->pipe];
|
|
|
|
memset(&crtc_bw->used_bw, 0, sizeof(crtc_bw->used_bw));
|
|
|
|
if (!crtc_state->hw.active)
|
|
continue;
|
|
|
|
for_each_plane_id_on_crtc(crtc, plane_id) {
|
|
const struct skl_ddb_entry *plane_alloc =
|
|
&crtc_state->wm.skl.plane_ddb_y[plane_id];
|
|
const struct skl_ddb_entry *uv_plane_alloc =
|
|
&crtc_state->wm.skl.plane_ddb_uv[plane_id];
|
|
unsigned int data_rate = crtc_state->data_rate[plane_id];
|
|
unsigned int dbuf_mask = 0;
|
|
enum dbuf_slice slice;
|
|
|
|
dbuf_mask |= skl_ddb_dbuf_slice_mask(dev_priv, plane_alloc);
|
|
dbuf_mask |= skl_ddb_dbuf_slice_mask(dev_priv, uv_plane_alloc);
|
|
|
|
/*
|
|
* FIXME: To calculate that more properly we probably
|
|
* need to to split per plane data_rate into data_rate_y
|
|
* and data_rate_uv for multiplanar formats in order not
|
|
* to get accounted those twice if they happen to reside
|
|
* on different slices.
|
|
* However for pre-icl this would work anyway because
|
|
* we have only single slice and for icl+ uv plane has
|
|
* non-zero data rate.
|
|
* So in worst case those calculation are a bit
|
|
* pessimistic, which shouldn't pose any significant
|
|
* problem anyway.
|
|
*/
|
|
for_each_dbuf_slice_in_mask(dev_priv, slice, dbuf_mask)
|
|
crtc_bw->used_bw[slice] += data_rate;
|
|
}
|
|
}
|
|
|
|
if (!old_bw_state)
|
|
return 0;
|
|
|
|
for_each_pipe(dev_priv, pipe) {
|
|
struct intel_dbuf_bw *crtc_bw;
|
|
enum dbuf_slice slice;
|
|
|
|
crtc_bw = &new_bw_state->dbuf_bw[pipe];
|
|
|
|
for_each_dbuf_slice(dev_priv, slice) {
|
|
/*
|
|
* Current experimental observations show that contrary
|
|
* to BSpec we get underruns once we exceed 64 * CDCLK
|
|
* for slices in total.
|
|
* As a temporary measure in order not to keep CDCLK
|
|
* bumped up all the time we calculate CDCLK according
|
|
* to this formula for overall bw consumed by slices.
|
|
*/
|
|
max_bw += crtc_bw->used_bw[slice];
|
|
}
|
|
}
|
|
|
|
new_bw_state->min_cdclk = max_bw / 64;
|
|
|
|
if (new_bw_state->min_cdclk != old_bw_state->min_cdclk) {
|
|
int ret = intel_atomic_lock_global_state(&new_bw_state->base);
|
|
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int intel_bw_calc_min_cdclk(struct intel_atomic_state *state)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
|
|
struct intel_bw_state *new_bw_state = NULL;
|
|
struct intel_bw_state *old_bw_state = NULL;
|
|
const struct intel_crtc_state *crtc_state;
|
|
struct intel_crtc *crtc;
|
|
int min_cdclk = 0;
|
|
enum pipe pipe;
|
|
int i;
|
|
|
|
for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
|
|
new_bw_state = intel_atomic_get_bw_state(state);
|
|
if (IS_ERR(new_bw_state))
|
|
return PTR_ERR(new_bw_state);
|
|
|
|
old_bw_state = intel_atomic_get_old_bw_state(state);
|
|
}
|
|
|
|
if (!old_bw_state)
|
|
return 0;
|
|
|
|
for_each_pipe(dev_priv, pipe) {
|
|
struct intel_cdclk_state *cdclk_state;
|
|
|
|
cdclk_state = intel_atomic_get_new_cdclk_state(state);
|
|
if (!cdclk_state)
|
|
return 0;
|
|
|
|
min_cdclk = max(cdclk_state->min_cdclk[pipe], min_cdclk);
|
|
}
|
|
|
|
new_bw_state->min_cdclk = min_cdclk;
|
|
|
|
if (new_bw_state->min_cdclk != old_bw_state->min_cdclk) {
|
|
int ret = intel_atomic_lock_global_state(&new_bw_state->base);
|
|
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int intel_bw_atomic_check(struct intel_atomic_state *state)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
|
|
struct intel_crtc_state *new_crtc_state, *old_crtc_state;
|
|
struct intel_bw_state *new_bw_state = NULL;
|
|
const struct intel_bw_state *old_bw_state = NULL;
|
|
unsigned int data_rate;
|
|
unsigned int num_active_planes;
|
|
struct intel_crtc *crtc;
|
|
int i, ret;
|
|
u32 allowed_points = 0;
|
|
unsigned int max_bw_point = 0, max_bw = 0;
|
|
unsigned int num_qgv_points = dev_priv->max_bw[0].num_qgv_points;
|
|
unsigned int num_psf_gv_points = dev_priv->max_bw[0].num_psf_gv_points;
|
|
bool changed = false;
|
|
u32 mask = 0;
|
|
|
|
/* FIXME earlier gens need some checks too */
|
|
if (DISPLAY_VER(dev_priv) < 11)
|
|
return 0;
|
|
|
|
/*
|
|
* We can _not_ use the whole ADLS_QGV_PT_MASK here, as PCode rejects
|
|
* it with failure if we try masking any unadvertised points.
|
|
* So need to operate only with those returned from PCode.
|
|
*/
|
|
if (num_qgv_points > 0)
|
|
mask |= REG_GENMASK(num_qgv_points - 1, 0);
|
|
|
|
if (num_psf_gv_points > 0)
|
|
mask |= REG_GENMASK(num_psf_gv_points - 1, 0) << ADLS_PSF_PT_SHIFT;
|
|
|
|
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
|
|
new_crtc_state, i) {
|
|
unsigned int old_data_rate =
|
|
intel_bw_crtc_data_rate(old_crtc_state);
|
|
unsigned int new_data_rate =
|
|
intel_bw_crtc_data_rate(new_crtc_state);
|
|
unsigned int old_active_planes =
|
|
intel_bw_crtc_num_active_planes(old_crtc_state);
|
|
unsigned int new_active_planes =
|
|
intel_bw_crtc_num_active_planes(new_crtc_state);
|
|
|
|
/*
|
|
* Avoid locking the bw state when
|
|
* nothing significant has changed.
|
|
*/
|
|
if (old_data_rate == new_data_rate &&
|
|
old_active_planes == new_active_planes)
|
|
continue;
|
|
|
|
new_bw_state = intel_atomic_get_bw_state(state);
|
|
if (IS_ERR(new_bw_state))
|
|
return PTR_ERR(new_bw_state);
|
|
|
|
new_bw_state->data_rate[crtc->pipe] = new_data_rate;
|
|
new_bw_state->num_active_planes[crtc->pipe] = new_active_planes;
|
|
|
|
changed = true;
|
|
|
|
drm_dbg_kms(&dev_priv->drm,
|
|
"pipe %c data rate %u num active planes %u\n",
|
|
pipe_name(crtc->pipe),
|
|
new_bw_state->data_rate[crtc->pipe],
|
|
new_bw_state->num_active_planes[crtc->pipe]);
|
|
}
|
|
|
|
old_bw_state = intel_atomic_get_old_bw_state(state);
|
|
new_bw_state = intel_atomic_get_new_bw_state(state);
|
|
|
|
if (new_bw_state &&
|
|
intel_can_enable_sagv(dev_priv, old_bw_state) !=
|
|
intel_can_enable_sagv(dev_priv, new_bw_state))
|
|
changed = true;
|
|
|
|
/*
|
|
* If none of our inputs (data rates, number of active
|
|
* planes, SAGV yes/no) changed then nothing to do here.
|
|
*/
|
|
if (!changed)
|
|
return 0;
|
|
|
|
ret = intel_atomic_lock_global_state(&new_bw_state->base);
|
|
if (ret)
|
|
return ret;
|
|
|
|
data_rate = intel_bw_data_rate(dev_priv, new_bw_state);
|
|
data_rate = DIV_ROUND_UP(data_rate, 1000);
|
|
|
|
num_active_planes = intel_bw_num_active_planes(dev_priv, new_bw_state);
|
|
|
|
for (i = 0; i < num_qgv_points; i++) {
|
|
unsigned int max_data_rate;
|
|
|
|
max_data_rate = icl_max_bw(dev_priv, num_active_planes, i);
|
|
/*
|
|
* We need to know which qgv point gives us
|
|
* maximum bandwidth in order to disable SAGV
|
|
* if we find that we exceed SAGV block time
|
|
* with watermarks. By that moment we already
|
|
* have those, as it is calculated earlier in
|
|
* intel_atomic_check,
|
|
*/
|
|
if (max_data_rate > max_bw) {
|
|
max_bw_point = i;
|
|
max_bw = max_data_rate;
|
|
}
|
|
if (max_data_rate >= data_rate)
|
|
allowed_points |= REG_FIELD_PREP(ADLS_QGV_PT_MASK, BIT(i));
|
|
|
|
drm_dbg_kms(&dev_priv->drm, "QGV point %d: max bw %d required %d\n",
|
|
i, max_data_rate, data_rate);
|
|
}
|
|
|
|
for (i = 0; i < num_psf_gv_points; i++) {
|
|
unsigned int max_data_rate = adl_psf_bw(dev_priv, i);
|
|
|
|
if (max_data_rate >= data_rate)
|
|
allowed_points |= REG_FIELD_PREP(ADLS_PSF_PT_MASK, BIT(i));
|
|
|
|
drm_dbg_kms(&dev_priv->drm, "PSF GV point %d: max bw %d"
|
|
" required %d\n",
|
|
i, max_data_rate, data_rate);
|
|
}
|
|
|
|
/*
|
|
* BSpec states that we always should have at least one allowed point
|
|
* left, so if we couldn't - simply reject the configuration for obvious
|
|
* reasons.
|
|
*/
|
|
if ((allowed_points & ADLS_QGV_PT_MASK) == 0) {
|
|
drm_dbg_kms(&dev_priv->drm, "No QGV points provide sufficient memory"
|
|
" bandwidth %d for display configuration(%d active planes).\n",
|
|
data_rate, num_active_planes);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (num_psf_gv_points > 0) {
|
|
if ((allowed_points & ADLS_PSF_PT_MASK) == 0) {
|
|
drm_dbg_kms(&dev_priv->drm, "No PSF GV points provide sufficient memory"
|
|
" bandwidth %d for display configuration(%d active planes).\n",
|
|
data_rate, num_active_planes);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Leave only single point with highest bandwidth, if
|
|
* we can't enable SAGV due to the increased memory latency it may
|
|
* cause.
|
|
*/
|
|
if (!intel_can_enable_sagv(dev_priv, new_bw_state)) {
|
|
allowed_points &= ADLS_PSF_PT_MASK;
|
|
allowed_points |= BIT(max_bw_point);
|
|
drm_dbg_kms(&dev_priv->drm, "No SAGV, using single QGV point %d\n",
|
|
max_bw_point);
|
|
}
|
|
/*
|
|
* We store the ones which need to be masked as that is what PCode
|
|
* actually accepts as a parameter.
|
|
*/
|
|
new_bw_state->qgv_points_mask = ~allowed_points & mask;
|
|
|
|
/*
|
|
* If the actual mask had changed we need to make sure that
|
|
* the commits are serialized(in case this is a nomodeset, nonblocking)
|
|
*/
|
|
if (new_bw_state->qgv_points_mask != old_bw_state->qgv_points_mask) {
|
|
ret = intel_atomic_serialize_global_state(&new_bw_state->base);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct intel_global_state *
|
|
intel_bw_duplicate_state(struct intel_global_obj *obj)
|
|
{
|
|
struct intel_bw_state *state;
|
|
|
|
state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
|
|
if (!state)
|
|
return NULL;
|
|
|
|
return &state->base;
|
|
}
|
|
|
|
static void intel_bw_destroy_state(struct intel_global_obj *obj,
|
|
struct intel_global_state *state)
|
|
{
|
|
kfree(state);
|
|
}
|
|
|
|
static const struct intel_global_state_funcs intel_bw_funcs = {
|
|
.atomic_duplicate_state = intel_bw_duplicate_state,
|
|
.atomic_destroy_state = intel_bw_destroy_state,
|
|
};
|
|
|
|
int intel_bw_init(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_bw_state *state;
|
|
|
|
state = kzalloc(sizeof(*state), GFP_KERNEL);
|
|
if (!state)
|
|
return -ENOMEM;
|
|
|
|
intel_atomic_global_obj_init(dev_priv, &dev_priv->bw_obj,
|
|
&state->base, &intel_bw_funcs);
|
|
|
|
return 0;
|
|
}
|