494 lines
12 KiB
C
494 lines
12 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* VAS user space API for its accelerators (Only NX-GZIP is supported now)
|
|
* Copyright (C) 2019 Haren Myneni, IBM Corp
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/device.h>
|
|
#include <linux/cdev.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/mmu_context.h>
|
|
#include <linux/io.h>
|
|
#include <asm/vas.h>
|
|
#include <uapi/asm/vas-api.h>
|
|
|
|
/*
|
|
* The driver creates the device node that can be used as follows:
|
|
* For NX-GZIP
|
|
*
|
|
* fd = open("/dev/crypto/nx-gzip", O_RDWR);
|
|
* rc = ioctl(fd, VAS_TX_WIN_OPEN, &attr);
|
|
* paste_addr = mmap(NULL, PAGE_SIZE, prot, MAP_SHARED, fd, 0ULL).
|
|
* vas_copy(&crb, 0, 1);
|
|
* vas_paste(paste_addr, 0, 1);
|
|
* close(fd) or exit process to close window.
|
|
*
|
|
* where "vas_copy" and "vas_paste" are defined in copy-paste.h.
|
|
* copy/paste returns to the user space directly. So refer NX hardware
|
|
* documententation for exact copy/paste usage and completion / error
|
|
* conditions.
|
|
*/
|
|
|
|
/*
|
|
* Wrapper object for the nx-gzip device - there is just one instance of
|
|
* this node for the whole system.
|
|
*/
|
|
static struct coproc_dev {
|
|
struct cdev cdev;
|
|
struct device *device;
|
|
char *name;
|
|
dev_t devt;
|
|
struct class *class;
|
|
enum vas_cop_type cop_type;
|
|
const struct vas_user_win_ops *vops;
|
|
} coproc_device;
|
|
|
|
struct coproc_instance {
|
|
struct coproc_dev *coproc;
|
|
struct vas_window *txwin;
|
|
};
|
|
|
|
static char *coproc_devnode(struct device *dev, umode_t *mode)
|
|
{
|
|
return kasprintf(GFP_KERNEL, "crypto/%s", dev_name(dev));
|
|
}
|
|
|
|
/*
|
|
* Take reference to pid and mm
|
|
*/
|
|
int get_vas_user_win_ref(struct vas_user_win_ref *task_ref)
|
|
{
|
|
/*
|
|
* Window opened by a child thread may not be closed when
|
|
* it exits. So take reference to its pid and release it
|
|
* when the window is free by parent thread.
|
|
* Acquire a reference to the task's pid to make sure
|
|
* pid will not be re-used - needed only for multithread
|
|
* applications.
|
|
*/
|
|
task_ref->pid = get_task_pid(current, PIDTYPE_PID);
|
|
/*
|
|
* Acquire a reference to the task's mm.
|
|
*/
|
|
task_ref->mm = get_task_mm(current);
|
|
if (!task_ref->mm) {
|
|
put_pid(task_ref->pid);
|
|
pr_err("VAS: pid(%d): mm_struct is not found\n",
|
|
current->pid);
|
|
return -EPERM;
|
|
}
|
|
|
|
mmgrab(task_ref->mm);
|
|
mmput(task_ref->mm);
|
|
/*
|
|
* Process closes window during exit. In the case of
|
|
* multithread application, the child thread can open
|
|
* window and can exit without closing it. So takes tgid
|
|
* reference until window closed to make sure tgid is not
|
|
* reused.
|
|
*/
|
|
task_ref->tgid = find_get_pid(task_tgid_vnr(current));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Successful return must release the task reference with
|
|
* put_task_struct
|
|
*/
|
|
static bool ref_get_pid_and_task(struct vas_user_win_ref *task_ref,
|
|
struct task_struct **tskp, struct pid **pidp)
|
|
{
|
|
struct task_struct *tsk;
|
|
struct pid *pid;
|
|
|
|
pid = task_ref->pid;
|
|
tsk = get_pid_task(pid, PIDTYPE_PID);
|
|
if (!tsk) {
|
|
pid = task_ref->tgid;
|
|
tsk = get_pid_task(pid, PIDTYPE_PID);
|
|
/*
|
|
* Parent thread (tgid) will be closing window when it
|
|
* exits. So should not get here.
|
|
*/
|
|
if (WARN_ON_ONCE(!tsk))
|
|
return false;
|
|
}
|
|
|
|
/* Return if the task is exiting. */
|
|
if (tsk->flags & PF_EXITING) {
|
|
put_task_struct(tsk);
|
|
return false;
|
|
}
|
|
|
|
*tskp = tsk;
|
|
*pidp = pid;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Update the CSB to indicate a translation error.
|
|
*
|
|
* User space will be polling on CSB after the request is issued.
|
|
* If NX can handle the request without any issues, it updates CSB.
|
|
* Whereas if NX encounters page fault, the kernel will handle the
|
|
* fault and update CSB with translation error.
|
|
*
|
|
* If we are unable to update the CSB means copy_to_user failed due to
|
|
* invalid csb_addr, send a signal to the process.
|
|
*/
|
|
void vas_update_csb(struct coprocessor_request_block *crb,
|
|
struct vas_user_win_ref *task_ref)
|
|
{
|
|
struct coprocessor_status_block csb;
|
|
struct kernel_siginfo info;
|
|
struct task_struct *tsk;
|
|
void __user *csb_addr;
|
|
struct pid *pid;
|
|
int rc;
|
|
|
|
/*
|
|
* NX user space windows can not be opened for task->mm=NULL
|
|
* and faults will not be generated for kernel requests.
|
|
*/
|
|
if (WARN_ON_ONCE(!task_ref->mm))
|
|
return;
|
|
|
|
csb_addr = (void __user *)be64_to_cpu(crb->csb_addr);
|
|
|
|
memset(&csb, 0, sizeof(csb));
|
|
csb.cc = CSB_CC_FAULT_ADDRESS;
|
|
csb.ce = CSB_CE_TERMINATION;
|
|
csb.cs = 0;
|
|
csb.count = 0;
|
|
|
|
/*
|
|
* NX operates and returns in BE format as defined CRB struct.
|
|
* So saves fault_storage_addr in BE as NX pastes in FIFO and
|
|
* expects user space to convert to CPU format.
|
|
*/
|
|
csb.address = crb->stamp.nx.fault_storage_addr;
|
|
csb.flags = 0;
|
|
|
|
/*
|
|
* Process closes send window after all pending NX requests are
|
|
* completed. In multi-thread applications, a child thread can
|
|
* open a window and can exit without closing it. May be some
|
|
* requests are pending or this window can be used by other
|
|
* threads later. We should handle faults if NX encounters
|
|
* pages faults on these requests. Update CSB with translation
|
|
* error and fault address. If csb_addr passed by user space is
|
|
* invalid, send SEGV signal to pid saved in window. If the
|
|
* child thread is not running, send the signal to tgid.
|
|
* Parent thread (tgid) will close this window upon its exit.
|
|
*
|
|
* pid and mm references are taken when window is opened by
|
|
* process (pid). So tgid is used only when child thread opens
|
|
* a window and exits without closing it.
|
|
*/
|
|
|
|
if (!ref_get_pid_and_task(task_ref, &tsk, &pid))
|
|
return;
|
|
|
|
kthread_use_mm(task_ref->mm);
|
|
rc = copy_to_user(csb_addr, &csb, sizeof(csb));
|
|
/*
|
|
* User space polls on csb.flags (first byte). So add barrier
|
|
* then copy first byte with csb flags update.
|
|
*/
|
|
if (!rc) {
|
|
csb.flags = CSB_V;
|
|
/* Make sure update to csb.flags is visible now */
|
|
smp_mb();
|
|
rc = copy_to_user(csb_addr, &csb, sizeof(u8));
|
|
}
|
|
kthread_unuse_mm(task_ref->mm);
|
|
put_task_struct(tsk);
|
|
|
|
/* Success */
|
|
if (!rc)
|
|
return;
|
|
|
|
|
|
pr_debug("Invalid CSB address 0x%p signalling pid(%d)\n",
|
|
csb_addr, pid_vnr(pid));
|
|
|
|
clear_siginfo(&info);
|
|
info.si_signo = SIGSEGV;
|
|
info.si_errno = EFAULT;
|
|
info.si_code = SEGV_MAPERR;
|
|
info.si_addr = csb_addr;
|
|
/*
|
|
* process will be polling on csb.flags after request is sent to
|
|
* NX. So generally CSB update should not fail except when an
|
|
* application passes invalid csb_addr. So an error message will
|
|
* be displayed and leave it to user space whether to ignore or
|
|
* handle this signal.
|
|
*/
|
|
rcu_read_lock();
|
|
rc = kill_pid_info(SIGSEGV, &info, pid);
|
|
rcu_read_unlock();
|
|
|
|
pr_devel("%s(): pid %d kill_proc_info() rc %d\n", __func__,
|
|
pid_vnr(pid), rc);
|
|
}
|
|
|
|
void vas_dump_crb(struct coprocessor_request_block *crb)
|
|
{
|
|
struct data_descriptor_entry *dde;
|
|
struct nx_fault_stamp *nx;
|
|
|
|
dde = &crb->source;
|
|
pr_devel("SrcDDE: addr 0x%llx, len %d, count %d, idx %d, flags %d\n",
|
|
be64_to_cpu(dde->address), be32_to_cpu(dde->length),
|
|
dde->count, dde->index, dde->flags);
|
|
|
|
dde = &crb->target;
|
|
pr_devel("TgtDDE: addr 0x%llx, len %d, count %d, idx %d, flags %d\n",
|
|
be64_to_cpu(dde->address), be32_to_cpu(dde->length),
|
|
dde->count, dde->index, dde->flags);
|
|
|
|
nx = &crb->stamp.nx;
|
|
pr_devel("NX Stamp: PSWID 0x%x, FSA 0x%llx, flags 0x%x, FS 0x%x\n",
|
|
be32_to_cpu(nx->pswid),
|
|
be64_to_cpu(crb->stamp.nx.fault_storage_addr),
|
|
nx->flags, nx->fault_status);
|
|
}
|
|
|
|
static int coproc_open(struct inode *inode, struct file *fp)
|
|
{
|
|
struct coproc_instance *cp_inst;
|
|
|
|
cp_inst = kzalloc(sizeof(*cp_inst), GFP_KERNEL);
|
|
if (!cp_inst)
|
|
return -ENOMEM;
|
|
|
|
cp_inst->coproc = container_of(inode->i_cdev, struct coproc_dev,
|
|
cdev);
|
|
fp->private_data = cp_inst;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int coproc_ioc_tx_win_open(struct file *fp, unsigned long arg)
|
|
{
|
|
void __user *uptr = (void __user *)arg;
|
|
struct vas_tx_win_open_attr uattr;
|
|
struct coproc_instance *cp_inst;
|
|
struct vas_window *txwin;
|
|
int rc;
|
|
|
|
cp_inst = fp->private_data;
|
|
|
|
/*
|
|
* One window for file descriptor
|
|
*/
|
|
if (cp_inst->txwin)
|
|
return -EEXIST;
|
|
|
|
rc = copy_from_user(&uattr, uptr, sizeof(uattr));
|
|
if (rc) {
|
|
pr_err("%s(): copy_from_user() returns %d\n", __func__, rc);
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (uattr.version != 1) {
|
|
pr_err("Invalid window open API version\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!cp_inst->coproc->vops || !cp_inst->coproc->vops->open_win) {
|
|
pr_err("VAS API is not registered\n");
|
|
return -EACCES;
|
|
}
|
|
|
|
txwin = cp_inst->coproc->vops->open_win(uattr.vas_id, uattr.flags,
|
|
cp_inst->coproc->cop_type);
|
|
if (IS_ERR(txwin)) {
|
|
pr_err("%s() VAS window open failed, %ld\n", __func__,
|
|
PTR_ERR(txwin));
|
|
return PTR_ERR(txwin);
|
|
}
|
|
|
|
cp_inst->txwin = txwin;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int coproc_release(struct inode *inode, struct file *fp)
|
|
{
|
|
struct coproc_instance *cp_inst = fp->private_data;
|
|
int rc;
|
|
|
|
if (cp_inst->txwin) {
|
|
if (cp_inst->coproc->vops &&
|
|
cp_inst->coproc->vops->close_win) {
|
|
rc = cp_inst->coproc->vops->close_win(cp_inst->txwin);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
cp_inst->txwin = NULL;
|
|
}
|
|
|
|
kfree(cp_inst);
|
|
fp->private_data = NULL;
|
|
|
|
/*
|
|
* We don't know here if user has other receive windows
|
|
* open, so we can't really call clear_thread_tidr().
|
|
* So, once the process calls set_thread_tidr(), the
|
|
* TIDR value sticks around until process exits, resulting
|
|
* in an extra copy in restore_sprs().
|
|
*/
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int coproc_mmap(struct file *fp, struct vm_area_struct *vma)
|
|
{
|
|
struct coproc_instance *cp_inst = fp->private_data;
|
|
struct vas_window *txwin;
|
|
unsigned long pfn;
|
|
u64 paste_addr;
|
|
pgprot_t prot;
|
|
int rc;
|
|
|
|
txwin = cp_inst->txwin;
|
|
|
|
if ((vma->vm_end - vma->vm_start) > PAGE_SIZE) {
|
|
pr_debug("%s(): size 0x%zx, PAGE_SIZE 0x%zx\n", __func__,
|
|
(vma->vm_end - vma->vm_start), PAGE_SIZE);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Ensure instance has an open send window */
|
|
if (!txwin) {
|
|
pr_err("%s(): No send window open?\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!cp_inst->coproc->vops || !cp_inst->coproc->vops->paste_addr) {
|
|
pr_err("%s(): VAS API is not registered\n", __func__);
|
|
return -EACCES;
|
|
}
|
|
|
|
paste_addr = cp_inst->coproc->vops->paste_addr(txwin);
|
|
if (!paste_addr) {
|
|
pr_err("%s(): Window paste address failed\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
pfn = paste_addr >> PAGE_SHIFT;
|
|
|
|
/* flags, page_prot from cxl_mmap(), except we want cachable */
|
|
vma->vm_flags |= VM_IO | VM_PFNMAP;
|
|
vma->vm_page_prot = pgprot_cached(vma->vm_page_prot);
|
|
|
|
prot = __pgprot(pgprot_val(vma->vm_page_prot) | _PAGE_DIRTY);
|
|
|
|
rc = remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
|
|
vma->vm_end - vma->vm_start, prot);
|
|
|
|
pr_devel("%s(): paste addr %llx at %lx, rc %d\n", __func__,
|
|
paste_addr, vma->vm_start, rc);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static long coproc_ioctl(struct file *fp, unsigned int cmd, unsigned long arg)
|
|
{
|
|
switch (cmd) {
|
|
case VAS_TX_WIN_OPEN:
|
|
return coproc_ioc_tx_win_open(fp, arg);
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
static struct file_operations coproc_fops = {
|
|
.open = coproc_open,
|
|
.release = coproc_release,
|
|
.mmap = coproc_mmap,
|
|
.unlocked_ioctl = coproc_ioctl,
|
|
};
|
|
|
|
/*
|
|
* Supporting only nx-gzip coprocessor type now, but this API code
|
|
* extended to other coprocessor types later.
|
|
*/
|
|
int vas_register_coproc_api(struct module *mod, enum vas_cop_type cop_type,
|
|
const char *name,
|
|
const struct vas_user_win_ops *vops)
|
|
{
|
|
int rc = -EINVAL;
|
|
dev_t devno;
|
|
|
|
rc = alloc_chrdev_region(&coproc_device.devt, 1, 1, name);
|
|
if (rc) {
|
|
pr_err("Unable to allocate coproc major number: %i\n", rc);
|
|
return rc;
|
|
}
|
|
|
|
pr_devel("%s device allocated, dev [%i,%i]\n", name,
|
|
MAJOR(coproc_device.devt), MINOR(coproc_device.devt));
|
|
|
|
coproc_device.class = class_create(mod, name);
|
|
if (IS_ERR(coproc_device.class)) {
|
|
rc = PTR_ERR(coproc_device.class);
|
|
pr_err("Unable to create %s class %d\n", name, rc);
|
|
goto err_class;
|
|
}
|
|
coproc_device.class->devnode = coproc_devnode;
|
|
coproc_device.cop_type = cop_type;
|
|
coproc_device.vops = vops;
|
|
|
|
coproc_fops.owner = mod;
|
|
cdev_init(&coproc_device.cdev, &coproc_fops);
|
|
|
|
devno = MKDEV(MAJOR(coproc_device.devt), 0);
|
|
rc = cdev_add(&coproc_device.cdev, devno, 1);
|
|
if (rc) {
|
|
pr_err("cdev_add() failed %d\n", rc);
|
|
goto err_cdev;
|
|
}
|
|
|
|
coproc_device.device = device_create(coproc_device.class, NULL,
|
|
devno, NULL, name, MINOR(devno));
|
|
if (IS_ERR(coproc_device.device)) {
|
|
rc = PTR_ERR(coproc_device.device);
|
|
pr_err("Unable to create coproc-%d %d\n", MINOR(devno), rc);
|
|
goto err;
|
|
}
|
|
|
|
pr_devel("%s: Added dev [%d,%d]\n", __func__, MAJOR(devno),
|
|
MINOR(devno));
|
|
|
|
return 0;
|
|
|
|
err:
|
|
cdev_del(&coproc_device.cdev);
|
|
err_cdev:
|
|
class_destroy(coproc_device.class);
|
|
err_class:
|
|
unregister_chrdev_region(coproc_device.devt, 1);
|
|
return rc;
|
|
}
|
|
|
|
void vas_unregister_coproc_api(void)
|
|
{
|
|
dev_t devno;
|
|
|
|
cdev_del(&coproc_device.cdev);
|
|
devno = MKDEV(MAJOR(coproc_device.devt), 0);
|
|
device_destroy(coproc_device.class, devno);
|
|
|
|
class_destroy(coproc_device.class);
|
|
unregister_chrdev_region(coproc_device.devt, 1);
|
|
}
|