kernel/drivers/scsi/qedf/qedf_main.c
2024-07-22 17:22:30 +08:00

4201 lines
112 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* QLogic FCoE Offload Driver
* Copyright (c) 2016-2018 Cavium Inc.
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/device.h>
#include <linux/highmem.h>
#include <linux/crc32.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/kthread.h>
#include <linux/phylink.h>
#include <scsi/libfc.h>
#include <scsi/scsi_host.h>
#include <scsi/fc_frame.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <linux/cpu.h>
#include "qedf.h"
#include "qedf_dbg.h"
#include <uapi/linux/pci_regs.h>
const struct qed_fcoe_ops *qed_ops;
static int qedf_probe(struct pci_dev *pdev, const struct pci_device_id *id);
static void qedf_remove(struct pci_dev *pdev);
static void qedf_shutdown(struct pci_dev *pdev);
static void qedf_schedule_recovery_handler(void *dev);
static void qedf_recovery_handler(struct work_struct *work);
static int qedf_suspend(struct pci_dev *pdev, pm_message_t state);
/*
* Driver module parameters.
*/
static unsigned int qedf_dev_loss_tmo = 60;
module_param_named(dev_loss_tmo, qedf_dev_loss_tmo, int, S_IRUGO);
MODULE_PARM_DESC(dev_loss_tmo, " dev_loss_tmo setting for attached "
"remote ports (default 60)");
uint qedf_debug = QEDF_LOG_INFO;
module_param_named(debug, qedf_debug, uint, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(debug, " Debug mask. Pass '1' to enable default debugging"
" mask");
static uint qedf_fipvlan_retries = 60;
module_param_named(fipvlan_retries, qedf_fipvlan_retries, int, S_IRUGO);
MODULE_PARM_DESC(fipvlan_retries, " Number of FIP VLAN requests to attempt "
"before giving up (default 60)");
static uint qedf_fallback_vlan = QEDF_FALLBACK_VLAN;
module_param_named(fallback_vlan, qedf_fallback_vlan, int, S_IRUGO);
MODULE_PARM_DESC(fallback_vlan, " VLAN ID to try if fip vlan request fails "
"(default 1002).");
static int qedf_default_prio = -1;
module_param_named(default_prio, qedf_default_prio, int, S_IRUGO);
MODULE_PARM_DESC(default_prio, " Override 802.1q priority for FIP and FCoE"
" traffic (value between 0 and 7, default 3).");
uint qedf_dump_frames;
module_param_named(dump_frames, qedf_dump_frames, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(dump_frames, " Print the skb data of FIP and FCoE frames "
"(default off)");
static uint qedf_queue_depth;
module_param_named(queue_depth, qedf_queue_depth, int, S_IRUGO);
MODULE_PARM_DESC(queue_depth, " Sets the queue depth for all LUNs discovered "
"by the qedf driver. Default is 0 (use OS default).");
uint qedf_io_tracing;
module_param_named(io_tracing, qedf_io_tracing, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(io_tracing, " Enable logging of SCSI requests/completions "
"into trace buffer. (default off).");
static uint qedf_max_lun = MAX_FIBRE_LUNS;
module_param_named(max_lun, qedf_max_lun, int, S_IRUGO);
MODULE_PARM_DESC(max_lun, " Sets the maximum luns per target that the driver "
"supports. (default 0xffffffff)");
uint qedf_link_down_tmo;
module_param_named(link_down_tmo, qedf_link_down_tmo, int, S_IRUGO);
MODULE_PARM_DESC(link_down_tmo, " Delays informing the fcoe transport that the "
"link is down by N seconds.");
bool qedf_retry_delay;
module_param_named(retry_delay, qedf_retry_delay, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(retry_delay, " Enable/disable handling of FCP_RSP IU retry "
"delay handling (default off).");
static bool qedf_dcbx_no_wait;
module_param_named(dcbx_no_wait, qedf_dcbx_no_wait, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(dcbx_no_wait, " Do not wait for DCBX convergence to start "
"sending FIP VLAN requests on link up (Default: off).");
static uint qedf_dp_module;
module_param_named(dp_module, qedf_dp_module, uint, S_IRUGO);
MODULE_PARM_DESC(dp_module, " bit flags control for verbose printk passed "
"qed module during probe.");
static uint qedf_dp_level = QED_LEVEL_NOTICE;
module_param_named(dp_level, qedf_dp_level, uint, S_IRUGO);
MODULE_PARM_DESC(dp_level, " printk verbosity control passed to qed module "
"during probe (0-3: 0 more verbose).");
static bool qedf_enable_recovery = true;
module_param_named(enable_recovery, qedf_enable_recovery,
bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(enable_recovery, "Enable/disable recovery on driver/firmware "
"interface level errors 0 = Disabled, 1 = Enabled (Default: 1).");
struct workqueue_struct *qedf_io_wq;
static struct fcoe_percpu_s qedf_global;
static DEFINE_SPINLOCK(qedf_global_lock);
static struct kmem_cache *qedf_io_work_cache;
void qedf_set_vlan_id(struct qedf_ctx *qedf, int vlan_id)
{
int vlan_id_tmp = 0;
vlan_id_tmp = vlan_id | (qedf->prio << VLAN_PRIO_SHIFT);
qedf->vlan_id = vlan_id_tmp;
QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_DISC,
"Setting vlan_id=0x%04x prio=%d.\n",
vlan_id_tmp, qedf->prio);
}
/* Returns true if we have a valid vlan, false otherwise */
static bool qedf_initiate_fipvlan_req(struct qedf_ctx *qedf)
{
while (qedf->fipvlan_retries--) {
/* This is to catch if link goes down during fipvlan retries */
if (atomic_read(&qedf->link_state) == QEDF_LINK_DOWN) {
QEDF_ERR(&qedf->dbg_ctx, "Link not up.\n");
return false;
}
if (test_bit(QEDF_UNLOADING, &qedf->flags)) {
QEDF_ERR(&qedf->dbg_ctx, "Driver unloading.\n");
return false;
}
if (qedf->vlan_id > 0) {
QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_DISC,
"vlan = 0x%x already set, calling ctlr_link_up.\n",
qedf->vlan_id);
if (atomic_read(&qedf->link_state) == QEDF_LINK_UP)
fcoe_ctlr_link_up(&qedf->ctlr);
return true;
}
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,
"Retry %d.\n", qedf->fipvlan_retries);
init_completion(&qedf->fipvlan_compl);
qedf_fcoe_send_vlan_req(qedf);
wait_for_completion_timeout(&qedf->fipvlan_compl, 1 * HZ);
}
return false;
}
static void qedf_handle_link_update(struct work_struct *work)
{
struct qedf_ctx *qedf =
container_of(work, struct qedf_ctx, link_update.work);
int rc;
QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_DISC, "Entered. link_state=%d.\n",
atomic_read(&qedf->link_state));
if (atomic_read(&qedf->link_state) == QEDF_LINK_UP) {
rc = qedf_initiate_fipvlan_req(qedf);
if (rc)
return;
if (atomic_read(&qedf->link_state) != QEDF_LINK_UP) {
QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_DISC,
"Link is down, resetting vlan_id.\n");
qedf->vlan_id = 0;
return;
}
/*
* If we get here then we never received a repsonse to our
* fip vlan request so set the vlan_id to the default and
* tell FCoE that the link is up
*/
QEDF_WARN(&(qedf->dbg_ctx), "Did not receive FIP VLAN "
"response, falling back to default VLAN %d.\n",
qedf_fallback_vlan);
qedf_set_vlan_id(qedf, qedf_fallback_vlan);
/*
* Zero out data_src_addr so we'll update it with the new
* lport port_id
*/
eth_zero_addr(qedf->data_src_addr);
fcoe_ctlr_link_up(&qedf->ctlr);
} else if (atomic_read(&qedf->link_state) == QEDF_LINK_DOWN) {
/*
* If we hit here and link_down_tmo_valid is still 1 it means
* that link_down_tmo timed out so set it to 0 to make sure any
* other readers have accurate state.
*/
atomic_set(&qedf->link_down_tmo_valid, 0);
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,
"Calling fcoe_ctlr_link_down().\n");
fcoe_ctlr_link_down(&qedf->ctlr);
if (qedf_wait_for_upload(qedf) == false)
QEDF_ERR(&qedf->dbg_ctx,
"Could not upload all sessions.\n");
/* Reset the number of FIP VLAN retries */
qedf->fipvlan_retries = qedf_fipvlan_retries;
}
}
#define QEDF_FCOE_MAC_METHOD_GRANGED_MAC 1
#define QEDF_FCOE_MAC_METHOD_FCF_MAP 2
#define QEDF_FCOE_MAC_METHOD_FCOE_SET_MAC 3
static void qedf_set_data_src_addr(struct qedf_ctx *qedf, struct fc_frame *fp)
{
u8 *granted_mac;
struct fc_frame_header *fh = fc_frame_header_get(fp);
u8 fc_map[3];
int method = 0;
/* Get granted MAC address from FIP FLOGI payload */
granted_mac = fr_cb(fp)->granted_mac;
/*
* We set the source MAC for FCoE traffic based on the Granted MAC
* address from the switch.
*
* If granted_mac is non-zero, we used that.
* If the granted_mac is zeroed out, created the FCoE MAC based on
* the sel_fcf->fc_map and the d_id fo the FLOGI frame.
* If sel_fcf->fc_map is 0 then we use the default FCF-MAC plus the
* d_id of the FLOGI frame.
*/
if (!is_zero_ether_addr(granted_mac)) {
ether_addr_copy(qedf->data_src_addr, granted_mac);
method = QEDF_FCOE_MAC_METHOD_GRANGED_MAC;
} else if (qedf->ctlr.sel_fcf->fc_map != 0) {
hton24(fc_map, qedf->ctlr.sel_fcf->fc_map);
qedf->data_src_addr[0] = fc_map[0];
qedf->data_src_addr[1] = fc_map[1];
qedf->data_src_addr[2] = fc_map[2];
qedf->data_src_addr[3] = fh->fh_d_id[0];
qedf->data_src_addr[4] = fh->fh_d_id[1];
qedf->data_src_addr[5] = fh->fh_d_id[2];
method = QEDF_FCOE_MAC_METHOD_FCF_MAP;
} else {
fc_fcoe_set_mac(qedf->data_src_addr, fh->fh_d_id);
method = QEDF_FCOE_MAC_METHOD_FCOE_SET_MAC;
}
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,
"QEDF data_src_mac=%pM method=%d.\n", qedf->data_src_addr, method);
}
static void qedf_flogi_resp(struct fc_seq *seq, struct fc_frame *fp,
void *arg)
{
struct fc_exch *exch = fc_seq_exch(seq);
struct fc_lport *lport = exch->lp;
struct qedf_ctx *qedf = lport_priv(lport);
if (!qedf) {
QEDF_ERR(NULL, "qedf is NULL.\n");
return;
}
/*
* If ERR_PTR is set then don't try to stat anything as it will cause
* a crash when we access fp.
*/
if (IS_ERR(fp)) {
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_ELS,
"fp has IS_ERR() set.\n");
goto skip_stat;
}
/* Log stats for FLOGI reject */
if (fc_frame_payload_op(fp) == ELS_LS_RJT)
qedf->flogi_failed++;
else if (fc_frame_payload_op(fp) == ELS_LS_ACC) {
/* Set the source MAC we will use for FCoE traffic */
qedf_set_data_src_addr(qedf, fp);
qedf->flogi_pending = 0;
}
/* Complete flogi_compl so we can proceed to sending ADISCs */
complete(&qedf->flogi_compl);
skip_stat:
/* Report response to libfc */
fc_lport_flogi_resp(seq, fp, lport);
}
static struct fc_seq *qedf_elsct_send(struct fc_lport *lport, u32 did,
struct fc_frame *fp, unsigned int op,
void (*resp)(struct fc_seq *,
struct fc_frame *,
void *),
void *arg, u32 timeout)
{
struct qedf_ctx *qedf = lport_priv(lport);
/*
* Intercept FLOGI for statistic purposes. Note we use the resp
* callback to tell if this is really a flogi.
*/
if (resp == fc_lport_flogi_resp) {
qedf->flogi_cnt++;
if (qedf->flogi_pending >= QEDF_FLOGI_RETRY_CNT) {
schedule_delayed_work(&qedf->stag_work, 2);
return NULL;
}
qedf->flogi_pending++;
return fc_elsct_send(lport, did, fp, op, qedf_flogi_resp,
arg, timeout);
}
return fc_elsct_send(lport, did, fp, op, resp, arg, timeout);
}
int qedf_send_flogi(struct qedf_ctx *qedf)
{
struct fc_lport *lport;
struct fc_frame *fp;
lport = qedf->lport;
if (!lport->tt.elsct_send) {
QEDF_ERR(&qedf->dbg_ctx, "tt.elsct_send not set.\n");
return -EINVAL;
}
fp = fc_frame_alloc(lport, sizeof(struct fc_els_flogi));
if (!fp) {
QEDF_ERR(&(qedf->dbg_ctx), "fc_frame_alloc failed.\n");
return -ENOMEM;
}
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_ELS,
"Sending FLOGI to reestablish session with switch.\n");
lport->tt.elsct_send(lport, FC_FID_FLOGI, fp,
ELS_FLOGI, qedf_flogi_resp, lport, lport->r_a_tov);
init_completion(&qedf->flogi_compl);
return 0;
}
/*
* This function is called if link_down_tmo is in use. If we get a link up and
* link_down_tmo has not expired then use just FLOGI/ADISC to recover our
* sessions with targets. Otherwise, just call fcoe_ctlr_link_up().
*/
static void qedf_link_recovery(struct work_struct *work)
{
struct qedf_ctx *qedf =
container_of(work, struct qedf_ctx, link_recovery.work);
struct fc_lport *lport = qedf->lport;
struct fc_rport_priv *rdata;
bool rc;
int retries = 30;
int rval, i;
struct list_head rdata_login_list;
INIT_LIST_HEAD(&rdata_login_list);
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,
"Link down tmo did not expire.\n");
/*
* Essentially reset the fcoe_ctlr here without affecting the state
* of the libfc structs.
*/
qedf->ctlr.state = FIP_ST_LINK_WAIT;
fcoe_ctlr_link_down(&qedf->ctlr);
/*
* Bring the link up before we send the fipvlan request so libfcoe
* can select a new fcf in parallel
*/
fcoe_ctlr_link_up(&qedf->ctlr);
/* Since the link when down and up to verify which vlan we're on */
qedf->fipvlan_retries = qedf_fipvlan_retries;
rc = qedf_initiate_fipvlan_req(qedf);
/* If getting the VLAN fails, set the VLAN to the fallback one */
if (!rc)
qedf_set_vlan_id(qedf, qedf_fallback_vlan);
/*
* We need to wait for an FCF to be selected due to the
* fcoe_ctlr_link_up other the FLOGI will be rejected.
*/
while (retries > 0) {
if (qedf->ctlr.sel_fcf) {
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,
"FCF reselected, proceeding with FLOGI.\n");
break;
}
msleep(500);
retries--;
}
if (retries < 1) {
QEDF_ERR(&(qedf->dbg_ctx), "Exhausted retries waiting for "
"FCF selection.\n");
return;
}
rval = qedf_send_flogi(qedf);
if (rval)
return;
/* Wait for FLOGI completion before proceeding with sending ADISCs */
i = wait_for_completion_timeout(&qedf->flogi_compl,
qedf->lport->r_a_tov);
if (i == 0) {
QEDF_ERR(&(qedf->dbg_ctx), "FLOGI timed out.\n");
return;
}
/*
* Call lport->tt.rport_login which will cause libfc to send an
* ADISC since the rport is in state ready.
*/
mutex_lock(&lport->disc.disc_mutex);
list_for_each_entry_rcu(rdata, &lport->disc.rports, peers) {
if (kref_get_unless_zero(&rdata->kref)) {
fc_rport_login(rdata);
kref_put(&rdata->kref, fc_rport_destroy);
}
}
mutex_unlock(&lport->disc.disc_mutex);
}
static void qedf_update_link_speed(struct qedf_ctx *qedf,
struct qed_link_output *link)
{
__ETHTOOL_DECLARE_LINK_MODE_MASK(sup_caps);
struct fc_lport *lport = qedf->lport;
lport->link_speed = FC_PORTSPEED_UNKNOWN;
lport->link_supported_speeds = FC_PORTSPEED_UNKNOWN;
/* Set fc_host link speed */
switch (link->speed) {
case 10000:
lport->link_speed = FC_PORTSPEED_10GBIT;
break;
case 25000:
lport->link_speed = FC_PORTSPEED_25GBIT;
break;
case 40000:
lport->link_speed = FC_PORTSPEED_40GBIT;
break;
case 50000:
lport->link_speed = FC_PORTSPEED_50GBIT;
break;
case 100000:
lport->link_speed = FC_PORTSPEED_100GBIT;
break;
case 20000:
lport->link_speed = FC_PORTSPEED_20GBIT;
break;
default:
lport->link_speed = FC_PORTSPEED_UNKNOWN;
break;
}
/*
* Set supported link speed by querying the supported
* capabilities of the link.
*/
phylink_zero(sup_caps);
phylink_set(sup_caps, 10000baseT_Full);
phylink_set(sup_caps, 10000baseKX4_Full);
phylink_set(sup_caps, 10000baseR_FEC);
phylink_set(sup_caps, 10000baseCR_Full);
phylink_set(sup_caps, 10000baseSR_Full);
phylink_set(sup_caps, 10000baseLR_Full);
phylink_set(sup_caps, 10000baseLRM_Full);
phylink_set(sup_caps, 10000baseKR_Full);
if (linkmode_intersects(link->supported_caps, sup_caps))
lport->link_supported_speeds |= FC_PORTSPEED_10GBIT;
phylink_zero(sup_caps);
phylink_set(sup_caps, 25000baseKR_Full);
phylink_set(sup_caps, 25000baseCR_Full);
phylink_set(sup_caps, 25000baseSR_Full);
if (linkmode_intersects(link->supported_caps, sup_caps))
lport->link_supported_speeds |= FC_PORTSPEED_25GBIT;
phylink_zero(sup_caps);
phylink_set(sup_caps, 40000baseLR4_Full);
phylink_set(sup_caps, 40000baseKR4_Full);
phylink_set(sup_caps, 40000baseCR4_Full);
phylink_set(sup_caps, 40000baseSR4_Full);
if (linkmode_intersects(link->supported_caps, sup_caps))
lport->link_supported_speeds |= FC_PORTSPEED_40GBIT;
phylink_zero(sup_caps);
phylink_set(sup_caps, 50000baseKR2_Full);
phylink_set(sup_caps, 50000baseCR2_Full);
phylink_set(sup_caps, 50000baseSR2_Full);
if (linkmode_intersects(link->supported_caps, sup_caps))
lport->link_supported_speeds |= FC_PORTSPEED_50GBIT;
phylink_zero(sup_caps);
phylink_set(sup_caps, 100000baseKR4_Full);
phylink_set(sup_caps, 100000baseSR4_Full);
phylink_set(sup_caps, 100000baseCR4_Full);
phylink_set(sup_caps, 100000baseLR4_ER4_Full);
if (linkmode_intersects(link->supported_caps, sup_caps))
lport->link_supported_speeds |= FC_PORTSPEED_100GBIT;
phylink_zero(sup_caps);
phylink_set(sup_caps, 20000baseKR2_Full);
if (linkmode_intersects(link->supported_caps, sup_caps))
lport->link_supported_speeds |= FC_PORTSPEED_20GBIT;
if (lport->host && lport->host->shost_data)
fc_host_supported_speeds(lport->host) =
lport->link_supported_speeds;
}
static void qedf_bw_update(void *dev)
{
struct qedf_ctx *qedf = (struct qedf_ctx *)dev;
struct qed_link_output link;
/* Get the latest status of the link */
qed_ops->common->get_link(qedf->cdev, &link);
if (test_bit(QEDF_UNLOADING, &qedf->flags)) {
QEDF_ERR(&qedf->dbg_ctx,
"Ignore link update, driver getting unload.\n");
return;
}
if (link.link_up) {
if (atomic_read(&qedf->link_state) == QEDF_LINK_UP)
qedf_update_link_speed(qedf, &link);
else
QEDF_ERR(&qedf->dbg_ctx,
"Ignore bw update, link is down.\n");
} else {
QEDF_ERR(&qedf->dbg_ctx, "link_up is not set.\n");
}
}
static void qedf_link_update(void *dev, struct qed_link_output *link)
{
struct qedf_ctx *qedf = (struct qedf_ctx *)dev;
/*
* Prevent race where we're removing the module and we get link update
* for qed.
*/
if (test_bit(QEDF_UNLOADING, &qedf->flags)) {
QEDF_ERR(&qedf->dbg_ctx,
"Ignore link update, driver getting unload.\n");
return;
}
if (link->link_up) {
if (atomic_read(&qedf->link_state) == QEDF_LINK_UP) {
QEDF_INFO((&qedf->dbg_ctx), QEDF_LOG_DISC,
"Ignoring link up event as link is already up.\n");
return;
}
QEDF_ERR(&(qedf->dbg_ctx), "LINK UP (%d GB/s).\n",
link->speed / 1000);
/* Cancel any pending link down work */
cancel_delayed_work(&qedf->link_update);
atomic_set(&qedf->link_state, QEDF_LINK_UP);
qedf_update_link_speed(qedf, link);
if (atomic_read(&qedf->dcbx) == QEDF_DCBX_DONE ||
qedf_dcbx_no_wait) {
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,
"DCBx done.\n");
if (atomic_read(&qedf->link_down_tmo_valid) > 0)
queue_delayed_work(qedf->link_update_wq,
&qedf->link_recovery, 0);
else
queue_delayed_work(qedf->link_update_wq,
&qedf->link_update, 0);
atomic_set(&qedf->link_down_tmo_valid, 0);
}
} else {
QEDF_ERR(&(qedf->dbg_ctx), "LINK DOWN.\n");
atomic_set(&qedf->link_state, QEDF_LINK_DOWN);
atomic_set(&qedf->dcbx, QEDF_DCBX_PENDING);
/*
* Flag that we're waiting for the link to come back up before
* informing the fcoe layer of the event.
*/
if (qedf_link_down_tmo > 0) {
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,
"Starting link down tmo.\n");
atomic_set(&qedf->link_down_tmo_valid, 1);
}
qedf->vlan_id = 0;
qedf_update_link_speed(qedf, link);
queue_delayed_work(qedf->link_update_wq, &qedf->link_update,
qedf_link_down_tmo * HZ);
}
}
static void qedf_dcbx_handler(void *dev, struct qed_dcbx_get *get, u32 mib_type)
{
struct qedf_ctx *qedf = (struct qedf_ctx *)dev;
u8 tmp_prio;
QEDF_ERR(&(qedf->dbg_ctx), "DCBx event valid=%d enabled=%d fcoe "
"prio=%d.\n", get->operational.valid, get->operational.enabled,
get->operational.app_prio.fcoe);
if (get->operational.enabled && get->operational.valid) {
/* If DCBX was already negotiated on link up then just exit */
if (atomic_read(&qedf->dcbx) == QEDF_DCBX_DONE) {
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,
"DCBX already set on link up.\n");
return;
}
atomic_set(&qedf->dcbx, QEDF_DCBX_DONE);
/*
* Set the 8021q priority in the following manner:
*
* 1. If a modparam is set use that
* 2. If the value is not between 0..7 use the default
* 3. Use the priority we get from the DCBX app tag
*/
tmp_prio = get->operational.app_prio.fcoe;
if (qedf_default_prio > -1)
qedf->prio = qedf_default_prio;
else if (tmp_prio > 7) {
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,
"FIP/FCoE prio %d out of range, setting to %d.\n",
tmp_prio, QEDF_DEFAULT_PRIO);
qedf->prio = QEDF_DEFAULT_PRIO;
} else
qedf->prio = tmp_prio;
if (atomic_read(&qedf->link_state) == QEDF_LINK_UP &&
!qedf_dcbx_no_wait) {
if (atomic_read(&qedf->link_down_tmo_valid) > 0)
queue_delayed_work(qedf->link_update_wq,
&qedf->link_recovery, 0);
else
queue_delayed_work(qedf->link_update_wq,
&qedf->link_update, 0);
atomic_set(&qedf->link_down_tmo_valid, 0);
}
}
}
static u32 qedf_get_login_failures(void *cookie)
{
struct qedf_ctx *qedf;
qedf = (struct qedf_ctx *)cookie;
return qedf->flogi_failed;
}
static struct qed_fcoe_cb_ops qedf_cb_ops = {
{
.link_update = qedf_link_update,
.bw_update = qedf_bw_update,
.schedule_recovery_handler = qedf_schedule_recovery_handler,
.dcbx_aen = qedf_dcbx_handler,
.get_generic_tlv_data = qedf_get_generic_tlv_data,
.get_protocol_tlv_data = qedf_get_protocol_tlv_data,
.schedule_hw_err_handler = qedf_schedule_hw_err_handler,
}
};
/*
* Various transport templates.
*/
static struct scsi_transport_template *qedf_fc_transport_template;
static struct scsi_transport_template *qedf_fc_vport_transport_template;
/*
* SCSI EH handlers
*/
static int qedf_eh_abort(struct scsi_cmnd *sc_cmd)
{
struct fc_rport *rport = starget_to_rport(scsi_target(sc_cmd->device));
struct fc_lport *lport;
struct qedf_ctx *qedf;
struct qedf_ioreq *io_req;
struct fc_rport_libfc_priv *rp = rport->dd_data;
struct fc_rport_priv *rdata;
struct qedf_rport *fcport = NULL;
int rc = FAILED;
int wait_count = 100;
int refcount = 0;
int rval;
int got_ref = 0;
lport = shost_priv(sc_cmd->device->host);
qedf = (struct qedf_ctx *)lport_priv(lport);
/* rport and tgt are allocated together, so tgt should be non-NULL */
fcport = (struct qedf_rport *)&rp[1];
rdata = fcport->rdata;
if (!rdata || !kref_get_unless_zero(&rdata->kref)) {
QEDF_ERR(&qedf->dbg_ctx, "stale rport, sc_cmd=%p\n", sc_cmd);
rc = SUCCESS;
goto out;
}
io_req = (struct qedf_ioreq *)sc_cmd->SCp.ptr;
if (!io_req) {
QEDF_ERR(&qedf->dbg_ctx,
"sc_cmd not queued with lld, sc_cmd=%p op=0x%02x, port_id=%06x\n",
sc_cmd, sc_cmd->cmnd[0],
rdata->ids.port_id);
rc = SUCCESS;
goto drop_rdata_kref;
}
rval = kref_get_unless_zero(&io_req->refcount); /* ID: 005 */
if (rval)
got_ref = 1;
/* If we got a valid io_req, confirm it belongs to this sc_cmd. */
if (!rval || io_req->sc_cmd != sc_cmd) {
QEDF_ERR(&qedf->dbg_ctx,
"Freed/Incorrect io_req, io_req->sc_cmd=%p, sc_cmd=%p, port_id=%06x, bailing out.\n",
io_req->sc_cmd, sc_cmd, rdata->ids.port_id);
goto drop_rdata_kref;
}
if (fc_remote_port_chkready(rport)) {
refcount = kref_read(&io_req->refcount);
QEDF_ERR(&qedf->dbg_ctx,
"rport not ready, io_req=%p, xid=0x%x sc_cmd=%p op=0x%02x, refcount=%d, port_id=%06x\n",
io_req, io_req->xid, sc_cmd, sc_cmd->cmnd[0],
refcount, rdata->ids.port_id);
goto drop_rdata_kref;
}
rc = fc_block_scsi_eh(sc_cmd);
if (rc)
goto drop_rdata_kref;
if (test_bit(QEDF_RPORT_UPLOADING_CONNECTION, &fcport->flags)) {
QEDF_ERR(&qedf->dbg_ctx,
"Connection uploading, xid=0x%x., port_id=%06x\n",
io_req->xid, rdata->ids.port_id);
while (io_req->sc_cmd && (wait_count != 0)) {
msleep(100);
wait_count--;
}
if (wait_count) {
QEDF_ERR(&qedf->dbg_ctx, "ABTS succeeded\n");
rc = SUCCESS;
} else {
QEDF_ERR(&qedf->dbg_ctx, "ABTS failed\n");
rc = FAILED;
}
goto drop_rdata_kref;
}
if (lport->state != LPORT_ST_READY || !(lport->link_up)) {
QEDF_ERR(&qedf->dbg_ctx, "link not ready.\n");
goto drop_rdata_kref;
}
QEDF_ERR(&qedf->dbg_ctx,
"Aborting io_req=%p sc_cmd=%p xid=0x%x fp_idx=%d, port_id=%06x.\n",
io_req, sc_cmd, io_req->xid, io_req->fp_idx,
rdata->ids.port_id);
if (qedf->stop_io_on_error) {
qedf_stop_all_io(qedf);
rc = SUCCESS;
goto drop_rdata_kref;
}
init_completion(&io_req->abts_done);
rval = qedf_initiate_abts(io_req, true);
if (rval) {
QEDF_ERR(&(qedf->dbg_ctx), "Failed to queue ABTS.\n");
/*
* If we fail to queue the ABTS then return this command to
* the SCSI layer as it will own and free the xid
*/
rc = SUCCESS;
qedf_scsi_done(qedf, io_req, DID_ERROR);
goto drop_rdata_kref;
}
wait_for_completion(&io_req->abts_done);
if (io_req->event == QEDF_IOREQ_EV_ABORT_SUCCESS ||
io_req->event == QEDF_IOREQ_EV_ABORT_FAILED ||
io_req->event == QEDF_IOREQ_EV_CLEANUP_SUCCESS) {
/*
* If we get a reponse to the abort this is success from
* the perspective that all references to the command have
* been removed from the driver and firmware
*/
rc = SUCCESS;
} else {
/* If the abort and cleanup failed then return a failure */
rc = FAILED;
}
if (rc == SUCCESS)
QEDF_ERR(&(qedf->dbg_ctx), "ABTS succeeded, xid=0x%x.\n",
io_req->xid);
else
QEDF_ERR(&(qedf->dbg_ctx), "ABTS failed, xid=0x%x.\n",
io_req->xid);
drop_rdata_kref:
kref_put(&rdata->kref, fc_rport_destroy);
out:
if (got_ref)
kref_put(&io_req->refcount, qedf_release_cmd);
return rc;
}
static int qedf_eh_target_reset(struct scsi_cmnd *sc_cmd)
{
QEDF_ERR(NULL, "%d:0:%d:%lld: TARGET RESET Issued...",
sc_cmd->device->host->host_no, sc_cmd->device->id,
sc_cmd->device->lun);
return qedf_initiate_tmf(sc_cmd, FCP_TMF_TGT_RESET);
}
static int qedf_eh_device_reset(struct scsi_cmnd *sc_cmd)
{
QEDF_ERR(NULL, "%d:0:%d:%lld: LUN RESET Issued... ",
sc_cmd->device->host->host_no, sc_cmd->device->id,
sc_cmd->device->lun);
return qedf_initiate_tmf(sc_cmd, FCP_TMF_LUN_RESET);
}
bool qedf_wait_for_upload(struct qedf_ctx *qedf)
{
struct qedf_rport *fcport = NULL;
int wait_cnt = 120;
while (wait_cnt--) {
if (atomic_read(&qedf->num_offloads))
QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_DISC,
"Waiting for all uploads to complete num_offloads = 0x%x.\n",
atomic_read(&qedf->num_offloads));
else
return true;
msleep(500);
}
rcu_read_lock();
list_for_each_entry_rcu(fcport, &qedf->fcports, peers) {
if (fcport && test_bit(QEDF_RPORT_SESSION_READY,
&fcport->flags)) {
if (fcport->rdata)
QEDF_ERR(&qedf->dbg_ctx,
"Waiting for fcport %p portid=%06x.\n",
fcport, fcport->rdata->ids.port_id);
} else {
QEDF_ERR(&qedf->dbg_ctx,
"Waiting for fcport %p.\n", fcport);
}
}
rcu_read_unlock();
return false;
}
/* Performs soft reset of qedf_ctx by simulating a link down/up */
void qedf_ctx_soft_reset(struct fc_lport *lport)
{
struct qedf_ctx *qedf;
struct qed_link_output if_link;
if (lport->vport) {
printk_ratelimited("Cannot issue host reset on NPIV port.\n");
return;
}
qedf = lport_priv(lport);
qedf->flogi_pending = 0;
/* For host reset, essentially do a soft link up/down */
atomic_set(&qedf->link_state, QEDF_LINK_DOWN);
QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_DISC,
"Queuing link down work.\n");
queue_delayed_work(qedf->link_update_wq, &qedf->link_update,
0);
if (qedf_wait_for_upload(qedf) == false) {
QEDF_ERR(&qedf->dbg_ctx, "Could not upload all sessions.\n");
WARN_ON(atomic_read(&qedf->num_offloads));
}
/* Before setting link up query physical link state */
qed_ops->common->get_link(qedf->cdev, &if_link);
/* Bail if the physical link is not up */
if (!if_link.link_up) {
QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_DISC,
"Physical link is not up.\n");
return;
}
/* Flush and wait to make sure link down is processed */
flush_delayed_work(&qedf->link_update);
msleep(500);
atomic_set(&qedf->link_state, QEDF_LINK_UP);
qedf->vlan_id = 0;
QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_DISC,
"Queue link up work.\n");
queue_delayed_work(qedf->link_update_wq, &qedf->link_update,
0);
}
/* Reset the host by gracefully logging out and then logging back in */
static int qedf_eh_host_reset(struct scsi_cmnd *sc_cmd)
{
struct fc_lport *lport;
struct qedf_ctx *qedf;
lport = shost_priv(sc_cmd->device->host);
qedf = lport_priv(lport);
if (atomic_read(&qedf->link_state) == QEDF_LINK_DOWN ||
test_bit(QEDF_UNLOADING, &qedf->flags))
return FAILED;
QEDF_ERR(&(qedf->dbg_ctx), "HOST RESET Issued...");
qedf_ctx_soft_reset(lport);
return SUCCESS;
}
static int qedf_slave_configure(struct scsi_device *sdev)
{
if (qedf_queue_depth) {
scsi_change_queue_depth(sdev, qedf_queue_depth);
}
return 0;
}
static struct scsi_host_template qedf_host_template = {
.module = THIS_MODULE,
.name = QEDF_MODULE_NAME,
.this_id = -1,
.cmd_per_lun = 32,
.max_sectors = 0xffff,
.queuecommand = qedf_queuecommand,
.shost_attrs = qedf_host_attrs,
.eh_abort_handler = qedf_eh_abort,
.eh_device_reset_handler = qedf_eh_device_reset, /* lun reset */
.eh_target_reset_handler = qedf_eh_target_reset, /* target reset */
.eh_host_reset_handler = qedf_eh_host_reset,
.slave_configure = qedf_slave_configure,
.dma_boundary = QED_HW_DMA_BOUNDARY,
.sg_tablesize = QEDF_MAX_BDS_PER_CMD,
.can_queue = FCOE_PARAMS_NUM_TASKS,
.change_queue_depth = scsi_change_queue_depth,
};
static int qedf_get_paged_crc_eof(struct sk_buff *skb, int tlen)
{
int rc;
spin_lock(&qedf_global_lock);
rc = fcoe_get_paged_crc_eof(skb, tlen, &qedf_global);
spin_unlock(&qedf_global_lock);
return rc;
}
static struct qedf_rport *qedf_fcport_lookup(struct qedf_ctx *qedf, u32 port_id)
{
struct qedf_rport *fcport;
struct fc_rport_priv *rdata;
rcu_read_lock();
list_for_each_entry_rcu(fcport, &qedf->fcports, peers) {
rdata = fcport->rdata;
if (rdata == NULL)
continue;
if (rdata->ids.port_id == port_id) {
rcu_read_unlock();
return fcport;
}
}
rcu_read_unlock();
/* Return NULL to caller to let them know fcport was not found */
return NULL;
}
/* Transmits an ELS frame over an offloaded session */
static int qedf_xmit_l2_frame(struct qedf_rport *fcport, struct fc_frame *fp)
{
struct fc_frame_header *fh;
int rc = 0;
fh = fc_frame_header_get(fp);
if ((fh->fh_type == FC_TYPE_ELS) &&
(fh->fh_r_ctl == FC_RCTL_ELS_REQ)) {
switch (fc_frame_payload_op(fp)) {
case ELS_ADISC:
qedf_send_adisc(fcport, fp);
rc = 1;
break;
}
}
return rc;
}
/*
* qedf_xmit - qedf FCoE frame transmit function
*/
static int qedf_xmit(struct fc_lport *lport, struct fc_frame *fp)
{
struct fc_lport *base_lport;
struct qedf_ctx *qedf;
struct ethhdr *eh;
struct fcoe_crc_eof *cp;
struct sk_buff *skb;
struct fc_frame_header *fh;
struct fcoe_hdr *hp;
u8 sof, eof;
u32 crc;
unsigned int hlen, tlen, elen;
int wlen;
struct fc_stats *stats;
struct fc_lport *tmp_lport;
struct fc_lport *vn_port = NULL;
struct qedf_rport *fcport;
int rc;
u16 vlan_tci = 0;
qedf = (struct qedf_ctx *)lport_priv(lport);
fh = fc_frame_header_get(fp);
skb = fp_skb(fp);
/* Filter out traffic to other NPIV ports on the same host */
if (lport->vport)
base_lport = shost_priv(vport_to_shost(lport->vport));
else
base_lport = lport;
/* Flag if the destination is the base port */
if (base_lport->port_id == ntoh24(fh->fh_d_id)) {
vn_port = base_lport;
} else {
/* Got through the list of vports attached to the base_lport
* and see if we have a match with the destination address.
*/
list_for_each_entry(tmp_lport, &base_lport->vports, list) {
if (tmp_lport->port_id == ntoh24(fh->fh_d_id)) {
vn_port = tmp_lport;
break;
}
}
}
if (vn_port && ntoh24(fh->fh_d_id) != FC_FID_FLOGI) {
struct fc_rport_priv *rdata = NULL;
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_LL2,
"Dropping FCoE frame to %06x.\n", ntoh24(fh->fh_d_id));
kfree_skb(skb);
rdata = fc_rport_lookup(lport, ntoh24(fh->fh_d_id));
if (rdata) {
rdata->retries = lport->max_rport_retry_count;
kref_put(&rdata->kref, fc_rport_destroy);
}
return -EINVAL;
}
/* End NPIV filtering */
if (!qedf->ctlr.sel_fcf) {
kfree_skb(skb);
return 0;
}
if (!test_bit(QEDF_LL2_STARTED, &qedf->flags)) {
QEDF_WARN(&(qedf->dbg_ctx), "LL2 not started\n");
kfree_skb(skb);
return 0;
}
if (atomic_read(&qedf->link_state) != QEDF_LINK_UP) {
QEDF_WARN(&(qedf->dbg_ctx), "qedf link down\n");
kfree_skb(skb);
return 0;
}
if (unlikely(fh->fh_r_ctl == FC_RCTL_ELS_REQ)) {
if (fcoe_ctlr_els_send(&qedf->ctlr, lport, skb))
return 0;
}
/* Check to see if this needs to be sent on an offloaded session */
fcport = qedf_fcport_lookup(qedf, ntoh24(fh->fh_d_id));
if (fcport && test_bit(QEDF_RPORT_SESSION_READY, &fcport->flags)) {
rc = qedf_xmit_l2_frame(fcport, fp);
/*
* If the frame was successfully sent over the middle path
* then do not try to also send it over the LL2 path
*/
if (rc)
return 0;
}
sof = fr_sof(fp);
eof = fr_eof(fp);
elen = sizeof(struct ethhdr);
hlen = sizeof(struct fcoe_hdr);
tlen = sizeof(struct fcoe_crc_eof);
wlen = (skb->len - tlen + sizeof(crc)) / FCOE_WORD_TO_BYTE;
skb->ip_summed = CHECKSUM_NONE;
crc = fcoe_fc_crc(fp);
/* copy port crc and eof to the skb buff */
if (skb_is_nonlinear(skb)) {
skb_frag_t *frag;
if (qedf_get_paged_crc_eof(skb, tlen)) {
kfree_skb(skb);
return -ENOMEM;
}
frag = &skb_shinfo(skb)->frags[skb_shinfo(skb)->nr_frags - 1];
cp = kmap_atomic(skb_frag_page(frag)) + skb_frag_off(frag);
} else {
cp = skb_put(skb, tlen);
}
memset(cp, 0, sizeof(*cp));
cp->fcoe_eof = eof;
cp->fcoe_crc32 = cpu_to_le32(~crc);
if (skb_is_nonlinear(skb)) {
kunmap_atomic(cp);
cp = NULL;
}
/* adjust skb network/transport offsets to match mac/fcoe/port */
skb_push(skb, elen + hlen);
skb_reset_mac_header(skb);
skb_reset_network_header(skb);
skb->mac_len = elen;
skb->protocol = htons(ETH_P_FCOE);
/*
* Add VLAN tag to non-offload FCoE frame based on current stored VLAN
* for FIP/FCoE traffic.
*/
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), qedf->vlan_id);
/* fill up mac and fcoe headers */
eh = eth_hdr(skb);
eh->h_proto = htons(ETH_P_FCOE);
if (qedf->ctlr.map_dest)
fc_fcoe_set_mac(eh->h_dest, fh->fh_d_id);
else
/* insert GW address */
ether_addr_copy(eh->h_dest, qedf->ctlr.dest_addr);
/* Set the source MAC address */
ether_addr_copy(eh->h_source, qedf->data_src_addr);
hp = (struct fcoe_hdr *)(eh + 1);
memset(hp, 0, sizeof(*hp));
if (FC_FCOE_VER)
FC_FCOE_ENCAPS_VER(hp, FC_FCOE_VER);
hp->fcoe_sof = sof;
/*update tx stats */
stats = per_cpu_ptr(lport->stats, get_cpu());
stats->TxFrames++;
stats->TxWords += wlen;
put_cpu();
/* Get VLAN ID from skb for printing purposes */
__vlan_hwaccel_get_tag(skb, &vlan_tci);
/* send down to lld */
fr_dev(fp) = lport;
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_LL2, "FCoE frame send: "
"src=%06x dest=%06x r_ctl=%x type=%x vlan=%04x.\n",
ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id), fh->fh_r_ctl, fh->fh_type,
vlan_tci);
if (qedf_dump_frames)
print_hex_dump(KERN_WARNING, "fcoe: ", DUMP_PREFIX_OFFSET, 16,
1, skb->data, skb->len, false);
rc = qed_ops->ll2->start_xmit(qedf->cdev, skb, 0);
if (rc) {
QEDF_ERR(&qedf->dbg_ctx, "start_xmit failed rc = %d.\n", rc);
kfree_skb(skb);
return rc;
}
return 0;
}
static int qedf_alloc_sq(struct qedf_ctx *qedf, struct qedf_rport *fcport)
{
int rval = 0;
u32 *pbl;
dma_addr_t page;
int num_pages;
/* Calculate appropriate queue and PBL sizes */
fcport->sq_mem_size = SQ_NUM_ENTRIES * sizeof(struct fcoe_wqe);
fcport->sq_mem_size = ALIGN(fcport->sq_mem_size, QEDF_PAGE_SIZE);
fcport->sq_pbl_size = (fcport->sq_mem_size / QEDF_PAGE_SIZE) *
sizeof(void *);
fcport->sq_pbl_size = fcport->sq_pbl_size + QEDF_PAGE_SIZE;
fcport->sq = dma_alloc_coherent(&qedf->pdev->dev, fcport->sq_mem_size,
&fcport->sq_dma, GFP_KERNEL);
if (!fcport->sq) {
QEDF_WARN(&(qedf->dbg_ctx), "Could not allocate send queue.\n");
rval = 1;
goto out;
}
fcport->sq_pbl = dma_alloc_coherent(&qedf->pdev->dev,
fcport->sq_pbl_size,
&fcport->sq_pbl_dma, GFP_KERNEL);
if (!fcport->sq_pbl) {
QEDF_WARN(&(qedf->dbg_ctx), "Could not allocate send queue PBL.\n");
rval = 1;
goto out_free_sq;
}
/* Create PBL */
num_pages = fcport->sq_mem_size / QEDF_PAGE_SIZE;
page = fcport->sq_dma;
pbl = (u32 *)fcport->sq_pbl;
while (num_pages--) {
*pbl = U64_LO(page);
pbl++;
*pbl = U64_HI(page);
pbl++;
page += QEDF_PAGE_SIZE;
}
return rval;
out_free_sq:
dma_free_coherent(&qedf->pdev->dev, fcport->sq_mem_size, fcport->sq,
fcport->sq_dma);
out:
return rval;
}
static void qedf_free_sq(struct qedf_ctx *qedf, struct qedf_rport *fcport)
{
if (fcport->sq_pbl)
dma_free_coherent(&qedf->pdev->dev, fcport->sq_pbl_size,
fcport->sq_pbl, fcport->sq_pbl_dma);
if (fcport->sq)
dma_free_coherent(&qedf->pdev->dev, fcport->sq_mem_size,
fcport->sq, fcport->sq_dma);
}
static int qedf_offload_connection(struct qedf_ctx *qedf,
struct qedf_rport *fcport)
{
struct qed_fcoe_params_offload conn_info;
u32 port_id;
int rval;
uint16_t total_sqe = (fcport->sq_mem_size / sizeof(struct fcoe_wqe));
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_CONN, "Offloading connection "
"portid=%06x.\n", fcport->rdata->ids.port_id);
rval = qed_ops->acquire_conn(qedf->cdev, &fcport->handle,
&fcport->fw_cid, &fcport->p_doorbell);
if (rval) {
QEDF_WARN(&(qedf->dbg_ctx), "Could not acquire connection "
"for portid=%06x.\n", fcport->rdata->ids.port_id);
rval = 1; /* For some reason qed returns 0 on failure here */
goto out;
}
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_CONN, "portid=%06x "
"fw_cid=%08x handle=%d.\n", fcport->rdata->ids.port_id,
fcport->fw_cid, fcport->handle);
memset(&conn_info, 0, sizeof(struct qed_fcoe_params_offload));
/* Fill in the offload connection info */
conn_info.sq_pbl_addr = fcport->sq_pbl_dma;
conn_info.sq_curr_page_addr = (dma_addr_t)(*(u64 *)fcport->sq_pbl);
conn_info.sq_next_page_addr =
(dma_addr_t)(*(u64 *)(fcport->sq_pbl + 8));
/* Need to use our FCoE MAC for the offload session */
ether_addr_copy(conn_info.src_mac, qedf->data_src_addr);
ether_addr_copy(conn_info.dst_mac, qedf->ctlr.dest_addr);
conn_info.tx_max_fc_pay_len = fcport->rdata->maxframe_size;
conn_info.e_d_tov_timer_val = qedf->lport->e_d_tov;
conn_info.rec_tov_timer_val = 3; /* I think this is what E3 was */
conn_info.rx_max_fc_pay_len = fcport->rdata->maxframe_size;
/* Set VLAN data */
conn_info.vlan_tag = qedf->vlan_id <<
FCOE_CONN_OFFLOAD_RAMROD_DATA_VLAN_ID_SHIFT;
conn_info.vlan_tag |=
qedf->prio << FCOE_CONN_OFFLOAD_RAMROD_DATA_PRIORITY_SHIFT;
conn_info.flags |= (FCOE_CONN_OFFLOAD_RAMROD_DATA_B_VLAN_FLAG_MASK <<
FCOE_CONN_OFFLOAD_RAMROD_DATA_B_VLAN_FLAG_SHIFT);
/* Set host port source id */
port_id = fc_host_port_id(qedf->lport->host);
fcport->sid = port_id;
conn_info.s_id.addr_hi = (port_id & 0x000000FF);
conn_info.s_id.addr_mid = (port_id & 0x0000FF00) >> 8;
conn_info.s_id.addr_lo = (port_id & 0x00FF0000) >> 16;
conn_info.max_conc_seqs_c3 = fcport->rdata->max_seq;
/* Set remote port destination id */
port_id = fcport->rdata->rport->port_id;
conn_info.d_id.addr_hi = (port_id & 0x000000FF);
conn_info.d_id.addr_mid = (port_id & 0x0000FF00) >> 8;
conn_info.d_id.addr_lo = (port_id & 0x00FF0000) >> 16;
conn_info.def_q_idx = 0; /* Default index for send queue? */
/* Set FC-TAPE specific flags if needed */
if (fcport->dev_type == QEDF_RPORT_TYPE_TAPE) {
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_CONN,
"Enable CONF, REC for portid=%06x.\n",
fcport->rdata->ids.port_id);
conn_info.flags |= 1 <<
FCOE_CONN_OFFLOAD_RAMROD_DATA_B_CONF_REQ_SHIFT;
conn_info.flags |=
((fcport->rdata->sp_features & FC_SP_FT_SEQC) ? 1 : 0) <<
FCOE_CONN_OFFLOAD_RAMROD_DATA_B_REC_VALID_SHIFT;
}
rval = qed_ops->offload_conn(qedf->cdev, fcport->handle, &conn_info);
if (rval) {
QEDF_WARN(&(qedf->dbg_ctx), "Could not offload connection "
"for portid=%06x.\n", fcport->rdata->ids.port_id);
goto out_free_conn;
} else
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_CONN, "Offload "
"succeeded portid=%06x total_sqe=%d.\n",
fcport->rdata->ids.port_id, total_sqe);
spin_lock_init(&fcport->rport_lock);
atomic_set(&fcport->free_sqes, total_sqe);
return 0;
out_free_conn:
qed_ops->release_conn(qedf->cdev, fcport->handle);
out:
return rval;
}
#define QEDF_TERM_BUFF_SIZE 10
static void qedf_upload_connection(struct qedf_ctx *qedf,
struct qedf_rport *fcport)
{
void *term_params;
dma_addr_t term_params_dma;
/* Term params needs to be a DMA coherent buffer as qed shared the
* physical DMA address with the firmware. The buffer may be used in
* the receive path so we may eventually have to move this.
*/
term_params = dma_alloc_coherent(&qedf->pdev->dev, QEDF_TERM_BUFF_SIZE,
&term_params_dma, GFP_KERNEL);
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_CONN, "Uploading connection "
"port_id=%06x.\n", fcport->rdata->ids.port_id);
qed_ops->destroy_conn(qedf->cdev, fcport->handle, term_params_dma);
qed_ops->release_conn(qedf->cdev, fcport->handle);
dma_free_coherent(&qedf->pdev->dev, QEDF_TERM_BUFF_SIZE, term_params,
term_params_dma);
}
static void qedf_cleanup_fcport(struct qedf_ctx *qedf,
struct qedf_rport *fcport)
{
struct fc_rport_priv *rdata = fcport->rdata;
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_CONN, "Cleaning up portid=%06x.\n",
fcport->rdata->ids.port_id);
/* Flush any remaining i/o's before we upload the connection */
qedf_flush_active_ios(fcport, -1);
if (test_and_clear_bit(QEDF_RPORT_SESSION_READY, &fcport->flags))
qedf_upload_connection(qedf, fcport);
qedf_free_sq(qedf, fcport);
fcport->rdata = NULL;
fcport->qedf = NULL;
kref_put(&rdata->kref, fc_rport_destroy);
}
/*
* This event_callback is called after successful completion of libfc
* initiated target login. qedf can proceed with initiating the session
* establishment.
*/
static void qedf_rport_event_handler(struct fc_lport *lport,
struct fc_rport_priv *rdata,
enum fc_rport_event event)
{
struct qedf_ctx *qedf = lport_priv(lport);
struct fc_rport *rport = rdata->rport;
struct fc_rport_libfc_priv *rp;
struct qedf_rport *fcport;
u32 port_id;
int rval;
unsigned long flags;
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC, "event = %d, "
"port_id = 0x%x\n", event, rdata->ids.port_id);
switch (event) {
case RPORT_EV_READY:
if (!rport) {
QEDF_WARN(&(qedf->dbg_ctx), "rport is NULL.\n");
break;
}
rp = rport->dd_data;
fcport = (struct qedf_rport *)&rp[1];
fcport->qedf = qedf;
if (atomic_read(&qedf->num_offloads) >= QEDF_MAX_SESSIONS) {
QEDF_ERR(&(qedf->dbg_ctx), "Not offloading "
"portid=0x%x as max number of offloaded sessions "
"reached.\n", rdata->ids.port_id);
return;
}
/*
* Don't try to offload the session again. Can happen when we
* get an ADISC
*/
if (test_bit(QEDF_RPORT_SESSION_READY, &fcport->flags)) {
QEDF_WARN(&(qedf->dbg_ctx), "Session already "
"offloaded, portid=0x%x.\n",
rdata->ids.port_id);
return;
}
if (rport->port_id == FC_FID_DIR_SERV) {
/*
* qedf_rport structure doesn't exist for
* directory server.
* We should not come here, as lport will
* take care of fabric login
*/
QEDF_WARN(&(qedf->dbg_ctx), "rport struct does not "
"exist for dir server port_id=%x\n",
rdata->ids.port_id);
break;
}
if (rdata->spp_type != FC_TYPE_FCP) {
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,
"Not offloading since spp type isn't FCP\n");
break;
}
if (!(rdata->ids.roles & FC_RPORT_ROLE_FCP_TARGET)) {
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,
"Not FCP target so not offloading\n");
break;
}
/* Initial reference held on entry, so this can't fail */
kref_get(&rdata->kref);
fcport->rdata = rdata;
fcport->rport = rport;
rval = qedf_alloc_sq(qedf, fcport);
if (rval) {
qedf_cleanup_fcport(qedf, fcport);
break;
}
/* Set device type */
if (rdata->flags & FC_RP_FLAGS_RETRY &&
rdata->ids.roles & FC_RPORT_ROLE_FCP_TARGET &&
!(rdata->ids.roles & FC_RPORT_ROLE_FCP_INITIATOR)) {
fcport->dev_type = QEDF_RPORT_TYPE_TAPE;
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,
"portid=%06x is a TAPE device.\n",
rdata->ids.port_id);
} else {
fcport->dev_type = QEDF_RPORT_TYPE_DISK;
}
rval = qedf_offload_connection(qedf, fcport);
if (rval) {
qedf_cleanup_fcport(qedf, fcport);
break;
}
/* Add fcport to list of qedf_ctx list of offloaded ports */
spin_lock_irqsave(&qedf->hba_lock, flags);
list_add_rcu(&fcport->peers, &qedf->fcports);
spin_unlock_irqrestore(&qedf->hba_lock, flags);
/*
* Set the session ready bit to let everyone know that this
* connection is ready for I/O
*/
set_bit(QEDF_RPORT_SESSION_READY, &fcport->flags);
atomic_inc(&qedf->num_offloads);
break;
case RPORT_EV_LOGO:
case RPORT_EV_FAILED:
case RPORT_EV_STOP:
port_id = rdata->ids.port_id;
if (port_id == FC_FID_DIR_SERV)
break;
if (rdata->spp_type != FC_TYPE_FCP) {
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,
"No action since spp type isn't FCP\n");
break;
}
if (!(rdata->ids.roles & FC_RPORT_ROLE_FCP_TARGET)) {
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,
"Not FCP target so no action\n");
break;
}
if (!rport) {
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,
"port_id=%x - rport notcreated Yet!!\n", port_id);
break;
}
rp = rport->dd_data;
/*
* Perform session upload. Note that rdata->peers is already
* removed from disc->rports list before we get this event.
*/
fcport = (struct qedf_rport *)&rp[1];
spin_lock_irqsave(&fcport->rport_lock, flags);
/* Only free this fcport if it is offloaded already */
if (test_bit(QEDF_RPORT_SESSION_READY, &fcport->flags) &&
!test_bit(QEDF_RPORT_UPLOADING_CONNECTION,
&fcport->flags)) {
set_bit(QEDF_RPORT_UPLOADING_CONNECTION,
&fcport->flags);
spin_unlock_irqrestore(&fcport->rport_lock, flags);
qedf_cleanup_fcport(qedf, fcport);
/*
* Remove fcport to list of qedf_ctx list of offloaded
* ports
*/
spin_lock_irqsave(&qedf->hba_lock, flags);
list_del_rcu(&fcport->peers);
spin_unlock_irqrestore(&qedf->hba_lock, flags);
clear_bit(QEDF_RPORT_UPLOADING_CONNECTION,
&fcport->flags);
atomic_dec(&qedf->num_offloads);
} else {
spin_unlock_irqrestore(&fcport->rport_lock, flags);
}
break;
case RPORT_EV_NONE:
break;
}
}
static void qedf_abort_io(struct fc_lport *lport)
{
/* NO-OP but need to fill in the template */
}
static void qedf_fcp_cleanup(struct fc_lport *lport)
{
/*
* NO-OP but need to fill in template to prevent a NULL
* function pointer dereference during link down. I/Os
* will be flushed when port is uploaded.
*/
}
static struct libfc_function_template qedf_lport_template = {
.frame_send = qedf_xmit,
.fcp_abort_io = qedf_abort_io,
.fcp_cleanup = qedf_fcp_cleanup,
.rport_event_callback = qedf_rport_event_handler,
.elsct_send = qedf_elsct_send,
};
static void qedf_fcoe_ctlr_setup(struct qedf_ctx *qedf)
{
fcoe_ctlr_init(&qedf->ctlr, FIP_MODE_AUTO);
qedf->ctlr.send = qedf_fip_send;
qedf->ctlr.get_src_addr = qedf_get_src_mac;
ether_addr_copy(qedf->ctlr.ctl_src_addr, qedf->mac);
}
static void qedf_setup_fdmi(struct qedf_ctx *qedf)
{
struct fc_lport *lport = qedf->lport;
u8 buf[8];
int pos;
uint32_t i;
/*
* fdmi_enabled needs to be set for libfc
* to execute FDMI registration
*/
lport->fdmi_enabled = 1;
/*
* Setup the necessary fc_host attributes to that will be used to fill
* in the FDMI information.
*/
/* Get the PCI-e Device Serial Number Capability */
pos = pci_find_ext_capability(qedf->pdev, PCI_EXT_CAP_ID_DSN);
if (pos) {
pos += 4;
for (i = 0; i < 8; i++)
pci_read_config_byte(qedf->pdev, pos + i, &buf[i]);
snprintf(fc_host_serial_number(lport->host),
FC_SERIAL_NUMBER_SIZE,
"%02X%02X%02X%02X%02X%02X%02X%02X",
buf[7], buf[6], buf[5], buf[4],
buf[3], buf[2], buf[1], buf[0]);
} else
snprintf(fc_host_serial_number(lport->host),
FC_SERIAL_NUMBER_SIZE, "Unknown");
snprintf(fc_host_manufacturer(lport->host),
FC_SERIAL_NUMBER_SIZE, "%s", "Marvell Semiconductor Inc.");
if (qedf->pdev->device == QL45xxx) {
snprintf(fc_host_model(lport->host),
FC_SYMBOLIC_NAME_SIZE, "%s", "QL45xxx");
snprintf(fc_host_model_description(lport->host),
FC_SYMBOLIC_NAME_SIZE, "%s",
"Marvell FastLinQ QL45xxx FCoE Adapter");
}
if (qedf->pdev->device == QL41xxx) {
snprintf(fc_host_model(lport->host),
FC_SYMBOLIC_NAME_SIZE, "%s", "QL41xxx");
snprintf(fc_host_model_description(lport->host),
FC_SYMBOLIC_NAME_SIZE, "%s",
"Marvell FastLinQ QL41xxx FCoE Adapter");
}
snprintf(fc_host_hardware_version(lport->host),
FC_VERSION_STRING_SIZE, "Rev %d", qedf->pdev->revision);
snprintf(fc_host_driver_version(lport->host),
FC_VERSION_STRING_SIZE, "%s", QEDF_VERSION);
snprintf(fc_host_firmware_version(lport->host),
FC_VERSION_STRING_SIZE, "%d.%d.%d.%d",
FW_MAJOR_VERSION, FW_MINOR_VERSION, FW_REVISION_VERSION,
FW_ENGINEERING_VERSION);
snprintf(fc_host_vendor_identifier(lport->host),
FC_VENDOR_IDENTIFIER, "%s", "Marvell");
}
static int qedf_lport_setup(struct qedf_ctx *qedf)
{
struct fc_lport *lport = qedf->lport;
lport->link_up = 0;
lport->max_retry_count = QEDF_FLOGI_RETRY_CNT;
lport->max_rport_retry_count = QEDF_RPORT_RETRY_CNT;
lport->service_params = (FCP_SPPF_INIT_FCN | FCP_SPPF_RD_XRDY_DIS |
FCP_SPPF_RETRY | FCP_SPPF_CONF_COMPL);
lport->boot_time = jiffies;
lport->e_d_tov = 2 * 1000;
lport->r_a_tov = 10 * 1000;
/* Set NPIV support */
lport->does_npiv = 1;
fc_host_max_npiv_vports(lport->host) = QEDF_MAX_NPIV;
fc_set_wwnn(lport, qedf->wwnn);
fc_set_wwpn(lport, qedf->wwpn);
if (fcoe_libfc_config(lport, &qedf->ctlr, &qedf_lport_template, 0)) {
QEDF_ERR(&qedf->dbg_ctx,
"fcoe_libfc_config failed.\n");
return -ENOMEM;
}
/* Allocate the exchange manager */
fc_exch_mgr_alloc(lport, FC_CLASS_3, FCOE_PARAMS_NUM_TASKS,
0xfffe, NULL);
if (fc_lport_init_stats(lport))
return -ENOMEM;
/* Finish lport config */
fc_lport_config(lport);
/* Set max frame size */
fc_set_mfs(lport, QEDF_MFS);
fc_host_maxframe_size(lport->host) = lport->mfs;
/* Set default dev_loss_tmo based on module parameter */
fc_host_dev_loss_tmo(lport->host) = qedf_dev_loss_tmo;
/* Set symbolic node name */
if (qedf->pdev->device == QL45xxx)
snprintf(fc_host_symbolic_name(lport->host), 256,
"Marvell FastLinQ 45xxx FCoE v%s", QEDF_VERSION);
if (qedf->pdev->device == QL41xxx)
snprintf(fc_host_symbolic_name(lport->host), 256,
"Marvell FastLinQ 41xxx FCoE v%s", QEDF_VERSION);
qedf_setup_fdmi(qedf);
return 0;
}
/*
* NPIV functions
*/
static int qedf_vport_libfc_config(struct fc_vport *vport,
struct fc_lport *lport)
{
lport->link_up = 0;
lport->qfull = 0;
lport->max_retry_count = QEDF_FLOGI_RETRY_CNT;
lport->max_rport_retry_count = QEDF_RPORT_RETRY_CNT;
lport->service_params = (FCP_SPPF_INIT_FCN | FCP_SPPF_RD_XRDY_DIS |
FCP_SPPF_RETRY | FCP_SPPF_CONF_COMPL);
lport->boot_time = jiffies;
lport->e_d_tov = 2 * 1000;
lport->r_a_tov = 10 * 1000;
lport->does_npiv = 1; /* Temporary until we add NPIV support */
/* Allocate stats for vport */
if (fc_lport_init_stats(lport))
return -ENOMEM;
/* Finish lport config */
fc_lport_config(lport);
/* offload related configuration */
lport->crc_offload = 0;
lport->seq_offload = 0;
lport->lro_enabled = 0;
lport->lro_xid = 0;
lport->lso_max = 0;
return 0;
}
static int qedf_vport_create(struct fc_vport *vport, bool disabled)
{
struct Scsi_Host *shost = vport_to_shost(vport);
struct fc_lport *n_port = shost_priv(shost);
struct fc_lport *vn_port;
struct qedf_ctx *base_qedf = lport_priv(n_port);
struct qedf_ctx *vport_qedf;
char buf[32];
int rc = 0;
rc = fcoe_validate_vport_create(vport);
if (rc) {
fcoe_wwn_to_str(vport->port_name, buf, sizeof(buf));
QEDF_WARN(&(base_qedf->dbg_ctx), "Failed to create vport, "
"WWPN (0x%s) already exists.\n", buf);
return rc;
}
if (atomic_read(&base_qedf->link_state) != QEDF_LINK_UP) {
QEDF_WARN(&(base_qedf->dbg_ctx), "Cannot create vport "
"because link is not up.\n");
return -EIO;
}
vn_port = libfc_vport_create(vport, sizeof(struct qedf_ctx));
if (!vn_port) {
QEDF_WARN(&(base_qedf->dbg_ctx), "Could not create lport "
"for vport.\n");
return -ENOMEM;
}
fcoe_wwn_to_str(vport->port_name, buf, sizeof(buf));
QEDF_ERR(&(base_qedf->dbg_ctx), "Creating NPIV port, WWPN=%s.\n",
buf);
/* Copy some fields from base_qedf */
vport_qedf = lport_priv(vn_port);
memcpy(vport_qedf, base_qedf, sizeof(struct qedf_ctx));
/* Set qedf data specific to this vport */
vport_qedf->lport = vn_port;
/* Use same hba_lock as base_qedf */
vport_qedf->hba_lock = base_qedf->hba_lock;
vport_qedf->pdev = base_qedf->pdev;
vport_qedf->cmd_mgr = base_qedf->cmd_mgr;
init_completion(&vport_qedf->flogi_compl);
INIT_LIST_HEAD(&vport_qedf->fcports);
INIT_DELAYED_WORK(&vport_qedf->stag_work, qedf_stag_change_work);
rc = qedf_vport_libfc_config(vport, vn_port);
if (rc) {
QEDF_ERR(&(base_qedf->dbg_ctx), "Could not allocate memory "
"for lport stats.\n");
goto err;
}
fc_set_wwnn(vn_port, vport->node_name);
fc_set_wwpn(vn_port, vport->port_name);
vport_qedf->wwnn = vn_port->wwnn;
vport_qedf->wwpn = vn_port->wwpn;
vn_port->host->transportt = qedf_fc_vport_transport_template;
vn_port->host->can_queue = FCOE_PARAMS_NUM_TASKS;
vn_port->host->max_lun = qedf_max_lun;
vn_port->host->sg_tablesize = QEDF_MAX_BDS_PER_CMD;
vn_port->host->max_cmd_len = QEDF_MAX_CDB_LEN;
vn_port->host->max_id = QEDF_MAX_SESSIONS;
rc = scsi_add_host(vn_port->host, &vport->dev);
if (rc) {
QEDF_WARN(&base_qedf->dbg_ctx,
"Error adding Scsi_Host rc=0x%x.\n", rc);
goto err;
}
/* Set default dev_loss_tmo based on module parameter */
fc_host_dev_loss_tmo(vn_port->host) = qedf_dev_loss_tmo;
/* Init libfc stuffs */
memcpy(&vn_port->tt, &qedf_lport_template,
sizeof(qedf_lport_template));
fc_exch_init(vn_port);
fc_elsct_init(vn_port);
fc_lport_init(vn_port);
fc_disc_init(vn_port);
fc_disc_config(vn_port, vn_port);
/* Allocate the exchange manager */
shost = vport_to_shost(vport);
n_port = shost_priv(shost);
fc_exch_mgr_list_clone(n_port, vn_port);
/* Set max frame size */
fc_set_mfs(vn_port, QEDF_MFS);
fc_host_port_type(vn_port->host) = FC_PORTTYPE_UNKNOWN;
if (disabled) {
fc_vport_set_state(vport, FC_VPORT_DISABLED);
} else {
vn_port->boot_time = jiffies;
fc_fabric_login(vn_port);
fc_vport_setlink(vn_port);
}
/* Set symbolic node name */
if (base_qedf->pdev->device == QL45xxx)
snprintf(fc_host_symbolic_name(vn_port->host), 256,
"Marvell FastLinQ 45xxx FCoE v%s", QEDF_VERSION);
if (base_qedf->pdev->device == QL41xxx)
snprintf(fc_host_symbolic_name(vn_port->host), 256,
"Marvell FastLinQ 41xxx FCoE v%s", QEDF_VERSION);
/* Set supported speed */
fc_host_supported_speeds(vn_port->host) = n_port->link_supported_speeds;
/* Set speed */
vn_port->link_speed = n_port->link_speed;
/* Set port type */
fc_host_port_type(vn_port->host) = FC_PORTTYPE_NPIV;
/* Set maxframe size */
fc_host_maxframe_size(vn_port->host) = n_port->mfs;
QEDF_INFO(&(base_qedf->dbg_ctx), QEDF_LOG_NPIV, "vn_port=%p.\n",
vn_port);
/* Set up debug context for vport */
vport_qedf->dbg_ctx.host_no = vn_port->host->host_no;
vport_qedf->dbg_ctx.pdev = base_qedf->pdev;
return 0;
err:
scsi_host_put(vn_port->host);
return rc;
}
static int qedf_vport_destroy(struct fc_vport *vport)
{
struct Scsi_Host *shost = vport_to_shost(vport);
struct fc_lport *n_port = shost_priv(shost);
struct fc_lport *vn_port = vport->dd_data;
struct qedf_ctx *qedf = lport_priv(vn_port);
if (!qedf) {
QEDF_ERR(NULL, "qedf is NULL.\n");
goto out;
}
/* Set unloading bit on vport qedf_ctx to prevent more I/O */
set_bit(QEDF_UNLOADING, &qedf->flags);
mutex_lock(&n_port->lp_mutex);
list_del(&vn_port->list);
mutex_unlock(&n_port->lp_mutex);
fc_fabric_logoff(vn_port);
fc_lport_destroy(vn_port);
/* Detach from scsi-ml */
fc_remove_host(vn_port->host);
scsi_remove_host(vn_port->host);
/*
* Only try to release the exchange manager if the vn_port
* configuration is complete.
*/
if (vn_port->state == LPORT_ST_READY)
fc_exch_mgr_free(vn_port);
/* Free memory used by statistical counters */
fc_lport_free_stats(vn_port);
/* Release Scsi_Host */
scsi_host_put(vn_port->host);
out:
return 0;
}
static int qedf_vport_disable(struct fc_vport *vport, bool disable)
{
struct fc_lport *lport = vport->dd_data;
if (disable) {
fc_vport_set_state(vport, FC_VPORT_DISABLED);
fc_fabric_logoff(lport);
} else {
lport->boot_time = jiffies;
fc_fabric_login(lport);
fc_vport_setlink(lport);
}
return 0;
}
/*
* During removal we need to wait for all the vports associated with a port
* to be destroyed so we avoid a race condition where libfc is still trying
* to reap vports while the driver remove function has already reaped the
* driver contexts associated with the physical port.
*/
static void qedf_wait_for_vport_destroy(struct qedf_ctx *qedf)
{
struct fc_host_attrs *fc_host = shost_to_fc_host(qedf->lport->host);
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_NPIV,
"Entered.\n");
while (fc_host->npiv_vports_inuse > 0) {
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_NPIV,
"Waiting for all vports to be reaped.\n");
msleep(1000);
}
}
/**
* qedf_fcoe_reset - Resets the fcoe
*
* @shost: shost the reset is from
*
* Returns: always 0
*/
static int qedf_fcoe_reset(struct Scsi_Host *shost)
{
struct fc_lport *lport = shost_priv(shost);
qedf_ctx_soft_reset(lport);
return 0;
}
static void qedf_get_host_port_id(struct Scsi_Host *shost)
{
struct fc_lport *lport = shost_priv(shost);
fc_host_port_id(shost) = lport->port_id;
}
static struct fc_host_statistics *qedf_fc_get_host_stats(struct Scsi_Host
*shost)
{
struct fc_host_statistics *qedf_stats;
struct fc_lport *lport = shost_priv(shost);
struct qedf_ctx *qedf = lport_priv(lport);
struct qed_fcoe_stats *fw_fcoe_stats;
qedf_stats = fc_get_host_stats(shost);
/* We don't collect offload stats for specific NPIV ports */
if (lport->vport)
goto out;
fw_fcoe_stats = kmalloc(sizeof(struct qed_fcoe_stats), GFP_KERNEL);
if (!fw_fcoe_stats) {
QEDF_ERR(&(qedf->dbg_ctx), "Could not allocate memory for "
"fw_fcoe_stats.\n");
goto out;
}
mutex_lock(&qedf->stats_mutex);
/* Query firmware for offload stats */
qed_ops->get_stats(qedf->cdev, fw_fcoe_stats);
/*
* The expectation is that we add our offload stats to the stats
* being maintained by libfc each time the fc_get_host_status callback
* is invoked. The additions are not carried over for each call to
* the fc_get_host_stats callback.
*/
qedf_stats->tx_frames += fw_fcoe_stats->fcoe_tx_data_pkt_cnt +
fw_fcoe_stats->fcoe_tx_xfer_pkt_cnt +
fw_fcoe_stats->fcoe_tx_other_pkt_cnt;
qedf_stats->rx_frames += fw_fcoe_stats->fcoe_rx_data_pkt_cnt +
fw_fcoe_stats->fcoe_rx_xfer_pkt_cnt +
fw_fcoe_stats->fcoe_rx_other_pkt_cnt;
qedf_stats->fcp_input_megabytes +=
do_div(fw_fcoe_stats->fcoe_rx_byte_cnt, 1000000);
qedf_stats->fcp_output_megabytes +=
do_div(fw_fcoe_stats->fcoe_tx_byte_cnt, 1000000);
qedf_stats->rx_words += fw_fcoe_stats->fcoe_rx_byte_cnt / 4;
qedf_stats->tx_words += fw_fcoe_stats->fcoe_tx_byte_cnt / 4;
qedf_stats->invalid_crc_count +=
fw_fcoe_stats->fcoe_silent_drop_pkt_crc_error_cnt;
qedf_stats->dumped_frames =
fw_fcoe_stats->fcoe_silent_drop_total_pkt_cnt;
qedf_stats->error_frames +=
fw_fcoe_stats->fcoe_silent_drop_total_pkt_cnt;
qedf_stats->fcp_input_requests += qedf->input_requests;
qedf_stats->fcp_output_requests += qedf->output_requests;
qedf_stats->fcp_control_requests += qedf->control_requests;
qedf_stats->fcp_packet_aborts += qedf->packet_aborts;
qedf_stats->fcp_frame_alloc_failures += qedf->alloc_failures;
mutex_unlock(&qedf->stats_mutex);
kfree(fw_fcoe_stats);
out:
return qedf_stats;
}
static struct fc_function_template qedf_fc_transport_fn = {
.show_host_node_name = 1,
.show_host_port_name = 1,
.show_host_supported_classes = 1,
.show_host_supported_fc4s = 1,
.show_host_active_fc4s = 1,
.show_host_maxframe_size = 1,
.get_host_port_id = qedf_get_host_port_id,
.show_host_port_id = 1,
.show_host_supported_speeds = 1,
.get_host_speed = fc_get_host_speed,
.show_host_speed = 1,
.show_host_port_type = 1,
.get_host_port_state = fc_get_host_port_state,
.show_host_port_state = 1,
.show_host_symbolic_name = 1,
/*
* Tell FC transport to allocate enough space to store the backpointer
* for the associate qedf_rport struct.
*/
.dd_fcrport_size = (sizeof(struct fc_rport_libfc_priv) +
sizeof(struct qedf_rport)),
.show_rport_maxframe_size = 1,
.show_rport_supported_classes = 1,
.show_host_fabric_name = 1,
.show_starget_node_name = 1,
.show_starget_port_name = 1,
.show_starget_port_id = 1,
.set_rport_dev_loss_tmo = fc_set_rport_loss_tmo,
.show_rport_dev_loss_tmo = 1,
.get_fc_host_stats = qedf_fc_get_host_stats,
.issue_fc_host_lip = qedf_fcoe_reset,
.vport_create = qedf_vport_create,
.vport_delete = qedf_vport_destroy,
.vport_disable = qedf_vport_disable,
.bsg_request = fc_lport_bsg_request,
};
static struct fc_function_template qedf_fc_vport_transport_fn = {
.show_host_node_name = 1,
.show_host_port_name = 1,
.show_host_supported_classes = 1,
.show_host_supported_fc4s = 1,
.show_host_active_fc4s = 1,
.show_host_maxframe_size = 1,
.show_host_port_id = 1,
.show_host_supported_speeds = 1,
.get_host_speed = fc_get_host_speed,
.show_host_speed = 1,
.show_host_port_type = 1,
.get_host_port_state = fc_get_host_port_state,
.show_host_port_state = 1,
.show_host_symbolic_name = 1,
.dd_fcrport_size = (sizeof(struct fc_rport_libfc_priv) +
sizeof(struct qedf_rport)),
.show_rport_maxframe_size = 1,
.show_rport_supported_classes = 1,
.show_host_fabric_name = 1,
.show_starget_node_name = 1,
.show_starget_port_name = 1,
.show_starget_port_id = 1,
.set_rport_dev_loss_tmo = fc_set_rport_loss_tmo,
.show_rport_dev_loss_tmo = 1,
.get_fc_host_stats = fc_get_host_stats,
.issue_fc_host_lip = qedf_fcoe_reset,
.bsg_request = fc_lport_bsg_request,
};
static bool qedf_fp_has_work(struct qedf_fastpath *fp)
{
struct qedf_ctx *qedf = fp->qedf;
struct global_queue *que;
struct qed_sb_info *sb_info = fp->sb_info;
struct status_block_e4 *sb = sb_info->sb_virt;
u16 prod_idx;
/* Get the pointer to the global CQ this completion is on */
que = qedf->global_queues[fp->sb_id];
/* Be sure all responses have been written to PI */
rmb();
/* Get the current firmware producer index */
prod_idx = sb->pi_array[QEDF_FCOE_PARAMS_GL_RQ_PI];
return (que->cq_prod_idx != prod_idx);
}
/*
* Interrupt handler code.
*/
/* Process completion queue and copy CQE contents for deferred processesing
*
* Return true if we should wake the I/O thread, false if not.
*/
static bool qedf_process_completions(struct qedf_fastpath *fp)
{
struct qedf_ctx *qedf = fp->qedf;
struct qed_sb_info *sb_info = fp->sb_info;
struct status_block_e4 *sb = sb_info->sb_virt;
struct global_queue *que;
u16 prod_idx;
struct fcoe_cqe *cqe;
struct qedf_io_work *io_work;
int num_handled = 0;
unsigned int cpu;
struct qedf_ioreq *io_req = NULL;
u16 xid;
u16 new_cqes;
u32 comp_type;
/* Get the current firmware producer index */
prod_idx = sb->pi_array[QEDF_FCOE_PARAMS_GL_RQ_PI];
/* Get the pointer to the global CQ this completion is on */
que = qedf->global_queues[fp->sb_id];
/* Calculate the amount of new elements since last processing */
new_cqes = (prod_idx >= que->cq_prod_idx) ?
(prod_idx - que->cq_prod_idx) :
0x10000 - que->cq_prod_idx + prod_idx;
/* Save producer index */
que->cq_prod_idx = prod_idx;
while (new_cqes) {
fp->completions++;
num_handled++;
cqe = &que->cq[que->cq_cons_idx];
comp_type = (cqe->cqe_data >> FCOE_CQE_CQE_TYPE_SHIFT) &
FCOE_CQE_CQE_TYPE_MASK;
/*
* Process unsolicited CQEs directly in the interrupt handler
* sine we need the fastpath ID
*/
if (comp_type == FCOE_UNSOLIC_CQE_TYPE) {
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_UNSOL,
"Unsolicated CQE.\n");
qedf_process_unsol_compl(qedf, fp->sb_id, cqe);
/*
* Don't add a work list item. Increment consumer
* consumer index and move on.
*/
goto inc_idx;
}
xid = cqe->cqe_data & FCOE_CQE_TASK_ID_MASK;
io_req = &qedf->cmd_mgr->cmds[xid];
/*
* Figure out which percpu thread we should queue this I/O
* on.
*/
if (!io_req)
/* If there is not io_req assocated with this CQE
* just queue it on CPU 0
*/
cpu = 0;
else {
cpu = io_req->cpu;
io_req->int_cpu = smp_processor_id();
}
io_work = mempool_alloc(qedf->io_mempool, GFP_ATOMIC);
if (!io_work) {
QEDF_WARN(&(qedf->dbg_ctx), "Could not allocate "
"work for I/O completion.\n");
continue;
}
memset(io_work, 0, sizeof(struct qedf_io_work));
INIT_WORK(&io_work->work, qedf_fp_io_handler);
/* Copy contents of CQE for deferred processing */
memcpy(&io_work->cqe, cqe, sizeof(struct fcoe_cqe));
io_work->qedf = fp->qedf;
io_work->fp = NULL; /* Only used for unsolicited frames */
queue_work_on(cpu, qedf_io_wq, &io_work->work);
inc_idx:
que->cq_cons_idx++;
if (que->cq_cons_idx == fp->cq_num_entries)
que->cq_cons_idx = 0;
new_cqes--;
}
return true;
}
/* MSI-X fastpath handler code */
static irqreturn_t qedf_msix_handler(int irq, void *dev_id)
{
struct qedf_fastpath *fp = dev_id;
if (!fp) {
QEDF_ERR(NULL, "fp is null.\n");
return IRQ_HANDLED;
}
if (!fp->sb_info) {
QEDF_ERR(NULL, "fp->sb_info in null.");
return IRQ_HANDLED;
}
/*
* Disable interrupts for this status block while we process new
* completions
*/
qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
while (1) {
qedf_process_completions(fp);
if (qedf_fp_has_work(fp) == 0) {
/* Update the sb information */
qed_sb_update_sb_idx(fp->sb_info);
/* Check for more work */
rmb();
if (qedf_fp_has_work(fp) == 0) {
/* Re-enable interrupts */
qed_sb_ack(fp->sb_info, IGU_INT_ENABLE, 1);
return IRQ_HANDLED;
}
}
}
/* Do we ever want to break out of above loop? */
return IRQ_HANDLED;
}
/* simd handler for MSI/INTa */
static void qedf_simd_int_handler(void *cookie)
{
/* Cookie is qedf_ctx struct */
struct qedf_ctx *qedf = (struct qedf_ctx *)cookie;
QEDF_WARN(&(qedf->dbg_ctx), "qedf=%p.\n", qedf);
}
#define QEDF_SIMD_HANDLER_NUM 0
static void qedf_sync_free_irqs(struct qedf_ctx *qedf)
{
int i;
u16 vector_idx = 0;
u32 vector;
if (qedf->int_info.msix_cnt) {
for (i = 0; i < qedf->int_info.used_cnt; i++) {
vector_idx = i * qedf->dev_info.common.num_hwfns +
qed_ops->common->get_affin_hwfn_idx(qedf->cdev);
QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_DISC,
"Freeing IRQ #%d vector_idx=%d.\n",
i, vector_idx);
vector = qedf->int_info.msix[vector_idx].vector;
synchronize_irq(vector);
irq_set_affinity_hint(vector, NULL);
irq_set_affinity_notifier(vector, NULL);
free_irq(vector, &qedf->fp_array[i]);
}
} else
qed_ops->common->simd_handler_clean(qedf->cdev,
QEDF_SIMD_HANDLER_NUM);
qedf->int_info.used_cnt = 0;
qed_ops->common->set_fp_int(qedf->cdev, 0);
}
static int qedf_request_msix_irq(struct qedf_ctx *qedf)
{
int i, rc, cpu;
u16 vector_idx = 0;
u32 vector;
cpu = cpumask_first(cpu_online_mask);
for (i = 0; i < qedf->num_queues; i++) {
vector_idx = i * qedf->dev_info.common.num_hwfns +
qed_ops->common->get_affin_hwfn_idx(qedf->cdev);
QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_DISC,
"Requesting IRQ #%d vector_idx=%d.\n",
i, vector_idx);
vector = qedf->int_info.msix[vector_idx].vector;
rc = request_irq(vector, qedf_msix_handler, 0, "qedf",
&qedf->fp_array[i]);
if (rc) {
QEDF_WARN(&(qedf->dbg_ctx), "request_irq failed.\n");
qedf_sync_free_irqs(qedf);
return rc;
}
qedf->int_info.used_cnt++;
rc = irq_set_affinity_hint(vector, get_cpu_mask(cpu));
cpu = cpumask_next(cpu, cpu_online_mask);
}
return 0;
}
static int qedf_setup_int(struct qedf_ctx *qedf)
{
int rc = 0;
/*
* Learn interrupt configuration
*/
rc = qed_ops->common->set_fp_int(qedf->cdev, num_online_cpus());
if (rc <= 0)
return 0;
rc = qed_ops->common->get_fp_int(qedf->cdev, &qedf->int_info);
if (rc)
return 0;
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC, "Number of msix_cnt = "
"0x%x num of cpus = 0x%x\n", qedf->int_info.msix_cnt,
num_online_cpus());
if (qedf->int_info.msix_cnt)
return qedf_request_msix_irq(qedf);
qed_ops->common->simd_handler_config(qedf->cdev, &qedf,
QEDF_SIMD_HANDLER_NUM, qedf_simd_int_handler);
qedf->int_info.used_cnt = 1;
QEDF_ERR(&qedf->dbg_ctx,
"Cannot load driver due to a lack of MSI-X vectors.\n");
return -EINVAL;
}
/* Main function for libfc frame reception */
static void qedf_recv_frame(struct qedf_ctx *qedf,
struct sk_buff *skb)
{
u32 fr_len;
struct fc_lport *lport;
struct fc_frame_header *fh;
struct fcoe_crc_eof crc_eof;
struct fc_frame *fp;
u8 *mac = NULL;
u8 *dest_mac = NULL;
struct fcoe_hdr *hp;
struct qedf_rport *fcport;
struct fc_lport *vn_port;
u32 f_ctl;
lport = qedf->lport;
if (lport == NULL || lport->state == LPORT_ST_DISABLED) {
QEDF_WARN(NULL, "Invalid lport struct or lport disabled.\n");
kfree_skb(skb);
return;
}
if (skb_is_nonlinear(skb))
skb_linearize(skb);
mac = eth_hdr(skb)->h_source;
dest_mac = eth_hdr(skb)->h_dest;
/* Pull the header */
hp = (struct fcoe_hdr *)skb->data;
fh = (struct fc_frame_header *) skb_transport_header(skb);
skb_pull(skb, sizeof(struct fcoe_hdr));
fr_len = skb->len - sizeof(struct fcoe_crc_eof);
fp = (struct fc_frame *)skb;
fc_frame_init(fp);
fr_dev(fp) = lport;
fr_sof(fp) = hp->fcoe_sof;
if (skb_copy_bits(skb, fr_len, &crc_eof, sizeof(crc_eof))) {
QEDF_INFO(NULL, QEDF_LOG_LL2, "skb_copy_bits failed.\n");
kfree_skb(skb);
return;
}
fr_eof(fp) = crc_eof.fcoe_eof;
fr_crc(fp) = crc_eof.fcoe_crc32;
if (pskb_trim(skb, fr_len)) {
QEDF_INFO(NULL, QEDF_LOG_LL2, "pskb_trim failed.\n");
kfree_skb(skb);
return;
}
fh = fc_frame_header_get(fp);
/*
* Invalid frame filters.
*/
if (fh->fh_r_ctl == FC_RCTL_DD_SOL_DATA &&
fh->fh_type == FC_TYPE_FCP) {
/* Drop FCP data. We dont this in L2 path */
kfree_skb(skb);
return;
}
if (fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
fh->fh_type == FC_TYPE_ELS) {
switch (fc_frame_payload_op(fp)) {
case ELS_LOGO:
if (ntoh24(fh->fh_s_id) == FC_FID_FLOGI) {
/* drop non-FIP LOGO */
kfree_skb(skb);
return;
}
break;
}
}
if (fh->fh_r_ctl == FC_RCTL_BA_ABTS) {
/* Drop incoming ABTS */
kfree_skb(skb);
return;
}
if (ntoh24(&dest_mac[3]) != ntoh24(fh->fh_d_id)) {
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_LL2,
"FC frame d_id mismatch with MAC %pM.\n", dest_mac);
kfree_skb(skb);
return;
}
if (qedf->ctlr.state) {
if (!ether_addr_equal(mac, qedf->ctlr.dest_addr)) {
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_LL2,
"Wrong source address: mac:%pM dest_addr:%pM.\n",
mac, qedf->ctlr.dest_addr);
kfree_skb(skb);
return;
}
}
vn_port = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
/*
* If the destination ID from the frame header does not match what we
* have on record for lport and the search for a NPIV port came up
* empty then this is not addressed to our port so simply drop it.
*/
if (lport->port_id != ntoh24(fh->fh_d_id) && !vn_port) {
QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_LL2,
"Dropping frame due to destination mismatch: lport->port_id=0x%x fh->d_id=0x%x.\n",
lport->port_id, ntoh24(fh->fh_d_id));
kfree_skb(skb);
return;
}
f_ctl = ntoh24(fh->fh_f_ctl);
if ((fh->fh_type == FC_TYPE_BLS) && (f_ctl & FC_FC_SEQ_CTX) &&
(f_ctl & FC_FC_EX_CTX)) {
/* Drop incoming ABTS response that has both SEQ/EX CTX set */
QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_LL2,
"Dropping ABTS response as both SEQ/EX CTX set.\n");
kfree_skb(skb);
return;
}
/*
* If a connection is uploading, drop incoming FCoE frames as there
* is a small window where we could try to return a frame while libfc
* is trying to clean things up.
*/
/* Get fcport associated with d_id if it exists */
fcport = qedf_fcport_lookup(qedf, ntoh24(fh->fh_d_id));
if (fcport && test_bit(QEDF_RPORT_UPLOADING_CONNECTION,
&fcport->flags)) {
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_LL2,
"Connection uploading, dropping fp=%p.\n", fp);
kfree_skb(skb);
return;
}
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_LL2, "FCoE frame receive: "
"skb=%p fp=%p src=%06x dest=%06x r_ctl=%x fh_type=%x.\n", skb, fp,
ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id), fh->fh_r_ctl,
fh->fh_type);
if (qedf_dump_frames)
print_hex_dump(KERN_WARNING, "fcoe: ", DUMP_PREFIX_OFFSET, 16,
1, skb->data, skb->len, false);
fc_exch_recv(lport, fp);
}
static void qedf_ll2_process_skb(struct work_struct *work)
{
struct qedf_skb_work *skb_work =
container_of(work, struct qedf_skb_work, work);
struct qedf_ctx *qedf = skb_work->qedf;
struct sk_buff *skb = skb_work->skb;
struct ethhdr *eh;
if (!qedf) {
QEDF_ERR(NULL, "qedf is NULL\n");
goto err_out;
}
eh = (struct ethhdr *)skb->data;
/* Undo VLAN encapsulation */
if (eh->h_proto == htons(ETH_P_8021Q)) {
memmove((u8 *)eh + VLAN_HLEN, eh, ETH_ALEN * 2);
eh = skb_pull(skb, VLAN_HLEN);
skb_reset_mac_header(skb);
}
/*
* Process either a FIP frame or FCoE frame based on the
* protocol value. If it's not either just drop the
* frame.
*/
if (eh->h_proto == htons(ETH_P_FIP)) {
qedf_fip_recv(qedf, skb);
goto out;
} else if (eh->h_proto == htons(ETH_P_FCOE)) {
__skb_pull(skb, ETH_HLEN);
qedf_recv_frame(qedf, skb);
goto out;
} else
goto err_out;
err_out:
kfree_skb(skb);
out:
kfree(skb_work);
return;
}
static int qedf_ll2_rx(void *cookie, struct sk_buff *skb,
u32 arg1, u32 arg2)
{
struct qedf_ctx *qedf = (struct qedf_ctx *)cookie;
struct qedf_skb_work *skb_work;
if (atomic_read(&qedf->link_state) == QEDF_LINK_DOWN) {
QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_LL2,
"Dropping frame as link state is down.\n");
kfree_skb(skb);
return 0;
}
skb_work = kzalloc(sizeof(struct qedf_skb_work), GFP_ATOMIC);
if (!skb_work) {
QEDF_WARN(&(qedf->dbg_ctx), "Could not allocate skb_work so "
"dropping frame.\n");
kfree_skb(skb);
return 0;
}
INIT_WORK(&skb_work->work, qedf_ll2_process_skb);
skb_work->skb = skb;
skb_work->qedf = qedf;
queue_work(qedf->ll2_recv_wq, &skb_work->work);
return 0;
}
static struct qed_ll2_cb_ops qedf_ll2_cb_ops = {
.rx_cb = qedf_ll2_rx,
.tx_cb = NULL,
};
/* Main thread to process I/O completions */
void qedf_fp_io_handler(struct work_struct *work)
{
struct qedf_io_work *io_work =
container_of(work, struct qedf_io_work, work);
u32 comp_type;
/*
* Deferred part of unsolicited CQE sends
* frame to libfc.
*/
comp_type = (io_work->cqe.cqe_data >>
FCOE_CQE_CQE_TYPE_SHIFT) &
FCOE_CQE_CQE_TYPE_MASK;
if (comp_type == FCOE_UNSOLIC_CQE_TYPE &&
io_work->fp)
fc_exch_recv(io_work->qedf->lport, io_work->fp);
else
qedf_process_cqe(io_work->qedf, &io_work->cqe);
kfree(io_work);
}
static int qedf_alloc_and_init_sb(struct qedf_ctx *qedf,
struct qed_sb_info *sb_info, u16 sb_id)
{
struct status_block_e4 *sb_virt;
dma_addr_t sb_phys;
int ret;
sb_virt = dma_alloc_coherent(&qedf->pdev->dev,
sizeof(struct status_block_e4), &sb_phys, GFP_KERNEL);
if (!sb_virt) {
QEDF_ERR(&qedf->dbg_ctx,
"Status block allocation failed for id = %d.\n",
sb_id);
return -ENOMEM;
}
ret = qed_ops->common->sb_init(qedf->cdev, sb_info, sb_virt, sb_phys,
sb_id, QED_SB_TYPE_STORAGE);
if (ret) {
QEDF_ERR(&qedf->dbg_ctx,
"Status block initialization failed (0x%x) for id = %d.\n",
ret, sb_id);
return ret;
}
return 0;
}
static void qedf_free_sb(struct qedf_ctx *qedf, struct qed_sb_info *sb_info)
{
if (sb_info->sb_virt)
dma_free_coherent(&qedf->pdev->dev, sizeof(*sb_info->sb_virt),
(void *)sb_info->sb_virt, sb_info->sb_phys);
}
static void qedf_destroy_sb(struct qedf_ctx *qedf)
{
int id;
struct qedf_fastpath *fp = NULL;
for (id = 0; id < qedf->num_queues; id++) {
fp = &(qedf->fp_array[id]);
if (fp->sb_id == QEDF_SB_ID_NULL)
break;
qedf_free_sb(qedf, fp->sb_info);
kfree(fp->sb_info);
}
kfree(qedf->fp_array);
}
static int qedf_prepare_sb(struct qedf_ctx *qedf)
{
int id;
struct qedf_fastpath *fp;
int ret;
qedf->fp_array =
kcalloc(qedf->num_queues, sizeof(struct qedf_fastpath),
GFP_KERNEL);
if (!qedf->fp_array) {
QEDF_ERR(&(qedf->dbg_ctx), "fastpath array allocation "
"failed.\n");
return -ENOMEM;
}
for (id = 0; id < qedf->num_queues; id++) {
fp = &(qedf->fp_array[id]);
fp->sb_id = QEDF_SB_ID_NULL;
fp->sb_info = kcalloc(1, sizeof(*fp->sb_info), GFP_KERNEL);
if (!fp->sb_info) {
QEDF_ERR(&(qedf->dbg_ctx), "SB info struct "
"allocation failed.\n");
goto err;
}
ret = qedf_alloc_and_init_sb(qedf, fp->sb_info, id);
if (ret) {
QEDF_ERR(&(qedf->dbg_ctx), "SB allocation and "
"initialization failed.\n");
goto err;
}
fp->sb_id = id;
fp->qedf = qedf;
fp->cq_num_entries =
qedf->global_queues[id]->cq_mem_size /
sizeof(struct fcoe_cqe);
}
err:
return 0;
}
void qedf_process_cqe(struct qedf_ctx *qedf, struct fcoe_cqe *cqe)
{
u16 xid;
struct qedf_ioreq *io_req;
struct qedf_rport *fcport;
u32 comp_type;
u8 io_comp_type;
unsigned long flags;
comp_type = (cqe->cqe_data >> FCOE_CQE_CQE_TYPE_SHIFT) &
FCOE_CQE_CQE_TYPE_MASK;
xid = cqe->cqe_data & FCOE_CQE_TASK_ID_MASK;
io_req = &qedf->cmd_mgr->cmds[xid];
/* Completion not for a valid I/O anymore so just return */
if (!io_req) {
QEDF_ERR(&qedf->dbg_ctx,
"io_req is NULL for xid=0x%x.\n", xid);
return;
}
fcport = io_req->fcport;
if (fcport == NULL) {
QEDF_ERR(&qedf->dbg_ctx,
"fcport is NULL for xid=0x%x io_req=%p.\n",
xid, io_req);
return;
}
/*
* Check that fcport is offloaded. If it isn't then the spinlock
* isn't valid and shouldn't be taken. We should just return.
*/
if (!test_bit(QEDF_RPORT_SESSION_READY, &fcport->flags)) {
QEDF_ERR(&qedf->dbg_ctx,
"Session not offloaded yet, fcport = %p.\n", fcport);
return;
}
spin_lock_irqsave(&fcport->rport_lock, flags);
io_comp_type = io_req->cmd_type;
spin_unlock_irqrestore(&fcport->rport_lock, flags);
switch (comp_type) {
case FCOE_GOOD_COMPLETION_CQE_TYPE:
atomic_inc(&fcport->free_sqes);
switch (io_comp_type) {
case QEDF_SCSI_CMD:
qedf_scsi_completion(qedf, cqe, io_req);
break;
case QEDF_ELS:
qedf_process_els_compl(qedf, cqe, io_req);
break;
case QEDF_TASK_MGMT_CMD:
qedf_process_tmf_compl(qedf, cqe, io_req);
break;
case QEDF_SEQ_CLEANUP:
qedf_process_seq_cleanup_compl(qedf, cqe, io_req);
break;
}
break;
case FCOE_ERROR_DETECTION_CQE_TYPE:
atomic_inc(&fcport->free_sqes);
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO,
"Error detect CQE.\n");
qedf_process_error_detect(qedf, cqe, io_req);
break;
case FCOE_EXCH_CLEANUP_CQE_TYPE:
atomic_inc(&fcport->free_sqes);
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO,
"Cleanup CQE.\n");
qedf_process_cleanup_compl(qedf, cqe, io_req);
break;
case FCOE_ABTS_CQE_TYPE:
atomic_inc(&fcport->free_sqes);
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO,
"Abort CQE.\n");
qedf_process_abts_compl(qedf, cqe, io_req);
break;
case FCOE_DUMMY_CQE_TYPE:
atomic_inc(&fcport->free_sqes);
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO,
"Dummy CQE.\n");
break;
case FCOE_LOCAL_COMP_CQE_TYPE:
atomic_inc(&fcport->free_sqes);
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO,
"Local completion CQE.\n");
break;
case FCOE_WARNING_CQE_TYPE:
atomic_inc(&fcport->free_sqes);
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO,
"Warning CQE.\n");
qedf_process_warning_compl(qedf, cqe, io_req);
break;
case MAX_FCOE_CQE_TYPE:
atomic_inc(&fcport->free_sqes);
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO,
"Max FCoE CQE.\n");
break;
default:
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_IO,
"Default CQE.\n");
break;
}
}
static void qedf_free_bdq(struct qedf_ctx *qedf)
{
int i;
if (qedf->bdq_pbl_list)
dma_free_coherent(&qedf->pdev->dev, QEDF_PAGE_SIZE,
qedf->bdq_pbl_list, qedf->bdq_pbl_list_dma);
if (qedf->bdq_pbl)
dma_free_coherent(&qedf->pdev->dev, qedf->bdq_pbl_mem_size,
qedf->bdq_pbl, qedf->bdq_pbl_dma);
for (i = 0; i < QEDF_BDQ_SIZE; i++) {
if (qedf->bdq[i].buf_addr) {
dma_free_coherent(&qedf->pdev->dev, QEDF_BDQ_BUF_SIZE,
qedf->bdq[i].buf_addr, qedf->bdq[i].buf_dma);
}
}
}
static void qedf_free_global_queues(struct qedf_ctx *qedf)
{
int i;
struct global_queue **gl = qedf->global_queues;
for (i = 0; i < qedf->num_queues; i++) {
if (!gl[i])
continue;
if (gl[i]->cq)
dma_free_coherent(&qedf->pdev->dev,
gl[i]->cq_mem_size, gl[i]->cq, gl[i]->cq_dma);
if (gl[i]->cq_pbl)
dma_free_coherent(&qedf->pdev->dev, gl[i]->cq_pbl_size,
gl[i]->cq_pbl, gl[i]->cq_pbl_dma);
kfree(gl[i]);
}
qedf_free_bdq(qedf);
}
static int qedf_alloc_bdq(struct qedf_ctx *qedf)
{
int i;
struct scsi_bd *pbl;
u64 *list;
dma_addr_t page;
/* Alloc dma memory for BDQ buffers */
for (i = 0; i < QEDF_BDQ_SIZE; i++) {
qedf->bdq[i].buf_addr = dma_alloc_coherent(&qedf->pdev->dev,
QEDF_BDQ_BUF_SIZE, &qedf->bdq[i].buf_dma, GFP_KERNEL);
if (!qedf->bdq[i].buf_addr) {
QEDF_ERR(&(qedf->dbg_ctx), "Could not allocate BDQ "
"buffer %d.\n", i);
return -ENOMEM;
}
}
/* Alloc dma memory for BDQ page buffer list */
qedf->bdq_pbl_mem_size =
QEDF_BDQ_SIZE * sizeof(struct scsi_bd);
qedf->bdq_pbl_mem_size =
ALIGN(qedf->bdq_pbl_mem_size, QEDF_PAGE_SIZE);
qedf->bdq_pbl = dma_alloc_coherent(&qedf->pdev->dev,
qedf->bdq_pbl_mem_size, &qedf->bdq_pbl_dma, GFP_KERNEL);
if (!qedf->bdq_pbl) {
QEDF_ERR(&(qedf->dbg_ctx), "Could not allocate BDQ PBL.\n");
return -ENOMEM;
}
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,
"BDQ PBL addr=0x%p dma=%pad\n",
qedf->bdq_pbl, &qedf->bdq_pbl_dma);
/*
* Populate BDQ PBL with physical and virtual address of individual
* BDQ buffers
*/
pbl = (struct scsi_bd *)qedf->bdq_pbl;
for (i = 0; i < QEDF_BDQ_SIZE; i++) {
pbl->address.hi = cpu_to_le32(U64_HI(qedf->bdq[i].buf_dma));
pbl->address.lo = cpu_to_le32(U64_LO(qedf->bdq[i].buf_dma));
pbl->opaque.fcoe_opaque.hi = 0;
/* Opaque lo data is an index into the BDQ array */
pbl->opaque.fcoe_opaque.lo = cpu_to_le32(i);
pbl++;
}
/* Allocate list of PBL pages */
qedf->bdq_pbl_list = dma_alloc_coherent(&qedf->pdev->dev,
QEDF_PAGE_SIZE,
&qedf->bdq_pbl_list_dma,
GFP_KERNEL);
if (!qedf->bdq_pbl_list) {
QEDF_ERR(&(qedf->dbg_ctx), "Could not allocate list of PBL pages.\n");
return -ENOMEM;
}
/*
* Now populate PBL list with pages that contain pointers to the
* individual buffers.
*/
qedf->bdq_pbl_list_num_entries = qedf->bdq_pbl_mem_size /
QEDF_PAGE_SIZE;
list = (u64 *)qedf->bdq_pbl_list;
page = qedf->bdq_pbl_list_dma;
for (i = 0; i < qedf->bdq_pbl_list_num_entries; i++) {
*list = qedf->bdq_pbl_dma;
list++;
page += QEDF_PAGE_SIZE;
}
return 0;
}
static int qedf_alloc_global_queues(struct qedf_ctx *qedf)
{
u32 *list;
int i;
int status;
u32 *pbl;
dma_addr_t page;
int num_pages;
/* Allocate and map CQs, RQs */
/*
* Number of global queues (CQ / RQ). This should
* be <= number of available MSIX vectors for the PF
*/
if (!qedf->num_queues) {
QEDF_ERR(&(qedf->dbg_ctx), "No MSI-X vectors available!\n");
return -ENOMEM;
}
/*
* Make sure we allocated the PBL that will contain the physical
* addresses of our queues
*/
if (!qedf->p_cpuq) {
QEDF_ERR(&qedf->dbg_ctx, "p_cpuq is NULL.\n");
return -EINVAL;
}
qedf->global_queues = kzalloc((sizeof(struct global_queue *)
* qedf->num_queues), GFP_KERNEL);
if (!qedf->global_queues) {
QEDF_ERR(&(qedf->dbg_ctx), "Unable to allocate global "
"queues array ptr memory\n");
return -ENOMEM;
}
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,
"qedf->global_queues=%p.\n", qedf->global_queues);
/* Allocate DMA coherent buffers for BDQ */
status = qedf_alloc_bdq(qedf);
if (status) {
QEDF_ERR(&qedf->dbg_ctx, "Unable to allocate bdq.\n");
goto mem_alloc_failure;
}
/* Allocate a CQ and an associated PBL for each MSI-X vector */
for (i = 0; i < qedf->num_queues; i++) {
qedf->global_queues[i] = kzalloc(sizeof(struct global_queue),
GFP_KERNEL);
if (!qedf->global_queues[i]) {
QEDF_WARN(&(qedf->dbg_ctx), "Unable to allocate "
"global queue %d.\n", i);
status = -ENOMEM;
goto mem_alloc_failure;
}
qedf->global_queues[i]->cq_mem_size =
FCOE_PARAMS_CQ_NUM_ENTRIES * sizeof(struct fcoe_cqe);
qedf->global_queues[i]->cq_mem_size =
ALIGN(qedf->global_queues[i]->cq_mem_size, QEDF_PAGE_SIZE);
qedf->global_queues[i]->cq_pbl_size =
(qedf->global_queues[i]->cq_mem_size /
PAGE_SIZE) * sizeof(void *);
qedf->global_queues[i]->cq_pbl_size =
ALIGN(qedf->global_queues[i]->cq_pbl_size, QEDF_PAGE_SIZE);
qedf->global_queues[i]->cq =
dma_alloc_coherent(&qedf->pdev->dev,
qedf->global_queues[i]->cq_mem_size,
&qedf->global_queues[i]->cq_dma,
GFP_KERNEL);
if (!qedf->global_queues[i]->cq) {
QEDF_WARN(&(qedf->dbg_ctx), "Could not allocate cq.\n");
status = -ENOMEM;
goto mem_alloc_failure;
}
qedf->global_queues[i]->cq_pbl =
dma_alloc_coherent(&qedf->pdev->dev,
qedf->global_queues[i]->cq_pbl_size,
&qedf->global_queues[i]->cq_pbl_dma,
GFP_KERNEL);
if (!qedf->global_queues[i]->cq_pbl) {
QEDF_WARN(&(qedf->dbg_ctx), "Could not allocate cq PBL.\n");
status = -ENOMEM;
goto mem_alloc_failure;
}
/* Create PBL */
num_pages = qedf->global_queues[i]->cq_mem_size /
QEDF_PAGE_SIZE;
page = qedf->global_queues[i]->cq_dma;
pbl = (u32 *)qedf->global_queues[i]->cq_pbl;
while (num_pages--) {
*pbl = U64_LO(page);
pbl++;
*pbl = U64_HI(page);
pbl++;
page += QEDF_PAGE_SIZE;
}
/* Set the initial consumer index for cq */
qedf->global_queues[i]->cq_cons_idx = 0;
}
list = (u32 *)qedf->p_cpuq;
/*
* The list is built as follows: CQ#0 PBL pointer, RQ#0 PBL pointer,
* CQ#1 PBL pointer, RQ#1 PBL pointer, etc. Each PBL pointer points
* to the physical address which contains an array of pointers to
* the physical addresses of the specific queue pages.
*/
for (i = 0; i < qedf->num_queues; i++) {
*list = U64_LO(qedf->global_queues[i]->cq_pbl_dma);
list++;
*list = U64_HI(qedf->global_queues[i]->cq_pbl_dma);
list++;
*list = U64_LO(0);
list++;
*list = U64_HI(0);
list++;
}
return 0;
mem_alloc_failure:
qedf_free_global_queues(qedf);
return status;
}
static int qedf_set_fcoe_pf_param(struct qedf_ctx *qedf)
{
u8 sq_num_pbl_pages;
u32 sq_mem_size;
u32 cq_mem_size;
u32 cq_num_entries;
int rval;
/*
* The number of completion queues/fastpath interrupts/status blocks
* we allocation is the minimum off:
*
* Number of CPUs
* Number allocated by qed for our PCI function
*/
qedf->num_queues = MIN_NUM_CPUS_MSIX(qedf);
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC, "Number of CQs is %d.\n",
qedf->num_queues);
qedf->p_cpuq = dma_alloc_coherent(&qedf->pdev->dev,
qedf->num_queues * sizeof(struct qedf_glbl_q_params),
&qedf->hw_p_cpuq, GFP_KERNEL);
if (!qedf->p_cpuq) {
QEDF_ERR(&(qedf->dbg_ctx), "dma_alloc_coherent failed.\n");
return 1;
}
rval = qedf_alloc_global_queues(qedf);
if (rval) {
QEDF_ERR(&(qedf->dbg_ctx), "Global queue allocation "
"failed.\n");
return 1;
}
/* Calculate SQ PBL size in the same manner as in qedf_sq_alloc() */
sq_mem_size = SQ_NUM_ENTRIES * sizeof(struct fcoe_wqe);
sq_mem_size = ALIGN(sq_mem_size, QEDF_PAGE_SIZE);
sq_num_pbl_pages = (sq_mem_size / QEDF_PAGE_SIZE);
/* Calculate CQ num entries */
cq_mem_size = FCOE_PARAMS_CQ_NUM_ENTRIES * sizeof(struct fcoe_cqe);
cq_mem_size = ALIGN(cq_mem_size, QEDF_PAGE_SIZE);
cq_num_entries = cq_mem_size / sizeof(struct fcoe_cqe);
memset(&(qedf->pf_params), 0, sizeof(qedf->pf_params));
/* Setup the value for fcoe PF */
qedf->pf_params.fcoe_pf_params.num_cons = QEDF_MAX_SESSIONS;
qedf->pf_params.fcoe_pf_params.num_tasks = FCOE_PARAMS_NUM_TASKS;
qedf->pf_params.fcoe_pf_params.glbl_q_params_addr =
(u64)qedf->hw_p_cpuq;
qedf->pf_params.fcoe_pf_params.sq_num_pbl_pages = sq_num_pbl_pages;
qedf->pf_params.fcoe_pf_params.rq_buffer_log_size = 0;
qedf->pf_params.fcoe_pf_params.cq_num_entries = cq_num_entries;
qedf->pf_params.fcoe_pf_params.num_cqs = qedf->num_queues;
/* log_page_size: 12 for 4KB pages */
qedf->pf_params.fcoe_pf_params.log_page_size = ilog2(QEDF_PAGE_SIZE);
qedf->pf_params.fcoe_pf_params.mtu = 9000;
qedf->pf_params.fcoe_pf_params.gl_rq_pi = QEDF_FCOE_PARAMS_GL_RQ_PI;
qedf->pf_params.fcoe_pf_params.gl_cmd_pi = QEDF_FCOE_PARAMS_GL_CMD_PI;
/* BDQ address and size */
qedf->pf_params.fcoe_pf_params.bdq_pbl_base_addr[0] =
qedf->bdq_pbl_list_dma;
qedf->pf_params.fcoe_pf_params.bdq_pbl_num_entries[0] =
qedf->bdq_pbl_list_num_entries;
qedf->pf_params.fcoe_pf_params.rq_buffer_size = QEDF_BDQ_BUF_SIZE;
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,
"bdq_list=%p bdq_pbl_list_dma=%llx bdq_pbl_list_entries=%d.\n",
qedf->bdq_pbl_list,
qedf->pf_params.fcoe_pf_params.bdq_pbl_base_addr[0],
qedf->pf_params.fcoe_pf_params.bdq_pbl_num_entries[0]);
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,
"cq_num_entries=%d.\n",
qedf->pf_params.fcoe_pf_params.cq_num_entries);
return 0;
}
/* Free DMA coherent memory for array of queue pointers we pass to qed */
static void qedf_free_fcoe_pf_param(struct qedf_ctx *qedf)
{
size_t size = 0;
if (qedf->p_cpuq) {
size = qedf->num_queues * sizeof(struct qedf_glbl_q_params);
dma_free_coherent(&qedf->pdev->dev, size, qedf->p_cpuq,
qedf->hw_p_cpuq);
}
qedf_free_global_queues(qedf);
kfree(qedf->global_queues);
}
/*
* PCI driver functions
*/
static const struct pci_device_id qedf_pci_tbl[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, 0x165c) },
{ PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, 0x8080) },
{0}
};
MODULE_DEVICE_TABLE(pci, qedf_pci_tbl);
static struct pci_driver qedf_pci_driver = {
.name = QEDF_MODULE_NAME,
.id_table = qedf_pci_tbl,
.probe = qedf_probe,
.remove = qedf_remove,
.shutdown = qedf_shutdown,
.suspend = qedf_suspend,
};
static int __qedf_probe(struct pci_dev *pdev, int mode)
{
int rc = -EINVAL;
struct fc_lport *lport;
struct qedf_ctx *qedf = NULL;
struct Scsi_Host *host;
bool is_vf = false;
struct qed_ll2_params params;
char host_buf[20];
struct qed_link_params link_params;
int status;
void *task_start, *task_end;
struct qed_slowpath_params slowpath_params;
struct qed_probe_params qed_params;
u16 retry_cnt = 10;
/*
* When doing error recovery we didn't reap the lport so don't try
* to reallocate it.
*/
retry_probe:
if (mode == QEDF_MODE_RECOVERY)
msleep(2000);
if (mode != QEDF_MODE_RECOVERY) {
lport = libfc_host_alloc(&qedf_host_template,
sizeof(struct qedf_ctx));
if (!lport) {
QEDF_ERR(NULL, "Could not allocate lport.\n");
rc = -ENOMEM;
goto err0;
}
fc_disc_init(lport);
/* Initialize qedf_ctx */
qedf = lport_priv(lport);
set_bit(QEDF_PROBING, &qedf->flags);
qedf->lport = lport;
qedf->ctlr.lp = lport;
qedf->pdev = pdev;
qedf->dbg_ctx.pdev = pdev;
qedf->dbg_ctx.host_no = lport->host->host_no;
spin_lock_init(&qedf->hba_lock);
INIT_LIST_HEAD(&qedf->fcports);
qedf->curr_conn_id = QEDF_MAX_SESSIONS - 1;
atomic_set(&qedf->num_offloads, 0);
qedf->stop_io_on_error = false;
pci_set_drvdata(pdev, qedf);
init_completion(&qedf->fipvlan_compl);
mutex_init(&qedf->stats_mutex);
mutex_init(&qedf->flush_mutex);
qedf->flogi_pending = 0;
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_INFO,
"QLogic FastLinQ FCoE Module qedf %s, "
"FW %d.%d.%d.%d\n", QEDF_VERSION,
FW_MAJOR_VERSION, FW_MINOR_VERSION, FW_REVISION_VERSION,
FW_ENGINEERING_VERSION);
} else {
/* Init pointers during recovery */
qedf = pci_get_drvdata(pdev);
set_bit(QEDF_PROBING, &qedf->flags);
lport = qedf->lport;
}
QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_DISC, "Probe started.\n");
host = lport->host;
/* Allocate mempool for qedf_io_work structs */
qedf->io_mempool = mempool_create_slab_pool(QEDF_IO_WORK_MIN,
qedf_io_work_cache);
if (qedf->io_mempool == NULL) {
QEDF_ERR(&(qedf->dbg_ctx), "qedf->io_mempool is NULL.\n");
goto err1;
}
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_INFO, "qedf->io_mempool=%p.\n",
qedf->io_mempool);
sprintf(host_buf, "qedf_%u_link",
qedf->lport->host->host_no);
qedf->link_update_wq = create_workqueue(host_buf);
INIT_DELAYED_WORK(&qedf->link_update, qedf_handle_link_update);
INIT_DELAYED_WORK(&qedf->link_recovery, qedf_link_recovery);
INIT_DELAYED_WORK(&qedf->grcdump_work, qedf_wq_grcdump);
INIT_DELAYED_WORK(&qedf->stag_work, qedf_stag_change_work);
qedf->fipvlan_retries = qedf_fipvlan_retries;
/* Set a default prio in case DCBX doesn't converge */
if (qedf_default_prio > -1) {
/*
* This is the case where we pass a modparam in so we want to
* honor it even if dcbx doesn't converge.
*/
qedf->prio = qedf_default_prio;
} else
qedf->prio = QEDF_DEFAULT_PRIO;
/*
* Common probe. Takes care of basic hardware init and pci_*
* functions.
*/
memset(&qed_params, 0, sizeof(qed_params));
qed_params.protocol = QED_PROTOCOL_FCOE;
qed_params.dp_module = qedf_dp_module;
qed_params.dp_level = qedf_dp_level;
qed_params.is_vf = is_vf;
qedf->cdev = qed_ops->common->probe(pdev, &qed_params);
if (!qedf->cdev) {
if ((mode == QEDF_MODE_RECOVERY) && retry_cnt) {
QEDF_ERR(&qedf->dbg_ctx,
"Retry %d initialize hardware\n", retry_cnt);
retry_cnt--;
goto retry_probe;
}
QEDF_ERR(&qedf->dbg_ctx, "common probe failed.\n");
rc = -ENODEV;
goto err1;
}
/* Learn information crucial for qedf to progress */
rc = qed_ops->fill_dev_info(qedf->cdev, &qedf->dev_info);
if (rc) {
QEDF_ERR(&(qedf->dbg_ctx), "Failed to dev info.\n");
goto err1;
}
QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_DISC,
"dev_info: num_hwfns=%d affin_hwfn_idx=%d.\n",
qedf->dev_info.common.num_hwfns,
qed_ops->common->get_affin_hwfn_idx(qedf->cdev));
/* queue allocation code should come here
* order should be
* slowpath_start
* status block allocation
* interrupt registration (to get min number of queues)
* set_fcoe_pf_param
* qed_sp_fcoe_func_start
*/
rc = qedf_set_fcoe_pf_param(qedf);
if (rc) {
QEDF_ERR(&(qedf->dbg_ctx), "Cannot set fcoe pf param.\n");
goto err2;
}
qed_ops->common->update_pf_params(qedf->cdev, &qedf->pf_params);
/* Learn information crucial for qedf to progress */
rc = qed_ops->fill_dev_info(qedf->cdev, &qedf->dev_info);
if (rc) {
QEDF_ERR(&qedf->dbg_ctx, "Failed to fill dev info.\n");
goto err2;
}
if (mode != QEDF_MODE_RECOVERY) {
qedf->devlink = qed_ops->common->devlink_register(qedf->cdev);
if (IS_ERR(qedf->devlink)) {
QEDF_ERR(&qedf->dbg_ctx, "Cannot register devlink\n");
rc = PTR_ERR(qedf->devlink);
qedf->devlink = NULL;
goto err2;
}
}
/* Record BDQ producer doorbell addresses */
qedf->bdq_primary_prod = qedf->dev_info.primary_dbq_rq_addr;
qedf->bdq_secondary_prod = qedf->dev_info.secondary_bdq_rq_addr;
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,
"BDQ primary_prod=%p secondary_prod=%p.\n", qedf->bdq_primary_prod,
qedf->bdq_secondary_prod);
qed_ops->register_ops(qedf->cdev, &qedf_cb_ops, qedf);
rc = qedf_prepare_sb(qedf);
if (rc) {
QEDF_ERR(&(qedf->dbg_ctx), "Cannot start slowpath.\n");
goto err2;
}
/* Start the Slowpath-process */
slowpath_params.int_mode = QED_INT_MODE_MSIX;
slowpath_params.drv_major = QEDF_DRIVER_MAJOR_VER;
slowpath_params.drv_minor = QEDF_DRIVER_MINOR_VER;
slowpath_params.drv_rev = QEDF_DRIVER_REV_VER;
slowpath_params.drv_eng = QEDF_DRIVER_ENG_VER;
strncpy(slowpath_params.name, "qedf", QED_DRV_VER_STR_SIZE);
rc = qed_ops->common->slowpath_start(qedf->cdev, &slowpath_params);
if (rc) {
QEDF_ERR(&(qedf->dbg_ctx), "Cannot start slowpath.\n");
goto err2;
}
/*
* update_pf_params needs to be called before and after slowpath
* start
*/
qed_ops->common->update_pf_params(qedf->cdev, &qedf->pf_params);
/* Setup interrupts */
rc = qedf_setup_int(qedf);
if (rc) {
QEDF_ERR(&qedf->dbg_ctx, "Setup interrupts failed.\n");
goto err3;
}
rc = qed_ops->start(qedf->cdev, &qedf->tasks);
if (rc) {
QEDF_ERR(&(qedf->dbg_ctx), "Cannot start FCoE function.\n");
goto err4;
}
task_start = qedf_get_task_mem(&qedf->tasks, 0);
task_end = qedf_get_task_mem(&qedf->tasks, MAX_TID_BLOCKS_FCOE - 1);
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC, "Task context start=%p, "
"end=%p block_size=%u.\n", task_start, task_end,
qedf->tasks.size);
/*
* We need to write the number of BDs in the BDQ we've preallocated so
* the f/w will do a prefetch and we'll get an unsolicited CQE when a
* packet arrives.
*/
qedf->bdq_prod_idx = QEDF_BDQ_SIZE;
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,
"Writing %d to primary and secondary BDQ doorbell registers.\n",
qedf->bdq_prod_idx);
writew(qedf->bdq_prod_idx, qedf->bdq_primary_prod);
readw(qedf->bdq_primary_prod);
writew(qedf->bdq_prod_idx, qedf->bdq_secondary_prod);
readw(qedf->bdq_secondary_prod);
qed_ops->common->set_power_state(qedf->cdev, PCI_D0);
/* Now that the dev_info struct has been filled in set the MAC
* address
*/
ether_addr_copy(qedf->mac, qedf->dev_info.common.hw_mac);
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC, "MAC address is %pM.\n",
qedf->mac);
/*
* Set the WWNN and WWPN in the following way:
*
* If the info we get from qed is non-zero then use that to set the
* WWPN and WWNN. Otherwise fall back to use fcoe_wwn_from_mac() based
* on the MAC address.
*/
if (qedf->dev_info.wwnn != 0 && qedf->dev_info.wwpn != 0) {
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,
"Setting WWPN and WWNN from qed dev_info.\n");
qedf->wwnn = qedf->dev_info.wwnn;
qedf->wwpn = qedf->dev_info.wwpn;
} else {
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,
"Setting WWPN and WWNN using fcoe_wwn_from_mac().\n");
qedf->wwnn = fcoe_wwn_from_mac(qedf->mac, 1, 0);
qedf->wwpn = fcoe_wwn_from_mac(qedf->mac, 2, 0);
}
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC, "WWNN=%016llx "
"WWPN=%016llx.\n", qedf->wwnn, qedf->wwpn);
sprintf(host_buf, "host_%d", host->host_no);
qed_ops->common->set_name(qedf->cdev, host_buf);
/* Allocate cmd mgr */
qedf->cmd_mgr = qedf_cmd_mgr_alloc(qedf);
if (!qedf->cmd_mgr) {
QEDF_ERR(&(qedf->dbg_ctx), "Failed to allocate cmd mgr.\n");
rc = -ENOMEM;
goto err5;
}
if (mode != QEDF_MODE_RECOVERY) {
host->transportt = qedf_fc_transport_template;
host->max_lun = qedf_max_lun;
host->max_cmd_len = QEDF_MAX_CDB_LEN;
host->max_id = QEDF_MAX_SESSIONS;
host->can_queue = FCOE_PARAMS_NUM_TASKS;
rc = scsi_add_host(host, &pdev->dev);
if (rc) {
QEDF_WARN(&qedf->dbg_ctx,
"Error adding Scsi_Host rc=0x%x.\n", rc);
goto err6;
}
}
memset(&params, 0, sizeof(params));
params.mtu = QEDF_LL2_BUF_SIZE;
ether_addr_copy(params.ll2_mac_address, qedf->mac);
/* Start LL2 processing thread */
snprintf(host_buf, 20, "qedf_%d_ll2", host->host_no);
qedf->ll2_recv_wq =
create_workqueue(host_buf);
if (!qedf->ll2_recv_wq) {
QEDF_ERR(&(qedf->dbg_ctx), "Failed to LL2 workqueue.\n");
rc = -ENOMEM;
goto err7;
}
#ifdef CONFIG_DEBUG_FS
qedf_dbg_host_init(&(qedf->dbg_ctx), qedf_debugfs_ops,
qedf_dbg_fops);
#endif
/* Start LL2 */
qed_ops->ll2->register_cb_ops(qedf->cdev, &qedf_ll2_cb_ops, qedf);
rc = qed_ops->ll2->start(qedf->cdev, &params);
if (rc) {
QEDF_ERR(&(qedf->dbg_ctx), "Could not start Light L2.\n");
goto err7;
}
set_bit(QEDF_LL2_STARTED, &qedf->flags);
/* Set initial FIP/FCoE VLAN to NULL */
qedf->vlan_id = 0;
/*
* No need to setup fcoe_ctlr or fc_lport objects during recovery since
* they were not reaped during the unload process.
*/
if (mode != QEDF_MODE_RECOVERY) {
/* Setup imbedded fcoe controller */
qedf_fcoe_ctlr_setup(qedf);
/* Setup lport */
rc = qedf_lport_setup(qedf);
if (rc) {
QEDF_ERR(&(qedf->dbg_ctx),
"qedf_lport_setup failed.\n");
goto err7;
}
}
sprintf(host_buf, "qedf_%u_timer", qedf->lport->host->host_no);
qedf->timer_work_queue =
create_workqueue(host_buf);
if (!qedf->timer_work_queue) {
QEDF_ERR(&(qedf->dbg_ctx), "Failed to start timer "
"workqueue.\n");
rc = -ENOMEM;
goto err7;
}
/* DPC workqueue is not reaped during recovery unload */
if (mode != QEDF_MODE_RECOVERY) {
sprintf(host_buf, "qedf_%u_dpc",
qedf->lport->host->host_no);
qedf->dpc_wq = create_workqueue(host_buf);
}
INIT_DELAYED_WORK(&qedf->recovery_work, qedf_recovery_handler);
/*
* GRC dump and sysfs parameters are not reaped during the recovery
* unload process.
*/
if (mode != QEDF_MODE_RECOVERY) {
qedf->grcdump_size =
qed_ops->common->dbg_all_data_size(qedf->cdev);
if (qedf->grcdump_size) {
rc = qedf_alloc_grc_dump_buf(&qedf->grcdump,
qedf->grcdump_size);
if (rc) {
QEDF_ERR(&(qedf->dbg_ctx),
"GRC Dump buffer alloc failed.\n");
qedf->grcdump = NULL;
}
QEDF_INFO(&(qedf->dbg_ctx), QEDF_LOG_DISC,
"grcdump: addr=%p, size=%u.\n",
qedf->grcdump, qedf->grcdump_size);
}
qedf_create_sysfs_ctx_attr(qedf);
/* Initialize I/O tracing for this adapter */
spin_lock_init(&qedf->io_trace_lock);
qedf->io_trace_idx = 0;
}
init_completion(&qedf->flogi_compl);
status = qed_ops->common->update_drv_state(qedf->cdev, true);
if (status)
QEDF_ERR(&(qedf->dbg_ctx),
"Failed to send drv state to MFW.\n");
memset(&link_params, 0, sizeof(struct qed_link_params));
link_params.link_up = true;
status = qed_ops->common->set_link(qedf->cdev, &link_params);
if (status)
QEDF_WARN(&(qedf->dbg_ctx), "set_link failed.\n");
/* Start/restart discovery */
if (mode == QEDF_MODE_RECOVERY)
fcoe_ctlr_link_up(&qedf->ctlr);
else
fc_fabric_login(lport);
QEDF_INFO(&qedf->dbg_ctx, QEDF_LOG_DISC, "Probe done.\n");
clear_bit(QEDF_PROBING, &qedf->flags);
/* All good */
return 0;
err7:
if (qedf->ll2_recv_wq)
destroy_workqueue(qedf->ll2_recv_wq);
fc_remove_host(qedf->lport->host);
scsi_remove_host(qedf->lport->host);
#ifdef CONFIG_DEBUG_FS
qedf_dbg_host_exit(&(qedf->dbg_ctx));
#endif
err6:
qedf_cmd_mgr_free(qedf->cmd_mgr);
err5:
qed_ops->stop(qedf->cdev);
err4:
qedf_free_fcoe_pf_param(qedf);
qedf_sync_free_irqs(qedf);
err3:
qed_ops->common->slowpath_stop(qedf->cdev);
err2:
qed_ops->common->remove(qedf->cdev);
err1:
scsi_host_put(lport->host);
err0:
return rc;
}
static int qedf_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
return __qedf_probe(pdev, QEDF_MODE_NORMAL);
}
static void __qedf_remove(struct pci_dev *pdev, int mode)
{
struct qedf_ctx *qedf;
int rc;
if (!pdev) {
QEDF_ERR(NULL, "pdev is NULL.\n");
return;
}
qedf = pci_get_drvdata(pdev);
/*
* Prevent race where we're in board disable work and then try to
* rmmod the module.
*/
if (test_bit(QEDF_UNLOADING, &qedf->flags)) {
QEDF_ERR(&qedf->dbg_ctx, "Already removing PCI function.\n");
return;
}
if (mode != QEDF_MODE_RECOVERY)
set_bit(QEDF_UNLOADING, &qedf->flags);
/* Logoff the fabric to upload all connections */
if (mode == QEDF_MODE_RECOVERY)
fcoe_ctlr_link_down(&qedf->ctlr);
else
fc_fabric_logoff(qedf->lport);
if (!qedf_wait_for_upload(qedf))
QEDF_ERR(&qedf->dbg_ctx, "Could not upload all sessions.\n");
#ifdef CONFIG_DEBUG_FS
qedf_dbg_host_exit(&(qedf->dbg_ctx));
#endif
/* Stop any link update handling */
cancel_delayed_work_sync(&qedf->link_update);
destroy_workqueue(qedf->link_update_wq);
qedf->link_update_wq = NULL;
if (qedf->timer_work_queue)
destroy_workqueue(qedf->timer_work_queue);
/* Stop Light L2 */
clear_bit(QEDF_LL2_STARTED, &qedf->flags);
qed_ops->ll2->stop(qedf->cdev);
if (qedf->ll2_recv_wq)
destroy_workqueue(qedf->ll2_recv_wq);
/* Stop fastpath */
qedf_sync_free_irqs(qedf);
qedf_destroy_sb(qedf);
/*
* During recovery don't destroy OS constructs that represent the
* physical port.
*/
if (mode != QEDF_MODE_RECOVERY) {
qedf_free_grc_dump_buf(&qedf->grcdump);
qedf_remove_sysfs_ctx_attr(qedf);
/* Remove all SCSI/libfc/libfcoe structures */
fcoe_ctlr_destroy(&qedf->ctlr);
fc_lport_destroy(qedf->lport);
fc_remove_host(qedf->lport->host);
scsi_remove_host(qedf->lport->host);
}
qedf_cmd_mgr_free(qedf->cmd_mgr);
if (mode != QEDF_MODE_RECOVERY) {
fc_exch_mgr_free(qedf->lport);
fc_lport_free_stats(qedf->lport);
/* Wait for all vports to be reaped */
qedf_wait_for_vport_destroy(qedf);
}
/*
* Now that all connections have been uploaded we can stop the
* rest of the qed operations
*/
qed_ops->stop(qedf->cdev);
if (mode != QEDF_MODE_RECOVERY) {
if (qedf->dpc_wq) {
/* Stop general DPC handling */
destroy_workqueue(qedf->dpc_wq);
qedf->dpc_wq = NULL;
}
}
/* Final shutdown for the board */
qedf_free_fcoe_pf_param(qedf);
if (mode != QEDF_MODE_RECOVERY) {
qed_ops->common->set_power_state(qedf->cdev, PCI_D0);
pci_set_drvdata(pdev, NULL);
}
rc = qed_ops->common->update_drv_state(qedf->cdev, false);
if (rc)
QEDF_ERR(&(qedf->dbg_ctx),
"Failed to send drv state to MFW.\n");
if (mode != QEDF_MODE_RECOVERY && qedf->devlink) {
qed_ops->common->devlink_unregister(qedf->devlink);
qedf->devlink = NULL;
}
qed_ops->common->slowpath_stop(qedf->cdev);
qed_ops->common->remove(qedf->cdev);
mempool_destroy(qedf->io_mempool);
/* Only reap the Scsi_host on a real removal */
if (mode != QEDF_MODE_RECOVERY)
scsi_host_put(qedf->lport->host);
}
static void qedf_remove(struct pci_dev *pdev)
{
/* Check to make sure this function wasn't already disabled */
if (!atomic_read(&pdev->enable_cnt))
return;
__qedf_remove(pdev, QEDF_MODE_NORMAL);
}
void qedf_wq_grcdump(struct work_struct *work)
{
struct qedf_ctx *qedf =
container_of(work, struct qedf_ctx, grcdump_work.work);
QEDF_ERR(&(qedf->dbg_ctx), "Collecting GRC dump.\n");
qedf_capture_grc_dump(qedf);
}
void qedf_schedule_hw_err_handler(void *dev, enum qed_hw_err_type err_type)
{
struct qedf_ctx *qedf = dev;
QEDF_ERR(&(qedf->dbg_ctx),
"Hardware error handler scheduled, event=%d.\n",
err_type);
if (test_bit(QEDF_IN_RECOVERY, &qedf->flags)) {
QEDF_ERR(&(qedf->dbg_ctx),
"Already in recovery, not scheduling board disable work.\n");
return;
}
switch (err_type) {
case QED_HW_ERR_FAN_FAIL:
schedule_delayed_work(&qedf->board_disable_work, 0);
break;
case QED_HW_ERR_MFW_RESP_FAIL:
case QED_HW_ERR_HW_ATTN:
case QED_HW_ERR_DMAE_FAIL:
case QED_HW_ERR_FW_ASSERT:
/* Prevent HW attentions from being reasserted */
qed_ops->common->attn_clr_enable(qedf->cdev, true);
break;
case QED_HW_ERR_RAMROD_FAIL:
/* Prevent HW attentions from being reasserted */
qed_ops->common->attn_clr_enable(qedf->cdev, true);
if (qedf_enable_recovery && qedf->devlink)
qed_ops->common->report_fatal_error(qedf->devlink,
err_type);
break;
default:
break;
}
}
/*
* Protocol TLV handler
*/
void qedf_get_protocol_tlv_data(void *dev, void *data)
{
struct qedf_ctx *qedf = dev;
struct qed_mfw_tlv_fcoe *fcoe = data;
struct fc_lport *lport;
struct Scsi_Host *host;
struct fc_host_attrs *fc_host;
struct fc_host_statistics *hst;
if (!qedf) {
QEDF_ERR(NULL, "qedf is null.\n");
return;
}
if (test_bit(QEDF_PROBING, &qedf->flags)) {
QEDF_ERR(&qedf->dbg_ctx, "Function is still probing.\n");
return;
}
lport = qedf->lport;
host = lport->host;
fc_host = shost_to_fc_host(host);
/* Force a refresh of the fc_host stats including offload stats */
hst = qedf_fc_get_host_stats(host);
fcoe->qos_pri_set = true;
fcoe->qos_pri = 3; /* Hard coded to 3 in driver */
fcoe->ra_tov_set = true;
fcoe->ra_tov = lport->r_a_tov;
fcoe->ed_tov_set = true;
fcoe->ed_tov = lport->e_d_tov;
fcoe->npiv_state_set = true;
fcoe->npiv_state = 1; /* NPIV always enabled */
fcoe->num_npiv_ids_set = true;
fcoe->num_npiv_ids = fc_host->npiv_vports_inuse;
/* Certain attributes we only want to set if we've selected an FCF */
if (qedf->ctlr.sel_fcf) {
fcoe->switch_name_set = true;
u64_to_wwn(qedf->ctlr.sel_fcf->switch_name, fcoe->switch_name);
}
fcoe->port_state_set = true;
/* For qedf we're either link down or fabric attach */
if (lport->link_up)
fcoe->port_state = QED_MFW_TLV_PORT_STATE_FABRIC;
else
fcoe->port_state = QED_MFW_TLV_PORT_STATE_OFFLINE;
fcoe->link_failures_set = true;
fcoe->link_failures = (u16)hst->link_failure_count;
fcoe->fcoe_txq_depth_set = true;
fcoe->fcoe_rxq_depth_set = true;
fcoe->fcoe_rxq_depth = FCOE_PARAMS_NUM_TASKS;
fcoe->fcoe_txq_depth = FCOE_PARAMS_NUM_TASKS;
fcoe->fcoe_rx_frames_set = true;
fcoe->fcoe_rx_frames = hst->rx_frames;
fcoe->fcoe_tx_frames_set = true;
fcoe->fcoe_tx_frames = hst->tx_frames;
fcoe->fcoe_rx_bytes_set = true;
fcoe->fcoe_rx_bytes = hst->fcp_input_megabytes * 1000000;
fcoe->fcoe_tx_bytes_set = true;
fcoe->fcoe_tx_bytes = hst->fcp_output_megabytes * 1000000;
fcoe->crc_count_set = true;
fcoe->crc_count = hst->invalid_crc_count;
fcoe->tx_abts_set = true;
fcoe->tx_abts = hst->fcp_packet_aborts;
fcoe->tx_lun_rst_set = true;
fcoe->tx_lun_rst = qedf->lun_resets;
fcoe->abort_task_sets_set = true;
fcoe->abort_task_sets = qedf->packet_aborts;
fcoe->scsi_busy_set = true;
fcoe->scsi_busy = qedf->busy;
fcoe->scsi_tsk_full_set = true;
fcoe->scsi_tsk_full = qedf->task_set_fulls;
}
/* Deferred work function to perform soft context reset on STAG change */
void qedf_stag_change_work(struct work_struct *work)
{
struct qedf_ctx *qedf =
container_of(work, struct qedf_ctx, stag_work.work);
printk_ratelimited("[%s]:[%s:%d]:%d: Performing software context reset.",
dev_name(&qedf->pdev->dev), __func__, __LINE__,
qedf->dbg_ctx.host_no);
qedf_ctx_soft_reset(qedf->lport);
}
static void qedf_shutdown(struct pci_dev *pdev)
{
__qedf_remove(pdev, QEDF_MODE_NORMAL);
}
static int qedf_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct qedf_ctx *qedf;
if (!pdev) {
QEDF_ERR(NULL, "pdev is NULL.\n");
return -ENODEV;
}
qedf = pci_get_drvdata(pdev);
QEDF_ERR(&qedf->dbg_ctx, "%s: Device does not support suspend operation\n", __func__);
return -EPERM;
}
/*
* Recovery handler code
*/
static void qedf_schedule_recovery_handler(void *dev)
{
struct qedf_ctx *qedf = dev;
QEDF_ERR(&qedf->dbg_ctx, "Recovery handler scheduled.\n");
schedule_delayed_work(&qedf->recovery_work, 0);
}
static void qedf_recovery_handler(struct work_struct *work)
{
struct qedf_ctx *qedf =
container_of(work, struct qedf_ctx, recovery_work.work);
if (test_and_set_bit(QEDF_IN_RECOVERY, &qedf->flags))
return;
/*
* Call common_ops->recovery_prolog to allow the MFW to quiesce
* any PCI transactions.
*/
qed_ops->common->recovery_prolog(qedf->cdev);
QEDF_ERR(&qedf->dbg_ctx, "Recovery work start.\n");
__qedf_remove(qedf->pdev, QEDF_MODE_RECOVERY);
/*
* Reset link and dcbx to down state since we will not get a link down
* event from the MFW but calling __qedf_remove will essentially be a
* link down event.
*/
atomic_set(&qedf->link_state, QEDF_LINK_DOWN);
atomic_set(&qedf->dcbx, QEDF_DCBX_PENDING);
__qedf_probe(qedf->pdev, QEDF_MODE_RECOVERY);
clear_bit(QEDF_IN_RECOVERY, &qedf->flags);
QEDF_ERR(&qedf->dbg_ctx, "Recovery work complete.\n");
}
/* Generic TLV data callback */
void qedf_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data)
{
struct qedf_ctx *qedf;
if (!dev) {
QEDF_INFO(NULL, QEDF_LOG_EVT,
"dev is NULL so ignoring get_generic_tlv_data request.\n");
return;
}
qedf = (struct qedf_ctx *)dev;
memset(data, 0, sizeof(struct qed_generic_tlvs));
ether_addr_copy(data->mac[0], qedf->mac);
}
/*
* Module Init/Remove
*/
static int __init qedf_init(void)
{
int ret;
/* If debug=1 passed, set the default log mask */
if (qedf_debug == QEDF_LOG_DEFAULT)
qedf_debug = QEDF_DEFAULT_LOG_MASK;
/*
* Check that default prio for FIP/FCoE traffic is between 0..7 if a
* value has been set
*/
if (qedf_default_prio > -1)
if (qedf_default_prio > 7) {
qedf_default_prio = QEDF_DEFAULT_PRIO;
QEDF_ERR(NULL, "FCoE/FIP priority out of range, resetting to %d.\n",
QEDF_DEFAULT_PRIO);
}
/* Print driver banner */
QEDF_INFO(NULL, QEDF_LOG_INFO, "%s v%s.\n", QEDF_DESCR,
QEDF_VERSION);
/* Create kmem_cache for qedf_io_work structs */
qedf_io_work_cache = kmem_cache_create("qedf_io_work_cache",
sizeof(struct qedf_io_work), 0, SLAB_HWCACHE_ALIGN, NULL);
if (qedf_io_work_cache == NULL) {
QEDF_ERR(NULL, "qedf_io_work_cache is NULL.\n");
goto err1;
}
QEDF_INFO(NULL, QEDF_LOG_DISC, "qedf_io_work_cache=%p.\n",
qedf_io_work_cache);
qed_ops = qed_get_fcoe_ops();
if (!qed_ops) {
QEDF_ERR(NULL, "Failed to get qed fcoe operations\n");
goto err1;
}
#ifdef CONFIG_DEBUG_FS
qedf_dbg_init("qedf");
#endif
qedf_fc_transport_template =
fc_attach_transport(&qedf_fc_transport_fn);
if (!qedf_fc_transport_template) {
QEDF_ERR(NULL, "Could not register with FC transport\n");
goto err2;
}
qedf_fc_vport_transport_template =
fc_attach_transport(&qedf_fc_vport_transport_fn);
if (!qedf_fc_vport_transport_template) {
QEDF_ERR(NULL, "Could not register vport template with FC "
"transport\n");
goto err3;
}
qedf_io_wq = create_workqueue("qedf_io_wq");
if (!qedf_io_wq) {
QEDF_ERR(NULL, "Could not create qedf_io_wq.\n");
goto err4;
}
qedf_cb_ops.get_login_failures = qedf_get_login_failures;
ret = pci_register_driver(&qedf_pci_driver);
if (ret) {
QEDF_ERR(NULL, "Failed to register driver\n");
goto err5;
}
return 0;
err5:
destroy_workqueue(qedf_io_wq);
err4:
fc_release_transport(qedf_fc_vport_transport_template);
err3:
fc_release_transport(qedf_fc_transport_template);
err2:
#ifdef CONFIG_DEBUG_FS
qedf_dbg_exit();
#endif
qed_put_fcoe_ops();
err1:
return -EINVAL;
}
static void __exit qedf_cleanup(void)
{
pci_unregister_driver(&qedf_pci_driver);
destroy_workqueue(qedf_io_wq);
fc_release_transport(qedf_fc_vport_transport_template);
fc_release_transport(qedf_fc_transport_template);
#ifdef CONFIG_DEBUG_FS
qedf_dbg_exit();
#endif
qed_put_fcoe_ops();
kmem_cache_destroy(qedf_io_work_cache);
}
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx FCoE Module");
MODULE_AUTHOR("QLogic Corporation");
MODULE_VERSION(QEDF_VERSION);
module_init(qedf_init);
module_exit(qedf_cleanup);