kernel/drivers/media/i2c/adv7180.c
2024-07-22 17:22:30 +08:00

1576 lines
42 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* adv7180.c Analog Devices ADV7180 video decoder driver
* Copyright (c) 2009 Intel Corporation
* Copyright (C) 2013 Cogent Embedded, Inc.
* Copyright (C) 2013 Renesas Solutions Corp.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/i2c.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/gpio/consumer.h>
#include <linux/videodev2.h>
#include <media/v4l2-ioctl.h>
#include <media/v4l2-event.h>
#include <media/v4l2-device.h>
#include <media/v4l2-ctrls.h>
#include <linux/mutex.h>
#include <linux/delay.h>
#define ADV7180_STD_AD_PAL_BG_NTSC_J_SECAM 0x0
#define ADV7180_STD_AD_PAL_BG_NTSC_J_SECAM_PED 0x1
#define ADV7180_STD_AD_PAL_N_NTSC_J_SECAM 0x2
#define ADV7180_STD_AD_PAL_N_NTSC_M_SECAM 0x3
#define ADV7180_STD_NTSC_J 0x4
#define ADV7180_STD_NTSC_M 0x5
#define ADV7180_STD_PAL60 0x6
#define ADV7180_STD_NTSC_443 0x7
#define ADV7180_STD_PAL_BG 0x8
#define ADV7180_STD_PAL_N 0x9
#define ADV7180_STD_PAL_M 0xa
#define ADV7180_STD_PAL_M_PED 0xb
#define ADV7180_STD_PAL_COMB_N 0xc
#define ADV7180_STD_PAL_COMB_N_PED 0xd
#define ADV7180_STD_PAL_SECAM 0xe
#define ADV7180_STD_PAL_SECAM_PED 0xf
#define ADV7180_REG_INPUT_CONTROL 0x0000
#define ADV7180_INPUT_CONTROL_INSEL_MASK 0x0f
#define ADV7182_REG_INPUT_VIDSEL 0x0002
#define ADV7180_REG_OUTPUT_CONTROL 0x0003
#define ADV7180_REG_EXTENDED_OUTPUT_CONTROL 0x0004
#define ADV7180_EXTENDED_OUTPUT_CONTROL_NTSCDIS 0xC5
#define ADV7180_REG_AUTODETECT_ENABLE 0x0007
#define ADV7180_AUTODETECT_DEFAULT 0x7f
/* Contrast */
#define ADV7180_REG_CON 0x0008 /*Unsigned */
#define ADV7180_CON_MIN 0
#define ADV7180_CON_DEF 128
#define ADV7180_CON_MAX 255
/* Brightness*/
#define ADV7180_REG_BRI 0x000a /*Signed */
#define ADV7180_BRI_MIN -128
#define ADV7180_BRI_DEF 0
#define ADV7180_BRI_MAX 127
/* Hue */
#define ADV7180_REG_HUE 0x000b /*Signed, inverted */
#define ADV7180_HUE_MIN -127
#define ADV7180_HUE_DEF 0
#define ADV7180_HUE_MAX 128
#define ADV7180_REG_CTRL 0x000e
#define ADV7180_CTRL_IRQ_SPACE 0x20
#define ADV7180_REG_PWR_MAN 0x0f
#define ADV7180_PWR_MAN_ON 0x04
#define ADV7180_PWR_MAN_OFF 0x24
#define ADV7180_PWR_MAN_RES 0x80
#define ADV7180_REG_STATUS1 0x0010
#define ADV7180_STATUS1_IN_LOCK 0x01
#define ADV7180_STATUS1_AUTOD_MASK 0x70
#define ADV7180_STATUS1_AUTOD_NTSM_M_J 0x00
#define ADV7180_STATUS1_AUTOD_NTSC_4_43 0x10
#define ADV7180_STATUS1_AUTOD_PAL_M 0x20
#define ADV7180_STATUS1_AUTOD_PAL_60 0x30
#define ADV7180_STATUS1_AUTOD_PAL_B_G 0x40
#define ADV7180_STATUS1_AUTOD_SECAM 0x50
#define ADV7180_STATUS1_AUTOD_PAL_COMB 0x60
#define ADV7180_STATUS1_AUTOD_SECAM_525 0x70
#define ADV7180_REG_IDENT 0x0011
#define ADV7180_ID_7180 0x18
#define ADV7180_REG_STATUS3 0x0013
#define ADV7180_REG_ANALOG_CLAMP_CTL 0x0014
#define ADV7180_REG_SHAP_FILTER_CTL_1 0x0017
#define ADV7180_REG_CTRL_2 0x001d
#define ADV7180_REG_VSYNC_FIELD_CTL_1 0x0031
#define ADV7180_VSYNC_FIELD_CTL_1_NEWAV 0x12
#define ADV7180_REG_MANUAL_WIN_CTL_1 0x003d
#define ADV7180_REG_MANUAL_WIN_CTL_2 0x003e
#define ADV7180_REG_MANUAL_WIN_CTL_3 0x003f
#define ADV7180_REG_LOCK_CNT 0x0051
#define ADV7180_REG_CVBS_TRIM 0x0052
#define ADV7180_REG_CLAMP_ADJ 0x005a
#define ADV7180_REG_RES_CIR 0x005f
#define ADV7180_REG_DIFF_MODE 0x0060
#define ADV7180_REG_ICONF1 0x2040
#define ADV7180_ICONF1_ACTIVE_LOW 0x01
#define ADV7180_ICONF1_PSYNC_ONLY 0x10
#define ADV7180_ICONF1_ACTIVE_TO_CLR 0xC0
/* Saturation */
#define ADV7180_REG_SD_SAT_CB 0x00e3 /*Unsigned */
#define ADV7180_REG_SD_SAT_CR 0x00e4 /*Unsigned */
#define ADV7180_SAT_MIN 0
#define ADV7180_SAT_DEF 128
#define ADV7180_SAT_MAX 255
#define ADV7180_IRQ1_LOCK 0x01
#define ADV7180_IRQ1_UNLOCK 0x02
#define ADV7180_REG_ISR1 0x2042
#define ADV7180_REG_ICR1 0x2043
#define ADV7180_REG_IMR1 0x2044
#define ADV7180_REG_IMR2 0x2048
#define ADV7180_IRQ3_AD_CHANGE 0x08
#define ADV7180_REG_ISR3 0x204A
#define ADV7180_REG_ICR3 0x204B
#define ADV7180_REG_IMR3 0x204C
#define ADV7180_REG_IMR4 0x2050
#define ADV7180_REG_NTSC_V_BIT_END 0x00E6
#define ADV7180_NTSC_V_BIT_END_MANUAL_NVEND 0x4F
#define ADV7180_REG_VPP_SLAVE_ADDR 0xFD
#define ADV7180_REG_CSI_SLAVE_ADDR 0xFE
#define ADV7180_REG_ACE_CTRL1 0x4080
#define ADV7180_REG_ACE_CTRL5 0x4084
#define ADV7180_REG_FLCONTROL 0x40e0
#define ADV7180_FLCONTROL_FL_ENABLE 0x1
#define ADV7180_REG_RST_CLAMP 0x809c
#define ADV7180_REG_AGC_ADJ1 0x80b6
#define ADV7180_REG_AGC_ADJ2 0x80c0
#define ADV7180_CSI_REG_PWRDN 0x00
#define ADV7180_CSI_PWRDN 0x80
#define ADV7180_INPUT_CVBS_AIN1 0x00
#define ADV7180_INPUT_CVBS_AIN2 0x01
#define ADV7180_INPUT_CVBS_AIN3 0x02
#define ADV7180_INPUT_CVBS_AIN4 0x03
#define ADV7180_INPUT_CVBS_AIN5 0x04
#define ADV7180_INPUT_CVBS_AIN6 0x05
#define ADV7180_INPUT_SVIDEO_AIN1_AIN2 0x06
#define ADV7180_INPUT_SVIDEO_AIN3_AIN4 0x07
#define ADV7180_INPUT_SVIDEO_AIN5_AIN6 0x08
#define ADV7180_INPUT_YPRPB_AIN1_AIN2_AIN3 0x09
#define ADV7180_INPUT_YPRPB_AIN4_AIN5_AIN6 0x0a
#define ADV7182_INPUT_CVBS_AIN1 0x00
#define ADV7182_INPUT_CVBS_AIN2 0x01
#define ADV7182_INPUT_CVBS_AIN3 0x02
#define ADV7182_INPUT_CVBS_AIN4 0x03
#define ADV7182_INPUT_CVBS_AIN5 0x04
#define ADV7182_INPUT_CVBS_AIN6 0x05
#define ADV7182_INPUT_CVBS_AIN7 0x06
#define ADV7182_INPUT_CVBS_AIN8 0x07
#define ADV7182_INPUT_SVIDEO_AIN1_AIN2 0x08
#define ADV7182_INPUT_SVIDEO_AIN3_AIN4 0x09
#define ADV7182_INPUT_SVIDEO_AIN5_AIN6 0x0a
#define ADV7182_INPUT_SVIDEO_AIN7_AIN8 0x0b
#define ADV7182_INPUT_YPRPB_AIN1_AIN2_AIN3 0x0c
#define ADV7182_INPUT_YPRPB_AIN4_AIN5_AIN6 0x0d
#define ADV7182_INPUT_DIFF_CVBS_AIN1_AIN2 0x0e
#define ADV7182_INPUT_DIFF_CVBS_AIN3_AIN4 0x0f
#define ADV7182_INPUT_DIFF_CVBS_AIN5_AIN6 0x10
#define ADV7182_INPUT_DIFF_CVBS_AIN7_AIN8 0x11
#define ADV7180_DEFAULT_CSI_I2C_ADDR 0x44
#define ADV7180_DEFAULT_VPP_I2C_ADDR 0x42
#define V4L2_CID_ADV_FAST_SWITCH (V4L2_CID_USER_ADV7180_BASE + 0x00)
/* Initial number of frames to skip to avoid possible garbage */
#define ADV7180_NUM_OF_SKIP_FRAMES 2
struct adv7180_state;
#define ADV7180_FLAG_RESET_POWERED BIT(0)
#define ADV7180_FLAG_V2 BIT(1)
#define ADV7180_FLAG_MIPI_CSI2 BIT(2)
#define ADV7180_FLAG_I2P BIT(3)
struct adv7180_chip_info {
unsigned int flags;
unsigned int valid_input_mask;
int (*set_std)(struct adv7180_state *st, unsigned int std);
int (*select_input)(struct adv7180_state *st, unsigned int input);
int (*init)(struct adv7180_state *state);
};
struct adv7180_state {
struct v4l2_ctrl_handler ctrl_hdl;
struct v4l2_subdev sd;
struct media_pad pad;
struct mutex mutex; /* mutual excl. when accessing chip */
int irq;
struct gpio_desc *pwdn_gpio;
struct gpio_desc *rst_gpio;
v4l2_std_id curr_norm;
bool powered;
bool streaming;
u8 input;
struct i2c_client *client;
unsigned int register_page;
struct i2c_client *csi_client;
struct i2c_client *vpp_client;
const struct adv7180_chip_info *chip_info;
enum v4l2_field field;
bool force_bt656_4;
};
#define to_adv7180_sd(_ctrl) (&container_of(_ctrl->handler, \
struct adv7180_state, \
ctrl_hdl)->sd)
static int adv7180_select_page(struct adv7180_state *state, unsigned int page)
{
if (state->register_page != page) {
i2c_smbus_write_byte_data(state->client, ADV7180_REG_CTRL,
page);
state->register_page = page;
}
return 0;
}
static int adv7180_write(struct adv7180_state *state, unsigned int reg,
unsigned int value)
{
lockdep_assert_held(&state->mutex);
adv7180_select_page(state, reg >> 8);
return i2c_smbus_write_byte_data(state->client, reg & 0xff, value);
}
static int adv7180_read(struct adv7180_state *state, unsigned int reg)
{
lockdep_assert_held(&state->mutex);
adv7180_select_page(state, reg >> 8);
return i2c_smbus_read_byte_data(state->client, reg & 0xff);
}
static int adv7180_csi_write(struct adv7180_state *state, unsigned int reg,
unsigned int value)
{
return i2c_smbus_write_byte_data(state->csi_client, reg, value);
}
static int adv7180_set_video_standard(struct adv7180_state *state,
unsigned int std)
{
return state->chip_info->set_std(state, std);
}
static int adv7180_vpp_write(struct adv7180_state *state, unsigned int reg,
unsigned int value)
{
return i2c_smbus_write_byte_data(state->vpp_client, reg, value);
}
static v4l2_std_id adv7180_std_to_v4l2(u8 status1)
{
/* in case V4L2_IN_ST_NO_SIGNAL */
if (!(status1 & ADV7180_STATUS1_IN_LOCK))
return V4L2_STD_UNKNOWN;
switch (status1 & ADV7180_STATUS1_AUTOD_MASK) {
case ADV7180_STATUS1_AUTOD_NTSM_M_J:
return V4L2_STD_NTSC;
case ADV7180_STATUS1_AUTOD_NTSC_4_43:
return V4L2_STD_NTSC_443;
case ADV7180_STATUS1_AUTOD_PAL_M:
return V4L2_STD_PAL_M;
case ADV7180_STATUS1_AUTOD_PAL_60:
return V4L2_STD_PAL_60;
case ADV7180_STATUS1_AUTOD_PAL_B_G:
return V4L2_STD_PAL;
case ADV7180_STATUS1_AUTOD_SECAM:
return V4L2_STD_SECAM;
case ADV7180_STATUS1_AUTOD_PAL_COMB:
return V4L2_STD_PAL_Nc | V4L2_STD_PAL_N;
case ADV7180_STATUS1_AUTOD_SECAM_525:
return V4L2_STD_SECAM;
default:
return V4L2_STD_UNKNOWN;
}
}
static int v4l2_std_to_adv7180(v4l2_std_id std)
{
if (std == V4L2_STD_PAL_60)
return ADV7180_STD_PAL60;
if (std == V4L2_STD_NTSC_443)
return ADV7180_STD_NTSC_443;
if (std == V4L2_STD_PAL_N)
return ADV7180_STD_PAL_N;
if (std == V4L2_STD_PAL_M)
return ADV7180_STD_PAL_M;
if (std == V4L2_STD_PAL_Nc)
return ADV7180_STD_PAL_COMB_N;
if (std & V4L2_STD_PAL)
return ADV7180_STD_PAL_BG;
if (std & V4L2_STD_NTSC)
return ADV7180_STD_NTSC_M;
if (std & V4L2_STD_SECAM)
return ADV7180_STD_PAL_SECAM;
return -EINVAL;
}
static u32 adv7180_status_to_v4l2(u8 status1)
{
if (!(status1 & ADV7180_STATUS1_IN_LOCK))
return V4L2_IN_ST_NO_SIGNAL;
return 0;
}
static int __adv7180_status(struct adv7180_state *state, u32 *status,
v4l2_std_id *std)
{
int status1 = adv7180_read(state, ADV7180_REG_STATUS1);
if (status1 < 0)
return status1;
if (status)
*status = adv7180_status_to_v4l2(status1);
if (std)
*std = adv7180_std_to_v4l2(status1);
return 0;
}
static inline struct adv7180_state *to_state(struct v4l2_subdev *sd)
{
return container_of(sd, struct adv7180_state, sd);
}
static int adv7180_querystd(struct v4l2_subdev *sd, v4l2_std_id *std)
{
struct adv7180_state *state = to_state(sd);
int err = mutex_lock_interruptible(&state->mutex);
if (err)
return err;
if (state->streaming) {
err = -EBUSY;
goto unlock;
}
err = adv7180_set_video_standard(state,
ADV7180_STD_AD_PAL_BG_NTSC_J_SECAM);
if (err)
goto unlock;
msleep(100);
__adv7180_status(state, NULL, std);
err = v4l2_std_to_adv7180(state->curr_norm);
if (err < 0)
goto unlock;
err = adv7180_set_video_standard(state, err);
unlock:
mutex_unlock(&state->mutex);
return err;
}
static int adv7180_s_routing(struct v4l2_subdev *sd, u32 input,
u32 output, u32 config)
{
struct adv7180_state *state = to_state(sd);
int ret = mutex_lock_interruptible(&state->mutex);
if (ret)
return ret;
if (input > 31 || !(BIT(input) & state->chip_info->valid_input_mask)) {
ret = -EINVAL;
goto out;
}
ret = state->chip_info->select_input(state, input);
if (ret == 0)
state->input = input;
out:
mutex_unlock(&state->mutex);
return ret;
}
static int adv7180_g_input_status(struct v4l2_subdev *sd, u32 *status)
{
struct adv7180_state *state = to_state(sd);
int ret = mutex_lock_interruptible(&state->mutex);
if (ret)
return ret;
ret = __adv7180_status(state, status, NULL);
mutex_unlock(&state->mutex);
return ret;
}
static int adv7180_program_std(struct adv7180_state *state)
{
int ret;
ret = v4l2_std_to_adv7180(state->curr_norm);
if (ret < 0)
return ret;
ret = adv7180_set_video_standard(state, ret);
if (ret < 0)
return ret;
return 0;
}
static int adv7180_s_std(struct v4l2_subdev *sd, v4l2_std_id std)
{
struct adv7180_state *state = to_state(sd);
int ret = mutex_lock_interruptible(&state->mutex);
if (ret)
return ret;
/* Make sure we can support this std */
ret = v4l2_std_to_adv7180(std);
if (ret < 0)
goto out;
state->curr_norm = std;
ret = adv7180_program_std(state);
out:
mutex_unlock(&state->mutex);
return ret;
}
static int adv7180_g_std(struct v4l2_subdev *sd, v4l2_std_id *norm)
{
struct adv7180_state *state = to_state(sd);
*norm = state->curr_norm;
return 0;
}
static int adv7180_g_frame_interval(struct v4l2_subdev *sd,
struct v4l2_subdev_frame_interval *fi)
{
struct adv7180_state *state = to_state(sd);
if (state->curr_norm & V4L2_STD_525_60) {
fi->interval.numerator = 1001;
fi->interval.denominator = 30000;
} else {
fi->interval.numerator = 1;
fi->interval.denominator = 25;
}
return 0;
}
static void adv7180_set_power_pin(struct adv7180_state *state, bool on)
{
if (!state->pwdn_gpio)
return;
if (on) {
gpiod_set_value_cansleep(state->pwdn_gpio, 0);
usleep_range(5000, 10000);
} else {
gpiod_set_value_cansleep(state->pwdn_gpio, 1);
}
}
static void adv7180_set_reset_pin(struct adv7180_state *state, bool on)
{
if (!state->rst_gpio)
return;
if (on) {
gpiod_set_value_cansleep(state->rst_gpio, 1);
} else {
gpiod_set_value_cansleep(state->rst_gpio, 0);
usleep_range(5000, 10000);
}
}
static int adv7180_set_power(struct adv7180_state *state, bool on)
{
u8 val;
int ret;
if (on)
val = ADV7180_PWR_MAN_ON;
else
val = ADV7180_PWR_MAN_OFF;
ret = adv7180_write(state, ADV7180_REG_PWR_MAN, val);
if (ret)
return ret;
if (state->chip_info->flags & ADV7180_FLAG_MIPI_CSI2) {
if (on) {
adv7180_csi_write(state, 0xDE, 0x02);
adv7180_csi_write(state, 0xD2, 0xF7);
adv7180_csi_write(state, 0xD8, 0x65);
adv7180_csi_write(state, 0xE0, 0x09);
adv7180_csi_write(state, 0x2C, 0x00);
if (state->field == V4L2_FIELD_NONE)
adv7180_csi_write(state, 0x1D, 0x80);
adv7180_csi_write(state, 0x00, 0x00);
} else {
adv7180_csi_write(state, 0x00, 0x80);
}
}
return 0;
}
static int adv7180_s_power(struct v4l2_subdev *sd, int on)
{
struct adv7180_state *state = to_state(sd);
int ret;
ret = mutex_lock_interruptible(&state->mutex);
if (ret)
return ret;
ret = adv7180_set_power(state, on);
if (ret == 0)
state->powered = on;
mutex_unlock(&state->mutex);
return ret;
}
static int adv7180_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct v4l2_subdev *sd = to_adv7180_sd(ctrl);
struct adv7180_state *state = to_state(sd);
int ret = mutex_lock_interruptible(&state->mutex);
int val;
if (ret)
return ret;
val = ctrl->val;
switch (ctrl->id) {
case V4L2_CID_BRIGHTNESS:
ret = adv7180_write(state, ADV7180_REG_BRI, val);
break;
case V4L2_CID_HUE:
/*Hue is inverted according to HSL chart */
ret = adv7180_write(state, ADV7180_REG_HUE, -val);
break;
case V4L2_CID_CONTRAST:
ret = adv7180_write(state, ADV7180_REG_CON, val);
break;
case V4L2_CID_SATURATION:
/*
*This could be V4L2_CID_BLUE_BALANCE/V4L2_CID_RED_BALANCE
*Let's not confuse the user, everybody understands saturation
*/
ret = adv7180_write(state, ADV7180_REG_SD_SAT_CB, val);
if (ret < 0)
break;
ret = adv7180_write(state, ADV7180_REG_SD_SAT_CR, val);
break;
case V4L2_CID_ADV_FAST_SWITCH:
if (ctrl->val) {
/* ADI required write */
adv7180_write(state, 0x80d9, 0x44);
adv7180_write(state, ADV7180_REG_FLCONTROL,
ADV7180_FLCONTROL_FL_ENABLE);
} else {
/* ADI required write */
adv7180_write(state, 0x80d9, 0xc4);
adv7180_write(state, ADV7180_REG_FLCONTROL, 0x00);
}
break;
default:
ret = -EINVAL;
}
mutex_unlock(&state->mutex);
return ret;
}
static const struct v4l2_ctrl_ops adv7180_ctrl_ops = {
.s_ctrl = adv7180_s_ctrl,
};
static const struct v4l2_ctrl_config adv7180_ctrl_fast_switch = {
.ops = &adv7180_ctrl_ops,
.id = V4L2_CID_ADV_FAST_SWITCH,
.name = "Fast Switching",
.type = V4L2_CTRL_TYPE_BOOLEAN,
.min = 0,
.max = 1,
.step = 1,
};
static int adv7180_init_controls(struct adv7180_state *state)
{
v4l2_ctrl_handler_init(&state->ctrl_hdl, 4);
v4l2_ctrl_new_std(&state->ctrl_hdl, &adv7180_ctrl_ops,
V4L2_CID_BRIGHTNESS, ADV7180_BRI_MIN,
ADV7180_BRI_MAX, 1, ADV7180_BRI_DEF);
v4l2_ctrl_new_std(&state->ctrl_hdl, &adv7180_ctrl_ops,
V4L2_CID_CONTRAST, ADV7180_CON_MIN,
ADV7180_CON_MAX, 1, ADV7180_CON_DEF);
v4l2_ctrl_new_std(&state->ctrl_hdl, &adv7180_ctrl_ops,
V4L2_CID_SATURATION, ADV7180_SAT_MIN,
ADV7180_SAT_MAX, 1, ADV7180_SAT_DEF);
v4l2_ctrl_new_std(&state->ctrl_hdl, &adv7180_ctrl_ops,
V4L2_CID_HUE, ADV7180_HUE_MIN,
ADV7180_HUE_MAX, 1, ADV7180_HUE_DEF);
v4l2_ctrl_new_custom(&state->ctrl_hdl, &adv7180_ctrl_fast_switch, NULL);
state->sd.ctrl_handler = &state->ctrl_hdl;
if (state->ctrl_hdl.error) {
int err = state->ctrl_hdl.error;
v4l2_ctrl_handler_free(&state->ctrl_hdl);
return err;
}
v4l2_ctrl_handler_setup(&state->ctrl_hdl);
return 0;
}
static void adv7180_exit_controls(struct adv7180_state *state)
{
v4l2_ctrl_handler_free(&state->ctrl_hdl);
}
static int adv7180_enum_mbus_code(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_mbus_code_enum *code)
{
if (code->index != 0)
return -EINVAL;
code->code = MEDIA_BUS_FMT_UYVY8_2X8;
return 0;
}
static int adv7180_mbus_fmt(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *fmt)
{
struct adv7180_state *state = to_state(sd);
fmt->code = MEDIA_BUS_FMT_UYVY8_2X8;
fmt->colorspace = V4L2_COLORSPACE_SMPTE170M;
fmt->width = 720;
fmt->height = state->curr_norm & V4L2_STD_525_60 ? 480 : 576;
if (state->field == V4L2_FIELD_ALTERNATE)
fmt->height /= 2;
return 0;
}
static int adv7180_set_field_mode(struct adv7180_state *state)
{
if (!(state->chip_info->flags & ADV7180_FLAG_I2P))
return 0;
if (state->field == V4L2_FIELD_NONE) {
if (state->chip_info->flags & ADV7180_FLAG_MIPI_CSI2) {
adv7180_csi_write(state, 0x01, 0x20);
adv7180_csi_write(state, 0x02, 0x28);
adv7180_csi_write(state, 0x03, 0x38);
adv7180_csi_write(state, 0x04, 0x30);
adv7180_csi_write(state, 0x05, 0x30);
adv7180_csi_write(state, 0x06, 0x80);
adv7180_csi_write(state, 0x07, 0x70);
adv7180_csi_write(state, 0x08, 0x50);
}
adv7180_vpp_write(state, 0xa3, 0x00);
adv7180_vpp_write(state, 0x5b, 0x00);
adv7180_vpp_write(state, 0x55, 0x80);
} else {
if (state->chip_info->flags & ADV7180_FLAG_MIPI_CSI2) {
adv7180_csi_write(state, 0x01, 0x18);
adv7180_csi_write(state, 0x02, 0x18);
adv7180_csi_write(state, 0x03, 0x30);
adv7180_csi_write(state, 0x04, 0x20);
adv7180_csi_write(state, 0x05, 0x28);
adv7180_csi_write(state, 0x06, 0x40);
adv7180_csi_write(state, 0x07, 0x58);
adv7180_csi_write(state, 0x08, 0x30);
}
adv7180_vpp_write(state, 0xa3, 0x70);
adv7180_vpp_write(state, 0x5b, 0x80);
adv7180_vpp_write(state, 0x55, 0x00);
}
return 0;
}
static int adv7180_get_pad_format(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_format *format)
{
struct adv7180_state *state = to_state(sd);
if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
format->format = *v4l2_subdev_get_try_format(sd, sd_state, 0);
} else {
adv7180_mbus_fmt(sd, &format->format);
format->format.field = state->field;
}
return 0;
}
static int adv7180_set_pad_format(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_format *format)
{
struct adv7180_state *state = to_state(sd);
struct v4l2_mbus_framefmt *framefmt;
int ret;
switch (format->format.field) {
case V4L2_FIELD_NONE:
if (state->chip_info->flags & ADV7180_FLAG_I2P)
break;
fallthrough;
default:
format->format.field = V4L2_FIELD_ALTERNATE;
break;
}
ret = adv7180_mbus_fmt(sd, &format->format);
if (format->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
if (state->field != format->format.field) {
state->field = format->format.field;
adv7180_set_power(state, false);
adv7180_set_field_mode(state);
adv7180_set_power(state, true);
}
} else {
framefmt = v4l2_subdev_get_try_format(sd, sd_state, 0);
*framefmt = format->format;
}
return ret;
}
static int adv7180_init_cfg(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state)
{
struct v4l2_subdev_format fmt = {
.which = sd_state ? V4L2_SUBDEV_FORMAT_TRY
: V4L2_SUBDEV_FORMAT_ACTIVE,
};
return adv7180_set_pad_format(sd, sd_state, &fmt);
}
static int adv7180_get_mbus_config(struct v4l2_subdev *sd,
unsigned int pad,
struct v4l2_mbus_config *cfg)
{
struct adv7180_state *state = to_state(sd);
if (state->chip_info->flags & ADV7180_FLAG_MIPI_CSI2) {
cfg->type = V4L2_MBUS_CSI2_DPHY;
cfg->flags = V4L2_MBUS_CSI2_1_LANE |
V4L2_MBUS_CSI2_CHANNEL_0 |
V4L2_MBUS_CSI2_CONTINUOUS_CLOCK;
} else {
/*
* The ADV7180 sensor supports BT.601/656 output modes.
* The BT.656 is default and not yet configurable by s/w.
*/
cfg->flags = V4L2_MBUS_MASTER | V4L2_MBUS_PCLK_SAMPLE_RISING |
V4L2_MBUS_DATA_ACTIVE_HIGH;
cfg->type = V4L2_MBUS_BT656;
}
return 0;
}
static int adv7180_get_skip_frames(struct v4l2_subdev *sd, u32 *frames)
{
*frames = ADV7180_NUM_OF_SKIP_FRAMES;
return 0;
}
static int adv7180_g_pixelaspect(struct v4l2_subdev *sd, struct v4l2_fract *aspect)
{
struct adv7180_state *state = to_state(sd);
if (state->curr_norm & V4L2_STD_525_60) {
aspect->numerator = 11;
aspect->denominator = 10;
} else {
aspect->numerator = 54;
aspect->denominator = 59;
}
return 0;
}
static int adv7180_g_tvnorms(struct v4l2_subdev *sd, v4l2_std_id *norm)
{
*norm = V4L2_STD_ALL;
return 0;
}
static int adv7180_s_stream(struct v4l2_subdev *sd, int enable)
{
struct adv7180_state *state = to_state(sd);
int ret;
/* It's always safe to stop streaming, no need to take the lock */
if (!enable) {
state->streaming = enable;
return 0;
}
/* Must wait until querystd released the lock */
ret = mutex_lock_interruptible(&state->mutex);
if (ret)
return ret;
state->streaming = enable;
mutex_unlock(&state->mutex);
return 0;
}
static int adv7180_subscribe_event(struct v4l2_subdev *sd,
struct v4l2_fh *fh,
struct v4l2_event_subscription *sub)
{
switch (sub->type) {
case V4L2_EVENT_SOURCE_CHANGE:
return v4l2_src_change_event_subdev_subscribe(sd, fh, sub);
case V4L2_EVENT_CTRL:
return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub);
default:
return -EINVAL;
}
}
static const struct v4l2_subdev_video_ops adv7180_video_ops = {
.s_std = adv7180_s_std,
.g_std = adv7180_g_std,
.g_frame_interval = adv7180_g_frame_interval,
.querystd = adv7180_querystd,
.g_input_status = adv7180_g_input_status,
.s_routing = adv7180_s_routing,
.g_pixelaspect = adv7180_g_pixelaspect,
.g_tvnorms = adv7180_g_tvnorms,
.s_stream = adv7180_s_stream,
};
static const struct v4l2_subdev_core_ops adv7180_core_ops = {
.s_power = adv7180_s_power,
.subscribe_event = adv7180_subscribe_event,
.unsubscribe_event = v4l2_event_subdev_unsubscribe,
};
static const struct v4l2_subdev_pad_ops adv7180_pad_ops = {
.init_cfg = adv7180_init_cfg,
.enum_mbus_code = adv7180_enum_mbus_code,
.set_fmt = adv7180_set_pad_format,
.get_fmt = adv7180_get_pad_format,
.get_mbus_config = adv7180_get_mbus_config,
};
static const struct v4l2_subdev_sensor_ops adv7180_sensor_ops = {
.g_skip_frames = adv7180_get_skip_frames,
};
static const struct v4l2_subdev_ops adv7180_ops = {
.core = &adv7180_core_ops,
.video = &adv7180_video_ops,
.pad = &adv7180_pad_ops,
.sensor = &adv7180_sensor_ops,
};
static irqreturn_t adv7180_irq(int irq, void *devid)
{
struct adv7180_state *state = devid;
u8 isr3;
mutex_lock(&state->mutex);
isr3 = adv7180_read(state, ADV7180_REG_ISR3);
/* clear */
adv7180_write(state, ADV7180_REG_ICR3, isr3);
if (isr3 & ADV7180_IRQ3_AD_CHANGE) {
static const struct v4l2_event src_ch = {
.type = V4L2_EVENT_SOURCE_CHANGE,
.u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION,
};
v4l2_subdev_notify_event(&state->sd, &src_ch);
}
mutex_unlock(&state->mutex);
return IRQ_HANDLED;
}
static int adv7180_init(struct adv7180_state *state)
{
int ret;
/* ITU-R BT.656-4 compatible */
ret = adv7180_write(state, ADV7180_REG_EXTENDED_OUTPUT_CONTROL,
ADV7180_EXTENDED_OUTPUT_CONTROL_NTSCDIS);
if (ret < 0)
return ret;
/* Manually set V bit end position in NTSC mode */
return adv7180_write(state, ADV7180_REG_NTSC_V_BIT_END,
ADV7180_NTSC_V_BIT_END_MANUAL_NVEND);
}
static int adv7180_set_std(struct adv7180_state *state, unsigned int std)
{
return adv7180_write(state, ADV7180_REG_INPUT_CONTROL,
(std << 4) | state->input);
}
static int adv7180_select_input(struct adv7180_state *state, unsigned int input)
{
int ret;
ret = adv7180_read(state, ADV7180_REG_INPUT_CONTROL);
if (ret < 0)
return ret;
ret &= ~ADV7180_INPUT_CONTROL_INSEL_MASK;
ret |= input;
return adv7180_write(state, ADV7180_REG_INPUT_CONTROL, ret);
}
static int adv7182_init(struct adv7180_state *state)
{
if (state->chip_info->flags & ADV7180_FLAG_MIPI_CSI2)
adv7180_write(state, ADV7180_REG_CSI_SLAVE_ADDR,
ADV7180_DEFAULT_CSI_I2C_ADDR << 1);
if (state->chip_info->flags & ADV7180_FLAG_I2P)
adv7180_write(state, ADV7180_REG_VPP_SLAVE_ADDR,
ADV7180_DEFAULT_VPP_I2C_ADDR << 1);
if (state->chip_info->flags & ADV7180_FLAG_V2) {
/* ADI recommended writes for improved video quality */
adv7180_write(state, 0x0080, 0x51);
adv7180_write(state, 0x0081, 0x51);
adv7180_write(state, 0x0082, 0x68);
}
/* ADI required writes */
if (state->chip_info->flags & ADV7180_FLAG_MIPI_CSI2) {
adv7180_write(state, ADV7180_REG_OUTPUT_CONTROL, 0x4e);
adv7180_write(state, ADV7180_REG_EXTENDED_OUTPUT_CONTROL, 0x57);
adv7180_write(state, ADV7180_REG_CTRL_2, 0xc0);
} else {
if (state->chip_info->flags & ADV7180_FLAG_V2) {
if (state->force_bt656_4) {
/* ITU-R BT.656-4 compatible */
adv7180_write(state,
ADV7180_REG_EXTENDED_OUTPUT_CONTROL,
ADV7180_EXTENDED_OUTPUT_CONTROL_NTSCDIS);
/* Manually set NEWAVMODE */
adv7180_write(state,
ADV7180_REG_VSYNC_FIELD_CTL_1,
ADV7180_VSYNC_FIELD_CTL_1_NEWAV);
/* Manually set V bit end position in NTSC mode */
adv7180_write(state,
ADV7180_REG_NTSC_V_BIT_END,
ADV7180_NTSC_V_BIT_END_MANUAL_NVEND);
} else {
adv7180_write(state,
ADV7180_REG_EXTENDED_OUTPUT_CONTROL,
0x17);
}
}
else
adv7180_write(state,
ADV7180_REG_EXTENDED_OUTPUT_CONTROL,
0x07);
adv7180_write(state, ADV7180_REG_OUTPUT_CONTROL, 0x0c);
adv7180_write(state, ADV7180_REG_CTRL_2, 0x40);
}
adv7180_write(state, 0x0013, 0x00);
return 0;
}
static int adv7182_set_std(struct adv7180_state *state, unsigned int std)
{
return adv7180_write(state, ADV7182_REG_INPUT_VIDSEL, std << 4);
}
enum adv7182_input_type {
ADV7182_INPUT_TYPE_CVBS,
ADV7182_INPUT_TYPE_DIFF_CVBS,
ADV7182_INPUT_TYPE_SVIDEO,
ADV7182_INPUT_TYPE_YPBPR,
};
static enum adv7182_input_type adv7182_get_input_type(unsigned int input)
{
switch (input) {
case ADV7182_INPUT_CVBS_AIN1:
case ADV7182_INPUT_CVBS_AIN2:
case ADV7182_INPUT_CVBS_AIN3:
case ADV7182_INPUT_CVBS_AIN4:
case ADV7182_INPUT_CVBS_AIN5:
case ADV7182_INPUT_CVBS_AIN6:
case ADV7182_INPUT_CVBS_AIN7:
case ADV7182_INPUT_CVBS_AIN8:
return ADV7182_INPUT_TYPE_CVBS;
case ADV7182_INPUT_SVIDEO_AIN1_AIN2:
case ADV7182_INPUT_SVIDEO_AIN3_AIN4:
case ADV7182_INPUT_SVIDEO_AIN5_AIN6:
case ADV7182_INPUT_SVIDEO_AIN7_AIN8:
return ADV7182_INPUT_TYPE_SVIDEO;
case ADV7182_INPUT_YPRPB_AIN1_AIN2_AIN3:
case ADV7182_INPUT_YPRPB_AIN4_AIN5_AIN6:
return ADV7182_INPUT_TYPE_YPBPR;
case ADV7182_INPUT_DIFF_CVBS_AIN1_AIN2:
case ADV7182_INPUT_DIFF_CVBS_AIN3_AIN4:
case ADV7182_INPUT_DIFF_CVBS_AIN5_AIN6:
case ADV7182_INPUT_DIFF_CVBS_AIN7_AIN8:
return ADV7182_INPUT_TYPE_DIFF_CVBS;
default: /* Will never happen */
return 0;
}
}
/* ADI recommended writes to registers 0x52, 0x53, 0x54 */
static unsigned int adv7182_lbias_settings[][3] = {
[ADV7182_INPUT_TYPE_CVBS] = { 0xCB, 0x4E, 0x80 },
[ADV7182_INPUT_TYPE_DIFF_CVBS] = { 0xC0, 0x4E, 0x80 },
[ADV7182_INPUT_TYPE_SVIDEO] = { 0x0B, 0xCE, 0x80 },
[ADV7182_INPUT_TYPE_YPBPR] = { 0x0B, 0x4E, 0xC0 },
};
static unsigned int adv7280_lbias_settings[][3] = {
[ADV7182_INPUT_TYPE_CVBS] = { 0xCD, 0x4E, 0x80 },
[ADV7182_INPUT_TYPE_DIFF_CVBS] = { 0xC0, 0x4E, 0x80 },
[ADV7182_INPUT_TYPE_SVIDEO] = { 0x0B, 0xCE, 0x80 },
[ADV7182_INPUT_TYPE_YPBPR] = { 0x0B, 0x4E, 0xC0 },
};
static int adv7182_select_input(struct adv7180_state *state, unsigned int input)
{
enum adv7182_input_type input_type;
unsigned int *lbias;
unsigned int i;
int ret;
ret = adv7180_write(state, ADV7180_REG_INPUT_CONTROL, input);
if (ret)
return ret;
/* Reset clamp circuitry - ADI recommended writes */
adv7180_write(state, ADV7180_REG_RST_CLAMP, 0x00);
adv7180_write(state, ADV7180_REG_RST_CLAMP, 0xff);
input_type = adv7182_get_input_type(input);
switch (input_type) {
case ADV7182_INPUT_TYPE_CVBS:
case ADV7182_INPUT_TYPE_DIFF_CVBS:
/* ADI recommends to use the SH1 filter */
adv7180_write(state, ADV7180_REG_SHAP_FILTER_CTL_1, 0x41);
break;
default:
adv7180_write(state, ADV7180_REG_SHAP_FILTER_CTL_1, 0x01);
break;
}
if (state->chip_info->flags & ADV7180_FLAG_V2)
lbias = adv7280_lbias_settings[input_type];
else
lbias = adv7182_lbias_settings[input_type];
for (i = 0; i < ARRAY_SIZE(adv7182_lbias_settings[0]); i++)
adv7180_write(state, ADV7180_REG_CVBS_TRIM + i, lbias[i]);
if (input_type == ADV7182_INPUT_TYPE_DIFF_CVBS) {
/* ADI required writes to make differential CVBS work */
adv7180_write(state, ADV7180_REG_RES_CIR, 0xa8);
adv7180_write(state, ADV7180_REG_CLAMP_ADJ, 0x90);
adv7180_write(state, ADV7180_REG_DIFF_MODE, 0xb0);
adv7180_write(state, ADV7180_REG_AGC_ADJ1, 0x08);
adv7180_write(state, ADV7180_REG_AGC_ADJ2, 0xa0);
} else {
adv7180_write(state, ADV7180_REG_RES_CIR, 0xf0);
adv7180_write(state, ADV7180_REG_CLAMP_ADJ, 0xd0);
adv7180_write(state, ADV7180_REG_DIFF_MODE, 0x10);
adv7180_write(state, ADV7180_REG_AGC_ADJ1, 0x9c);
adv7180_write(state, ADV7180_REG_AGC_ADJ2, 0x00);
}
return 0;
}
static const struct adv7180_chip_info adv7180_info = {
.flags = ADV7180_FLAG_RESET_POWERED,
/* We cannot discriminate between LQFP and 40-pin LFCSP, so accept
* all inputs and let the card driver take care of validation
*/
.valid_input_mask = BIT(ADV7180_INPUT_CVBS_AIN1) |
BIT(ADV7180_INPUT_CVBS_AIN2) |
BIT(ADV7180_INPUT_CVBS_AIN3) |
BIT(ADV7180_INPUT_CVBS_AIN4) |
BIT(ADV7180_INPUT_CVBS_AIN5) |
BIT(ADV7180_INPUT_CVBS_AIN6) |
BIT(ADV7180_INPUT_SVIDEO_AIN1_AIN2) |
BIT(ADV7180_INPUT_SVIDEO_AIN3_AIN4) |
BIT(ADV7180_INPUT_SVIDEO_AIN5_AIN6) |
BIT(ADV7180_INPUT_YPRPB_AIN1_AIN2_AIN3) |
BIT(ADV7180_INPUT_YPRPB_AIN4_AIN5_AIN6),
.init = adv7180_init,
.set_std = adv7180_set_std,
.select_input = adv7180_select_input,
};
static const struct adv7180_chip_info adv7182_info = {
.valid_input_mask = BIT(ADV7182_INPUT_CVBS_AIN1) |
BIT(ADV7182_INPUT_CVBS_AIN2) |
BIT(ADV7182_INPUT_CVBS_AIN3) |
BIT(ADV7182_INPUT_CVBS_AIN4) |
BIT(ADV7182_INPUT_SVIDEO_AIN1_AIN2) |
BIT(ADV7182_INPUT_SVIDEO_AIN3_AIN4) |
BIT(ADV7182_INPUT_YPRPB_AIN1_AIN2_AIN3) |
BIT(ADV7182_INPUT_DIFF_CVBS_AIN1_AIN2) |
BIT(ADV7182_INPUT_DIFF_CVBS_AIN3_AIN4),
.init = adv7182_init,
.set_std = adv7182_set_std,
.select_input = adv7182_select_input,
};
static const struct adv7180_chip_info adv7280_info = {
.flags = ADV7180_FLAG_V2 | ADV7180_FLAG_I2P,
.valid_input_mask = BIT(ADV7182_INPUT_CVBS_AIN1) |
BIT(ADV7182_INPUT_CVBS_AIN2) |
BIT(ADV7182_INPUT_CVBS_AIN3) |
BIT(ADV7182_INPUT_CVBS_AIN4) |
BIT(ADV7182_INPUT_SVIDEO_AIN1_AIN2) |
BIT(ADV7182_INPUT_SVIDEO_AIN3_AIN4) |
BIT(ADV7182_INPUT_YPRPB_AIN1_AIN2_AIN3),
.init = adv7182_init,
.set_std = adv7182_set_std,
.select_input = adv7182_select_input,
};
static const struct adv7180_chip_info adv7280_m_info = {
.flags = ADV7180_FLAG_V2 | ADV7180_FLAG_MIPI_CSI2 | ADV7180_FLAG_I2P,
.valid_input_mask = BIT(ADV7182_INPUT_CVBS_AIN1) |
BIT(ADV7182_INPUT_CVBS_AIN2) |
BIT(ADV7182_INPUT_CVBS_AIN3) |
BIT(ADV7182_INPUT_CVBS_AIN4) |
BIT(ADV7182_INPUT_CVBS_AIN5) |
BIT(ADV7182_INPUT_CVBS_AIN6) |
BIT(ADV7182_INPUT_CVBS_AIN7) |
BIT(ADV7182_INPUT_CVBS_AIN8) |
BIT(ADV7182_INPUT_SVIDEO_AIN1_AIN2) |
BIT(ADV7182_INPUT_SVIDEO_AIN3_AIN4) |
BIT(ADV7182_INPUT_SVIDEO_AIN5_AIN6) |
BIT(ADV7182_INPUT_SVIDEO_AIN7_AIN8) |
BIT(ADV7182_INPUT_YPRPB_AIN1_AIN2_AIN3) |
BIT(ADV7182_INPUT_YPRPB_AIN4_AIN5_AIN6),
.init = adv7182_init,
.set_std = adv7182_set_std,
.select_input = adv7182_select_input,
};
static const struct adv7180_chip_info adv7281_info = {
.flags = ADV7180_FLAG_V2 | ADV7180_FLAG_MIPI_CSI2,
.valid_input_mask = BIT(ADV7182_INPUT_CVBS_AIN1) |
BIT(ADV7182_INPUT_CVBS_AIN2) |
BIT(ADV7182_INPUT_CVBS_AIN7) |
BIT(ADV7182_INPUT_CVBS_AIN8) |
BIT(ADV7182_INPUT_SVIDEO_AIN1_AIN2) |
BIT(ADV7182_INPUT_SVIDEO_AIN7_AIN8) |
BIT(ADV7182_INPUT_DIFF_CVBS_AIN1_AIN2) |
BIT(ADV7182_INPUT_DIFF_CVBS_AIN7_AIN8),
.init = adv7182_init,
.set_std = adv7182_set_std,
.select_input = adv7182_select_input,
};
static const struct adv7180_chip_info adv7281_m_info = {
.flags = ADV7180_FLAG_V2 | ADV7180_FLAG_MIPI_CSI2,
.valid_input_mask = BIT(ADV7182_INPUT_CVBS_AIN1) |
BIT(ADV7182_INPUT_CVBS_AIN2) |
BIT(ADV7182_INPUT_CVBS_AIN3) |
BIT(ADV7182_INPUT_CVBS_AIN4) |
BIT(ADV7182_INPUT_CVBS_AIN7) |
BIT(ADV7182_INPUT_CVBS_AIN8) |
BIT(ADV7182_INPUT_SVIDEO_AIN1_AIN2) |
BIT(ADV7182_INPUT_SVIDEO_AIN3_AIN4) |
BIT(ADV7182_INPUT_SVIDEO_AIN7_AIN8) |
BIT(ADV7182_INPUT_YPRPB_AIN1_AIN2_AIN3) |
BIT(ADV7182_INPUT_DIFF_CVBS_AIN1_AIN2) |
BIT(ADV7182_INPUT_DIFF_CVBS_AIN3_AIN4) |
BIT(ADV7182_INPUT_DIFF_CVBS_AIN7_AIN8),
.init = adv7182_init,
.set_std = adv7182_set_std,
.select_input = adv7182_select_input,
};
static const struct adv7180_chip_info adv7281_ma_info = {
.flags = ADV7180_FLAG_V2 | ADV7180_FLAG_MIPI_CSI2,
.valid_input_mask = BIT(ADV7182_INPUT_CVBS_AIN1) |
BIT(ADV7182_INPUT_CVBS_AIN2) |
BIT(ADV7182_INPUT_CVBS_AIN3) |
BIT(ADV7182_INPUT_CVBS_AIN4) |
BIT(ADV7182_INPUT_CVBS_AIN5) |
BIT(ADV7182_INPUT_CVBS_AIN6) |
BIT(ADV7182_INPUT_CVBS_AIN7) |
BIT(ADV7182_INPUT_CVBS_AIN8) |
BIT(ADV7182_INPUT_SVIDEO_AIN1_AIN2) |
BIT(ADV7182_INPUT_SVIDEO_AIN3_AIN4) |
BIT(ADV7182_INPUT_SVIDEO_AIN5_AIN6) |
BIT(ADV7182_INPUT_SVIDEO_AIN7_AIN8) |
BIT(ADV7182_INPUT_YPRPB_AIN1_AIN2_AIN3) |
BIT(ADV7182_INPUT_YPRPB_AIN4_AIN5_AIN6) |
BIT(ADV7182_INPUT_DIFF_CVBS_AIN1_AIN2) |
BIT(ADV7182_INPUT_DIFF_CVBS_AIN3_AIN4) |
BIT(ADV7182_INPUT_DIFF_CVBS_AIN5_AIN6) |
BIT(ADV7182_INPUT_DIFF_CVBS_AIN7_AIN8),
.init = adv7182_init,
.set_std = adv7182_set_std,
.select_input = adv7182_select_input,
};
static const struct adv7180_chip_info adv7282_info = {
.flags = ADV7180_FLAG_V2 | ADV7180_FLAG_I2P,
.valid_input_mask = BIT(ADV7182_INPUT_CVBS_AIN1) |
BIT(ADV7182_INPUT_CVBS_AIN2) |
BIT(ADV7182_INPUT_CVBS_AIN7) |
BIT(ADV7182_INPUT_CVBS_AIN8) |
BIT(ADV7182_INPUT_SVIDEO_AIN1_AIN2) |
BIT(ADV7182_INPUT_SVIDEO_AIN7_AIN8) |
BIT(ADV7182_INPUT_DIFF_CVBS_AIN1_AIN2) |
BIT(ADV7182_INPUT_DIFF_CVBS_AIN7_AIN8),
.init = adv7182_init,
.set_std = adv7182_set_std,
.select_input = adv7182_select_input,
};
static const struct adv7180_chip_info adv7282_m_info = {
.flags = ADV7180_FLAG_V2 | ADV7180_FLAG_MIPI_CSI2 | ADV7180_FLAG_I2P,
.valid_input_mask = BIT(ADV7182_INPUT_CVBS_AIN1) |
BIT(ADV7182_INPUT_CVBS_AIN2) |
BIT(ADV7182_INPUT_CVBS_AIN3) |
BIT(ADV7182_INPUT_CVBS_AIN4) |
BIT(ADV7182_INPUT_CVBS_AIN7) |
BIT(ADV7182_INPUT_CVBS_AIN8) |
BIT(ADV7182_INPUT_SVIDEO_AIN1_AIN2) |
BIT(ADV7182_INPUT_SVIDEO_AIN3_AIN4) |
BIT(ADV7182_INPUT_SVIDEO_AIN7_AIN8) |
BIT(ADV7182_INPUT_DIFF_CVBS_AIN1_AIN2) |
BIT(ADV7182_INPUT_DIFF_CVBS_AIN3_AIN4) |
BIT(ADV7182_INPUT_DIFF_CVBS_AIN7_AIN8),
.init = adv7182_init,
.set_std = adv7182_set_std,
.select_input = adv7182_select_input,
};
static int init_device(struct adv7180_state *state)
{
int ret;
mutex_lock(&state->mutex);
adv7180_set_power_pin(state, true);
adv7180_set_reset_pin(state, false);
adv7180_write(state, ADV7180_REG_PWR_MAN, ADV7180_PWR_MAN_RES);
usleep_range(5000, 10000);
ret = state->chip_info->init(state);
if (ret)
goto out_unlock;
ret = adv7180_program_std(state);
if (ret)
goto out_unlock;
adv7180_set_field_mode(state);
/* register for interrupts */
if (state->irq > 0) {
/* config the Interrupt pin to be active low */
ret = adv7180_write(state, ADV7180_REG_ICONF1,
ADV7180_ICONF1_ACTIVE_LOW |
ADV7180_ICONF1_PSYNC_ONLY);
if (ret < 0)
goto out_unlock;
ret = adv7180_write(state, ADV7180_REG_IMR1, 0);
if (ret < 0)
goto out_unlock;
ret = adv7180_write(state, ADV7180_REG_IMR2, 0);
if (ret < 0)
goto out_unlock;
/* enable AD change interrupts interrupts */
ret = adv7180_write(state, ADV7180_REG_IMR3,
ADV7180_IRQ3_AD_CHANGE);
if (ret < 0)
goto out_unlock;
ret = adv7180_write(state, ADV7180_REG_IMR4, 0);
if (ret < 0)
goto out_unlock;
}
out_unlock:
mutex_unlock(&state->mutex);
return ret;
}
static int adv7180_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct device_node *np = client->dev.of_node;
struct adv7180_state *state;
struct v4l2_subdev *sd;
int ret;
/* Check if the adapter supports the needed features */
if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
return -EIO;
state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL);
if (state == NULL)
return -ENOMEM;
state->client = client;
state->field = V4L2_FIELD_ALTERNATE;
state->chip_info = (struct adv7180_chip_info *)id->driver_data;
state->pwdn_gpio = devm_gpiod_get_optional(&client->dev, "powerdown",
GPIOD_OUT_HIGH);
if (IS_ERR(state->pwdn_gpio)) {
ret = PTR_ERR(state->pwdn_gpio);
v4l_err(client, "request for power pin failed: %d\n", ret);
return ret;
}
state->rst_gpio = devm_gpiod_get_optional(&client->dev, "reset",
GPIOD_OUT_HIGH);
if (IS_ERR(state->rst_gpio)) {
ret = PTR_ERR(state->rst_gpio);
v4l_err(client, "request for reset pin failed: %d\n", ret);
return ret;
}
if (of_property_read_bool(np, "adv,force-bt656-4"))
state->force_bt656_4 = true;
if (state->chip_info->flags & ADV7180_FLAG_MIPI_CSI2) {
state->csi_client = i2c_new_dummy_device(client->adapter,
ADV7180_DEFAULT_CSI_I2C_ADDR);
if (IS_ERR(state->csi_client))
return PTR_ERR(state->csi_client);
}
if (state->chip_info->flags & ADV7180_FLAG_I2P) {
state->vpp_client = i2c_new_dummy_device(client->adapter,
ADV7180_DEFAULT_VPP_I2C_ADDR);
if (IS_ERR(state->vpp_client)) {
ret = PTR_ERR(state->vpp_client);
goto err_unregister_csi_client;
}
}
state->irq = client->irq;
mutex_init(&state->mutex);
state->curr_norm = V4L2_STD_NTSC;
if (state->chip_info->flags & ADV7180_FLAG_RESET_POWERED)
state->powered = true;
else
state->powered = false;
state->input = 0;
sd = &state->sd;
v4l2_i2c_subdev_init(sd, client, &adv7180_ops);
sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS;
ret = adv7180_init_controls(state);
if (ret)
goto err_unregister_vpp_client;
state->pad.flags = MEDIA_PAD_FL_SOURCE;
sd->entity.function = MEDIA_ENT_F_ATV_DECODER;
ret = media_entity_pads_init(&sd->entity, 1, &state->pad);
if (ret)
goto err_free_ctrl;
ret = init_device(state);
if (ret)
goto err_media_entity_cleanup;
if (state->irq) {
ret = request_threaded_irq(client->irq, NULL, adv7180_irq,
IRQF_ONESHOT | IRQF_TRIGGER_FALLING,
KBUILD_MODNAME, state);
if (ret)
goto err_media_entity_cleanup;
}
ret = v4l2_async_register_subdev(sd);
if (ret)
goto err_free_irq;
mutex_lock(&state->mutex);
ret = adv7180_read(state, ADV7180_REG_IDENT);
mutex_unlock(&state->mutex);
if (ret < 0)
goto err_v4l2_async_unregister;
v4l_info(client, "chip id 0x%x found @ 0x%02x (%s)\n",
ret, client->addr, client->adapter->name);
return 0;
err_v4l2_async_unregister:
v4l2_async_unregister_subdev(sd);
err_free_irq:
if (state->irq > 0)
free_irq(client->irq, state);
err_media_entity_cleanup:
media_entity_cleanup(&sd->entity);
err_free_ctrl:
adv7180_exit_controls(state);
err_unregister_vpp_client:
i2c_unregister_device(state->vpp_client);
err_unregister_csi_client:
i2c_unregister_device(state->csi_client);
mutex_destroy(&state->mutex);
return ret;
}
static int adv7180_remove(struct i2c_client *client)
{
struct v4l2_subdev *sd = i2c_get_clientdata(client);
struct adv7180_state *state = to_state(sd);
v4l2_async_unregister_subdev(sd);
if (state->irq > 0)
free_irq(client->irq, state);
media_entity_cleanup(&sd->entity);
adv7180_exit_controls(state);
i2c_unregister_device(state->vpp_client);
i2c_unregister_device(state->csi_client);
adv7180_set_reset_pin(state, true);
adv7180_set_power_pin(state, false);
mutex_destroy(&state->mutex);
return 0;
}
static const struct i2c_device_id adv7180_id[] = {
{ "adv7180", (kernel_ulong_t)&adv7180_info },
{ "adv7180cp", (kernel_ulong_t)&adv7180_info },
{ "adv7180st", (kernel_ulong_t)&adv7180_info },
{ "adv7182", (kernel_ulong_t)&adv7182_info },
{ "adv7280", (kernel_ulong_t)&adv7280_info },
{ "adv7280-m", (kernel_ulong_t)&adv7280_m_info },
{ "adv7281", (kernel_ulong_t)&adv7281_info },
{ "adv7281-m", (kernel_ulong_t)&adv7281_m_info },
{ "adv7281-ma", (kernel_ulong_t)&adv7281_ma_info },
{ "adv7282", (kernel_ulong_t)&adv7282_info },
{ "adv7282-m", (kernel_ulong_t)&adv7282_m_info },
{},
};
MODULE_DEVICE_TABLE(i2c, adv7180_id);
#ifdef CONFIG_PM_SLEEP
static int adv7180_suspend(struct device *dev)
{
struct v4l2_subdev *sd = dev_get_drvdata(dev);
struct adv7180_state *state = to_state(sd);
return adv7180_set_power(state, false);
}
static int adv7180_resume(struct device *dev)
{
struct v4l2_subdev *sd = dev_get_drvdata(dev);
struct adv7180_state *state = to_state(sd);
int ret;
ret = init_device(state);
if (ret < 0)
return ret;
ret = adv7180_set_power(state, state->powered);
if (ret)
return ret;
return 0;
}
static SIMPLE_DEV_PM_OPS(adv7180_pm_ops, adv7180_suspend, adv7180_resume);
#define ADV7180_PM_OPS (&adv7180_pm_ops)
#else
#define ADV7180_PM_OPS NULL
#endif
#ifdef CONFIG_OF
static const struct of_device_id adv7180_of_id[] = {
{ .compatible = "adi,adv7180", },
{ .compatible = "adi,adv7180cp", },
{ .compatible = "adi,adv7180st", },
{ .compatible = "adi,adv7182", },
{ .compatible = "adi,adv7280", },
{ .compatible = "adi,adv7280-m", },
{ .compatible = "adi,adv7281", },
{ .compatible = "adi,adv7281-m", },
{ .compatible = "adi,adv7281-ma", },
{ .compatible = "adi,adv7282", },
{ .compatible = "adi,adv7282-m", },
{ },
};
MODULE_DEVICE_TABLE(of, adv7180_of_id);
#endif
static struct i2c_driver adv7180_driver = {
.driver = {
.name = KBUILD_MODNAME,
.pm = ADV7180_PM_OPS,
.of_match_table = of_match_ptr(adv7180_of_id),
},
.probe = adv7180_probe,
.remove = adv7180_remove,
.id_table = adv7180_id,
};
module_i2c_driver(adv7180_driver);
MODULE_DESCRIPTION("Analog Devices ADV7180 video decoder driver");
MODULE_AUTHOR("Mocean Laboratories");
MODULE_LICENSE("GPL v2");