kernel/drivers/gpu/drm/mcde/mcde_dsi.c
2024-07-22 17:22:30 +08:00

1238 lines
36 KiB
C

// SPDX-License-Identifier: GPL-2.0+
#include <linux/clk.h>
#include <linux/component.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <video/mipi_display.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_device.h>
#include <drm/drm_drv.h>
#include <drm/drm_encoder.h>
#include <drm/drm_mipi_dsi.h>
#include <drm/drm_modeset_helper_vtables.h>
#include <drm/drm_of.h>
#include <drm/drm_panel.h>
#include <drm/drm_print.h>
#include <drm/drm_probe_helper.h>
#include "mcde_drm.h"
#include "mcde_dsi_regs.h"
#define DSI_DEFAULT_LP_FREQ_HZ 19200000
#define DSI_DEFAULT_HS_FREQ_HZ 420160000
/* PRCMU DSI reset registers */
#define PRCM_DSI_SW_RESET 0x324
#define PRCM_DSI_SW_RESET_DSI0_SW_RESETN BIT(0)
#define PRCM_DSI_SW_RESET_DSI1_SW_RESETN BIT(1)
#define PRCM_DSI_SW_RESET_DSI2_SW_RESETN BIT(2)
struct mcde_dsi {
struct device *dev;
struct mcde *mcde;
struct drm_bridge bridge;
struct drm_panel *panel;
struct drm_bridge *bridge_out;
struct mipi_dsi_host dsi_host;
struct mipi_dsi_device *mdsi;
const struct drm_display_mode *mode;
struct clk *hs_clk;
struct clk *lp_clk;
unsigned long hs_freq;
unsigned long lp_freq;
bool unused;
void __iomem *regs;
struct regmap *prcmu;
};
static inline struct mcde_dsi *bridge_to_mcde_dsi(struct drm_bridge *bridge)
{
return container_of(bridge, struct mcde_dsi, bridge);
}
static inline struct mcde_dsi *host_to_mcde_dsi(struct mipi_dsi_host *h)
{
return container_of(h, struct mcde_dsi, dsi_host);
}
bool mcde_dsi_irq(struct mipi_dsi_device *mdsi)
{
struct mcde_dsi *d;
u32 val;
bool te_received = false;
d = host_to_mcde_dsi(mdsi->host);
dev_dbg(d->dev, "%s called\n", __func__);
val = readl(d->regs + DSI_DIRECT_CMD_STS_FLAG);
if (val)
dev_dbg(d->dev, "DSI_DIRECT_CMD_STS_FLAG = %08x\n", val);
if (val & DSI_DIRECT_CMD_STS_WRITE_COMPLETED)
dev_dbg(d->dev, "direct command write completed\n");
if (val & DSI_DIRECT_CMD_STS_TE_RECEIVED) {
te_received = true;
dev_dbg(d->dev, "direct command TE received\n");
}
if (val & DSI_DIRECT_CMD_STS_ACKNOWLEDGE_WITH_ERR_RECEIVED)
dev_err(d->dev, "direct command ACK ERR received\n");
if (val & DSI_DIRECT_CMD_STS_READ_COMPLETED_WITH_ERR)
dev_err(d->dev, "direct command read ERR received\n");
/* Mask off the ACK value and clear status */
writel(val, d->regs + DSI_DIRECT_CMD_STS_CLR);
val = readl(d->regs + DSI_CMD_MODE_STS_FLAG);
if (val)
dev_dbg(d->dev, "DSI_CMD_MODE_STS_FLAG = %08x\n", val);
if (val & DSI_CMD_MODE_STS_ERR_NO_TE)
/* This happens all the time (safe to ignore) */
dev_dbg(d->dev, "CMD mode no TE\n");
if (val & DSI_CMD_MODE_STS_ERR_TE_MISS)
/* This happens all the time (safe to ignore) */
dev_dbg(d->dev, "CMD mode TE miss\n");
if (val & DSI_CMD_MODE_STS_ERR_SDI1_UNDERRUN)
dev_err(d->dev, "CMD mode SD1 underrun\n");
if (val & DSI_CMD_MODE_STS_ERR_SDI2_UNDERRUN)
dev_err(d->dev, "CMD mode SD2 underrun\n");
if (val & DSI_CMD_MODE_STS_ERR_UNWANTED_RD)
dev_err(d->dev, "CMD mode unwanted RD\n");
writel(val, d->regs + DSI_CMD_MODE_STS_CLR);
val = readl(d->regs + DSI_DIRECT_CMD_RD_STS_FLAG);
if (val)
dev_dbg(d->dev, "DSI_DIRECT_CMD_RD_STS_FLAG = %08x\n", val);
writel(val, d->regs + DSI_DIRECT_CMD_RD_STS_CLR);
val = readl(d->regs + DSI_TG_STS_FLAG);
if (val)
dev_dbg(d->dev, "DSI_TG_STS_FLAG = %08x\n", val);
writel(val, d->regs + DSI_TG_STS_CLR);
val = readl(d->regs + DSI_VID_MODE_STS_FLAG);
if (val)
dev_dbg(d->dev, "DSI_VID_MODE_STS_FLAG = %08x\n", val);
if (val & DSI_VID_MODE_STS_VSG_RUNNING)
dev_dbg(d->dev, "VID mode VSG running\n");
if (val & DSI_VID_MODE_STS_ERR_MISSING_DATA)
dev_err(d->dev, "VID mode missing data\n");
if (val & DSI_VID_MODE_STS_ERR_MISSING_HSYNC)
dev_err(d->dev, "VID mode missing HSYNC\n");
if (val & DSI_VID_MODE_STS_ERR_MISSING_VSYNC)
dev_err(d->dev, "VID mode missing VSYNC\n");
if (val & DSI_VID_MODE_STS_REG_ERR_SMALL_LENGTH)
dev_err(d->dev, "VID mode less bytes than expected between two HSYNC\n");
if (val & DSI_VID_MODE_STS_REG_ERR_SMALL_HEIGHT)
dev_err(d->dev, "VID mode less lines than expected between two VSYNC\n");
if (val & (DSI_VID_MODE_STS_ERR_BURSTWRITE |
DSI_VID_MODE_STS_ERR_LINEWRITE |
DSI_VID_MODE_STS_ERR_LONGREAD))
dev_err(d->dev, "VID mode read/write error\n");
if (val & DSI_VID_MODE_STS_ERR_VRS_WRONG_LENGTH)
dev_err(d->dev, "VID mode received packets differ from expected size\n");
if (val & DSI_VID_MODE_STS_VSG_RECOVERY)
dev_err(d->dev, "VID mode VSG in recovery mode\n");
writel(val, d->regs + DSI_VID_MODE_STS_CLR);
return te_received;
}
static void mcde_dsi_attach_to_mcde(struct mcde_dsi *d)
{
d->mcde->mdsi = d->mdsi;
/*
* Select the way the DSI data flow is pushing to the display:
* currently we just support video or command mode depending
* on the type of display. Video mode defaults to using the
* formatter itself for synchronization (stateless video panel).
*
* FIXME: add flags to struct mipi_dsi_device .flags to indicate
* displays that require BTA (bus turn around) so we can handle
* such displays as well. Figure out how to properly handle
* single frame on-demand updates with DRM for command mode
* displays (MCDE_COMMAND_ONESHOT_FLOW).
*/
if (d->mdsi->mode_flags & MIPI_DSI_MODE_VIDEO)
d->mcde->flow_mode = MCDE_VIDEO_FORMATTER_FLOW;
else
d->mcde->flow_mode = MCDE_COMMAND_TE_FLOW;
}
static int mcde_dsi_host_attach(struct mipi_dsi_host *host,
struct mipi_dsi_device *mdsi)
{
struct mcde_dsi *d = host_to_mcde_dsi(host);
if (mdsi->lanes < 1 || mdsi->lanes > 2) {
DRM_ERROR("dsi device params invalid, 1 or 2 lanes supported\n");
return -EINVAL;
}
dev_info(d->dev, "attached DSI device with %d lanes\n", mdsi->lanes);
/* MIPI_DSI_FMT_RGB88 etc */
dev_info(d->dev, "format %08x, %dbpp\n", mdsi->format,
mipi_dsi_pixel_format_to_bpp(mdsi->format));
dev_info(d->dev, "mode flags: %08lx\n", mdsi->mode_flags);
d->mdsi = mdsi;
if (d->mcde)
mcde_dsi_attach_to_mcde(d);
return 0;
}
static int mcde_dsi_host_detach(struct mipi_dsi_host *host,
struct mipi_dsi_device *mdsi)
{
struct mcde_dsi *d = host_to_mcde_dsi(host);
d->mdsi = NULL;
if (d->mcde)
d->mcde->mdsi = NULL;
return 0;
}
#define MCDE_DSI_HOST_IS_READ(type) \
((type == MIPI_DSI_GENERIC_READ_REQUEST_0_PARAM) || \
(type == MIPI_DSI_GENERIC_READ_REQUEST_1_PARAM) || \
(type == MIPI_DSI_GENERIC_READ_REQUEST_2_PARAM) || \
(type == MIPI_DSI_DCS_READ))
static int mcde_dsi_execute_transfer(struct mcde_dsi *d,
const struct mipi_dsi_msg *msg)
{
const u32 loop_delay_us = 10; /* us */
u32 loop_counter;
size_t txlen = msg->tx_len;
size_t rxlen = msg->rx_len;
int i;
u32 val;
int ret;
writel(~0, d->regs + DSI_DIRECT_CMD_STS_CLR);
writel(~0, d->regs + DSI_CMD_MODE_STS_CLR);
/* Send command */
writel(1, d->regs + DSI_DIRECT_CMD_SEND);
loop_counter = 1000 * 1000 / loop_delay_us;
if (MCDE_DSI_HOST_IS_READ(msg->type)) {
/* Read command */
while (!(readl(d->regs + DSI_DIRECT_CMD_STS) &
(DSI_DIRECT_CMD_STS_READ_COMPLETED |
DSI_DIRECT_CMD_STS_READ_COMPLETED_WITH_ERR))
&& --loop_counter)
usleep_range(loop_delay_us, (loop_delay_us * 3) / 2);
if (!loop_counter) {
dev_err(d->dev, "DSI read timeout!\n");
/* Set exit code and retry */
return -ETIME;
}
} else {
/* Writing only */
while (!(readl(d->regs + DSI_DIRECT_CMD_STS) &
DSI_DIRECT_CMD_STS_WRITE_COMPLETED)
&& --loop_counter)
usleep_range(loop_delay_us, (loop_delay_us * 3) / 2);
if (!loop_counter) {
/* Set exit code and retry */
dev_err(d->dev, "DSI write timeout!\n");
return -ETIME;
}
}
val = readl(d->regs + DSI_DIRECT_CMD_STS);
if (val & DSI_DIRECT_CMD_STS_READ_COMPLETED_WITH_ERR) {
dev_err(d->dev, "read completed with error\n");
writel(1, d->regs + DSI_DIRECT_CMD_RD_INIT);
return -EIO;
}
if (val & DSI_DIRECT_CMD_STS_ACKNOWLEDGE_WITH_ERR_RECEIVED) {
val >>= DSI_DIRECT_CMD_STS_ACK_VAL_SHIFT;
dev_err(d->dev, "error during transmission: %04x\n",
val);
return -EIO;
}
if (!MCDE_DSI_HOST_IS_READ(msg->type)) {
/* Return number of bytes written */
ret = txlen;
} else {
/* OK this is a read command, get the response */
u32 rdsz;
u32 rddat;
u8 *rx = msg->rx_buf;
rdsz = readl(d->regs + DSI_DIRECT_CMD_RD_PROPERTY);
rdsz &= DSI_DIRECT_CMD_RD_PROPERTY_RD_SIZE_MASK;
rddat = readl(d->regs + DSI_DIRECT_CMD_RDDAT);
if (rdsz < rxlen) {
dev_err(d->dev, "read error, requested %zd got %d\n",
rxlen, rdsz);
return -EIO;
}
/* FIXME: read more than 4 bytes */
for (i = 0; i < 4 && i < rxlen; i++)
rx[i] = (rddat >> (i * 8)) & 0xff;
ret = rdsz;
}
/* Successful transmission */
return ret;
}
static ssize_t mcde_dsi_host_transfer(struct mipi_dsi_host *host,
const struct mipi_dsi_msg *msg)
{
struct mcde_dsi *d = host_to_mcde_dsi(host);
const u8 *tx = msg->tx_buf;
size_t txlen = msg->tx_len;
size_t rxlen = msg->rx_len;
unsigned int retries = 0;
u32 val;
int ret;
int i;
if (txlen > 16) {
dev_err(d->dev,
"dunno how to write more than 16 bytes yet\n");
return -EIO;
}
if (rxlen > 4) {
dev_err(d->dev,
"dunno how to read more than 4 bytes yet\n");
return -EIO;
}
dev_dbg(d->dev,
"message to channel %d, write %zd bytes read %zd bytes\n",
msg->channel, txlen, rxlen);
/* Command "nature" */
if (MCDE_DSI_HOST_IS_READ(msg->type))
/* MCTL_MAIN_DATA_CTL already set up */
val = DSI_DIRECT_CMD_MAIN_SETTINGS_CMD_NAT_READ;
else
val = DSI_DIRECT_CMD_MAIN_SETTINGS_CMD_NAT_WRITE;
/*
* More than 2 bytes will not fit in a single packet, so it's
* time to set the "long not short" bit. One byte is used by
* the MIPI DCS command leaving just one byte for the payload
* in a short package.
*/
if (mipi_dsi_packet_format_is_long(msg->type))
val |= DSI_DIRECT_CMD_MAIN_SETTINGS_CMD_LONGNOTSHORT;
val |= 0 << DSI_DIRECT_CMD_MAIN_SETTINGS_CMD_ID_SHIFT;
val |= txlen << DSI_DIRECT_CMD_MAIN_SETTINGS_CMD_SIZE_SHIFT;
val |= DSI_DIRECT_CMD_MAIN_SETTINGS_CMD_LP_EN;
val |= msg->type << DSI_DIRECT_CMD_MAIN_SETTINGS_CMD_HEAD_SHIFT;
writel(val, d->regs + DSI_DIRECT_CMD_MAIN_SETTINGS);
/* MIPI DCS command is part of the data */
if (txlen > 0) {
val = 0;
for (i = 0; i < 4 && i < txlen; i++)
val |= tx[i] << (i * 8);
}
writel(val, d->regs + DSI_DIRECT_CMD_WRDAT0);
if (txlen > 4) {
val = 0;
for (i = 0; i < 4 && (i + 4) < txlen; i++)
val |= tx[i + 4] << (i * 8);
writel(val, d->regs + DSI_DIRECT_CMD_WRDAT1);
}
if (txlen > 8) {
val = 0;
for (i = 0; i < 4 && (i + 8) < txlen; i++)
val |= tx[i + 8] << (i * 8);
writel(val, d->regs + DSI_DIRECT_CMD_WRDAT2);
}
if (txlen > 12) {
val = 0;
for (i = 0; i < 4 && (i + 12) < txlen; i++)
val |= tx[i + 12] << (i * 8);
writel(val, d->regs + DSI_DIRECT_CMD_WRDAT3);
}
while (retries < 3) {
ret = mcde_dsi_execute_transfer(d, msg);
if (ret >= 0)
break;
retries++;
}
if (ret < 0 && retries)
dev_err(d->dev, "gave up after %d retries\n", retries);
/* Clear any errors */
writel(~0, d->regs + DSI_DIRECT_CMD_STS_CLR);
writel(~0, d->regs + DSI_CMD_MODE_STS_CLR);
return ret;
}
static const struct mipi_dsi_host_ops mcde_dsi_host_ops = {
.attach = mcde_dsi_host_attach,
.detach = mcde_dsi_host_detach,
.transfer = mcde_dsi_host_transfer,
};
/* This sends a direct (short) command to request TE */
void mcde_dsi_te_request(struct mipi_dsi_device *mdsi)
{
struct mcde_dsi *d;
u32 val;
d = host_to_mcde_dsi(mdsi->host);
/* Command "nature" TE request */
val = DSI_DIRECT_CMD_MAIN_SETTINGS_CMD_NAT_TE_REQ;
val |= 0 << DSI_DIRECT_CMD_MAIN_SETTINGS_CMD_ID_SHIFT;
val |= 2 << DSI_DIRECT_CMD_MAIN_SETTINGS_CMD_SIZE_SHIFT;
val |= DSI_DIRECT_CMD_MAIN_SETTINGS_CMD_LP_EN;
val |= MIPI_DSI_GENERIC_SHORT_WRITE_1_PARAM <<
DSI_DIRECT_CMD_MAIN_SETTINGS_CMD_HEAD_SHIFT;
writel(val, d->regs + DSI_DIRECT_CMD_MAIN_SETTINGS);
/* Clear TE reveived and error status bits and enables them */
writel(DSI_DIRECT_CMD_STS_CLR_TE_RECEIVED_CLR |
DSI_DIRECT_CMD_STS_CLR_ACKNOWLEDGE_WITH_ERR_RECEIVED_CLR,
d->regs + DSI_DIRECT_CMD_STS_CLR);
val = readl(d->regs + DSI_DIRECT_CMD_STS_CTL);
val |= DSI_DIRECT_CMD_STS_CTL_TE_RECEIVED_EN;
val |= DSI_DIRECT_CMD_STS_CTL_ACKNOWLEDGE_WITH_ERR_EN;
writel(val, d->regs + DSI_DIRECT_CMD_STS_CTL);
/* Clear and enable no TE or TE missing status */
writel(DSI_CMD_MODE_STS_CLR_ERR_NO_TE_CLR |
DSI_CMD_MODE_STS_CLR_ERR_TE_MISS_CLR,
d->regs + DSI_CMD_MODE_STS_CLR);
val = readl(d->regs + DSI_CMD_MODE_STS_CTL);
val |= DSI_CMD_MODE_STS_CTL_ERR_NO_TE_EN;
val |= DSI_CMD_MODE_STS_CTL_ERR_TE_MISS_EN;
writel(val, d->regs + DSI_CMD_MODE_STS_CTL);
/* Send this TE request command */
writel(1, d->regs + DSI_DIRECT_CMD_SEND);
}
static void mcde_dsi_setup_video_mode(struct mcde_dsi *d,
const struct drm_display_mode *mode)
{
/* cpp, characters per pixel, number of bytes per pixel */
u8 cpp = mipi_dsi_pixel_format_to_bpp(d->mdsi->format) / 8;
u64 pclk;
u64 bpl;
int hfp;
int hbp;
int hsa;
u32 blkline_pck, line_duration;
u32 val;
val = 0;
if (d->mdsi->mode_flags & MIPI_DSI_MODE_VIDEO_BURST)
val |= DSI_VID_MAIN_CTL_BURST_MODE;
if (d->mdsi->mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE) {
val |= DSI_VID_MAIN_CTL_SYNC_PULSE_ACTIVE;
val |= DSI_VID_MAIN_CTL_SYNC_PULSE_HORIZONTAL;
}
/* RGB header and pixel mode */
switch (d->mdsi->format) {
case MIPI_DSI_FMT_RGB565:
val |= MIPI_DSI_PACKED_PIXEL_STREAM_16 <<
DSI_VID_MAIN_CTL_HEADER_SHIFT;
val |= DSI_VID_MAIN_CTL_VID_PIXEL_MODE_16BITS;
break;
case MIPI_DSI_FMT_RGB666_PACKED:
val |= MIPI_DSI_PACKED_PIXEL_STREAM_18 <<
DSI_VID_MAIN_CTL_HEADER_SHIFT;
val |= DSI_VID_MAIN_CTL_VID_PIXEL_MODE_18BITS;
break;
case MIPI_DSI_FMT_RGB666:
val |= MIPI_DSI_PIXEL_STREAM_3BYTE_18
<< DSI_VID_MAIN_CTL_HEADER_SHIFT;
val |= DSI_VID_MAIN_CTL_VID_PIXEL_MODE_18BITS_LOOSE;
break;
case MIPI_DSI_FMT_RGB888:
val |= MIPI_DSI_PACKED_PIXEL_STREAM_24 <<
DSI_VID_MAIN_CTL_HEADER_SHIFT;
val |= DSI_VID_MAIN_CTL_VID_PIXEL_MODE_24BITS;
break;
default:
dev_err(d->dev, "unknown pixel mode\n");
return;
}
/* TODO: TVG (test video generator) could be enabled here */
/*
* During vertical blanking: go to LP mode
* Like with the EOL setting, if this is not set, the EOL area will be
* filled with NULL or blanking packets in the vblank area.
* FIXME: some Samsung phones and display panels such as s6e63m0 use
* DSI_VID_MAIN_CTL_REG_BLKLINE_MODE_BLANKING here instead,
* figure out how to properly configure that from the panel.
*/
val |= DSI_VID_MAIN_CTL_REG_BLKLINE_MODE_LP_0;
/*
* During EOL: go to LP mode. If this is not set, the EOL area will be
* filled with NULL or blanking packets.
*/
val |= DSI_VID_MAIN_CTL_REG_BLKEOL_MODE_LP_0;
/* Recovery mode 1 */
val |= 1 << DSI_VID_MAIN_CTL_RECOVERY_MODE_SHIFT;
/* All other fields zero */
writel(val, d->regs + DSI_VID_MAIN_CTL);
/* Vertical frame parameters are pretty straight-forward */
val = mode->vdisplay << DSI_VID_VSIZE_VACT_LENGTH_SHIFT;
/* vertical front porch */
val |= (mode->vsync_start - mode->vdisplay)
<< DSI_VID_VSIZE_VFP_LENGTH_SHIFT;
/* vertical sync active */
val |= (mode->vsync_end - mode->vsync_start)
<< DSI_VID_VSIZE_VSA_LENGTH_SHIFT;
/* vertical back porch */
val |= (mode->vtotal - mode->vsync_end)
<< DSI_VID_VSIZE_VBP_LENGTH_SHIFT;
writel(val, d->regs + DSI_VID_VSIZE);
/*
* Horizontal frame parameters:
* horizontal resolution is given in pixels but must be re-calculated
* into bytes since this is what the hardware expects, these registers
* define the payload size of the packet.
*
* hfp = horizontal front porch in bytes
* hbp = horizontal back porch in bytes
* hsa = horizontal sync active in bytes
*
* 6 + 2 is HFP header + checksum
*/
hfp = (mode->hsync_start - mode->hdisplay) * cpp - 6 - 2;
if (d->mdsi->mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE) {
/*
* Use sync pulse for sync: explicit HSA time
* 6 is HBP header + checksum
* 4 is RGB header + checksum
*/
hbp = (mode->htotal - mode->hsync_end) * cpp - 4 - 6;
/*
* 6 is HBP header + checksum
* 4 is HSW packet bytes
* 4 is RGB header + checksum
*/
hsa = (mode->hsync_end - mode->hsync_start) * cpp - 4 - 4 - 6;
} else {
/*
* Use event for sync: HBP includes both back porch and sync
* 6 is HBP header + checksum
* 4 is HSW packet bytes
* 4 is RGB header + checksum
*/
hbp = (mode->htotal - mode->hsync_start) * cpp - 4 - 4 - 6;
/* HSA is not present in this mode and set to 0 */
hsa = 0;
}
if (hfp < 0) {
dev_info(d->dev, "hfp negative, set to 0\n");
hfp = 0;
}
if (hbp < 0) {
dev_info(d->dev, "hbp negative, set to 0\n");
hbp = 0;
}
if (hsa < 0) {
dev_info(d->dev, "hsa negative, set to 0\n");
hsa = 0;
}
dev_dbg(d->dev, "hfp: %u, hbp: %u, hsa: %u bytes\n",
hfp, hbp, hsa);
/* Frame parameters: horizontal sync active */
val = hsa << DSI_VID_HSIZE1_HSA_LENGTH_SHIFT;
/* horizontal back porch */
val |= hbp << DSI_VID_HSIZE1_HBP_LENGTH_SHIFT;
/* horizontal front porch */
val |= hfp << DSI_VID_HSIZE1_HFP_LENGTH_SHIFT;
writel(val, d->regs + DSI_VID_HSIZE1);
/* RGB data length (visible bytes on one scanline) */
val = mode->hdisplay * cpp;
writel(val, d->regs + DSI_VID_HSIZE2);
dev_dbg(d->dev, "RGB length, visible area on a line: %u bytes\n", val);
/*
* Calculate the time between two pixels in picoseconds using
* the supplied refresh rate and total resolution including
* porches and sync.
*/
/* (ps/s) / (pixels/s) = ps/pixels */
pclk = DIV_ROUND_UP_ULL(1000000000000, (mode->clock * 1000));
dev_dbg(d->dev, "picoseconds between two pixels: %llu\n",
pclk);
/*
* How many bytes per line will this update frequency yield?
*
* Calculate the number of picoseconds for one scanline (1), then
* divide by 1000000000000 (2) to get in pixels per second we
* want to output.
*
* Multiply with number of bytes per second at this video display
* frequency (3) to get number of bytes transferred during this
* time. Notice that we use the frequency the display wants,
* not what we actually get from the DSI PLL, which is hs_freq.
*
* These arithmetics are done in a different order to avoid
* overflow.
*/
bpl = pclk * mode->htotal; /* (1) picoseconds per line */
dev_dbg(d->dev, "picoseconds per line: %llu\n", bpl);
/* Multiply with bytes per second (3) */
bpl *= (d->mdsi->hs_rate / 8);
/* Pixels per second (2) */
bpl = DIV_ROUND_DOWN_ULL(bpl, 1000000); /* microseconds */
bpl = DIV_ROUND_DOWN_ULL(bpl, 1000000); /* seconds */
/* parallel transactions in all lanes */
bpl *= d->mdsi->lanes;
dev_dbg(d->dev,
"calculated bytes per line: %llu @ %d Hz with HS %lu Hz\n",
bpl, drm_mode_vrefresh(mode), d->mdsi->hs_rate);
/*
* 6 is header + checksum, header = 4 bytes, checksum = 2 bytes
* 4 is short packet for vsync/hsync
*/
if (d->mdsi->mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE) {
/* Set the event packet size to 0 (not used) */
writel(0, d->regs + DSI_VID_BLKSIZE1);
/*
* FIXME: isn't the hsync width in pixels? The porch and
* sync area size is in pixels here, but this -6
* seems to be for bytes. It looks like this in the vendor
* code though. Is it completely untested?
*/
blkline_pck = bpl - (mode->hsync_end - mode->hsync_start) - 6;
val = blkline_pck << DSI_VID_BLKSIZE2_BLKLINE_PULSE_PCK_SHIFT;
writel(val, d->regs + DSI_VID_BLKSIZE2);
} else {
/* Set the sync pulse packet size to 0 (not used) */
writel(0, d->regs + DSI_VID_BLKSIZE2);
/* Specifying payload size in bytes (-4-6 from manual) */
blkline_pck = bpl - 4 - 6;
if (blkline_pck > 0x1FFF)
dev_err(d->dev, "blkline_pck too big %d bytes\n",
blkline_pck);
val = blkline_pck << DSI_VID_BLKSIZE1_BLKLINE_EVENT_PCK_SHIFT;
val &= DSI_VID_BLKSIZE1_BLKLINE_EVENT_PCK_MASK;
writel(val, d->regs + DSI_VID_BLKSIZE1);
}
/*
* The line duration is used to scale back the frequency from
* the max frequency supported by the HS clock to the desired
* update frequency in vrefresh.
*/
line_duration = blkline_pck + 6;
/*
* The datasheet contains this complex condition to decreasing
* the line duration by 1 under very specific circumstances.
* Here we also imply that LP is used during burst EOL.
*/
if (d->mdsi->lanes == 2 && (hsa & 0x01) && (hfp & 0x01)
&& (d->mdsi->mode_flags & MIPI_DSI_MODE_VIDEO_BURST))
line_duration--;
line_duration = DIV_ROUND_CLOSEST(line_duration, d->mdsi->lanes);
dev_dbg(d->dev, "line duration %u bytes\n", line_duration);
val = line_duration << DSI_VID_DPHY_TIME_REG_LINE_DURATION_SHIFT;
/*
* This is the time to perform LP->HS on D-PHY
* FIXME: nowhere to get this from: DT property on the DSI?
* The manual says this is "system dependent".
* values like 48 and 72 seen in the vendor code.
*/
val |= 48 << DSI_VID_DPHY_TIME_REG_WAKEUP_TIME_SHIFT;
writel(val, d->regs + DSI_VID_DPHY_TIME);
/*
* See the manual figure 657 page 2203 for understanding the impact
* of the different burst mode settings.
*/
if (d->mdsi->mode_flags & MIPI_DSI_MODE_VIDEO_BURST) {
int blkeol_pck, blkeol_duration;
/*
* Packet size at EOL for burst mode, this is only used
* if DSI_VID_MAIN_CTL_REG_BLKEOL_MODE_LP_0 is NOT set,
* but we instead send NULL or blanking packets at EOL.
* This is given in number of bytes.
*
* See the manual page 2198 for the 13 reg_blkeol_pck bits.
*/
blkeol_pck = bpl - (mode->htotal * cpp) - 6;
if (blkeol_pck < 0) {
dev_err(d->dev, "video block does not fit on line!\n");
dev_err(d->dev,
"calculated bytes per line: %llu @ %d Hz\n",
bpl, drm_mode_vrefresh(mode));
dev_err(d->dev,
"bytes per line (blkline_pck) %u bytes\n",
blkline_pck);
dev_err(d->dev,
"blkeol_pck becomes %d bytes\n", blkeol_pck);
return;
}
dev_dbg(d->dev, "BLKEOL packet: %d bytes\n", blkeol_pck);
val = readl(d->regs + DSI_VID_BLKSIZE1);
val &= ~DSI_VID_BLKSIZE1_BLKEOL_PCK_MASK;
val |= blkeol_pck << DSI_VID_BLKSIZE1_BLKEOL_PCK_SHIFT;
writel(val, d->regs + DSI_VID_BLKSIZE1);
/* Use the same value for exact burst limit */
val = blkeol_pck <<
DSI_VID_VCA_SETTING2_EXACT_BURST_LIMIT_SHIFT;
val &= DSI_VID_VCA_SETTING2_EXACT_BURST_LIMIT_MASK;
writel(val, d->regs + DSI_VID_VCA_SETTING2);
/*
* This BLKEOL duration is claimed to be the duration in clock
* cycles of the BLLP end-of-line (EOL) period for each line if
* DSI_VID_MAIN_CTL_REG_BLKEOL_MODE_LP_0 is set.
*
* It is hard to trust the manuals' claim that this is in clock
* cycles as we mimic the behaviour of the vendor code, which
* appears to write a number of bytes that would have been
* transferred on a single lane.
*
* See the manual figure 657 page 2203 and page 2198 for the 13
* reg_blkeol_duration bits.
*
* FIXME: should this also be set up also for non-burst mode
* according to figure 565 page 2202?
*/
blkeol_duration = DIV_ROUND_CLOSEST(blkeol_pck + 6,
d->mdsi->lanes);
dev_dbg(d->dev, "BLKEOL duration: %d clock cycles\n",
blkeol_duration);
val = readl(d->regs + DSI_VID_PCK_TIME);
val &= ~DSI_VID_PCK_TIME_BLKEOL_DURATION_MASK;
val |= blkeol_duration <<
DSI_VID_PCK_TIME_BLKEOL_DURATION_SHIFT;
writel(val, d->regs + DSI_VID_PCK_TIME);
/* Max burst limit, this is given in bytes */
val = readl(d->regs + DSI_VID_VCA_SETTING1);
val &= ~DSI_VID_VCA_SETTING1_MAX_BURST_LIMIT_MASK;
val |= (blkeol_pck - 6) <<
DSI_VID_VCA_SETTING1_MAX_BURST_LIMIT_SHIFT;
writel(val, d->regs + DSI_VID_VCA_SETTING1);
}
/* Maximum line limit */
val = readl(d->regs + DSI_VID_VCA_SETTING2);
val &= ~DSI_VID_VCA_SETTING2_MAX_LINE_LIMIT_MASK;
val |= (blkline_pck - 6) <<
DSI_VID_VCA_SETTING2_MAX_LINE_LIMIT_SHIFT;
writel(val, d->regs + DSI_VID_VCA_SETTING2);
dev_dbg(d->dev, "blkline pck: %d bytes\n", blkline_pck - 6);
}
static void mcde_dsi_start(struct mcde_dsi *d)
{
unsigned long hs_freq;
u32 val;
int i;
/* No integration mode */
writel(0, d->regs + DSI_MCTL_INTEGRATION_MODE);
/* Enable the DSI port, from drivers/video/mcde/dsilink_v2.c */
val = DSI_MCTL_MAIN_DATA_CTL_LINK_EN |
DSI_MCTL_MAIN_DATA_CTL_BTA_EN |
DSI_MCTL_MAIN_DATA_CTL_READ_EN |
DSI_MCTL_MAIN_DATA_CTL_REG_TE_EN;
if (!(d->mdsi->mode_flags & MIPI_DSI_MODE_NO_EOT_PACKET))
val |= DSI_MCTL_MAIN_DATA_CTL_HOST_EOT_GEN;
writel(val, d->regs + DSI_MCTL_MAIN_DATA_CTL);
/* Set a high command timeout, clear other fields */
val = 0x3ff << DSI_CMD_MODE_CTL_TE_TIMEOUT_SHIFT;
writel(val, d->regs + DSI_CMD_MODE_CTL);
/*
* UI_X4 is described as "unit interval times four"
* I guess since DSI packets are 4 bytes wide, one unit
* is one byte.
*/
hs_freq = clk_get_rate(d->hs_clk);
hs_freq /= 1000000; /* MHz */
val = 4000 / hs_freq;
dev_dbg(d->dev, "UI value: %d\n", val);
val <<= DSI_MCTL_DPHY_STATIC_UI_X4_SHIFT;
val &= DSI_MCTL_DPHY_STATIC_UI_X4_MASK;
writel(val, d->regs + DSI_MCTL_DPHY_STATIC);
/*
* Enable clocking: 0x0f (something?) between each burst,
* enable the second lane if needed, enable continuous clock if
* needed, enable switch into ULPM (ultra-low power mode) on
* all the lines.
*/
val = 0x0f << DSI_MCTL_MAIN_PHY_CTL_WAIT_BURST_TIME_SHIFT;
if (d->mdsi->lanes == 2)
val |= DSI_MCTL_MAIN_PHY_CTL_LANE2_EN;
if (!(d->mdsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS))
val |= DSI_MCTL_MAIN_PHY_CTL_CLK_CONTINUOUS;
val |= DSI_MCTL_MAIN_PHY_CTL_CLK_ULPM_EN |
DSI_MCTL_MAIN_PHY_CTL_DAT1_ULPM_EN |
DSI_MCTL_MAIN_PHY_CTL_DAT2_ULPM_EN;
writel(val, d->regs + DSI_MCTL_MAIN_PHY_CTL);
val = (1 << DSI_MCTL_ULPOUT_TIME_CKLANE_ULPOUT_TIME_SHIFT) |
(1 << DSI_MCTL_ULPOUT_TIME_DATA_ULPOUT_TIME_SHIFT);
writel(val, d->regs + DSI_MCTL_ULPOUT_TIME);
writel(DSI_DPHY_LANES_TRIM_DPHY_SPECS_90_81B_0_90,
d->regs + DSI_DPHY_LANES_TRIM);
/* High PHY timeout */
val = (0x0f << DSI_MCTL_DPHY_TIMEOUT_CLK_DIV_SHIFT) |
(0x3fff << DSI_MCTL_DPHY_TIMEOUT_HSTX_TO_VAL_SHIFT) |
(0x3fff << DSI_MCTL_DPHY_TIMEOUT_LPRX_TO_VAL_SHIFT);
writel(val, d->regs + DSI_MCTL_DPHY_TIMEOUT);
val = DSI_MCTL_MAIN_EN_PLL_START |
DSI_MCTL_MAIN_EN_CKLANE_EN |
DSI_MCTL_MAIN_EN_DAT1_EN |
DSI_MCTL_MAIN_EN_IF1_EN;
if (d->mdsi->lanes == 2)
val |= DSI_MCTL_MAIN_EN_DAT2_EN;
writel(val, d->regs + DSI_MCTL_MAIN_EN);
/* Wait for the PLL to lock and the clock and data lines to come up */
i = 0;
val = DSI_MCTL_MAIN_STS_PLL_LOCK |
DSI_MCTL_MAIN_STS_CLKLANE_READY |
DSI_MCTL_MAIN_STS_DAT1_READY;
if (d->mdsi->lanes == 2)
val |= DSI_MCTL_MAIN_STS_DAT2_READY;
while ((readl(d->regs + DSI_MCTL_MAIN_STS) & val) != val) {
/* Sleep for a millisecond */
usleep_range(1000, 1500);
if (i++ == 100) {
dev_warn(d->dev, "DSI lanes did not start up\n");
return;
}
}
/* TODO needed? */
/* Command mode, clear IF1 ID */
val = readl(d->regs + DSI_CMD_MODE_CTL);
/*
* If we enable low-power mode here,
* then display updates become really slow.
*/
if (d->mdsi->mode_flags & MIPI_DSI_MODE_LPM)
val |= DSI_CMD_MODE_CTL_IF1_LP_EN;
val &= ~DSI_CMD_MODE_CTL_IF1_ID_MASK;
writel(val, d->regs + DSI_CMD_MODE_CTL);
/* Wait for DSI PHY to initialize */
usleep_range(100, 200);
dev_info(d->dev, "DSI link enabled\n");
}
/*
* Notice that this is called from inside the display controller
* and not from the bridge callbacks.
*/
void mcde_dsi_enable(struct drm_bridge *bridge)
{
struct mcde_dsi *d = bridge_to_mcde_dsi(bridge);
unsigned long hs_freq, lp_freq;
u32 val;
int ret;
/* Copy maximum clock frequencies */
if (d->mdsi->lp_rate)
lp_freq = d->mdsi->lp_rate;
else
lp_freq = DSI_DEFAULT_LP_FREQ_HZ;
if (d->mdsi->hs_rate)
hs_freq = d->mdsi->hs_rate;
else
hs_freq = DSI_DEFAULT_HS_FREQ_HZ;
/* Enable LP (Low Power, Energy Save, ES) and HS (High Speed) clocks */
d->lp_freq = clk_round_rate(d->lp_clk, lp_freq);
ret = clk_set_rate(d->lp_clk, d->lp_freq);
if (ret)
dev_err(d->dev, "failed to set LP clock rate %lu Hz\n",
d->lp_freq);
d->hs_freq = clk_round_rate(d->hs_clk, hs_freq);
ret = clk_set_rate(d->hs_clk, d->hs_freq);
if (ret)
dev_err(d->dev, "failed to set HS clock rate %lu Hz\n",
d->hs_freq);
/* Start clocks */
ret = clk_prepare_enable(d->lp_clk);
if (ret)
dev_err(d->dev, "failed to enable LP clock\n");
else
dev_info(d->dev, "DSI LP clock rate %lu Hz\n",
d->lp_freq);
ret = clk_prepare_enable(d->hs_clk);
if (ret)
dev_err(d->dev, "failed to enable HS clock\n");
else
dev_info(d->dev, "DSI HS clock rate %lu Hz\n",
d->hs_freq);
/* Assert RESET through the PRCMU, active low */
/* FIXME: which DSI block? */
regmap_update_bits(d->prcmu, PRCM_DSI_SW_RESET,
PRCM_DSI_SW_RESET_DSI0_SW_RESETN, 0);
usleep_range(100, 200);
/* De-assert RESET again */
regmap_update_bits(d->prcmu, PRCM_DSI_SW_RESET,
PRCM_DSI_SW_RESET_DSI0_SW_RESETN,
PRCM_DSI_SW_RESET_DSI0_SW_RESETN);
/* Start up the hardware */
mcde_dsi_start(d);
if (d->mdsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
/* Set up the video mode from the DRM mode */
mcde_dsi_setup_video_mode(d, d->mode);
/* Put IF1 into video mode */
val = readl(d->regs + DSI_MCTL_MAIN_DATA_CTL);
val |= DSI_MCTL_MAIN_DATA_CTL_IF1_MODE;
writel(val, d->regs + DSI_MCTL_MAIN_DATA_CTL);
/* Disable command mode on IF1 */
val = readl(d->regs + DSI_CMD_MODE_CTL);
val &= ~DSI_CMD_MODE_CTL_IF1_LP_EN;
writel(val, d->regs + DSI_CMD_MODE_CTL);
/* Enable some error interrupts */
val = readl(d->regs + DSI_VID_MODE_STS_CTL);
val |= DSI_VID_MODE_STS_CTL_ERR_MISSING_VSYNC;
val |= DSI_VID_MODE_STS_CTL_ERR_MISSING_DATA;
writel(val, d->regs + DSI_VID_MODE_STS_CTL);
/* Enable video mode */
val = readl(d->regs + DSI_MCTL_MAIN_DATA_CTL);
val |= DSI_MCTL_MAIN_DATA_CTL_VID_EN;
writel(val, d->regs + DSI_MCTL_MAIN_DATA_CTL);
} else {
/* Command mode, clear IF1 ID */
val = readl(d->regs + DSI_CMD_MODE_CTL);
/*
* If we enable low-power mode here
* the display updates become really slow.
*/
if (d->mdsi->mode_flags & MIPI_DSI_MODE_LPM)
val |= DSI_CMD_MODE_CTL_IF1_LP_EN;
val &= ~DSI_CMD_MODE_CTL_IF1_ID_MASK;
writel(val, d->regs + DSI_CMD_MODE_CTL);
}
dev_info(d->dev, "enabled MCDE DSI master\n");
}
static void mcde_dsi_bridge_mode_set(struct drm_bridge *bridge,
const struct drm_display_mode *mode,
const struct drm_display_mode *adj)
{
struct mcde_dsi *d = bridge_to_mcde_dsi(bridge);
if (!d->mdsi) {
dev_err(d->dev, "no DSI device attached to encoder!\n");
return;
}
d->mode = mode;
dev_info(d->dev, "set DSI master to %dx%d %u Hz %s mode\n",
mode->hdisplay, mode->vdisplay, mode->clock * 1000,
(d->mdsi->mode_flags & MIPI_DSI_MODE_VIDEO) ? "VIDEO" : "CMD"
);
}
static void mcde_dsi_wait_for_command_mode_stop(struct mcde_dsi *d)
{
u32 val;
int i;
/*
* Wait until we get out of command mode
* CSM = Command State Machine
*/
i = 0;
val = DSI_CMD_MODE_STS_CSM_RUNNING;
while ((readl(d->regs + DSI_CMD_MODE_STS) & val) == val) {
/* Sleep for a millisecond */
usleep_range(1000, 2000);
if (i++ == 100) {
dev_warn(d->dev,
"could not get out of command mode\n");
return;
}
}
}
static void mcde_dsi_wait_for_video_mode_stop(struct mcde_dsi *d)
{
u32 val;
int i;
/* Wait until we get out og video mode */
i = 0;
val = DSI_VID_MODE_STS_VSG_RUNNING;
while ((readl(d->regs + DSI_VID_MODE_STS) & val) == val) {
/* Sleep for a millisecond */
usleep_range(1000, 2000);
if (i++ == 100) {
dev_warn(d->dev,
"could not get out of video mode\n");
return;
}
}
}
/*
* Notice that this is called from inside the display controller
* and not from the bridge callbacks.
*/
void mcde_dsi_disable(struct drm_bridge *bridge)
{
struct mcde_dsi *d = bridge_to_mcde_dsi(bridge);
u32 val;
if (d->mdsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
/* Stop video mode */
val = readl(d->regs + DSI_MCTL_MAIN_DATA_CTL);
val &= ~DSI_MCTL_MAIN_DATA_CTL_VID_EN;
writel(val, d->regs + DSI_MCTL_MAIN_DATA_CTL);
mcde_dsi_wait_for_video_mode_stop(d);
} else {
/* Stop command mode */
mcde_dsi_wait_for_command_mode_stop(d);
}
/*
* Stop clocks and terminate any DSI traffic here so the panel can
* send commands to shut down the display using DSI direct write until
* this point.
*/
/* Disable all error interrupts */
writel(0, d->regs + DSI_VID_MODE_STS_CTL);
clk_disable_unprepare(d->hs_clk);
clk_disable_unprepare(d->lp_clk);
}
static int mcde_dsi_bridge_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct mcde_dsi *d = bridge_to_mcde_dsi(bridge);
struct drm_device *drm = bridge->dev;
if (!drm_core_check_feature(drm, DRIVER_ATOMIC)) {
dev_err(d->dev, "we need atomic updates\n");
return -ENOTSUPP;
}
/* Attach the DSI bridge to the output (panel etc) bridge */
return drm_bridge_attach(bridge->encoder, d->bridge_out, bridge, flags);
}
static const struct drm_bridge_funcs mcde_dsi_bridge_funcs = {
.attach = mcde_dsi_bridge_attach,
.mode_set = mcde_dsi_bridge_mode_set,
};
static int mcde_dsi_bind(struct device *dev, struct device *master,
void *data)
{
struct drm_device *drm = data;
struct mcde *mcde = to_mcde(drm);
struct mcde_dsi *d = dev_get_drvdata(dev);
struct device_node *child;
struct drm_panel *panel = NULL;
struct drm_bridge *bridge = NULL;
if (!of_get_available_child_count(dev->of_node)) {
dev_info(dev, "unused DSI interface\n");
d->unused = true;
return 0;
}
d->mcde = mcde;
/* If the display attached before binding, set this up */
if (d->mdsi)
mcde_dsi_attach_to_mcde(d);
/* Obtain the clocks */
d->hs_clk = devm_clk_get(dev, "hs");
if (IS_ERR(d->hs_clk)) {
dev_err(dev, "unable to get HS clock\n");
return PTR_ERR(d->hs_clk);
}
d->lp_clk = devm_clk_get(dev, "lp");
if (IS_ERR(d->lp_clk)) {
dev_err(dev, "unable to get LP clock\n");
return PTR_ERR(d->lp_clk);
}
/* Look for a panel as a child to this node */
for_each_available_child_of_node(dev->of_node, child) {
panel = of_drm_find_panel(child);
if (IS_ERR(panel)) {
dev_err(dev, "failed to find panel try bridge (%ld)\n",
PTR_ERR(panel));
panel = NULL;
bridge = of_drm_find_bridge(child);
if (!bridge) {
dev_err(dev, "failed to find bridge\n");
of_node_put(child);
return -EINVAL;
}
}
}
if (panel) {
bridge = drm_panel_bridge_add_typed(panel,
DRM_MODE_CONNECTOR_DSI);
if (IS_ERR(bridge)) {
dev_err(dev, "error adding panel bridge\n");
return PTR_ERR(bridge);
}
dev_info(dev, "connected to panel\n");
d->panel = panel;
} else if (bridge) {
/* TODO: AV8100 HDMI encoder goes here for example */
dev_info(dev, "connected to non-panel bridge (unsupported)\n");
return -ENODEV;
} else {
dev_err(dev, "no panel or bridge\n");
return -ENODEV;
}
d->bridge_out = bridge;
/* Create a bridge for this DSI channel */
d->bridge.funcs = &mcde_dsi_bridge_funcs;
d->bridge.of_node = dev->of_node;
drm_bridge_add(&d->bridge);
/* TODO: first come first serve, use a list */
mcde->bridge = &d->bridge;
dev_info(dev, "initialized MCDE DSI bridge\n");
return 0;
}
static void mcde_dsi_unbind(struct device *dev, struct device *master,
void *data)
{
struct mcde_dsi *d = dev_get_drvdata(dev);
if (d->panel)
drm_panel_bridge_remove(d->bridge_out);
regmap_update_bits(d->prcmu, PRCM_DSI_SW_RESET,
PRCM_DSI_SW_RESET_DSI0_SW_RESETN, 0);
}
static const struct component_ops mcde_dsi_component_ops = {
.bind = mcde_dsi_bind,
.unbind = mcde_dsi_unbind,
};
static int mcde_dsi_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct mcde_dsi *d;
struct mipi_dsi_host *host;
struct resource *res;
u32 dsi_id;
int ret;
d = devm_kzalloc(dev, sizeof(*d), GFP_KERNEL);
if (!d)
return -ENOMEM;
d->dev = dev;
platform_set_drvdata(pdev, d);
/* Get a handle on the PRCMU so we can do reset */
d->prcmu =
syscon_regmap_lookup_by_compatible("stericsson,db8500-prcmu");
if (IS_ERR(d->prcmu)) {
dev_err(dev, "no PRCMU regmap\n");
return PTR_ERR(d->prcmu);
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
d->regs = devm_ioremap_resource(dev, res);
if (IS_ERR(d->regs))
return PTR_ERR(d->regs);
dsi_id = readl(d->regs + DSI_ID_REG);
dev_info(dev, "HW revision 0x%08x\n", dsi_id);
host = &d->dsi_host;
host->dev = dev;
host->ops = &mcde_dsi_host_ops;
ret = mipi_dsi_host_register(host);
if (ret < 0) {
dev_err(dev, "failed to register DSI host: %d\n", ret);
return ret;
}
dev_info(dev, "registered DSI host\n");
platform_set_drvdata(pdev, d);
return component_add(dev, &mcde_dsi_component_ops);
}
static int mcde_dsi_remove(struct platform_device *pdev)
{
struct mcde_dsi *d = platform_get_drvdata(pdev);
component_del(&pdev->dev, &mcde_dsi_component_ops);
mipi_dsi_host_unregister(&d->dsi_host);
return 0;
}
static const struct of_device_id mcde_dsi_of_match[] = {
{
.compatible = "ste,mcde-dsi",
},
{},
};
struct platform_driver mcde_dsi_driver = {
.driver = {
.name = "mcde-dsi",
.of_match_table = of_match_ptr(mcde_dsi_of_match),
},
.probe = mcde_dsi_probe,
.remove = mcde_dsi_remove,
};