kernel/drivers/gpu/drm/i915/intel_pm.c
2024-07-22 17:22:30 +08:00

8327 lines
247 KiB
C

/*
* Copyright © 2012 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eugeni Dodonov <eugeni.dodonov@intel.com>
*
*/
#include <linux/module.h>
#include <linux/pm_runtime.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_fourcc.h>
#include <drm/drm_plane_helper.h>
#include "display/intel_atomic.h"
#include "display/intel_atomic_plane.h"
#include "display/intel_bw.h"
#include "display/intel_de.h"
#include "display/intel_display_types.h"
#include "display/intel_fbc.h"
#include "display/intel_sprite.h"
#include "display/skl_universal_plane.h"
#include "gt/intel_llc.h"
#include "i915_drv.h"
#include "i915_fixed.h"
#include "i915_irq.h"
#include "i915_trace.h"
#include "intel_pm.h"
#include "intel_sideband.h"
#include "../../../platform/x86/intel_ips.h"
/* Stores plane specific WM parameters */
struct skl_wm_params {
bool x_tiled, y_tiled;
bool rc_surface;
bool is_planar;
u32 width;
u8 cpp;
u32 plane_pixel_rate;
u32 y_min_scanlines;
u32 plane_bytes_per_line;
uint_fixed_16_16_t plane_blocks_per_line;
uint_fixed_16_16_t y_tile_minimum;
u32 linetime_us;
u32 dbuf_block_size;
};
/* used in computing the new watermarks state */
struct intel_wm_config {
unsigned int num_pipes_active;
bool sprites_enabled;
bool sprites_scaled;
};
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
{
enum pipe pipe;
if (HAS_LLC(dev_priv)) {
/*
* WaCompressedResourceDisplayNewHashMode:skl,kbl
* Display WA #0390: skl,kbl
*
* Must match Sampler, Pixel Back End, and Media. See
* WaCompressedResourceSamplerPbeMediaNewHashMode.
*/
intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR1_1,
intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR1_1) |
SKL_DE_COMPRESSED_HASH_MODE);
}
for_each_pipe(dev_priv, pipe) {
/*
* "Plane N strech max must be programmed to 11b (x1)
* when Async flips are enabled on that plane."
*/
if (!IS_GEMINILAKE(dev_priv) && intel_vtd_active())
intel_uncore_rmw(&dev_priv->uncore, CHICKEN_PIPESL_1(pipe),
SKL_PLANE1_STRETCH_MAX_MASK, SKL_PLANE1_STRETCH_MAX_X1);
}
/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR1_1,
intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
/* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
intel_uncore_write(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1,
intel_uncore_read(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
/*
* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl
* Display WA #0859: skl,bxt,kbl,glk,cfl
*/
intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
DISP_FBC_MEMORY_WAKE);
}
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
{
gen9_init_clock_gating(dev_priv);
/* WaDisableSDEUnitClockGating:bxt */
intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
/*
* FIXME:
* GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
*/
intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
/*
* Wa: Backlight PWM may stop in the asserted state, causing backlight
* to stay fully on.
*/
intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_0, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_0) |
PWM1_GATING_DIS | PWM2_GATING_DIS);
/*
* Lower the display internal timeout.
* This is needed to avoid any hard hangs when DSI port PLL
* is off and a MMIO access is attempted by any privilege
* application, using batch buffers or any other means.
*/
intel_uncore_write(&dev_priv->uncore, RM_TIMEOUT, MMIO_TIMEOUT_US(950));
/*
* WaFbcTurnOffFbcWatermark:bxt
* Display WA #0562: bxt
*/
intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
DISP_FBC_WM_DIS);
/*
* WaFbcHighMemBwCorruptionAvoidance:bxt
* Display WA #0883: bxt
*/
intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN, intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN) |
ILK_DPFC_DISABLE_DUMMY0);
}
static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
{
gen9_init_clock_gating(dev_priv);
/*
* WaDisablePWMClockGating:glk
* Backlight PWM may stop in the asserted state, causing backlight
* to stay fully on.
*/
intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_0, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_0) |
PWM1_GATING_DIS | PWM2_GATING_DIS);
}
static void pnv_get_mem_freq(struct drm_i915_private *dev_priv)
{
u32 tmp;
tmp = intel_uncore_read(&dev_priv->uncore, CLKCFG);
switch (tmp & CLKCFG_FSB_MASK) {
case CLKCFG_FSB_533:
dev_priv->fsb_freq = 533; /* 133*4 */
break;
case CLKCFG_FSB_800:
dev_priv->fsb_freq = 800; /* 200*4 */
break;
case CLKCFG_FSB_667:
dev_priv->fsb_freq = 667; /* 167*4 */
break;
case CLKCFG_FSB_400:
dev_priv->fsb_freq = 400; /* 100*4 */
break;
}
switch (tmp & CLKCFG_MEM_MASK) {
case CLKCFG_MEM_533:
dev_priv->mem_freq = 533;
break;
case CLKCFG_MEM_667:
dev_priv->mem_freq = 667;
break;
case CLKCFG_MEM_800:
dev_priv->mem_freq = 800;
break;
}
/* detect pineview DDR3 setting */
tmp = intel_uncore_read(&dev_priv->uncore, CSHRDDR3CTL);
dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}
static void ilk_get_mem_freq(struct drm_i915_private *dev_priv)
{
u16 ddrpll, csipll;
ddrpll = intel_uncore_read16(&dev_priv->uncore, DDRMPLL1);
csipll = intel_uncore_read16(&dev_priv->uncore, CSIPLL0);
switch (ddrpll & 0xff) {
case 0xc:
dev_priv->mem_freq = 800;
break;
case 0x10:
dev_priv->mem_freq = 1066;
break;
case 0x14:
dev_priv->mem_freq = 1333;
break;
case 0x18:
dev_priv->mem_freq = 1600;
break;
default:
drm_dbg(&dev_priv->drm, "unknown memory frequency 0x%02x\n",
ddrpll & 0xff);
dev_priv->mem_freq = 0;
break;
}
switch (csipll & 0x3ff) {
case 0x00c:
dev_priv->fsb_freq = 3200;
break;
case 0x00e:
dev_priv->fsb_freq = 3733;
break;
case 0x010:
dev_priv->fsb_freq = 4266;
break;
case 0x012:
dev_priv->fsb_freq = 4800;
break;
case 0x014:
dev_priv->fsb_freq = 5333;
break;
case 0x016:
dev_priv->fsb_freq = 5866;
break;
case 0x018:
dev_priv->fsb_freq = 6400;
break;
default:
drm_dbg(&dev_priv->drm, "unknown fsb frequency 0x%04x\n",
csipll & 0x3ff);
dev_priv->fsb_freq = 0;
break;
}
}
static const struct cxsr_latency cxsr_latency_table[] = {
{1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
{1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
{1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
{1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
{1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
{1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
{1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
{1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
{1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
{1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
{1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
{1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
{1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
{1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
{1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
{0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
{0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
{0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
{0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
{0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
{0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
{0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
{0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
{0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
{0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
{0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
{0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
{0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
{0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
{0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
};
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
bool is_ddr3,
int fsb,
int mem)
{
const struct cxsr_latency *latency;
int i;
if (fsb == 0 || mem == 0)
return NULL;
for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
latency = &cxsr_latency_table[i];
if (is_desktop == latency->is_desktop &&
is_ddr3 == latency->is_ddr3 &&
fsb == latency->fsb_freq && mem == latency->mem_freq)
return latency;
}
DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
return NULL;
}
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
u32 val;
vlv_punit_get(dev_priv);
val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
if (enable)
val &= ~FORCE_DDR_HIGH_FREQ;
else
val |= FORCE_DDR_HIGH_FREQ;
val &= ~FORCE_DDR_LOW_FREQ;
val |= FORCE_DDR_FREQ_REQ_ACK;
vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
drm_err(&dev_priv->drm,
"timed out waiting for Punit DDR DVFS request\n");
vlv_punit_put(dev_priv);
}
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
u32 val;
vlv_punit_get(dev_priv);
val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
if (enable)
val |= DSP_MAXFIFO_PM5_ENABLE;
else
val &= ~DSP_MAXFIFO_PM5_ENABLE;
vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
vlv_punit_put(dev_priv);
}
#define FW_WM(value, plane) \
(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
{
bool was_enabled;
u32 val;
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF_VLV);
} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF);
} else if (IS_PINEVIEW(dev_priv)) {
val = intel_uncore_read(&dev_priv->uncore, DSPFW3);
was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
if (enable)
val |= PINEVIEW_SELF_REFRESH_EN;
else
val &= ~PINEVIEW_SELF_REFRESH_EN;
intel_uncore_write(&dev_priv->uncore, DSPFW3, val);
intel_uncore_posting_read(&dev_priv->uncore, DSPFW3);
} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
was_enabled = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
_MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, val);
intel_uncore_posting_read(&dev_priv->uncore, FW_BLC_SELF);
} else if (IS_I915GM(dev_priv)) {
/*
* FIXME can't find a bit like this for 915G, and
* and yet it does have the related watermark in
* FW_BLC_SELF. What's going on?
*/
was_enabled = intel_uncore_read(&dev_priv->uncore, INSTPM) & INSTPM_SELF_EN;
val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
_MASKED_BIT_DISABLE(INSTPM_SELF_EN);
intel_uncore_write(&dev_priv->uncore, INSTPM, val);
intel_uncore_posting_read(&dev_priv->uncore, INSTPM);
} else {
return false;
}
trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
drm_dbg_kms(&dev_priv->drm, "memory self-refresh is %s (was %s)\n",
enableddisabled(enable),
enableddisabled(was_enabled));
return was_enabled;
}
/**
* intel_set_memory_cxsr - Configure CxSR state
* @dev_priv: i915 device
* @enable: Allow vs. disallow CxSR
*
* Allow or disallow the system to enter a special CxSR
* (C-state self refresh) state. What typically happens in CxSR mode
* is that several display FIFOs may get combined into a single larger
* FIFO for a particular plane (so called max FIFO mode) to allow the
* system to defer memory fetches longer, and the memory will enter
* self refresh.
*
* Note that enabling CxSR does not guarantee that the system enter
* this special mode, nor does it guarantee that the system stays
* in that mode once entered. So this just allows/disallows the system
* to autonomously utilize the CxSR mode. Other factors such as core
* C-states will affect when/if the system actually enters/exits the
* CxSR mode.
*
* Note that on VLV/CHV this actually only controls the max FIFO mode,
* and the system is free to enter/exit memory self refresh at any time
* even when the use of CxSR has been disallowed.
*
* While the system is actually in the CxSR/max FIFO mode, some plane
* control registers will not get latched on vblank. Thus in order to
* guarantee the system will respond to changes in the plane registers
* we must always disallow CxSR prior to making changes to those registers.
* Unfortunately the system will re-evaluate the CxSR conditions at
* frame start which happens after vblank start (which is when the plane
* registers would get latched), so we can't proceed with the plane update
* during the same frame where we disallowed CxSR.
*
* Certain platforms also have a deeper HPLL SR mode. Fortunately the
* HPLL SR mode depends on CxSR itself, so we don't have to hand hold
* the hardware w.r.t. HPLL SR when writing to plane registers.
* Disallowing just CxSR is sufficient.
*/
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
{
bool ret;
mutex_lock(&dev_priv->wm.wm_mutex);
ret = _intel_set_memory_cxsr(dev_priv, enable);
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
dev_priv->wm.vlv.cxsr = enable;
else if (IS_G4X(dev_priv))
dev_priv->wm.g4x.cxsr = enable;
mutex_unlock(&dev_priv->wm.wm_mutex);
return ret;
}
/*
* Latency for FIFO fetches is dependent on several factors:
* - memory configuration (speed, channels)
* - chipset
* - current MCH state
* It can be fairly high in some situations, so here we assume a fairly
* pessimal value. It's a tradeoff between extra memory fetches (if we
* set this value too high, the FIFO will fetch frequently to stay full)
* and power consumption (set it too low to save power and we might see
* FIFO underruns and display "flicker").
*
* A value of 5us seems to be a good balance; safe for very low end
* platforms but not overly aggressive on lower latency configs.
*/
static const int pessimal_latency_ns = 5000;
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
enum pipe pipe = crtc->pipe;
int sprite0_start, sprite1_start;
u32 dsparb, dsparb2, dsparb3;
switch (pipe) {
case PIPE_A:
dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
break;
case PIPE_B:
dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
break;
case PIPE_C:
dsparb2 = intel_uncore_read(&dev_priv->uncore, DSPARB2);
dsparb3 = intel_uncore_read(&dev_priv->uncore, DSPARB3);
sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
break;
default:
MISSING_CASE(pipe);
return;
}
fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
fifo_state->plane[PLANE_CURSOR] = 63;
}
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
enum i9xx_plane_id i9xx_plane)
{
u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
int size;
size = dsparb & 0x7f;
if (i9xx_plane == PLANE_B)
size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
dsparb, plane_name(i9xx_plane), size);
return size;
}
static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
enum i9xx_plane_id i9xx_plane)
{
u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
int size;
size = dsparb & 0x1ff;
if (i9xx_plane == PLANE_B)
size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
size >>= 1; /* Convert to cachelines */
drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
dsparb, plane_name(i9xx_plane), size);
return size;
}
static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
enum i9xx_plane_id i9xx_plane)
{
u32 dsparb = intel_uncore_read(&dev_priv->uncore, DSPARB);
int size;
size = dsparb & 0x7f;
size >>= 2; /* Convert to cachelines */
drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
dsparb, plane_name(i9xx_plane), size);
return size;
}
/* Pineview has different values for various configs */
static const struct intel_watermark_params pnv_display_wm = {
.fifo_size = PINEVIEW_DISPLAY_FIFO,
.max_wm = PINEVIEW_MAX_WM,
.default_wm = PINEVIEW_DFT_WM,
.guard_size = PINEVIEW_GUARD_WM,
.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params pnv_display_hplloff_wm = {
.fifo_size = PINEVIEW_DISPLAY_FIFO,
.max_wm = PINEVIEW_MAX_WM,
.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
.guard_size = PINEVIEW_GUARD_WM,
.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params pnv_cursor_wm = {
.fifo_size = PINEVIEW_CURSOR_FIFO,
.max_wm = PINEVIEW_CURSOR_MAX_WM,
.default_wm = PINEVIEW_CURSOR_DFT_WM,
.guard_size = PINEVIEW_CURSOR_GUARD_WM,
.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params pnv_cursor_hplloff_wm = {
.fifo_size = PINEVIEW_CURSOR_FIFO,
.max_wm = PINEVIEW_CURSOR_MAX_WM,
.default_wm = PINEVIEW_CURSOR_DFT_WM,
.guard_size = PINEVIEW_CURSOR_GUARD_WM,
.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params i965_cursor_wm_info = {
.fifo_size = I965_CURSOR_FIFO,
.max_wm = I965_CURSOR_MAX_WM,
.default_wm = I965_CURSOR_DFT_WM,
.guard_size = 2,
.cacheline_size = I915_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params i945_wm_info = {
.fifo_size = I945_FIFO_SIZE,
.max_wm = I915_MAX_WM,
.default_wm = 1,
.guard_size = 2,
.cacheline_size = I915_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params i915_wm_info = {
.fifo_size = I915_FIFO_SIZE,
.max_wm = I915_MAX_WM,
.default_wm = 1,
.guard_size = 2,
.cacheline_size = I915_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params i830_a_wm_info = {
.fifo_size = I855GM_FIFO_SIZE,
.max_wm = I915_MAX_WM,
.default_wm = 1,
.guard_size = 2,
.cacheline_size = I830_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params i830_bc_wm_info = {
.fifo_size = I855GM_FIFO_SIZE,
.max_wm = I915_MAX_WM/2,
.default_wm = 1,
.guard_size = 2,
.cacheline_size = I830_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params i845_wm_info = {
.fifo_size = I830_FIFO_SIZE,
.max_wm = I915_MAX_WM,
.default_wm = 1,
.guard_size = 2,
.cacheline_size = I830_FIFO_LINE_SIZE,
};
/**
* intel_wm_method1 - Method 1 / "small buffer" watermark formula
* @pixel_rate: Pipe pixel rate in kHz
* @cpp: Plane bytes per pixel
* @latency: Memory wakeup latency in 0.1us units
*
* Compute the watermark using the method 1 or "small buffer"
* formula. The caller may additonally add extra cachelines
* to account for TLB misses and clock crossings.
*
* This method is concerned with the short term drain rate
* of the FIFO, ie. it does not account for blanking periods
* which would effectively reduce the average drain rate across
* a longer period. The name "small" refers to the fact the
* FIFO is relatively small compared to the amount of data
* fetched.
*
* The FIFO level vs. time graph might look something like:
*
* |\ |\
* | \ | \
* __---__---__ (- plane active, _ blanking)
* -> time
*
* or perhaps like this:
*
* |\|\ |\|\
* __----__----__ (- plane active, _ blanking)
* -> time
*
* Returns:
* The watermark in bytes
*/
static unsigned int intel_wm_method1(unsigned int pixel_rate,
unsigned int cpp,
unsigned int latency)
{
u64 ret;
ret = mul_u32_u32(pixel_rate, cpp * latency);
ret = DIV_ROUND_UP_ULL(ret, 10000);
return ret;
}
/**
* intel_wm_method2 - Method 2 / "large buffer" watermark formula
* @pixel_rate: Pipe pixel rate in kHz
* @htotal: Pipe horizontal total
* @width: Plane width in pixels
* @cpp: Plane bytes per pixel
* @latency: Memory wakeup latency in 0.1us units
*
* Compute the watermark using the method 2 or "large buffer"
* formula. The caller may additonally add extra cachelines
* to account for TLB misses and clock crossings.
*
* This method is concerned with the long term drain rate
* of the FIFO, ie. it does account for blanking periods
* which effectively reduce the average drain rate across
* a longer period. The name "large" refers to the fact the
* FIFO is relatively large compared to the amount of data
* fetched.
*
* The FIFO level vs. time graph might look something like:
*
* |\___ |\___
* | \___ | \___
* | \ | \
* __ --__--__--__--__--__--__ (- plane active, _ blanking)
* -> time
*
* Returns:
* The watermark in bytes
*/
static unsigned int intel_wm_method2(unsigned int pixel_rate,
unsigned int htotal,
unsigned int width,
unsigned int cpp,
unsigned int latency)
{
unsigned int ret;
/*
* FIXME remove once all users are computing
* watermarks in the correct place.
*/
if (WARN_ON_ONCE(htotal == 0))
htotal = 1;
ret = (latency * pixel_rate) / (htotal * 10000);
ret = (ret + 1) * width * cpp;
return ret;
}
/**
* intel_calculate_wm - calculate watermark level
* @pixel_rate: pixel clock
* @wm: chip FIFO params
* @fifo_size: size of the FIFO buffer
* @cpp: bytes per pixel
* @latency_ns: memory latency for the platform
*
* Calculate the watermark level (the level at which the display plane will
* start fetching from memory again). Each chip has a different display
* FIFO size and allocation, so the caller needs to figure that out and pass
* in the correct intel_watermark_params structure.
*
* As the pixel clock runs, the FIFO will be drained at a rate that depends
* on the pixel size. When it reaches the watermark level, it'll start
* fetching FIFO line sized based chunks from memory until the FIFO fills
* past the watermark point. If the FIFO drains completely, a FIFO underrun
* will occur, and a display engine hang could result.
*/
static unsigned int intel_calculate_wm(int pixel_rate,
const struct intel_watermark_params *wm,
int fifo_size, int cpp,
unsigned int latency_ns)
{
int entries, wm_size;
/*
* Note: we need to make sure we don't overflow for various clock &
* latency values.
* clocks go from a few thousand to several hundred thousand.
* latency is usually a few thousand
*/
entries = intel_wm_method1(pixel_rate, cpp,
latency_ns / 100);
entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
wm->guard_size;
DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
wm_size = fifo_size - entries;
DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
/* Don't promote wm_size to unsigned... */
if (wm_size > wm->max_wm)
wm_size = wm->max_wm;
if (wm_size <= 0)
wm_size = wm->default_wm;
/*
* Bspec seems to indicate that the value shouldn't be lower than
* 'burst size + 1'. Certainly 830 is quite unhappy with low values.
* Lets go for 8 which is the burst size since certain platforms
* already use a hardcoded 8 (which is what the spec says should be
* done).
*/
if (wm_size <= 8)
wm_size = 8;
return wm_size;
}
static bool is_disabling(int old, int new, int threshold)
{
return old >= threshold && new < threshold;
}
static bool is_enabling(int old, int new, int threshold)
{
return old < threshold && new >= threshold;
}
static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
{
return dev_priv->wm.max_level + 1;
}
static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state)
{
struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
/* FIXME check the 'enable' instead */
if (!crtc_state->hw.active)
return false;
/*
* Treat cursor with fb as always visible since cursor updates
* can happen faster than the vrefresh rate, and the current
* watermark code doesn't handle that correctly. Cursor updates
* which set/clear the fb or change the cursor size are going
* to get throttled by intel_legacy_cursor_update() to work
* around this problem with the watermark code.
*/
if (plane->id == PLANE_CURSOR)
return plane_state->hw.fb != NULL;
else
return plane_state->uapi.visible;
}
static bool intel_crtc_active(struct intel_crtc *crtc)
{
/* Be paranoid as we can arrive here with only partial
* state retrieved from the hardware during setup.
*
* We can ditch the adjusted_mode.crtc_clock check as soon
* as Haswell has gained clock readout/fastboot support.
*
* We can ditch the crtc->primary->state->fb check as soon as we can
* properly reconstruct framebuffers.
*
* FIXME: The intel_crtc->active here should be switched to
* crtc->state->active once we have proper CRTC states wired up
* for atomic.
*/
return crtc->active && crtc->base.primary->state->fb &&
crtc->config->hw.adjusted_mode.crtc_clock;
}
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
{
struct intel_crtc *crtc, *enabled = NULL;
for_each_intel_crtc(&dev_priv->drm, crtc) {
if (intel_crtc_active(crtc)) {
if (enabled)
return NULL;
enabled = crtc;
}
}
return enabled;
}
static void pnv_update_wm(struct intel_crtc *unused_crtc)
{
struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
struct intel_crtc *crtc;
const struct cxsr_latency *latency;
u32 reg;
unsigned int wm;
latency = intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
dev_priv->is_ddr3,
dev_priv->fsb_freq,
dev_priv->mem_freq);
if (!latency) {
drm_dbg_kms(&dev_priv->drm,
"Unknown FSB/MEM found, disable CxSR\n");
intel_set_memory_cxsr(dev_priv, false);
return;
}
crtc = single_enabled_crtc(dev_priv);
if (crtc) {
const struct drm_display_mode *pipe_mode =
&crtc->config->hw.pipe_mode;
const struct drm_framebuffer *fb =
crtc->base.primary->state->fb;
int cpp = fb->format->cpp[0];
int clock = pipe_mode->crtc_clock;
/* Display SR */
wm = intel_calculate_wm(clock, &pnv_display_wm,
pnv_display_wm.fifo_size,
cpp, latency->display_sr);
reg = intel_uncore_read(&dev_priv->uncore, DSPFW1);
reg &= ~DSPFW_SR_MASK;
reg |= FW_WM(wm, SR);
intel_uncore_write(&dev_priv->uncore, DSPFW1, reg);
drm_dbg_kms(&dev_priv->drm, "DSPFW1 register is %x\n", reg);
/* cursor SR */
wm = intel_calculate_wm(clock, &pnv_cursor_wm,
pnv_display_wm.fifo_size,
4, latency->cursor_sr);
reg = intel_uncore_read(&dev_priv->uncore, DSPFW3);
reg &= ~DSPFW_CURSOR_SR_MASK;
reg |= FW_WM(wm, CURSOR_SR);
intel_uncore_write(&dev_priv->uncore, DSPFW3, reg);
/* Display HPLL off SR */
wm = intel_calculate_wm(clock, &pnv_display_hplloff_wm,
pnv_display_hplloff_wm.fifo_size,
cpp, latency->display_hpll_disable);
reg = intel_uncore_read(&dev_priv->uncore, DSPFW3);
reg &= ~DSPFW_HPLL_SR_MASK;
reg |= FW_WM(wm, HPLL_SR);
intel_uncore_write(&dev_priv->uncore, DSPFW3, reg);
/* cursor HPLL off SR */
wm = intel_calculate_wm(clock, &pnv_cursor_hplloff_wm,
pnv_display_hplloff_wm.fifo_size,
4, latency->cursor_hpll_disable);
reg = intel_uncore_read(&dev_priv->uncore, DSPFW3);
reg &= ~DSPFW_HPLL_CURSOR_MASK;
reg |= FW_WM(wm, HPLL_CURSOR);
intel_uncore_write(&dev_priv->uncore, DSPFW3, reg);
drm_dbg_kms(&dev_priv->drm, "DSPFW3 register is %x\n", reg);
intel_set_memory_cxsr(dev_priv, true);
} else {
intel_set_memory_cxsr(dev_priv, false);
}
}
/*
* Documentation says:
* "If the line size is small, the TLB fetches can get in the way of the
* data fetches, causing some lag in the pixel data return which is not
* accounted for in the above formulas. The following adjustment only
* needs to be applied if eight whole lines fit in the buffer at once.
* The WM is adjusted upwards by the difference between the FIFO size
* and the size of 8 whole lines. This adjustment is always performed
* in the actual pixel depth regardless of whether FBC is enabled or not."
*/
static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
{
int tlb_miss = fifo_size * 64 - width * cpp * 8;
return max(0, tlb_miss);
}
static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
const struct g4x_wm_values *wm)
{
enum pipe pipe;
for_each_pipe(dev_priv, pipe)
trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
intel_uncore_write(&dev_priv->uncore, DSPFW1,
FW_WM(wm->sr.plane, SR) |
FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
intel_uncore_write(&dev_priv->uncore, DSPFW2,
(wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
FW_WM(wm->sr.fbc, FBC_SR) |
FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
intel_uncore_write(&dev_priv->uncore, DSPFW3,
(wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
FW_WM(wm->sr.cursor, CURSOR_SR) |
FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
FW_WM(wm->hpll.plane, HPLL_SR));
intel_uncore_posting_read(&dev_priv->uncore, DSPFW1);
}
#define FW_WM_VLV(value, plane) \
(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
const struct vlv_wm_values *wm)
{
enum pipe pipe;
for_each_pipe(dev_priv, pipe) {
trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
intel_uncore_write(&dev_priv->uncore, VLV_DDL(pipe),
(wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
(wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
(wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
(wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
}
/*
* Zero the (unused) WM1 watermarks, and also clear all the
* high order bits so that there are no out of bounds values
* present in the registers during the reprogramming.
*/
intel_uncore_write(&dev_priv->uncore, DSPHOWM, 0);
intel_uncore_write(&dev_priv->uncore, DSPHOWM1, 0);
intel_uncore_write(&dev_priv->uncore, DSPFW4, 0);
intel_uncore_write(&dev_priv->uncore, DSPFW5, 0);
intel_uncore_write(&dev_priv->uncore, DSPFW6, 0);
intel_uncore_write(&dev_priv->uncore, DSPFW1,
FW_WM(wm->sr.plane, SR) |
FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
intel_uncore_write(&dev_priv->uncore, DSPFW2,
FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
intel_uncore_write(&dev_priv->uncore, DSPFW3,
FW_WM(wm->sr.cursor, CURSOR_SR));
if (IS_CHERRYVIEW(dev_priv)) {
intel_uncore_write(&dev_priv->uncore, DSPFW7_CHV,
FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
intel_uncore_write(&dev_priv->uncore, DSPFW8_CHV,
FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
intel_uncore_write(&dev_priv->uncore, DSPFW9_CHV,
FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
intel_uncore_write(&dev_priv->uncore, DSPHOWM,
FW_WM(wm->sr.plane >> 9, SR_HI) |
FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
} else {
intel_uncore_write(&dev_priv->uncore, DSPFW7,
FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
intel_uncore_write(&dev_priv->uncore, DSPHOWM,
FW_WM(wm->sr.plane >> 9, SR_HI) |
FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
}
intel_uncore_posting_read(&dev_priv->uncore, DSPFW1);
}
#undef FW_WM_VLV
static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
{
/* all latencies in usec */
dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
}
static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
{
/*
* DSPCNTR[13] supposedly controls whether the
* primary plane can use the FIFO space otherwise
* reserved for the sprite plane. It's not 100% clear
* what the actual FIFO size is, but it looks like we
* can happily set both primary and sprite watermarks
* up to 127 cachelines. So that would seem to mean
* that either DSPCNTR[13] doesn't do anything, or that
* the total FIFO is >= 256 cachelines in size. Either
* way, we don't seem to have to worry about this
* repartitioning as the maximum watermark value the
* register can hold for each plane is lower than the
* minimum FIFO size.
*/
switch (plane_id) {
case PLANE_CURSOR:
return 63;
case PLANE_PRIMARY:
return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
case PLANE_SPRITE0:
return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
default:
MISSING_CASE(plane_id);
return 0;
}
}
static int g4x_fbc_fifo_size(int level)
{
switch (level) {
case G4X_WM_LEVEL_SR:
return 7;
case G4X_WM_LEVEL_HPLL:
return 15;
default:
MISSING_CASE(level);
return 0;
}
}
static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state,
int level)
{
struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
const struct drm_display_mode *pipe_mode =
&crtc_state->hw.pipe_mode;
unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
unsigned int clock, htotal, cpp, width, wm;
if (latency == 0)
return USHRT_MAX;
if (!intel_wm_plane_visible(crtc_state, plane_state))
return 0;
cpp = plane_state->hw.fb->format->cpp[0];
/*
* Not 100% sure which way ELK should go here as the
* spec only says CL/CTG should assume 32bpp and BW
* doesn't need to. But as these things followed the
* mobile vs. desktop lines on gen3 as well, let's
* assume ELK doesn't need this.
*
* The spec also fails to list such a restriction for
* the HPLL watermark, which seems a little strange.
* Let's use 32bpp for the HPLL watermark as well.
*/
if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
level != G4X_WM_LEVEL_NORMAL)
cpp = max(cpp, 4u);
clock = pipe_mode->crtc_clock;
htotal = pipe_mode->crtc_htotal;
width = drm_rect_width(&plane_state->uapi.dst);
if (plane->id == PLANE_CURSOR) {
wm = intel_wm_method2(clock, htotal, width, cpp, latency);
} else if (plane->id == PLANE_PRIMARY &&
level == G4X_WM_LEVEL_NORMAL) {
wm = intel_wm_method1(clock, cpp, latency);
} else {
unsigned int small, large;
small = intel_wm_method1(clock, cpp, latency);
large = intel_wm_method2(clock, htotal, width, cpp, latency);
wm = min(small, large);
}
wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
width, cpp);
wm = DIV_ROUND_UP(wm, 64) + 2;
return min_t(unsigned int, wm, USHRT_MAX);
}
static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
int level, enum plane_id plane_id, u16 value)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
bool dirty = false;
for (; level < intel_wm_num_levels(dev_priv); level++) {
struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
dirty |= raw->plane[plane_id] != value;
raw->plane[plane_id] = value;
}
return dirty;
}
static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
int level, u16 value)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
bool dirty = false;
/* NORMAL level doesn't have an FBC watermark */
level = max(level, G4X_WM_LEVEL_SR);
for (; level < intel_wm_num_levels(dev_priv); level++) {
struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
dirty |= raw->fbc != value;
raw->fbc = value;
}
return dirty;
}
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state,
u32 pri_val);
static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state)
{
struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
enum plane_id plane_id = plane->id;
bool dirty = false;
int level;
if (!intel_wm_plane_visible(crtc_state, plane_state)) {
dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
if (plane_id == PLANE_PRIMARY)
dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
goto out;
}
for (level = 0; level < num_levels; level++) {
struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
int wm, max_wm;
wm = g4x_compute_wm(crtc_state, plane_state, level);
max_wm = g4x_plane_fifo_size(plane_id, level);
if (wm > max_wm)
break;
dirty |= raw->plane[plane_id] != wm;
raw->plane[plane_id] = wm;
if (plane_id != PLANE_PRIMARY ||
level == G4X_WM_LEVEL_NORMAL)
continue;
wm = ilk_compute_fbc_wm(crtc_state, plane_state,
raw->plane[plane_id]);
max_wm = g4x_fbc_fifo_size(level);
/*
* FBC wm is not mandatory as we
* can always just disable its use.
*/
if (wm > max_wm)
wm = USHRT_MAX;
dirty |= raw->fbc != wm;
raw->fbc = wm;
}
/* mark watermarks as invalid */
dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
if (plane_id == PLANE_PRIMARY)
dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
out:
if (dirty) {
drm_dbg_kms(&dev_priv->drm,
"%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
plane->base.name,
crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
if (plane_id == PLANE_PRIMARY)
drm_dbg_kms(&dev_priv->drm,
"FBC watermarks: SR=%d, HPLL=%d\n",
crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
}
return dirty;
}
static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
enum plane_id plane_id, int level)
{
const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
}
static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
int level)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
if (level > dev_priv->wm.max_level)
return false;
return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
}
/* mark all levels starting from 'level' as invalid */
static void g4x_invalidate_wms(struct intel_crtc *crtc,
struct g4x_wm_state *wm_state, int level)
{
if (level <= G4X_WM_LEVEL_NORMAL) {
enum plane_id plane_id;
for_each_plane_id_on_crtc(crtc, plane_id)
wm_state->wm.plane[plane_id] = USHRT_MAX;
}
if (level <= G4X_WM_LEVEL_SR) {
wm_state->cxsr = false;
wm_state->sr.cursor = USHRT_MAX;
wm_state->sr.plane = USHRT_MAX;
wm_state->sr.fbc = USHRT_MAX;
}
if (level <= G4X_WM_LEVEL_HPLL) {
wm_state->hpll_en = false;
wm_state->hpll.cursor = USHRT_MAX;
wm_state->hpll.plane = USHRT_MAX;
wm_state->hpll.fbc = USHRT_MAX;
}
}
static bool g4x_compute_fbc_en(const struct g4x_wm_state *wm_state,
int level)
{
if (level < G4X_WM_LEVEL_SR)
return false;
if (level >= G4X_WM_LEVEL_SR &&
wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
return false;
if (level >= G4X_WM_LEVEL_HPLL &&
wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
return false;
return true;
}
static int g4x_compute_pipe_wm(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
int num_active_planes = hweight8(crtc_state->active_planes &
~BIT(PLANE_CURSOR));
const struct g4x_pipe_wm *raw;
const struct intel_plane_state *old_plane_state;
const struct intel_plane_state *new_plane_state;
struct intel_plane *plane;
enum plane_id plane_id;
int i, level;
unsigned int dirty = 0;
for_each_oldnew_intel_plane_in_state(state, plane,
old_plane_state,
new_plane_state, i) {
if (new_plane_state->hw.crtc != &crtc->base &&
old_plane_state->hw.crtc != &crtc->base)
continue;
if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
dirty |= BIT(plane->id);
}
if (!dirty)
return 0;
level = G4X_WM_LEVEL_NORMAL;
if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
goto out;
raw = &crtc_state->wm.g4x.raw[level];
for_each_plane_id_on_crtc(crtc, plane_id)
wm_state->wm.plane[plane_id] = raw->plane[plane_id];
level = G4X_WM_LEVEL_SR;
if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
goto out;
raw = &crtc_state->wm.g4x.raw[level];
wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
wm_state->sr.fbc = raw->fbc;
wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);
level = G4X_WM_LEVEL_HPLL;
if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
goto out;
raw = &crtc_state->wm.g4x.raw[level];
wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
wm_state->hpll.fbc = raw->fbc;
wm_state->hpll_en = wm_state->cxsr;
level++;
out:
if (level == G4X_WM_LEVEL_NORMAL)
return -EINVAL;
/* invalidate the higher levels */
g4x_invalidate_wms(crtc, wm_state, level);
/*
* Determine if the FBC watermark(s) can be used. IF
* this isn't the case we prefer to disable the FBC
* watermark(s) rather than disable the SR/HPLL
* level(s) entirely. 'level-1' is the highest valid
* level here.
*/
wm_state->fbc_en = g4x_compute_fbc_en(wm_state, level - 1);
return 0;
}
static int g4x_compute_intermediate_wm(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
enum plane_id plane_id;
if (!new_crtc_state->hw.active ||
drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
*intermediate = *optimal;
intermediate->cxsr = false;
intermediate->hpll_en = false;
goto out;
}
intermediate->cxsr = optimal->cxsr && active->cxsr &&
!new_crtc_state->disable_cxsr;
intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
!new_crtc_state->disable_cxsr;
intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
for_each_plane_id_on_crtc(crtc, plane_id) {
intermediate->wm.plane[plane_id] =
max(optimal->wm.plane[plane_id],
active->wm.plane[plane_id]);
drm_WARN_ON(&dev_priv->drm, intermediate->wm.plane[plane_id] >
g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
}
intermediate->sr.plane = max(optimal->sr.plane,
active->sr.plane);
intermediate->sr.cursor = max(optimal->sr.cursor,
active->sr.cursor);
intermediate->sr.fbc = max(optimal->sr.fbc,
active->sr.fbc);
intermediate->hpll.plane = max(optimal->hpll.plane,
active->hpll.plane);
intermediate->hpll.cursor = max(optimal->hpll.cursor,
active->hpll.cursor);
intermediate->hpll.fbc = max(optimal->hpll.fbc,
active->hpll.fbc);
drm_WARN_ON(&dev_priv->drm,
(intermediate->sr.plane >
g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
intermediate->sr.cursor >
g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
intermediate->cxsr);
drm_WARN_ON(&dev_priv->drm,
(intermediate->sr.plane >
g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
intermediate->sr.cursor >
g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
intermediate->hpll_en);
drm_WARN_ON(&dev_priv->drm,
intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
intermediate->fbc_en && intermediate->cxsr);
drm_WARN_ON(&dev_priv->drm,
intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
intermediate->fbc_en && intermediate->hpll_en);
out:
/*
* If our intermediate WM are identical to the final WM, then we can
* omit the post-vblank programming; only update if it's different.
*/
if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
new_crtc_state->wm.need_postvbl_update = true;
return 0;
}
static void g4x_merge_wm(struct drm_i915_private *dev_priv,
struct g4x_wm_values *wm)
{
struct intel_crtc *crtc;
int num_active_pipes = 0;
wm->cxsr = true;
wm->hpll_en = true;
wm->fbc_en = true;
for_each_intel_crtc(&dev_priv->drm, crtc) {
const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
if (!crtc->active)
continue;
if (!wm_state->cxsr)
wm->cxsr = false;
if (!wm_state->hpll_en)
wm->hpll_en = false;
if (!wm_state->fbc_en)
wm->fbc_en = false;
num_active_pipes++;
}
if (num_active_pipes != 1) {
wm->cxsr = false;
wm->hpll_en = false;
wm->fbc_en = false;
}
for_each_intel_crtc(&dev_priv->drm, crtc) {
const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
enum pipe pipe = crtc->pipe;
wm->pipe[pipe] = wm_state->wm;
if (crtc->active && wm->cxsr)
wm->sr = wm_state->sr;
if (crtc->active && wm->hpll_en)
wm->hpll = wm_state->hpll;
}
}
static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
{
struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
struct g4x_wm_values new_wm = {};
g4x_merge_wm(dev_priv, &new_wm);
if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
return;
if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
_intel_set_memory_cxsr(dev_priv, false);
g4x_write_wm_values(dev_priv, &new_wm);
if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
_intel_set_memory_cxsr(dev_priv, true);
*old_wm = new_wm;
}
static void g4x_initial_watermarks(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
const struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
mutex_lock(&dev_priv->wm.wm_mutex);
crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
g4x_program_watermarks(dev_priv);
mutex_unlock(&dev_priv->wm.wm_mutex);
}
static void g4x_optimize_watermarks(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
const struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
if (!crtc_state->wm.need_postvbl_update)
return;
mutex_lock(&dev_priv->wm.wm_mutex);
crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
g4x_program_watermarks(dev_priv);
mutex_unlock(&dev_priv->wm.wm_mutex);
}
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
unsigned int htotal,
unsigned int width,
unsigned int cpp,
unsigned int latency)
{
unsigned int ret;
ret = intel_wm_method2(pixel_rate, htotal,
width, cpp, latency);
ret = DIV_ROUND_UP(ret, 64);
return ret;
}
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
{
/* all latencies in usec */
dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
if (IS_CHERRYVIEW(dev_priv)) {
dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
}
}
static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state,
int level)
{
struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
const struct drm_display_mode *pipe_mode =
&crtc_state->hw.pipe_mode;
unsigned int clock, htotal, cpp, width, wm;
if (dev_priv->wm.pri_latency[level] == 0)
return USHRT_MAX;
if (!intel_wm_plane_visible(crtc_state, plane_state))
return 0;
cpp = plane_state->hw.fb->format->cpp[0];
clock = pipe_mode->crtc_clock;
htotal = pipe_mode->crtc_htotal;
width = crtc_state->pipe_src_w;
if (plane->id == PLANE_CURSOR) {
/*
* FIXME the formula gives values that are
* too big for the cursor FIFO, and hence we
* would never be able to use cursors. For
* now just hardcode the watermark.
*/
wm = 63;
} else {
wm = vlv_wm_method2(clock, htotal, width, cpp,
dev_priv->wm.pri_latency[level] * 10);
}
return min_t(unsigned int, wm, USHRT_MAX);
}
static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
{
return (active_planes & (BIT(PLANE_SPRITE0) |
BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
}
static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
const struct g4x_pipe_wm *raw =
&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
int num_active_planes = hweight8(active_planes);
const int fifo_size = 511;
int fifo_extra, fifo_left = fifo_size;
int sprite0_fifo_extra = 0;
unsigned int total_rate;
enum plane_id plane_id;
/*
* When enabling sprite0 after sprite1 has already been enabled
* we tend to get an underrun unless sprite0 already has some
* FIFO space allcoated. Hence we always allocate at least one
* cacheline for sprite0 whenever sprite1 is enabled.
*
* All other plane enable sequences appear immune to this problem.
*/
if (vlv_need_sprite0_fifo_workaround(active_planes))
sprite0_fifo_extra = 1;
total_rate = raw->plane[PLANE_PRIMARY] +
raw->plane[PLANE_SPRITE0] +
raw->plane[PLANE_SPRITE1] +
sprite0_fifo_extra;
if (total_rate > fifo_size)
return -EINVAL;
if (total_rate == 0)
total_rate = 1;
for_each_plane_id_on_crtc(crtc, plane_id) {
unsigned int rate;
if ((active_planes & BIT(plane_id)) == 0) {
fifo_state->plane[plane_id] = 0;
continue;
}
rate = raw->plane[plane_id];
fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
fifo_left -= fifo_state->plane[plane_id];
}
fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
fifo_left -= sprite0_fifo_extra;
fifo_state->plane[PLANE_CURSOR] = 63;
fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
/* spread the remainder evenly */
for_each_plane_id_on_crtc(crtc, plane_id) {
int plane_extra;
if (fifo_left == 0)
break;
if ((active_planes & BIT(plane_id)) == 0)
continue;
plane_extra = min(fifo_extra, fifo_left);
fifo_state->plane[plane_id] += plane_extra;
fifo_left -= plane_extra;
}
drm_WARN_ON(&dev_priv->drm, active_planes != 0 && fifo_left != 0);
/* give it all to the first plane if none are active */
if (active_planes == 0) {
drm_WARN_ON(&dev_priv->drm, fifo_left != fifo_size);
fifo_state->plane[PLANE_PRIMARY] = fifo_left;
}
return 0;
}
/* mark all levels starting from 'level' as invalid */
static void vlv_invalidate_wms(struct intel_crtc *crtc,
struct vlv_wm_state *wm_state, int level)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
for (; level < intel_wm_num_levels(dev_priv); level++) {
enum plane_id plane_id;
for_each_plane_id_on_crtc(crtc, plane_id)
wm_state->wm[level].plane[plane_id] = USHRT_MAX;
wm_state->sr[level].cursor = USHRT_MAX;
wm_state->sr[level].plane = USHRT_MAX;
}
}
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
if (wm > fifo_size)
return USHRT_MAX;
else
return fifo_size - wm;
}
/*
* Starting from 'level' set all higher
* levels to 'value' in the "raw" watermarks.
*/
static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
int level, enum plane_id plane_id, u16 value)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
int num_levels = intel_wm_num_levels(dev_priv);
bool dirty = false;
for (; level < num_levels; level++) {
struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
dirty |= raw->plane[plane_id] != value;
raw->plane[plane_id] = value;
}
return dirty;
}
static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state)
{
struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
enum plane_id plane_id = plane->id;
int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
int level;
bool dirty = false;
if (!intel_wm_plane_visible(crtc_state, plane_state)) {
dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
goto out;
}
for (level = 0; level < num_levels; level++) {
struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
if (wm > max_wm)
break;
dirty |= raw->plane[plane_id] != wm;
raw->plane[plane_id] = wm;
}
/* mark all higher levels as invalid */
dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
out:
if (dirty)
drm_dbg_kms(&dev_priv->drm,
"%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
plane->base.name,
crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
return dirty;
}
static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
enum plane_id plane_id, int level)
{
const struct g4x_pipe_wm *raw =
&crtc_state->wm.vlv.raw[level];
const struct vlv_fifo_state *fifo_state =
&crtc_state->wm.vlv.fifo_state;
return raw->plane[plane_id] <= fifo_state->plane[plane_id];
}
static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
{
return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
}
static int vlv_compute_pipe_wm(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
const struct vlv_fifo_state *fifo_state =
&crtc_state->wm.vlv.fifo_state;
int num_active_planes = hweight8(crtc_state->active_planes &
~BIT(PLANE_CURSOR));
bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->uapi);
const struct intel_plane_state *old_plane_state;
const struct intel_plane_state *new_plane_state;
struct intel_plane *plane;
enum plane_id plane_id;
int level, ret, i;
unsigned int dirty = 0;
for_each_oldnew_intel_plane_in_state(state, plane,
old_plane_state,
new_plane_state, i) {
if (new_plane_state->hw.crtc != &crtc->base &&
old_plane_state->hw.crtc != &crtc->base)
continue;
if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
dirty |= BIT(plane->id);
}
/*
* DSPARB registers may have been reset due to the
* power well being turned off. Make sure we restore
* them to a consistent state even if no primary/sprite
* planes are initially active.
*/
if (needs_modeset)
crtc_state->fifo_changed = true;
if (!dirty)
return 0;
/* cursor changes don't warrant a FIFO recompute */
if (dirty & ~BIT(PLANE_CURSOR)) {
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
const struct vlv_fifo_state *old_fifo_state =
&old_crtc_state->wm.vlv.fifo_state;
ret = vlv_compute_fifo(crtc_state);
if (ret)
return ret;
if (needs_modeset ||
memcmp(old_fifo_state, fifo_state,
sizeof(*fifo_state)) != 0)
crtc_state->fifo_changed = true;
}
/* initially allow all levels */
wm_state->num_levels = intel_wm_num_levels(dev_priv);
/*
* Note that enabling cxsr with no primary/sprite planes
* enabled can wedge the pipe. Hence we only allow cxsr
* with exactly one enabled primary/sprite plane.
*/
wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
for (level = 0; level < wm_state->num_levels; level++) {
const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
const int sr_fifo_size = INTEL_NUM_PIPES(dev_priv) * 512 - 1;
if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
break;
for_each_plane_id_on_crtc(crtc, plane_id) {
wm_state->wm[level].plane[plane_id] =
vlv_invert_wm_value(raw->plane[plane_id],
fifo_state->plane[plane_id]);
}
wm_state->sr[level].plane =
vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
raw->plane[PLANE_SPRITE0],
raw->plane[PLANE_SPRITE1]),
sr_fifo_size);
wm_state->sr[level].cursor =
vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
63);
}
if (level == 0)
return -EINVAL;
/* limit to only levels we can actually handle */
wm_state->num_levels = level;
/* invalidate the higher levels */
vlv_invalidate_wms(crtc, wm_state, level);
return 0;
}
#define VLV_FIFO(plane, value) \
(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_uncore *uncore = &dev_priv->uncore;
const struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
const struct vlv_fifo_state *fifo_state =
&crtc_state->wm.vlv.fifo_state;
int sprite0_start, sprite1_start, fifo_size;
u32 dsparb, dsparb2, dsparb3;
if (!crtc_state->fifo_changed)
return;
sprite0_start = fifo_state->plane[PLANE_PRIMARY];
sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
drm_WARN_ON(&dev_priv->drm, fifo_state->plane[PLANE_CURSOR] != 63);
drm_WARN_ON(&dev_priv->drm, fifo_size != 511);
trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
/*
* uncore.lock serves a double purpose here. It allows us to
* use the less expensive I915_{READ,WRITE}_FW() functions, and
* it protects the DSPARB registers from getting clobbered by
* parallel updates from multiple pipes.
*
* intel_pipe_update_start() has already disabled interrupts
* for us, so a plain spin_lock() is sufficient here.
*/
spin_lock(&uncore->lock);
switch (crtc->pipe) {
case PIPE_A:
dsparb = intel_uncore_read_fw(uncore, DSPARB);
dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
VLV_FIFO(SPRITEB, 0xff));
dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
VLV_FIFO(SPRITEB, sprite1_start));
dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
VLV_FIFO(SPRITEB_HI, 0x1));
dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
intel_uncore_write_fw(uncore, DSPARB, dsparb);
intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
break;
case PIPE_B:
dsparb = intel_uncore_read_fw(uncore, DSPARB);
dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
VLV_FIFO(SPRITED, 0xff));
dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
VLV_FIFO(SPRITED, sprite1_start));
dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
VLV_FIFO(SPRITED_HI, 0xff));
dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
intel_uncore_write_fw(uncore, DSPARB, dsparb);
intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
break;
case PIPE_C:
dsparb3 = intel_uncore_read_fw(uncore, DSPARB3);
dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
VLV_FIFO(SPRITEF, 0xff));
dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
VLV_FIFO(SPRITEF, sprite1_start));
dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
VLV_FIFO(SPRITEF_HI, 0xff));
dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
intel_uncore_write_fw(uncore, DSPARB3, dsparb3);
intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
break;
default:
break;
}
intel_uncore_posting_read_fw(uncore, DSPARB);
spin_unlock(&uncore->lock);
}
#undef VLV_FIFO
static int vlv_compute_intermediate_wm(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
int level;
if (!new_crtc_state->hw.active ||
drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
*intermediate = *optimal;
intermediate->cxsr = false;
goto out;
}
intermediate->num_levels = min(optimal->num_levels, active->num_levels);
intermediate->cxsr = optimal->cxsr && active->cxsr &&
!new_crtc_state->disable_cxsr;
for (level = 0; level < intermediate->num_levels; level++) {
enum plane_id plane_id;
for_each_plane_id_on_crtc(crtc, plane_id) {
intermediate->wm[level].plane[plane_id] =
min(optimal->wm[level].plane[plane_id],
active->wm[level].plane[plane_id]);
}
intermediate->sr[level].plane = min(optimal->sr[level].plane,
active->sr[level].plane);
intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
active->sr[level].cursor);
}
vlv_invalidate_wms(crtc, intermediate, level);
out:
/*
* If our intermediate WM are identical to the final WM, then we can
* omit the post-vblank programming; only update if it's different.
*/
if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
new_crtc_state->wm.need_postvbl_update = true;
return 0;
}
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
struct vlv_wm_values *wm)
{
struct intel_crtc *crtc;
int num_active_pipes = 0;
wm->level = dev_priv->wm.max_level;
wm->cxsr = true;
for_each_intel_crtc(&dev_priv->drm, crtc) {
const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
if (!crtc->active)
continue;
if (!wm_state->cxsr)
wm->cxsr = false;
num_active_pipes++;
wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
}
if (num_active_pipes != 1)
wm->cxsr = false;
if (num_active_pipes > 1)
wm->level = VLV_WM_LEVEL_PM2;
for_each_intel_crtc(&dev_priv->drm, crtc) {
const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
enum pipe pipe = crtc->pipe;
wm->pipe[pipe] = wm_state->wm[wm->level];
if (crtc->active && wm->cxsr)
wm->sr = wm_state->sr[wm->level];
wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
}
}
static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
{
struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
struct vlv_wm_values new_wm = {};
vlv_merge_wm(dev_priv, &new_wm);
if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
return;
if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
chv_set_memory_dvfs(dev_priv, false);
if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
chv_set_memory_pm5(dev_priv, false);
if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
_intel_set_memory_cxsr(dev_priv, false);
vlv_write_wm_values(dev_priv, &new_wm);
if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
_intel_set_memory_cxsr(dev_priv, true);
if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
chv_set_memory_pm5(dev_priv, true);
if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
chv_set_memory_dvfs(dev_priv, true);
*old_wm = new_wm;
}
static void vlv_initial_watermarks(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
const struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
mutex_lock(&dev_priv->wm.wm_mutex);
crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
vlv_program_watermarks(dev_priv);
mutex_unlock(&dev_priv->wm.wm_mutex);
}
static void vlv_optimize_watermarks(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
const struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
if (!crtc_state->wm.need_postvbl_update)
return;
mutex_lock(&dev_priv->wm.wm_mutex);
crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
vlv_program_watermarks(dev_priv);
mutex_unlock(&dev_priv->wm.wm_mutex);
}
static void i965_update_wm(struct intel_crtc *unused_crtc)
{
struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
struct intel_crtc *crtc;
int srwm = 1;
int cursor_sr = 16;
bool cxsr_enabled;
/* Calc sr entries for one plane configs */
crtc = single_enabled_crtc(dev_priv);
if (crtc) {
/* self-refresh has much higher latency */
static const int sr_latency_ns = 12000;
const struct drm_display_mode *pipe_mode =
&crtc->config->hw.pipe_mode;
const struct drm_framebuffer *fb =
crtc->base.primary->state->fb;
int clock = pipe_mode->crtc_clock;
int htotal = pipe_mode->crtc_htotal;
int hdisplay = crtc->config->pipe_src_w;
int cpp = fb->format->cpp[0];
int entries;
entries = intel_wm_method2(clock, htotal,
hdisplay, cpp, sr_latency_ns / 100);
entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
srwm = I965_FIFO_SIZE - entries;
if (srwm < 0)
srwm = 1;
srwm &= 0x1ff;
drm_dbg_kms(&dev_priv->drm,
"self-refresh entries: %d, wm: %d\n",
entries, srwm);
entries = intel_wm_method2(clock, htotal,
crtc->base.cursor->state->crtc_w, 4,
sr_latency_ns / 100);
entries = DIV_ROUND_UP(entries,
i965_cursor_wm_info.cacheline_size) +
i965_cursor_wm_info.guard_size;
cursor_sr = i965_cursor_wm_info.fifo_size - entries;
if (cursor_sr > i965_cursor_wm_info.max_wm)
cursor_sr = i965_cursor_wm_info.max_wm;
drm_dbg_kms(&dev_priv->drm,
"self-refresh watermark: display plane %d "
"cursor %d\n", srwm, cursor_sr);
cxsr_enabled = true;
} else {
cxsr_enabled = false;
/* Turn off self refresh if both pipes are enabled */
intel_set_memory_cxsr(dev_priv, false);
}
drm_dbg_kms(&dev_priv->drm,
"Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
srwm);
/* 965 has limitations... */
intel_uncore_write(&dev_priv->uncore, DSPFW1, FW_WM(srwm, SR) |
FW_WM(8, CURSORB) |
FW_WM(8, PLANEB) |
FW_WM(8, PLANEA));
intel_uncore_write(&dev_priv->uncore, DSPFW2, FW_WM(8, CURSORA) |
FW_WM(8, PLANEC_OLD));
/* update cursor SR watermark */
intel_uncore_write(&dev_priv->uncore, DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
if (cxsr_enabled)
intel_set_memory_cxsr(dev_priv, true);
}
#undef FW_WM
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
{
struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
const struct intel_watermark_params *wm_info;
u32 fwater_lo;
u32 fwater_hi;
int cwm, srwm = 1;
int fifo_size;
int planea_wm, planeb_wm;
struct intel_crtc *crtc, *enabled = NULL;
if (IS_I945GM(dev_priv))
wm_info = &i945_wm_info;
else if (DISPLAY_VER(dev_priv) != 2)
wm_info = &i915_wm_info;
else
wm_info = &i830_a_wm_info;
fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
if (intel_crtc_active(crtc)) {
const struct drm_display_mode *pipe_mode =
&crtc->config->hw.pipe_mode;
const struct drm_framebuffer *fb =
crtc->base.primary->state->fb;
int cpp;
if (DISPLAY_VER(dev_priv) == 2)
cpp = 4;
else
cpp = fb->format->cpp[0];
planea_wm = intel_calculate_wm(pipe_mode->crtc_clock,
wm_info, fifo_size, cpp,
pessimal_latency_ns);
enabled = crtc;
} else {
planea_wm = fifo_size - wm_info->guard_size;
if (planea_wm > (long)wm_info->max_wm)
planea_wm = wm_info->max_wm;
}
if (DISPLAY_VER(dev_priv) == 2)
wm_info = &i830_bc_wm_info;
fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
if (intel_crtc_active(crtc)) {
const struct drm_display_mode *pipe_mode =
&crtc->config->hw.pipe_mode;
const struct drm_framebuffer *fb =
crtc->base.primary->state->fb;
int cpp;
if (DISPLAY_VER(dev_priv) == 2)
cpp = 4;
else
cpp = fb->format->cpp[0];
planeb_wm = intel_calculate_wm(pipe_mode->crtc_clock,
wm_info, fifo_size, cpp,
pessimal_latency_ns);
if (enabled == NULL)
enabled = crtc;
else
enabled = NULL;
} else {
planeb_wm = fifo_size - wm_info->guard_size;
if (planeb_wm > (long)wm_info->max_wm)
planeb_wm = wm_info->max_wm;
}
drm_dbg_kms(&dev_priv->drm,
"FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
if (IS_I915GM(dev_priv) && enabled) {
struct drm_i915_gem_object *obj;
obj = intel_fb_obj(enabled->base.primary->state->fb);
/* self-refresh seems busted with untiled */
if (!i915_gem_object_is_tiled(obj))
enabled = NULL;
}
/*
* Overlay gets an aggressive default since video jitter is bad.
*/
cwm = 2;
/* Play safe and disable self-refresh before adjusting watermarks. */
intel_set_memory_cxsr(dev_priv, false);
/* Calc sr entries for one plane configs */
if (HAS_FW_BLC(dev_priv) && enabled) {
/* self-refresh has much higher latency */
static const int sr_latency_ns = 6000;
const struct drm_display_mode *pipe_mode =
&enabled->config->hw.pipe_mode;
const struct drm_framebuffer *fb =
enabled->base.primary->state->fb;
int clock = pipe_mode->crtc_clock;
int htotal = pipe_mode->crtc_htotal;
int hdisplay = enabled->config->pipe_src_w;
int cpp;
int entries;
if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
cpp = 4;
else
cpp = fb->format->cpp[0];
entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
sr_latency_ns / 100);
entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
drm_dbg_kms(&dev_priv->drm,
"self-refresh entries: %d\n", entries);
srwm = wm_info->fifo_size - entries;
if (srwm < 0)
srwm = 1;
if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF,
FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
else
intel_uncore_write(&dev_priv->uncore, FW_BLC_SELF, srwm & 0x3f);
}
drm_dbg_kms(&dev_priv->drm,
"Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
planea_wm, planeb_wm, cwm, srwm);
fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
fwater_hi = (cwm & 0x1f);
/* Set request length to 8 cachelines per fetch */
fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
fwater_hi = fwater_hi | (1 << 8);
intel_uncore_write(&dev_priv->uncore, FW_BLC, fwater_lo);
intel_uncore_write(&dev_priv->uncore, FW_BLC2, fwater_hi);
if (enabled)
intel_set_memory_cxsr(dev_priv, true);
}
static void i845_update_wm(struct intel_crtc *unused_crtc)
{
struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
struct intel_crtc *crtc;
const struct drm_display_mode *pipe_mode;
u32 fwater_lo;
int planea_wm;
crtc = single_enabled_crtc(dev_priv);
if (crtc == NULL)
return;
pipe_mode = &crtc->config->hw.pipe_mode;
planea_wm = intel_calculate_wm(pipe_mode->crtc_clock,
&i845_wm_info,
dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
4, pessimal_latency_ns);
fwater_lo = intel_uncore_read(&dev_priv->uncore, FW_BLC) & ~0xfff;
fwater_lo |= (3<<8) | planea_wm;
drm_dbg_kms(&dev_priv->drm,
"Setting FIFO watermarks - A: %d\n", planea_wm);
intel_uncore_write(&dev_priv->uncore, FW_BLC, fwater_lo);
}
/* latency must be in 0.1us units. */
static unsigned int ilk_wm_method1(unsigned int pixel_rate,
unsigned int cpp,
unsigned int latency)
{
unsigned int ret;
ret = intel_wm_method1(pixel_rate, cpp, latency);
ret = DIV_ROUND_UP(ret, 64) + 2;
return ret;
}
/* latency must be in 0.1us units. */
static unsigned int ilk_wm_method2(unsigned int pixel_rate,
unsigned int htotal,
unsigned int width,
unsigned int cpp,
unsigned int latency)
{
unsigned int ret;
ret = intel_wm_method2(pixel_rate, htotal,
width, cpp, latency);
ret = DIV_ROUND_UP(ret, 64) + 2;
return ret;
}
static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
{
/*
* Neither of these should be possible since this function shouldn't be
* called if the CRTC is off or the plane is invisible. But let's be
* extra paranoid to avoid a potential divide-by-zero if we screw up
* elsewhere in the driver.
*/
if (WARN_ON(!cpp))
return 0;
if (WARN_ON(!horiz_pixels))
return 0;
return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
}
struct ilk_wm_maximums {
u16 pri;
u16 spr;
u16 cur;
u16 fbc;
};
/*
* For both WM_PIPE and WM_LP.
* mem_value must be in 0.1us units.
*/
static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state,
u32 mem_value, bool is_lp)
{
u32 method1, method2;
int cpp;
if (mem_value == 0)
return U32_MAX;
if (!intel_wm_plane_visible(crtc_state, plane_state))
return 0;
cpp = plane_state->hw.fb->format->cpp[0];
method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
if (!is_lp)
return method1;
method2 = ilk_wm_method2(crtc_state->pixel_rate,
crtc_state->hw.pipe_mode.crtc_htotal,
drm_rect_width(&plane_state->uapi.dst),
cpp, mem_value);
return min(method1, method2);
}
/*
* For both WM_PIPE and WM_LP.
* mem_value must be in 0.1us units.
*/
static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state,
u32 mem_value)
{
u32 method1, method2;
int cpp;
if (mem_value == 0)
return U32_MAX;
if (!intel_wm_plane_visible(crtc_state, plane_state))
return 0;
cpp = plane_state->hw.fb->format->cpp[0];
method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
method2 = ilk_wm_method2(crtc_state->pixel_rate,
crtc_state->hw.pipe_mode.crtc_htotal,
drm_rect_width(&plane_state->uapi.dst),
cpp, mem_value);
return min(method1, method2);
}
/*
* For both WM_PIPE and WM_LP.
* mem_value must be in 0.1us units.
*/
static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state,
u32 mem_value)
{
int cpp;
if (mem_value == 0)
return U32_MAX;
if (!intel_wm_plane_visible(crtc_state, plane_state))
return 0;
cpp = plane_state->hw.fb->format->cpp[0];
return ilk_wm_method2(crtc_state->pixel_rate,
crtc_state->hw.pipe_mode.crtc_htotal,
drm_rect_width(&plane_state->uapi.dst),
cpp, mem_value);
}
/* Only for WM_LP. */
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state,
u32 pri_val)
{
int cpp;
if (!intel_wm_plane_visible(crtc_state, plane_state))
return 0;
cpp = plane_state->hw.fb->format->cpp[0];
return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->uapi.dst),
cpp);
}
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
{
if (DISPLAY_VER(dev_priv) >= 8)
return 3072;
else if (DISPLAY_VER(dev_priv) >= 7)
return 768;
else
return 512;
}
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
int level, bool is_sprite)
{
if (DISPLAY_VER(dev_priv) >= 8)
/* BDW primary/sprite plane watermarks */
return level == 0 ? 255 : 2047;
else if (DISPLAY_VER(dev_priv) >= 7)
/* IVB/HSW primary/sprite plane watermarks */
return level == 0 ? 127 : 1023;
else if (!is_sprite)
/* ILK/SNB primary plane watermarks */
return level == 0 ? 127 : 511;
else
/* ILK/SNB sprite plane watermarks */
return level == 0 ? 63 : 255;
}
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
{
if (DISPLAY_VER(dev_priv) >= 7)
return level == 0 ? 63 : 255;
else
return level == 0 ? 31 : 63;
}
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
{
if (DISPLAY_VER(dev_priv) >= 8)
return 31;
else
return 15;
}
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
int level,
const struct intel_wm_config *config,
enum intel_ddb_partitioning ddb_partitioning,
bool is_sprite)
{
unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
/* if sprites aren't enabled, sprites get nothing */
if (is_sprite && !config->sprites_enabled)
return 0;
/* HSW allows LP1+ watermarks even with multiple pipes */
if (level == 0 || config->num_pipes_active > 1) {
fifo_size /= INTEL_NUM_PIPES(dev_priv);
/*
* For some reason the non self refresh
* FIFO size is only half of the self
* refresh FIFO size on ILK/SNB.
*/
if (DISPLAY_VER(dev_priv) <= 6)
fifo_size /= 2;
}
if (config->sprites_enabled) {
/* level 0 is always calculated with 1:1 split */
if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
if (is_sprite)
fifo_size *= 5;
fifo_size /= 6;
} else {
fifo_size /= 2;
}
}
/* clamp to max that the registers can hold */
return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
}
/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
int level,
const struct intel_wm_config *config)
{
/* HSW LP1+ watermarks w/ multiple pipes */
if (level > 0 && config->num_pipes_active > 1)
return 64;
/* otherwise just report max that registers can hold */
return ilk_cursor_wm_reg_max(dev_priv, level);
}
static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
int level,
const struct intel_wm_config *config,
enum intel_ddb_partitioning ddb_partitioning,
struct ilk_wm_maximums *max)
{
max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
max->cur = ilk_cursor_wm_max(dev_priv, level, config);
max->fbc = ilk_fbc_wm_reg_max(dev_priv);
}
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
int level,
struct ilk_wm_maximums *max)
{
max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
max->fbc = ilk_fbc_wm_reg_max(dev_priv);
}
static bool ilk_validate_wm_level(int level,
const struct ilk_wm_maximums *max,
struct intel_wm_level *result)
{
bool ret;
/* already determined to be invalid? */
if (!result->enable)
return false;
result->enable = result->pri_val <= max->pri &&
result->spr_val <= max->spr &&
result->cur_val <= max->cur;
ret = result->enable;
/*
* HACK until we can pre-compute everything,
* and thus fail gracefully if LP0 watermarks
* are exceeded...
*/
if (level == 0 && !result->enable) {
if (result->pri_val > max->pri)
DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
level, result->pri_val, max->pri);
if (result->spr_val > max->spr)
DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
level, result->spr_val, max->spr);
if (result->cur_val > max->cur)
DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
level, result->cur_val, max->cur);
result->pri_val = min_t(u32, result->pri_val, max->pri);
result->spr_val = min_t(u32, result->spr_val, max->spr);
result->cur_val = min_t(u32, result->cur_val, max->cur);
result->enable = true;
}
return ret;
}
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
const struct intel_crtc *crtc,
int level,
struct intel_crtc_state *crtc_state,
const struct intel_plane_state *pristate,
const struct intel_plane_state *sprstate,
const struct intel_plane_state *curstate,
struct intel_wm_level *result)
{
u16 pri_latency = dev_priv->wm.pri_latency[level];
u16 spr_latency = dev_priv->wm.spr_latency[level];
u16 cur_latency = dev_priv->wm.cur_latency[level];
/* WM1+ latency values stored in 0.5us units */
if (level > 0) {
pri_latency *= 5;
spr_latency *= 5;
cur_latency *= 5;
}
if (pristate) {
result->pri_val = ilk_compute_pri_wm(crtc_state, pristate,
pri_latency, level);
result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val);
}
if (sprstate)
result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency);
if (curstate)
result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency);
result->enable = true;
}
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
u16 wm[])
{
struct intel_uncore *uncore = &dev_priv->uncore;
if (DISPLAY_VER(dev_priv) >= 9) {
u32 val;
int ret, i;
int level, max_level = ilk_wm_max_level(dev_priv);
/* read the first set of memory latencies[0:3] */
val = 0; /* data0 to be programmed to 0 for first set */
ret = sandybridge_pcode_read(dev_priv,
GEN9_PCODE_READ_MEM_LATENCY,
&val, NULL);
if (ret) {
drm_err(&dev_priv->drm,
"SKL Mailbox read error = %d\n", ret);
return;
}
wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
GEN9_MEM_LATENCY_LEVEL_MASK;
wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
GEN9_MEM_LATENCY_LEVEL_MASK;
wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
GEN9_MEM_LATENCY_LEVEL_MASK;
/* read the second set of memory latencies[4:7] */
val = 1; /* data0 to be programmed to 1 for second set */
ret = sandybridge_pcode_read(dev_priv,
GEN9_PCODE_READ_MEM_LATENCY,
&val, NULL);
if (ret) {
drm_err(&dev_priv->drm,
"SKL Mailbox read error = %d\n", ret);
return;
}
wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
GEN9_MEM_LATENCY_LEVEL_MASK;
wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
GEN9_MEM_LATENCY_LEVEL_MASK;
wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
GEN9_MEM_LATENCY_LEVEL_MASK;
/*
* If a level n (n > 1) has a 0us latency, all levels m (m >= n)
* need to be disabled. We make sure to sanitize the values out
* of the punit to satisfy this requirement.
*/
for (level = 1; level <= max_level; level++) {
if (wm[level] == 0) {
for (i = level + 1; i <= max_level; i++)
wm[i] = 0;
max_level = level - 1;
break;
}
}
/*
* WaWmMemoryReadLatency
*
* punit doesn't take into account the read latency so we need
* to add proper adjustement to each valid level we retrieve
* from the punit when level 0 response data is 0us.
*/
if (wm[0] == 0) {
u8 adjust = DISPLAY_VER(dev_priv) >= 12 ? 3 : 2;
for (level = 0; level <= max_level; level++)
wm[level] += adjust;
}
/*
* WA Level-0 adjustment for 16GB DIMMs: SKL+
* If we could not get dimm info enable this WA to prevent from
* any underrun. If not able to get Dimm info assume 16GB dimm
* to avoid any underrun.
*/
if (dev_priv->dram_info.wm_lv_0_adjust_needed)
wm[0] += 1;
} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
u64 sskpd = intel_uncore_read64(uncore, MCH_SSKPD);
wm[0] = (sskpd >> 56) & 0xFF;
if (wm[0] == 0)
wm[0] = sskpd & 0xF;
wm[1] = (sskpd >> 4) & 0xFF;
wm[2] = (sskpd >> 12) & 0xFF;
wm[3] = (sskpd >> 20) & 0x1FF;
wm[4] = (sskpd >> 32) & 0x1FF;
} else if (DISPLAY_VER(dev_priv) >= 6) {
u32 sskpd = intel_uncore_read(uncore, MCH_SSKPD);
wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
} else if (DISPLAY_VER(dev_priv) >= 5) {
u32 mltr = intel_uncore_read(uncore, MLTR_ILK);
/* ILK primary LP0 latency is 700 ns */
wm[0] = 7;
wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
} else {
MISSING_CASE(INTEL_DEVID(dev_priv));
}
}
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
u16 wm[5])
{
/* ILK sprite LP0 latency is 1300 ns */
if (DISPLAY_VER(dev_priv) == 5)
wm[0] = 13;
}
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
u16 wm[5])
{
/* ILK cursor LP0 latency is 1300 ns */
if (DISPLAY_VER(dev_priv) == 5)
wm[0] = 13;
}
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
{
/* how many WM levels are we expecting */
if (HAS_HW_SAGV_WM(dev_priv))
return 5;
else if (DISPLAY_VER(dev_priv) >= 9)
return 7;
else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
return 4;
else if (DISPLAY_VER(dev_priv) >= 6)
return 3;
else
return 2;
}
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
const char *name,
const u16 wm[])
{
int level, max_level = ilk_wm_max_level(dev_priv);
for (level = 0; level <= max_level; level++) {
unsigned int latency = wm[level];
if (latency == 0) {
drm_dbg_kms(&dev_priv->drm,
"%s WM%d latency not provided\n",
name, level);
continue;
}
/*
* - latencies are in us on gen9.
* - before then, WM1+ latency values are in 0.5us units
*/
if (DISPLAY_VER(dev_priv) >= 9)
latency *= 10;
else if (level > 0)
latency *= 5;
drm_dbg_kms(&dev_priv->drm,
"%s WM%d latency %u (%u.%u usec)\n", name, level,
wm[level], latency / 10, latency % 10);
}
}
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
u16 wm[5], u16 min)
{
int level, max_level = ilk_wm_max_level(dev_priv);
if (wm[0] >= min)
return false;
wm[0] = max(wm[0], min);
for (level = 1; level <= max_level; level++)
wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
return true;
}
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
{
bool changed;
/*
* The BIOS provided WM memory latency values are often
* inadequate for high resolution displays. Adjust them.
*/
changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12);
changed |= ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12);
changed |= ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
if (!changed)
return;
drm_dbg_kms(&dev_priv->drm,
"WM latency values increased to avoid potential underruns\n");
intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
}
static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
{
/*
* On some SNB machines (Thinkpad X220 Tablet at least)
* LP3 usage can cause vblank interrupts to be lost.
* The DEIIR bit will go high but it looks like the CPU
* never gets interrupted.
*
* It's not clear whether other interrupt source could
* be affected or if this is somehow limited to vblank
* interrupts only. To play it safe we disable LP3
* watermarks entirely.
*/
if (dev_priv->wm.pri_latency[3] == 0 &&
dev_priv->wm.spr_latency[3] == 0 &&
dev_priv->wm.cur_latency[3] == 0)
return;
dev_priv->wm.pri_latency[3] = 0;
dev_priv->wm.spr_latency[3] = 0;
dev_priv->wm.cur_latency[3] = 0;
drm_dbg_kms(&dev_priv->drm,
"LP3 watermarks disabled due to potential for lost interrupts\n");
intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
}
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
{
intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
sizeof(dev_priv->wm.pri_latency));
memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
sizeof(dev_priv->wm.pri_latency));
intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
if (DISPLAY_VER(dev_priv) == 6) {
snb_wm_latency_quirk(dev_priv);
snb_wm_lp3_irq_quirk(dev_priv);
}
}
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
{
intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
}
static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
struct intel_pipe_wm *pipe_wm)
{
/* LP0 watermark maximums depend on this pipe alone */
const struct intel_wm_config config = {
.num_pipes_active = 1,
.sprites_enabled = pipe_wm->sprites_enabled,
.sprites_scaled = pipe_wm->sprites_scaled,
};
struct ilk_wm_maximums max;
/* LP0 watermarks always use 1/2 DDB partitioning */
ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
/* At least LP0 must be valid */
if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
drm_dbg_kms(&dev_priv->drm, "LP0 watermark invalid\n");
return false;
}
return true;
}
/* Compute new watermarks for the pipe */
static int ilk_compute_pipe_wm(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct intel_pipe_wm *pipe_wm;
struct intel_plane *plane;
const struct intel_plane_state *plane_state;
const struct intel_plane_state *pristate = NULL;
const struct intel_plane_state *sprstate = NULL;
const struct intel_plane_state *curstate = NULL;
int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
struct ilk_wm_maximums max;
pipe_wm = &crtc_state->wm.ilk.optimal;
intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
pristate = plane_state;
else if (plane->base.type == DRM_PLANE_TYPE_OVERLAY)
sprstate = plane_state;
else if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
curstate = plane_state;
}
pipe_wm->pipe_enabled = crtc_state->hw.active;
if (sprstate) {
pipe_wm->sprites_enabled = sprstate->uapi.visible;
pipe_wm->sprites_scaled = sprstate->uapi.visible &&
(drm_rect_width(&sprstate->uapi.dst) != drm_rect_width(&sprstate->uapi.src) >> 16 ||
drm_rect_height(&sprstate->uapi.dst) != drm_rect_height(&sprstate->uapi.src) >> 16);
}
usable_level = max_level;
/* ILK/SNB: LP2+ watermarks only w/o sprites */
if (DISPLAY_VER(dev_priv) <= 6 && pipe_wm->sprites_enabled)
usable_level = 1;
/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
if (pipe_wm->sprites_scaled)
usable_level = 0;
memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
ilk_compute_wm_level(dev_priv, crtc, 0, crtc_state,
pristate, sprstate, curstate, &pipe_wm->wm[0]);
if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
return -EINVAL;
ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
for (level = 1; level <= usable_level; level++) {
struct intel_wm_level *wm = &pipe_wm->wm[level];
ilk_compute_wm_level(dev_priv, crtc, level, crtc_state,
pristate, sprstate, curstate, wm);
/*
* Disable any watermark level that exceeds the
* register maximums since such watermarks are
* always invalid.
*/
if (!ilk_validate_wm_level(level, &max, wm)) {
memset(wm, 0, sizeof(*wm));
break;
}
}
return 0;
}
/*
* Build a set of 'intermediate' watermark values that satisfy both the old
* state and the new state. These can be programmed to the hardware
* immediately.
*/
static int ilk_compute_intermediate_wm(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
struct intel_pipe_wm *a = &new_crtc_state->wm.ilk.intermediate;
const struct intel_pipe_wm *b = &old_crtc_state->wm.ilk.optimal;
int level, max_level = ilk_wm_max_level(dev_priv);
/*
* Start with the final, target watermarks, then combine with the
* currently active watermarks to get values that are safe both before
* and after the vblank.
*/
*a = new_crtc_state->wm.ilk.optimal;
if (!new_crtc_state->hw.active ||
drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi) ||
state->skip_intermediate_wm)
return 0;
a->pipe_enabled |= b->pipe_enabled;
a->sprites_enabled |= b->sprites_enabled;
a->sprites_scaled |= b->sprites_scaled;
for (level = 0; level <= max_level; level++) {
struct intel_wm_level *a_wm = &a->wm[level];
const struct intel_wm_level *b_wm = &b->wm[level];
a_wm->enable &= b_wm->enable;
a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
}
/*
* We need to make sure that these merged watermark values are
* actually a valid configuration themselves. If they're not,
* there's no safe way to transition from the old state to
* the new state, so we need to fail the atomic transaction.
*/
if (!ilk_validate_pipe_wm(dev_priv, a))
return -EINVAL;
/*
* If our intermediate WM are identical to the final WM, then we can
* omit the post-vblank programming; only update if it's different.
*/
if (memcmp(a, &new_crtc_state->wm.ilk.optimal, sizeof(*a)) != 0)
new_crtc_state->wm.need_postvbl_update = true;
return 0;
}
/*
* Merge the watermarks from all active pipes for a specific level.
*/
static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
int level,
struct intel_wm_level *ret_wm)
{
const struct intel_crtc *crtc;
ret_wm->enable = true;
for_each_intel_crtc(&dev_priv->drm, crtc) {
const struct intel_pipe_wm *active = &crtc->wm.active.ilk;
const struct intel_wm_level *wm = &active->wm[level];
if (!active->pipe_enabled)
continue;
/*
* The watermark values may have been used in the past,
* so we must maintain them in the registers for some
* time even if the level is now disabled.
*/
if (!wm->enable)
ret_wm->enable = false;
ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
}
}
/*
* Merge all low power watermarks for all active pipes.
*/
static void ilk_wm_merge(struct drm_i915_private *dev_priv,
const struct intel_wm_config *config,
const struct ilk_wm_maximums *max,
struct intel_pipe_wm *merged)
{
int level, max_level = ilk_wm_max_level(dev_priv);
int last_enabled_level = max_level;
/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
if ((DISPLAY_VER(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
config->num_pipes_active > 1)
last_enabled_level = 0;
/* ILK: FBC WM must be disabled always */
merged->fbc_wm_enabled = DISPLAY_VER(dev_priv) >= 6;
/* merge each WM1+ level */
for (level = 1; level <= max_level; level++) {
struct intel_wm_level *wm = &merged->wm[level];
ilk_merge_wm_level(dev_priv, level, wm);
if (level > last_enabled_level)
wm->enable = false;
else if (!ilk_validate_wm_level(level, max, wm))
/* make sure all following levels get disabled */
last_enabled_level = level - 1;
/*
* The spec says it is preferred to disable
* FBC WMs instead of disabling a WM level.
*/
if (wm->fbc_val > max->fbc) {
if (wm->enable)
merged->fbc_wm_enabled = false;
wm->fbc_val = 0;
}
}
/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
/*
* FIXME this is racy. FBC might get enabled later.
* What we should check here is whether FBC can be
* enabled sometime later.
*/
if (DISPLAY_VER(dev_priv) == 5 && !merged->fbc_wm_enabled &&
intel_fbc_is_active(dev_priv)) {
for (level = 2; level <= max_level; level++) {
struct intel_wm_level *wm = &merged->wm[level];
wm->enable = false;
}
}
}
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
int level)
{
if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
return 2 * level;
else
return dev_priv->wm.pri_latency[level];
}
static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
const struct intel_pipe_wm *merged,
enum intel_ddb_partitioning partitioning,
struct ilk_wm_values *results)
{
struct intel_crtc *crtc;
int level, wm_lp;
results->enable_fbc_wm = merged->fbc_wm_enabled;
results->partitioning = partitioning;
/* LP1+ register values */
for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
const struct intel_wm_level *r;
level = ilk_wm_lp_to_level(wm_lp, merged);
r = &merged->wm[level];
/*
* Maintain the watermark values even if the level is
* disabled. Doing otherwise could cause underruns.
*/
results->wm_lp[wm_lp - 1] =
(ilk_wm_lp_latency(dev_priv, level) << WM1_LP_LATENCY_SHIFT) |
(r->pri_val << WM1_LP_SR_SHIFT) |
r->cur_val;
if (r->enable)
results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
if (DISPLAY_VER(dev_priv) >= 8)
results->wm_lp[wm_lp - 1] |=
r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
else
results->wm_lp[wm_lp - 1] |=
r->fbc_val << WM1_LP_FBC_SHIFT;
/*
* Always set WM1S_LP_EN when spr_val != 0, even if the
* level is disabled. Doing otherwise could cause underruns.
*/
if (DISPLAY_VER(dev_priv) <= 6 && r->spr_val) {
drm_WARN_ON(&dev_priv->drm, wm_lp != 1);
results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
} else
results->wm_lp_spr[wm_lp - 1] = r->spr_val;
}
/* LP0 register values */
for_each_intel_crtc(&dev_priv->drm, crtc) {
enum pipe pipe = crtc->pipe;
const struct intel_pipe_wm *pipe_wm = &crtc->wm.active.ilk;
const struct intel_wm_level *r = &pipe_wm->wm[0];
if (drm_WARN_ON(&dev_priv->drm, !r->enable))
continue;
results->wm_pipe[pipe] =
(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
r->cur_val;
}
}
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
* case both are at the same level. Prefer r1 in case they're the same. */
static struct intel_pipe_wm *
ilk_find_best_result(struct drm_i915_private *dev_priv,
struct intel_pipe_wm *r1,
struct intel_pipe_wm *r2)
{
int level, max_level = ilk_wm_max_level(dev_priv);
int level1 = 0, level2 = 0;
for (level = 1; level <= max_level; level++) {
if (r1->wm[level].enable)
level1 = level;
if (r2->wm[level].enable)
level2 = level;
}
if (level1 == level2) {
if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
return r2;
else
return r1;
} else if (level1 > level2) {
return r1;
} else {
return r2;
}
}
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
const struct ilk_wm_values *old,
const struct ilk_wm_values *new)
{
unsigned int dirty = 0;
enum pipe pipe;
int wm_lp;
for_each_pipe(dev_priv, pipe) {
if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
dirty |= WM_DIRTY_PIPE(pipe);
/* Must disable LP1+ watermarks too */
dirty |= WM_DIRTY_LP_ALL;
}
}
if (old->enable_fbc_wm != new->enable_fbc_wm) {
dirty |= WM_DIRTY_FBC;
/* Must disable LP1+ watermarks too */
dirty |= WM_DIRTY_LP_ALL;
}
if (old->partitioning != new->partitioning) {
dirty |= WM_DIRTY_DDB;
/* Must disable LP1+ watermarks too */
dirty |= WM_DIRTY_LP_ALL;
}
/* LP1+ watermarks already deemed dirty, no need to continue */
if (dirty & WM_DIRTY_LP_ALL)
return dirty;
/* Find the lowest numbered LP1+ watermark in need of an update... */
for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
break;
}
/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
for (; wm_lp <= 3; wm_lp++)
dirty |= WM_DIRTY_LP(wm_lp);
return dirty;
}
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
unsigned int dirty)
{
struct ilk_wm_values *previous = &dev_priv->wm.hw;
bool changed = false;
if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
previous->wm_lp[2] &= ~WM1_LP_SR_EN;
intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, previous->wm_lp[2]);
changed = true;
}
if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
previous->wm_lp[1] &= ~WM1_LP_SR_EN;
intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, previous->wm_lp[1]);
changed = true;
}
if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
previous->wm_lp[0] &= ~WM1_LP_SR_EN;
intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, previous->wm_lp[0]);
changed = true;
}
/*
* Don't touch WM1S_LP_EN here.
* Doing so could cause underruns.
*/
return changed;
}
/*
* The spec says we shouldn't write when we don't need, because every write
* causes WMs to be re-evaluated, expending some power.
*/
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
struct ilk_wm_values *results)
{
struct ilk_wm_values *previous = &dev_priv->wm.hw;
unsigned int dirty;
u32 val;
dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
if (!dirty)
return;
_ilk_disable_lp_wm(dev_priv, dirty);
if (dirty & WM_DIRTY_PIPE(PIPE_A))
intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_A), results->wm_pipe[0]);
if (dirty & WM_DIRTY_PIPE(PIPE_B))
intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_B), results->wm_pipe[1]);
if (dirty & WM_DIRTY_PIPE(PIPE_C))
intel_uncore_write(&dev_priv->uncore, WM0_PIPE_ILK(PIPE_C), results->wm_pipe[2]);
if (dirty & WM_DIRTY_DDB) {
if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
val = intel_uncore_read(&dev_priv->uncore, WM_MISC);
if (results->partitioning == INTEL_DDB_PART_1_2)
val &= ~WM_MISC_DATA_PARTITION_5_6;
else
val |= WM_MISC_DATA_PARTITION_5_6;
intel_uncore_write(&dev_priv->uncore, WM_MISC, val);
} else {
val = intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL2);
if (results->partitioning == INTEL_DDB_PART_1_2)
val &= ~DISP_DATA_PARTITION_5_6;
else
val |= DISP_DATA_PARTITION_5_6;
intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL2, val);
}
}
if (dirty & WM_DIRTY_FBC) {
val = intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL);
if (results->enable_fbc_wm)
val &= ~DISP_FBC_WM_DIS;
else
val |= DISP_FBC_WM_DIS;
intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, val);
}
if (dirty & WM_DIRTY_LP(1) &&
previous->wm_lp_spr[0] != results->wm_lp_spr[0])
intel_uncore_write(&dev_priv->uncore, WM1S_LP_ILK, results->wm_lp_spr[0]);
if (DISPLAY_VER(dev_priv) >= 7) {
if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
intel_uncore_write(&dev_priv->uncore, WM2S_LP_IVB, results->wm_lp_spr[1]);
if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
intel_uncore_write(&dev_priv->uncore, WM3S_LP_IVB, results->wm_lp_spr[2]);
}
if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, results->wm_lp[0]);
if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, results->wm_lp[1]);
if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, results->wm_lp[2]);
dev_priv->wm.hw = *results;
}
bool ilk_disable_lp_wm(struct drm_i915_private *dev_priv)
{
return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}
u8 intel_enabled_dbuf_slices_mask(struct drm_i915_private *dev_priv)
{
u8 enabled_slices = 0;
enum dbuf_slice slice;
for_each_dbuf_slice(dev_priv, slice) {
if (intel_uncore_read(&dev_priv->uncore,
DBUF_CTL_S(slice)) & DBUF_POWER_STATE)
enabled_slices |= BIT(slice);
}
return enabled_slices;
}
/*
* FIXME: We still don't have the proper code detect if we need to apply the WA,
* so assume we'll always need it in order to avoid underruns.
*/
static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv)
{
return DISPLAY_VER(dev_priv) == 9;
}
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
return DISPLAY_VER(dev_priv) >= 9 && !IS_LP(dev_priv) &&
dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
}
static void
skl_setup_sagv_block_time(struct drm_i915_private *dev_priv)
{
if (DISPLAY_VER(dev_priv) >= 12) {
u32 val = 0;
int ret;
ret = sandybridge_pcode_read(dev_priv,
GEN12_PCODE_READ_SAGV_BLOCK_TIME_US,
&val, NULL);
if (!ret) {
dev_priv->sagv_block_time_us = val;
return;
}
drm_dbg(&dev_priv->drm, "Couldn't read SAGV block time!\n");
} else if (DISPLAY_VER(dev_priv) == 11) {
dev_priv->sagv_block_time_us = 10;
return;
} else if (DISPLAY_VER(dev_priv) == 10) {
dev_priv->sagv_block_time_us = 20;
return;
} else if (DISPLAY_VER(dev_priv) == 9) {
dev_priv->sagv_block_time_us = 30;
return;
} else {
MISSING_CASE(DISPLAY_VER(dev_priv));
}
dev_priv->sagv_block_time_us = 0;
}
/*
* SAGV dynamically adjusts the system agent voltage and clock frequencies
* depending on power and performance requirements. The display engine access
* to system memory is blocked during the adjustment time. Because of the
* blocking time, having this enabled can cause full system hangs and/or pipe
* underruns if we don't meet all of the following requirements:
*
* - <= 1 pipe enabled
* - All planes can enable watermarks for latencies >= SAGV engine block time
* - We're not using an interlaced display configuration
*/
static int
intel_enable_sagv(struct drm_i915_private *dev_priv)
{
int ret;
if (!intel_has_sagv(dev_priv))
return 0;
if (dev_priv->sagv_status == I915_SAGV_ENABLED)
return 0;
drm_dbg_kms(&dev_priv->drm, "Enabling SAGV\n");
ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
GEN9_SAGV_ENABLE);
/* We don't need to wait for SAGV when enabling */
/*
* Some skl systems, pre-release machines in particular,
* don't actually have SAGV.
*/
if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
return 0;
} else if (ret < 0) {
drm_err(&dev_priv->drm, "Failed to enable SAGV\n");
return ret;
}
dev_priv->sagv_status = I915_SAGV_ENABLED;
return 0;
}
static int
intel_disable_sagv(struct drm_i915_private *dev_priv)
{
int ret;
if (!intel_has_sagv(dev_priv))
return 0;
if (dev_priv->sagv_status == I915_SAGV_DISABLED)
return 0;
drm_dbg_kms(&dev_priv->drm, "Disabling SAGV\n");
/* bspec says to keep retrying for at least 1 ms */
ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
GEN9_SAGV_DISABLE,
GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
1);
/*
* Some skl systems, pre-release machines in particular,
* don't actually have SAGV.
*/
if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
return 0;
} else if (ret < 0) {
drm_err(&dev_priv->drm, "Failed to disable SAGV (%d)\n", ret);
return ret;
}
dev_priv->sagv_status = I915_SAGV_DISABLED;
return 0;
}
void intel_sagv_pre_plane_update(struct intel_atomic_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
const struct intel_bw_state *new_bw_state;
const struct intel_bw_state *old_bw_state;
u32 new_mask = 0;
/*
* Just return if we can't control SAGV or don't have it.
* This is different from situation when we have SAGV but just can't
* afford it due to DBuf limitation - in case if SAGV is completely
* disabled in a BIOS, we are not even allowed to send a PCode request,
* as it will throw an error. So have to check it here.
*/
if (!intel_has_sagv(dev_priv))
return;
new_bw_state = intel_atomic_get_new_bw_state(state);
if (!new_bw_state)
return;
if (DISPLAY_VER(dev_priv) < 11 && !intel_can_enable_sagv(dev_priv, new_bw_state)) {
intel_disable_sagv(dev_priv);
return;
}
old_bw_state = intel_atomic_get_old_bw_state(state);
/*
* Nothing to mask
*/
if (new_bw_state->qgv_points_mask == old_bw_state->qgv_points_mask)
return;
new_mask = old_bw_state->qgv_points_mask | new_bw_state->qgv_points_mask;
/*
* If new mask is zero - means there is nothing to mask,
* we can only unmask, which should be done in unmask.
*/
if (!new_mask)
return;
/*
* Restrict required qgv points before updating the configuration.
* According to BSpec we can't mask and unmask qgv points at the same
* time. Also masking should be done before updating the configuration
* and unmasking afterwards.
*/
icl_pcode_restrict_qgv_points(dev_priv, new_mask);
}
void intel_sagv_post_plane_update(struct intel_atomic_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
const struct intel_bw_state *new_bw_state;
const struct intel_bw_state *old_bw_state;
u32 new_mask = 0;
/*
* Just return if we can't control SAGV or don't have it.
* This is different from situation when we have SAGV but just can't
* afford it due to DBuf limitation - in case if SAGV is completely
* disabled in a BIOS, we are not even allowed to send a PCode request,
* as it will throw an error. So have to check it here.
*/
if (!intel_has_sagv(dev_priv))
return;
new_bw_state = intel_atomic_get_new_bw_state(state);
if (!new_bw_state)
return;
if (DISPLAY_VER(dev_priv) < 11 && intel_can_enable_sagv(dev_priv, new_bw_state)) {
intel_enable_sagv(dev_priv);
return;
}
old_bw_state = intel_atomic_get_old_bw_state(state);
/*
* Nothing to unmask
*/
if (new_bw_state->qgv_points_mask == old_bw_state->qgv_points_mask)
return;
new_mask = new_bw_state->qgv_points_mask;
/*
* Allow required qgv points after updating the configuration.
* According to BSpec we can't mask and unmask qgv points at the same
* time. Also masking should be done before updating the configuration
* and unmasking afterwards.
*/
icl_pcode_restrict_qgv_points(dev_priv, new_mask);
}
static bool skl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum plane_id plane_id;
int max_level = INT_MAX;
if (!intel_has_sagv(dev_priv))
return false;
if (!crtc_state->hw.active)
return true;
if (crtc_state->hw.pipe_mode.flags & DRM_MODE_FLAG_INTERLACE)
return false;
for_each_plane_id_on_crtc(crtc, plane_id) {
const struct skl_plane_wm *wm =
&crtc_state->wm.skl.optimal.planes[plane_id];
int level;
/* Skip this plane if it's not enabled */
if (!wm->wm[0].enable)
continue;
/* Find the highest enabled wm level for this plane */
for (level = ilk_wm_max_level(dev_priv);
!wm->wm[level].enable; --level)
{ }
/* Highest common enabled wm level for all planes */
max_level = min(level, max_level);
}
/* No enabled planes? */
if (max_level == INT_MAX)
return true;
for_each_plane_id_on_crtc(crtc, plane_id) {
const struct skl_plane_wm *wm =
&crtc_state->wm.skl.optimal.planes[plane_id];
/*
* All enabled planes must have enabled a common wm level that
* can tolerate memory latencies higher than sagv_block_time_us
*/
if (wm->wm[0].enable && !wm->wm[max_level].can_sagv)
return false;
}
return true;
}
static bool tgl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
enum plane_id plane_id;
if (!crtc_state->hw.active)
return true;
for_each_plane_id_on_crtc(crtc, plane_id) {
const struct skl_plane_wm *wm =
&crtc_state->wm.skl.optimal.planes[plane_id];
if (wm->wm[0].enable && !wm->sagv.wm0.enable)
return false;
}
return true;
}
static bool intel_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
if (DISPLAY_VER(dev_priv) >= 12)
return tgl_crtc_can_enable_sagv(crtc_state);
else
return skl_crtc_can_enable_sagv(crtc_state);
}
bool intel_can_enable_sagv(struct drm_i915_private *dev_priv,
const struct intel_bw_state *bw_state)
{
if (DISPLAY_VER(dev_priv) < 11 &&
bw_state->active_pipes && !is_power_of_2(bw_state->active_pipes))
return false;
return bw_state->pipe_sagv_reject == 0;
}
static int intel_compute_sagv_mask(struct intel_atomic_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
int ret;
struct intel_crtc *crtc;
struct intel_crtc_state *new_crtc_state;
struct intel_bw_state *new_bw_state = NULL;
const struct intel_bw_state *old_bw_state = NULL;
int i;
for_each_new_intel_crtc_in_state(state, crtc,
new_crtc_state, i) {
new_bw_state = intel_atomic_get_bw_state(state);
if (IS_ERR(new_bw_state))
return PTR_ERR(new_bw_state);
old_bw_state = intel_atomic_get_old_bw_state(state);
if (intel_crtc_can_enable_sagv(new_crtc_state))
new_bw_state->pipe_sagv_reject &= ~BIT(crtc->pipe);
else
new_bw_state->pipe_sagv_reject |= BIT(crtc->pipe);
}
if (!new_bw_state)
return 0;
new_bw_state->active_pipes =
intel_calc_active_pipes(state, old_bw_state->active_pipes);
if (new_bw_state->active_pipes != old_bw_state->active_pipes) {
ret = intel_atomic_lock_global_state(&new_bw_state->base);
if (ret)
return ret;
}
if (intel_can_enable_sagv(dev_priv, new_bw_state) !=
intel_can_enable_sagv(dev_priv, old_bw_state)) {
ret = intel_atomic_serialize_global_state(&new_bw_state->base);
if (ret)
return ret;
} else if (new_bw_state->pipe_sagv_reject != old_bw_state->pipe_sagv_reject) {
ret = intel_atomic_lock_global_state(&new_bw_state->base);
if (ret)
return ret;
}
for_each_new_intel_crtc_in_state(state, crtc,
new_crtc_state, i) {
struct skl_pipe_wm *pipe_wm = &new_crtc_state->wm.skl.optimal;
/*
* We store use_sagv_wm in the crtc state rather than relying on
* that bw state since we have no convenient way to get at the
* latter from the plane commit hooks (especially in the legacy
* cursor case)
*/
pipe_wm->use_sagv_wm = !HAS_HW_SAGV_WM(dev_priv) &&
DISPLAY_VER(dev_priv) >= 12 &&
intel_can_enable_sagv(dev_priv, new_bw_state);
}
return 0;
}
static int intel_dbuf_slice_size(struct drm_i915_private *dev_priv)
{
return INTEL_INFO(dev_priv)->dbuf.size /
hweight8(INTEL_INFO(dev_priv)->dbuf.slice_mask);
}
static void
skl_ddb_entry_for_slices(struct drm_i915_private *dev_priv, u8 slice_mask,
struct skl_ddb_entry *ddb)
{
int slice_size = intel_dbuf_slice_size(dev_priv);
if (!slice_mask) {
ddb->start = 0;
ddb->end = 0;
return;
}
ddb->start = (ffs(slice_mask) - 1) * slice_size;
ddb->end = fls(slice_mask) * slice_size;
WARN_ON(ddb->start >= ddb->end);
WARN_ON(ddb->end > INTEL_INFO(dev_priv)->dbuf.size);
}
static unsigned int mbus_ddb_offset(struct drm_i915_private *i915, u8 slice_mask)
{
struct skl_ddb_entry ddb;
if (slice_mask & (BIT(DBUF_S1) | BIT(DBUF_S2)))
slice_mask = BIT(DBUF_S1);
else if (slice_mask & (BIT(DBUF_S3) | BIT(DBUF_S4)))
slice_mask = BIT(DBUF_S3);
skl_ddb_entry_for_slices(i915, slice_mask, &ddb);
return ddb.start;
}
u32 skl_ddb_dbuf_slice_mask(struct drm_i915_private *dev_priv,
const struct skl_ddb_entry *entry)
{
int slice_size = intel_dbuf_slice_size(dev_priv);
enum dbuf_slice start_slice, end_slice;
u8 slice_mask = 0;
if (!skl_ddb_entry_size(entry))
return 0;
start_slice = entry->start / slice_size;
end_slice = (entry->end - 1) / slice_size;
/*
* Per plane DDB entry can in a really worst case be on multiple slices
* but single entry is anyway contigious.
*/
while (start_slice <= end_slice) {
slice_mask |= BIT(start_slice);
start_slice++;
}
return slice_mask;
}
static unsigned int intel_crtc_ddb_weight(const struct intel_crtc_state *crtc_state)
{
const struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode;
int hdisplay, vdisplay;
if (!crtc_state->hw.active)
return 0;
/*
* Watermark/ddb requirement highly depends upon width of the
* framebuffer, So instead of allocating DDB equally among pipes
* distribute DDB based on resolution/width of the display.
*/
drm_mode_get_hv_timing(pipe_mode, &hdisplay, &vdisplay);
return hdisplay;
}
static void intel_crtc_dbuf_weights(const struct intel_dbuf_state *dbuf_state,
enum pipe for_pipe,
unsigned int *weight_start,
unsigned int *weight_end,
unsigned int *weight_total)
{
struct drm_i915_private *dev_priv =
to_i915(dbuf_state->base.state->base.dev);
enum pipe pipe;
*weight_start = 0;
*weight_end = 0;
*weight_total = 0;
for_each_pipe(dev_priv, pipe) {
int weight = dbuf_state->weight[pipe];
/*
* Do not account pipes using other slice sets
* luckily as of current BSpec slice sets do not partially
* intersect(pipes share either same one slice or same slice set
* i.e no partial intersection), so it is enough to check for
* equality for now.
*/
if (dbuf_state->slices[pipe] != dbuf_state->slices[for_pipe])
continue;
*weight_total += weight;
if (pipe < for_pipe) {
*weight_start += weight;
*weight_end += weight;
} else if (pipe == for_pipe) {
*weight_end += weight;
}
}
}
static int
skl_crtc_allocate_ddb(struct intel_atomic_state *state, struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
unsigned int weight_total, weight_start, weight_end;
const struct intel_dbuf_state *old_dbuf_state =
intel_atomic_get_old_dbuf_state(state);
struct intel_dbuf_state *new_dbuf_state =
intel_atomic_get_new_dbuf_state(state);
struct intel_crtc_state *crtc_state;
struct skl_ddb_entry ddb_slices;
enum pipe pipe = crtc->pipe;
unsigned int mbus_offset = 0;
u32 ddb_range_size;
u32 dbuf_slice_mask;
u32 start, end;
int ret;
if (new_dbuf_state->weight[pipe] == 0) {
new_dbuf_state->ddb[pipe].start = 0;
new_dbuf_state->ddb[pipe].end = 0;
goto out;
}
dbuf_slice_mask = new_dbuf_state->slices[pipe];
skl_ddb_entry_for_slices(dev_priv, dbuf_slice_mask, &ddb_slices);
mbus_offset = mbus_ddb_offset(dev_priv, dbuf_slice_mask);
ddb_range_size = skl_ddb_entry_size(&ddb_slices);
intel_crtc_dbuf_weights(new_dbuf_state, pipe,
&weight_start, &weight_end, &weight_total);
start = ddb_range_size * weight_start / weight_total;
end = ddb_range_size * weight_end / weight_total;
new_dbuf_state->ddb[pipe].start = ddb_slices.start - mbus_offset + start;
new_dbuf_state->ddb[pipe].end = ddb_slices.start - mbus_offset + end;
out:
if (old_dbuf_state->slices[pipe] == new_dbuf_state->slices[pipe] &&
skl_ddb_entry_equal(&old_dbuf_state->ddb[pipe],
&new_dbuf_state->ddb[pipe]))
return 0;
ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
if (ret)
return ret;
crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
if (IS_ERR(crtc_state))
return PTR_ERR(crtc_state);
/*
* Used for checking overlaps, so we need absolute
* offsets instead of MBUS relative offsets.
*/
crtc_state->wm.skl.ddb.start = mbus_offset + new_dbuf_state->ddb[pipe].start;
crtc_state->wm.skl.ddb.end = mbus_offset + new_dbuf_state->ddb[pipe].end;
drm_dbg_kms(&dev_priv->drm,
"[CRTC:%d:%s] dbuf slices 0x%x -> 0x%x, ddb (%d - %d) -> (%d - %d), active pipes 0x%x -> 0x%x\n",
crtc->base.base.id, crtc->base.name,
old_dbuf_state->slices[pipe], new_dbuf_state->slices[pipe],
old_dbuf_state->ddb[pipe].start, old_dbuf_state->ddb[pipe].end,
new_dbuf_state->ddb[pipe].start, new_dbuf_state->ddb[pipe].end,
old_dbuf_state->active_pipes, new_dbuf_state->active_pipes);
return 0;
}
static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
int width, const struct drm_format_info *format,
u64 modifier, unsigned int rotation,
u32 plane_pixel_rate, struct skl_wm_params *wp,
int color_plane);
static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
int level,
unsigned int latency,
const struct skl_wm_params *wp,
const struct skl_wm_level *result_prev,
struct skl_wm_level *result /* out */);
static unsigned int
skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
int num_active)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
int level, max_level = ilk_wm_max_level(dev_priv);
struct skl_wm_level wm = {};
int ret, min_ddb_alloc = 0;
struct skl_wm_params wp;
ret = skl_compute_wm_params(crtc_state, 256,
drm_format_info(DRM_FORMAT_ARGB8888),
DRM_FORMAT_MOD_LINEAR,
DRM_MODE_ROTATE_0,
crtc_state->pixel_rate, &wp, 0);
drm_WARN_ON(&dev_priv->drm, ret);
for (level = 0; level <= max_level; level++) {
unsigned int latency = dev_priv->wm.skl_latency[level];
skl_compute_plane_wm(crtc_state, level, latency, &wp, &wm, &wm);
if (wm.min_ddb_alloc == U16_MAX)
break;
min_ddb_alloc = wm.min_ddb_alloc;
}
return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
}
static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
struct skl_ddb_entry *entry, u32 reg)
{
entry->start = reg & DDB_ENTRY_MASK;
entry->end = (reg >> DDB_ENTRY_END_SHIFT) & DDB_ENTRY_MASK;
if (entry->end)
entry->end += 1;
}
static void
skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
const enum pipe pipe,
const enum plane_id plane_id,
struct skl_ddb_entry *ddb_y,
struct skl_ddb_entry *ddb_uv)
{
u32 val, val2;
u32 fourcc = 0;
/* Cursor doesn't support NV12/planar, so no extra calculation needed */
if (plane_id == PLANE_CURSOR) {
val = intel_uncore_read(&dev_priv->uncore, CUR_BUF_CFG(pipe));
skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
return;
}
val = intel_uncore_read(&dev_priv->uncore, PLANE_CTL(pipe, plane_id));
/* No DDB allocated for disabled planes */
if (val & PLANE_CTL_ENABLE)
fourcc = skl_format_to_fourcc(val & PLANE_CTL_FORMAT_MASK,
val & PLANE_CTL_ORDER_RGBX,
val & PLANE_CTL_ALPHA_MASK);
if (DISPLAY_VER(dev_priv) >= 11) {
val = intel_uncore_read(&dev_priv->uncore, PLANE_BUF_CFG(pipe, plane_id));
skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
} else {
val = intel_uncore_read(&dev_priv->uncore, PLANE_BUF_CFG(pipe, plane_id));
val2 = intel_uncore_read(&dev_priv->uncore, PLANE_NV12_BUF_CFG(pipe, plane_id));
if (fourcc &&
drm_format_info_is_yuv_semiplanar(drm_format_info(fourcc)))
swap(val, val2);
skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
skl_ddb_entry_init_from_hw(dev_priv, ddb_uv, val2);
}
}
void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
struct skl_ddb_entry *ddb_y,
struct skl_ddb_entry *ddb_uv)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum intel_display_power_domain power_domain;
enum pipe pipe = crtc->pipe;
intel_wakeref_t wakeref;
enum plane_id plane_id;
power_domain = POWER_DOMAIN_PIPE(pipe);
wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
if (!wakeref)
return;
for_each_plane_id_on_crtc(crtc, plane_id)
skl_ddb_get_hw_plane_state(dev_priv, pipe,
plane_id,
&ddb_y[plane_id],
&ddb_uv[plane_id]);
intel_display_power_put(dev_priv, power_domain, wakeref);
}
/*
* Determines the downscale amount of a plane for the purposes of watermark calculations.
* The bspec defines downscale amount as:
*
* """
* Horizontal down scale amount = maximum[1, Horizontal source size /
* Horizontal destination size]
* Vertical down scale amount = maximum[1, Vertical source size /
* Vertical destination size]
* Total down scale amount = Horizontal down scale amount *
* Vertical down scale amount
* """
*
* Return value is provided in 16.16 fixed point form to retain fractional part.
* Caller should take care of dividing & rounding off the value.
*/
static uint_fixed_16_16_t
skl_plane_downscale_amount(const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
u32 src_w, src_h, dst_w, dst_h;
uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
uint_fixed_16_16_t downscale_h, downscale_w;
if (drm_WARN_ON(&dev_priv->drm,
!intel_wm_plane_visible(crtc_state, plane_state)))
return u32_to_fixed16(0);
/*
* Src coordinates are already rotated by 270 degrees for
* the 90/270 degree plane rotation cases (to match the
* GTT mapping), hence no need to account for rotation here.
*
* n.b., src is 16.16 fixed point, dst is whole integer.
*/
src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
dst_w = drm_rect_width(&plane_state->uapi.dst);
dst_h = drm_rect_height(&plane_state->uapi.dst);
fp_w_ratio = div_fixed16(src_w, dst_w);
fp_h_ratio = div_fixed16(src_h, dst_h);
downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
return mul_fixed16(downscale_w, downscale_h);
}
struct dbuf_slice_conf_entry {
u8 active_pipes;
u8 dbuf_mask[I915_MAX_PIPES];
bool join_mbus;
};
/*
* Table taken from Bspec 12716
* Pipes do have some preferred DBuf slice affinity,
* plus there are some hardcoded requirements on how
* those should be distributed for multipipe scenarios.
* For more DBuf slices algorithm can get even more messy
* and less readable, so decided to use a table almost
* as is from BSpec itself - that way it is at least easier
* to compare, change and check.
*/
static const struct dbuf_slice_conf_entry icl_allowed_dbufs[] =
/* Autogenerated with igt/tools/intel_dbuf_map tool: */
{
{
.active_pipes = BIT(PIPE_A),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1),
},
},
{
.active_pipes = BIT(PIPE_B),
.dbuf_mask = {
[PIPE_B] = BIT(DBUF_S1),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1),
[PIPE_B] = BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_C),
.dbuf_mask = {
[PIPE_C] = BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1),
[PIPE_C] = BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
.dbuf_mask = {
[PIPE_B] = BIT(DBUF_S1),
[PIPE_C] = BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1),
[PIPE_B] = BIT(DBUF_S1),
[PIPE_C] = BIT(DBUF_S2),
},
},
{}
};
/*
* Table taken from Bspec 49255
* Pipes do have some preferred DBuf slice affinity,
* plus there are some hardcoded requirements on how
* those should be distributed for multipipe scenarios.
* For more DBuf slices algorithm can get even more messy
* and less readable, so decided to use a table almost
* as is from BSpec itself - that way it is at least easier
* to compare, change and check.
*/
static const struct dbuf_slice_conf_entry tgl_allowed_dbufs[] =
/* Autogenerated with igt/tools/intel_dbuf_map tool: */
{
{
.active_pipes = BIT(PIPE_A),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_B),
.dbuf_mask = {
[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S2),
[PIPE_B] = BIT(DBUF_S1),
},
},
{
.active_pipes = BIT(PIPE_C),
.dbuf_mask = {
[PIPE_C] = BIT(DBUF_S2) | BIT(DBUF_S1),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1),
[PIPE_C] = BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
.dbuf_mask = {
[PIPE_B] = BIT(DBUF_S1),
[PIPE_C] = BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1),
[PIPE_B] = BIT(DBUF_S1),
[PIPE_C] = BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_D),
.dbuf_mask = {
[PIPE_D] = BIT(DBUF_S2) | BIT(DBUF_S1),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1),
[PIPE_D] = BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
.dbuf_mask = {
[PIPE_B] = BIT(DBUF_S1),
[PIPE_D] = BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1),
[PIPE_B] = BIT(DBUF_S1),
[PIPE_D] = BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
.dbuf_mask = {
[PIPE_C] = BIT(DBUF_S1),
[PIPE_D] = BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1),
[PIPE_C] = BIT(DBUF_S2),
[PIPE_D] = BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
.dbuf_mask = {
[PIPE_B] = BIT(DBUF_S1),
[PIPE_C] = BIT(DBUF_S2),
[PIPE_D] = BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1),
[PIPE_B] = BIT(DBUF_S1),
[PIPE_C] = BIT(DBUF_S2),
[PIPE_D] = BIT(DBUF_S2),
},
},
{}
};
static const struct dbuf_slice_conf_entry dg2_allowed_dbufs[] = {
{
.active_pipes = BIT(PIPE_A),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_B),
.dbuf_mask = {
[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1),
[PIPE_B] = BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_C),
.dbuf_mask = {
[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
},
},
{
.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
.dbuf_mask = {
[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1),
[PIPE_B] = BIT(DBUF_S2),
[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
},
},
{
.active_pipes = BIT(PIPE_D),
.dbuf_mask = {
[PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
[PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
},
},
{
.active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
.dbuf_mask = {
[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
[PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1),
[PIPE_B] = BIT(DBUF_S2),
[PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
},
},
{
.active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
.dbuf_mask = {
[PIPE_C] = BIT(DBUF_S3),
[PIPE_D] = BIT(DBUF_S4),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
[PIPE_C] = BIT(DBUF_S3),
[PIPE_D] = BIT(DBUF_S4),
},
},
{
.active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
.dbuf_mask = {
[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
[PIPE_C] = BIT(DBUF_S3),
[PIPE_D] = BIT(DBUF_S4),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1),
[PIPE_B] = BIT(DBUF_S2),
[PIPE_C] = BIT(DBUF_S3),
[PIPE_D] = BIT(DBUF_S4),
},
},
{}
};
static const struct dbuf_slice_conf_entry adlp_allowed_dbufs[] = {
/*
* Keep the join_mbus cases first so check_mbus_joined()
* will prefer them over the !join_mbus cases.
*/
{
.active_pipes = BIT(PIPE_A),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2) | BIT(DBUF_S3) | BIT(DBUF_S4),
},
.join_mbus = true,
},
{
.active_pipes = BIT(PIPE_B),
.dbuf_mask = {
[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2) | BIT(DBUF_S3) | BIT(DBUF_S4),
},
.join_mbus = true,
},
{
.active_pipes = BIT(PIPE_A),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
},
.join_mbus = false,
},
{
.active_pipes = BIT(PIPE_B),
.dbuf_mask = {
[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
},
.join_mbus = false,
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
},
},
{
.active_pipes = BIT(PIPE_C),
.dbuf_mask = {
[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
},
},
{
.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
.dbuf_mask = {
[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
},
},
{
.active_pipes = BIT(PIPE_D),
.dbuf_mask = {
[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
.dbuf_mask = {
[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
.dbuf_mask = {
[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
.dbuf_mask = {
[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
[PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
[PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
[PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
},
},
{}
};
static bool check_mbus_joined(u8 active_pipes,
const struct dbuf_slice_conf_entry *dbuf_slices)
{
int i;
for (i = 0; dbuf_slices[i].active_pipes != 0; i++) {
if (dbuf_slices[i].active_pipes == active_pipes)
return dbuf_slices[i].join_mbus;
}
return false;
}
static bool adlp_check_mbus_joined(u8 active_pipes)
{
return check_mbus_joined(active_pipes, adlp_allowed_dbufs);
}
static u8 compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus,
const struct dbuf_slice_conf_entry *dbuf_slices)
{
int i;
for (i = 0; dbuf_slices[i].active_pipes != 0; i++) {
if (dbuf_slices[i].active_pipes == active_pipes &&
dbuf_slices[i].join_mbus == join_mbus)
return dbuf_slices[i].dbuf_mask[pipe];
}
return 0;
}
/*
* This function finds an entry with same enabled pipe configuration and
* returns correspondent DBuf slice mask as stated in BSpec for particular
* platform.
*/
static u8 icl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus)
{
/*
* FIXME: For ICL this is still a bit unclear as prev BSpec revision
* required calculating "pipe ratio" in order to determine
* if one or two slices can be used for single pipe configurations
* as additional constraint to the existing table.
* However based on recent info, it should be not "pipe ratio"
* but rather ratio between pixel_rate and cdclk with additional
* constants, so for now we are using only table until this is
* clarified. Also this is the reason why crtc_state param is
* still here - we will need it once those additional constraints
* pop up.
*/
return compute_dbuf_slices(pipe, active_pipes, join_mbus,
icl_allowed_dbufs);
}
static u8 tgl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus)
{
return compute_dbuf_slices(pipe, active_pipes, join_mbus,
tgl_allowed_dbufs);
}
static u8 adlp_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus)
{
return compute_dbuf_slices(pipe, active_pipes, join_mbus,
adlp_allowed_dbufs);
}
static u8 dg2_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus)
{
return compute_dbuf_slices(pipe, active_pipes, join_mbus,
dg2_allowed_dbufs);
}
static u8 skl_compute_dbuf_slices(struct intel_crtc *crtc, u8 active_pipes, bool join_mbus)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
if (IS_DG2(dev_priv))
return dg2_compute_dbuf_slices(pipe, active_pipes, join_mbus);
else if (IS_ALDERLAKE_P(dev_priv))
return adlp_compute_dbuf_slices(pipe, active_pipes, join_mbus);
else if (DISPLAY_VER(dev_priv) == 12)
return tgl_compute_dbuf_slices(pipe, active_pipes, join_mbus);
else if (DISPLAY_VER(dev_priv) == 11)
return icl_compute_dbuf_slices(pipe, active_pipes, join_mbus);
/*
* For anything else just return one slice yet.
* Should be extended for other platforms.
*/
return active_pipes & BIT(pipe) ? BIT(DBUF_S1) : 0;
}
static u64
skl_plane_relative_data_rate(const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state,
int color_plane)
{
struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
const struct drm_framebuffer *fb = plane_state->hw.fb;
u32 data_rate;
u32 width = 0, height = 0;
uint_fixed_16_16_t down_scale_amount;
u64 rate;
if (!plane_state->uapi.visible)
return 0;
if (plane->id == PLANE_CURSOR)
return 0;
if (color_plane == 1 &&
!intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier))
return 0;
/*
* Src coordinates are already rotated by 270 degrees for
* the 90/270 degree plane rotation cases (to match the
* GTT mapping), hence no need to account for rotation here.
*/
width = drm_rect_width(&plane_state->uapi.src) >> 16;
height = drm_rect_height(&plane_state->uapi.src) >> 16;
/* UV plane does 1/2 pixel sub-sampling */
if (color_plane == 1) {
width /= 2;
height /= 2;
}
data_rate = width * height;
down_scale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
rate = mul_round_up_u32_fixed16(data_rate, down_scale_amount);
rate *= fb->format->cpp[color_plane];
return rate;
}
static u64
skl_get_total_relative_data_rate(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
const struct intel_plane_state *plane_state;
struct intel_plane *plane;
u64 total_data_rate = 0;
enum plane_id plane_id;
int i;
/* Calculate and cache data rate for each plane */
for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
if (plane->pipe != crtc->pipe)
continue;
plane_id = plane->id;
/* packed/y */
crtc_state->plane_data_rate[plane_id] =
skl_plane_relative_data_rate(crtc_state, plane_state, 0);
/* uv-plane */
crtc_state->uv_plane_data_rate[plane_id] =
skl_plane_relative_data_rate(crtc_state, plane_state, 1);
}
for_each_plane_id_on_crtc(crtc, plane_id) {
total_data_rate += crtc_state->plane_data_rate[plane_id];
total_data_rate += crtc_state->uv_plane_data_rate[plane_id];
}
return total_data_rate;
}
static u64
icl_get_total_relative_data_rate(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
const struct intel_plane_state *plane_state;
struct intel_plane *plane;
u64 total_data_rate = 0;
enum plane_id plane_id;
int i;
/* Calculate and cache data rate for each plane */
for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
if (plane->pipe != crtc->pipe)
continue;
plane_id = plane->id;
if (!plane_state->planar_linked_plane) {
crtc_state->plane_data_rate[plane_id] =
skl_plane_relative_data_rate(crtc_state, plane_state, 0);
} else {
enum plane_id y_plane_id;
/*
* The slave plane might not iterate in
* intel_atomic_crtc_state_for_each_plane_state(),
* and needs the master plane state which may be
* NULL if we try get_new_plane_state(), so we
* always calculate from the master.
*/
if (plane_state->planar_slave)
continue;
/* Y plane rate is calculated on the slave */
y_plane_id = plane_state->planar_linked_plane->id;
crtc_state->plane_data_rate[y_plane_id] =
skl_plane_relative_data_rate(crtc_state, plane_state, 0);
crtc_state->plane_data_rate[plane_id] =
skl_plane_relative_data_rate(crtc_state, plane_state, 1);
}
}
for_each_plane_id_on_crtc(crtc, plane_id)
total_data_rate += crtc_state->plane_data_rate[plane_id];
return total_data_rate;
}
const struct skl_wm_level *
skl_plane_wm_level(const struct skl_pipe_wm *pipe_wm,
enum plane_id plane_id,
int level)
{
const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
if (level == 0 && pipe_wm->use_sagv_wm)
return &wm->sagv.wm0;
return &wm->wm[level];
}
const struct skl_wm_level *
skl_plane_trans_wm(const struct skl_pipe_wm *pipe_wm,
enum plane_id plane_id)
{
const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
if (pipe_wm->use_sagv_wm)
return &wm->sagv.trans_wm;
return &wm->trans_wm;
}
/*
* We only disable the watermarks for each plane if
* they exceed the ddb allocation of said plane. This
* is done so that we don't end up touching cursor
* watermarks needlessly when some other plane reduces
* our max possible watermark level.
*
* Bspec has this to say about the PLANE_WM enable bit:
* "All the watermarks at this level for all enabled
* planes must be enabled before the level will be used."
* So this is actually safe to do.
*/
static void
skl_check_wm_level(struct skl_wm_level *wm, u64 total)
{
if (wm->min_ddb_alloc > total)
memset(wm, 0, sizeof(*wm));
}
static void
skl_check_nv12_wm_level(struct skl_wm_level *wm, struct skl_wm_level *uv_wm,
u64 total, u64 uv_total)
{
if (wm->min_ddb_alloc > total ||
uv_wm->min_ddb_alloc > uv_total) {
memset(wm, 0, sizeof(*wm));
memset(uv_wm, 0, sizeof(*uv_wm));
}
}
static int
skl_allocate_plane_ddb(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
const struct intel_dbuf_state *dbuf_state =
intel_atomic_get_new_dbuf_state(state);
const struct skl_ddb_entry *alloc = &dbuf_state->ddb[crtc->pipe];
int num_active = hweight8(dbuf_state->active_pipes);
u16 alloc_size, start = 0;
u16 total[I915_MAX_PLANES] = {};
u16 uv_total[I915_MAX_PLANES] = {};
u64 total_data_rate;
enum plane_id plane_id;
u32 blocks;
int level;
/* Clear the partitioning for disabled planes. */
memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y));
memset(crtc_state->wm.skl.plane_ddb_uv, 0, sizeof(crtc_state->wm.skl.plane_ddb_uv));
if (!crtc_state->hw.active)
return 0;
if (DISPLAY_VER(dev_priv) >= 11)
total_data_rate =
icl_get_total_relative_data_rate(state, crtc);
else
total_data_rate =
skl_get_total_relative_data_rate(state, crtc);
alloc_size = skl_ddb_entry_size(alloc);
if (alloc_size == 0)
return 0;
/* Allocate fixed number of blocks for cursor. */
total[PLANE_CURSOR] = skl_cursor_allocation(crtc_state, num_active);
alloc_size -= total[PLANE_CURSOR];
crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].start =
alloc->end - total[PLANE_CURSOR];
crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].end = alloc->end;
if (total_data_rate == 0)
return 0;
/*
* Find the highest watermark level for which we can satisfy the block
* requirement of active planes.
*/
for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) {
blocks = 0;
for_each_plane_id_on_crtc(crtc, plane_id) {
const struct skl_plane_wm *wm =
&crtc_state->wm.skl.optimal.planes[plane_id];
if (plane_id == PLANE_CURSOR) {
if (wm->wm[level].min_ddb_alloc > total[PLANE_CURSOR]) {
drm_WARN_ON(&dev_priv->drm,
wm->wm[level].min_ddb_alloc != U16_MAX);
blocks = U32_MAX;
break;
}
continue;
}
blocks += wm->wm[level].min_ddb_alloc;
blocks += wm->uv_wm[level].min_ddb_alloc;
}
if (blocks <= alloc_size) {
alloc_size -= blocks;
break;
}
}
if (level < 0) {
drm_dbg_kms(&dev_priv->drm,
"Requested display configuration exceeds system DDB limitations");
drm_dbg_kms(&dev_priv->drm, "minimum required %d/%d\n",
blocks, alloc_size);
return -EINVAL;
}
/*
* Grant each plane the blocks it requires at the highest achievable
* watermark level, plus an extra share of the leftover blocks
* proportional to its relative data rate.
*/
for_each_plane_id_on_crtc(crtc, plane_id) {
const struct skl_plane_wm *wm =
&crtc_state->wm.skl.optimal.planes[plane_id];
u64 rate;
u16 extra;
if (plane_id == PLANE_CURSOR)
continue;
/*
* We've accounted for all active planes; remaining planes are
* all disabled.
*/
if (total_data_rate == 0)
break;
rate = crtc_state->plane_data_rate[plane_id];
extra = min_t(u16, alloc_size,
DIV64_U64_ROUND_UP(alloc_size * rate,
total_data_rate));
total[plane_id] = wm->wm[level].min_ddb_alloc + extra;
alloc_size -= extra;
total_data_rate -= rate;
if (total_data_rate == 0)
break;
rate = crtc_state->uv_plane_data_rate[plane_id];
extra = min_t(u16, alloc_size,
DIV64_U64_ROUND_UP(alloc_size * rate,
total_data_rate));
uv_total[plane_id] = wm->uv_wm[level].min_ddb_alloc + extra;
alloc_size -= extra;
total_data_rate -= rate;
}
drm_WARN_ON(&dev_priv->drm, alloc_size != 0 || total_data_rate != 0);
/* Set the actual DDB start/end points for each plane */
start = alloc->start;
for_each_plane_id_on_crtc(crtc, plane_id) {
struct skl_ddb_entry *plane_alloc =
&crtc_state->wm.skl.plane_ddb_y[plane_id];
struct skl_ddb_entry *uv_plane_alloc =
&crtc_state->wm.skl.plane_ddb_uv[plane_id];
if (plane_id == PLANE_CURSOR)
continue;
/* Gen11+ uses a separate plane for UV watermarks */
drm_WARN_ON(&dev_priv->drm,
DISPLAY_VER(dev_priv) >= 11 && uv_total[plane_id]);
/* Leave disabled planes at (0,0) */
if (total[plane_id]) {
plane_alloc->start = start;
start += total[plane_id];
plane_alloc->end = start;
}
if (uv_total[plane_id]) {
uv_plane_alloc->start = start;
start += uv_total[plane_id];
uv_plane_alloc->end = start;
}
}
/*
* When we calculated watermark values we didn't know how high
* of a level we'd actually be able to hit, so we just marked
* all levels as "enabled." Go back now and disable the ones
* that aren't actually possible.
*/
for (level++; level <= ilk_wm_max_level(dev_priv); level++) {
for_each_plane_id_on_crtc(crtc, plane_id) {
struct skl_plane_wm *wm =
&crtc_state->wm.skl.optimal.planes[plane_id];
skl_check_nv12_wm_level(&wm->wm[level], &wm->uv_wm[level],
total[plane_id], uv_total[plane_id]);
/*
* Wa_1408961008:icl, ehl
* Underruns with WM1+ disabled
*/
if (DISPLAY_VER(dev_priv) == 11 &&
level == 1 && wm->wm[0].enable) {
wm->wm[level].blocks = wm->wm[0].blocks;
wm->wm[level].lines = wm->wm[0].lines;
wm->wm[level].ignore_lines = wm->wm[0].ignore_lines;
}
}
}
/*
* Go back and disable the transition and SAGV watermarks
* if it turns out we don't have enough DDB blocks for them.
*/
for_each_plane_id_on_crtc(crtc, plane_id) {
struct skl_plane_wm *wm =
&crtc_state->wm.skl.optimal.planes[plane_id];
skl_check_wm_level(&wm->trans_wm, total[plane_id]);
skl_check_wm_level(&wm->sagv.wm0, total[plane_id]);
skl_check_wm_level(&wm->sagv.trans_wm, total[plane_id]);
}
return 0;
}
/*
* The max latency should be 257 (max the punit can code is 255 and we add 2us
* for the read latency) and cpp should always be <= 8, so that
* should allow pixel_rate up to ~2 GHz which seems sufficient since max
* 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
static uint_fixed_16_16_t
skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate,
u8 cpp, u32 latency, u32 dbuf_block_size)
{
u32 wm_intermediate_val;
uint_fixed_16_16_t ret;
if (latency == 0)
return FP_16_16_MAX;
wm_intermediate_val = latency * pixel_rate * cpp;
ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
if (DISPLAY_VER(dev_priv) >= 10)
ret = add_fixed16_u32(ret, 1);
return ret;
}
static uint_fixed_16_16_t
skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
uint_fixed_16_16_t plane_blocks_per_line)
{
u32 wm_intermediate_val;
uint_fixed_16_16_t ret;
if (latency == 0)
return FP_16_16_MAX;
wm_intermediate_val = latency * pixel_rate;
wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
pipe_htotal * 1000);
ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
return ret;
}
static uint_fixed_16_16_t
intel_get_linetime_us(const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
u32 pixel_rate;
u32 crtc_htotal;
uint_fixed_16_16_t linetime_us;
if (!crtc_state->hw.active)
return u32_to_fixed16(0);
pixel_rate = crtc_state->pixel_rate;
if (drm_WARN_ON(&dev_priv->drm, pixel_rate == 0))
return u32_to_fixed16(0);
crtc_htotal = crtc_state->hw.pipe_mode.crtc_htotal;
linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
return linetime_us;
}
static int
skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
int width, const struct drm_format_info *format,
u64 modifier, unsigned int rotation,
u32 plane_pixel_rate, struct skl_wm_params *wp,
int color_plane)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
u32 interm_pbpl;
/* only planar format has two planes */
if (color_plane == 1 &&
!intel_format_info_is_yuv_semiplanar(format, modifier)) {
drm_dbg_kms(&dev_priv->drm,
"Non planar format have single plane\n");
return -EINVAL;
}
wp->y_tiled = modifier == I915_FORMAT_MOD_Y_TILED ||
modifier == I915_FORMAT_MOD_Yf_TILED ||
modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
modifier == I915_FORMAT_MOD_Yf_TILED_CCS ||
modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS ||
modifier == I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS ||
modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC;
wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
wp->rc_surface = modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
modifier == I915_FORMAT_MOD_Yf_TILED_CCS ||
modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS ||
modifier == I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS ||
modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC;
wp->is_planar = intel_format_info_is_yuv_semiplanar(format, modifier);
wp->width = width;
if (color_plane == 1 && wp->is_planar)
wp->width /= 2;
wp->cpp = format->cpp[color_plane];
wp->plane_pixel_rate = plane_pixel_rate;
if (DISPLAY_VER(dev_priv) >= 11 &&
modifier == I915_FORMAT_MOD_Yf_TILED && wp->cpp == 1)
wp->dbuf_block_size = 256;
else
wp->dbuf_block_size = 512;
if (drm_rotation_90_or_270(rotation)) {
switch (wp->cpp) {
case 1:
wp->y_min_scanlines = 16;
break;
case 2:
wp->y_min_scanlines = 8;
break;
case 4:
wp->y_min_scanlines = 4;
break;
default:
MISSING_CASE(wp->cpp);
return -EINVAL;
}
} else {
wp->y_min_scanlines = 4;
}
if (skl_needs_memory_bw_wa(dev_priv))
wp->y_min_scanlines *= 2;
wp->plane_bytes_per_line = wp->width * wp->cpp;
if (wp->y_tiled) {
interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
wp->y_min_scanlines,
wp->dbuf_block_size);
if (DISPLAY_VER(dev_priv) >= 10)
interm_pbpl++;
wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
wp->y_min_scanlines);
} else {
interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
wp->dbuf_block_size);
if (!wp->x_tiled || DISPLAY_VER(dev_priv) >= 10)
interm_pbpl++;
wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
}
wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
wp->plane_blocks_per_line);
wp->linetime_us = fixed16_to_u32_round_up(
intel_get_linetime_us(crtc_state));
return 0;
}
static int
skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state,
struct skl_wm_params *wp, int color_plane)
{
const struct drm_framebuffer *fb = plane_state->hw.fb;
int width;
/*
* Src coordinates are already rotated by 270 degrees for
* the 90/270 degree plane rotation cases (to match the
* GTT mapping), hence no need to account for rotation here.
*/
width = drm_rect_width(&plane_state->uapi.src) >> 16;
return skl_compute_wm_params(crtc_state, width,
fb->format, fb->modifier,
plane_state->hw.rotation,
intel_plane_pixel_rate(crtc_state, plane_state),
wp, color_plane);
}
static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level)
{
if (DISPLAY_VER(dev_priv) >= 10)
return true;
/* The number of lines are ignored for the level 0 watermark. */
return level > 0;
}
static int skl_wm_max_lines(struct drm_i915_private *dev_priv)
{
if (DISPLAY_VER(dev_priv) >= 13)
return 255;
else
return 31;
}
static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
int level,
unsigned int latency,
const struct skl_wm_params *wp,
const struct skl_wm_level *result_prev,
struct skl_wm_level *result /* out */)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
uint_fixed_16_16_t method1, method2;
uint_fixed_16_16_t selected_result;
u32 blocks, lines, min_ddb_alloc = 0;
if (latency == 0) {
/* reject it */
result->min_ddb_alloc = U16_MAX;
return;
}
/*
* WaIncreaseLatencyIPCEnabled: kbl,cfl
* Display WA #1141: kbl,cfl
*/
if ((IS_KABYLAKE(dev_priv) ||
IS_COFFEELAKE(dev_priv) ||
IS_COMETLAKE(dev_priv)) &&
dev_priv->ipc_enabled)
latency += 4;
if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled)
latency += 15;
method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
wp->cpp, latency, wp->dbuf_block_size);
method2 = skl_wm_method2(wp->plane_pixel_rate,
crtc_state->hw.pipe_mode.crtc_htotal,
latency,
wp->plane_blocks_per_line);
if (wp->y_tiled) {
selected_result = max_fixed16(method2, wp->y_tile_minimum);
} else {
if ((wp->cpp * crtc_state->hw.pipe_mode.crtc_htotal /
wp->dbuf_block_size < 1) &&
(wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
selected_result = method2;
} else if (latency >= wp->linetime_us) {
if (DISPLAY_VER(dev_priv) == 9)
selected_result = min_fixed16(method1, method2);
else
selected_result = method2;
} else {
selected_result = method1;
}
}
blocks = fixed16_to_u32_round_up(selected_result) + 1;
lines = div_round_up_fixed16(selected_result,
wp->plane_blocks_per_line);
if (DISPLAY_VER(dev_priv) == 9) {
/* Display WA #1125: skl,bxt,kbl */
if (level == 0 && wp->rc_surface)
blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
/* Display WA #1126: skl,bxt,kbl */
if (level >= 1 && level <= 7) {
if (wp->y_tiled) {
blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
lines += wp->y_min_scanlines;
} else {
blocks++;
}
/*
* Make sure result blocks for higher latency levels are
* atleast as high as level below the current level.
* Assumption in DDB algorithm optimization for special
* cases. Also covers Display WA #1125 for RC.
*/
if (result_prev->blocks > blocks)
blocks = result_prev->blocks;
}
}
if (DISPLAY_VER(dev_priv) >= 11) {
if (wp->y_tiled) {
int extra_lines;
if (lines % wp->y_min_scanlines == 0)
extra_lines = wp->y_min_scanlines;
else
extra_lines = wp->y_min_scanlines * 2 -
lines % wp->y_min_scanlines;
min_ddb_alloc = mul_round_up_u32_fixed16(lines + extra_lines,
wp->plane_blocks_per_line);
} else {
min_ddb_alloc = blocks + DIV_ROUND_UP(blocks, 10);
}
}
if (!skl_wm_has_lines(dev_priv, level))
lines = 0;
if (lines > skl_wm_max_lines(dev_priv)) {
/* reject it */
result->min_ddb_alloc = U16_MAX;
return;
}
/*
* If lines is valid, assume we can use this watermark level
* for now. We'll come back and disable it after we calculate the
* DDB allocation if it turns out we don't actually have enough
* blocks to satisfy it.
*/
result->blocks = blocks;
result->lines = lines;
/* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
result->min_ddb_alloc = max(min_ddb_alloc, blocks) + 1;
result->enable = true;
if (DISPLAY_VER(dev_priv) < 12 && dev_priv->sagv_block_time_us)
result->can_sagv = latency >= dev_priv->sagv_block_time_us;
}
static void
skl_compute_wm_levels(const struct intel_crtc_state *crtc_state,
const struct skl_wm_params *wm_params,
struct skl_wm_level *levels)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
int level, max_level = ilk_wm_max_level(dev_priv);
struct skl_wm_level *result_prev = &levels[0];
for (level = 0; level <= max_level; level++) {
struct skl_wm_level *result = &levels[level];
unsigned int latency = dev_priv->wm.skl_latency[level];
skl_compute_plane_wm(crtc_state, level, latency,
wm_params, result_prev, result);
result_prev = result;
}
}
static void tgl_compute_sagv_wm(const struct intel_crtc_state *crtc_state,
const struct skl_wm_params *wm_params,
struct skl_plane_wm *plane_wm)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
struct skl_wm_level *sagv_wm = &plane_wm->sagv.wm0;
struct skl_wm_level *levels = plane_wm->wm;
unsigned int latency = 0;
if (dev_priv->sagv_block_time_us)
latency = dev_priv->sagv_block_time_us + dev_priv->wm.skl_latency[0];
skl_compute_plane_wm(crtc_state, 0, latency,
wm_params, &levels[0],
sagv_wm);
}
static void skl_compute_transition_wm(struct drm_i915_private *dev_priv,
struct skl_wm_level *trans_wm,
const struct skl_wm_level *wm0,
const struct skl_wm_params *wp)
{
u16 trans_min, trans_amount, trans_y_tile_min;
u16 wm0_blocks, trans_offset, blocks;
/* Transition WM don't make any sense if ipc is disabled */
if (!dev_priv->ipc_enabled)
return;
/*
* WaDisableTWM:skl,kbl,cfl,bxt
* Transition WM are not recommended by HW team for GEN9
*/
if (DISPLAY_VER(dev_priv) == 9)
return;
if (DISPLAY_VER(dev_priv) >= 11)
trans_min = 4;
else
trans_min = 14;
/* Display WA #1140: glk,cnl */
if (DISPLAY_VER(dev_priv) == 10)
trans_amount = 0;
else
trans_amount = 10; /* This is configurable amount */
trans_offset = trans_min + trans_amount;
/*
* The spec asks for Selected Result Blocks for wm0 (the real value),
* not Result Blocks (the integer value). Pay attention to the capital
* letters. The value wm_l0->blocks is actually Result Blocks, but
* since Result Blocks is the ceiling of Selected Result Blocks plus 1,
* and since we later will have to get the ceiling of the sum in the
* transition watermarks calculation, we can just pretend Selected
* Result Blocks is Result Blocks minus 1 and it should work for the
* current platforms.
*/
wm0_blocks = wm0->blocks - 1;
if (wp->y_tiled) {
trans_y_tile_min =
(u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
blocks = max(wm0_blocks, trans_y_tile_min) + trans_offset;
} else {
blocks = wm0_blocks + trans_offset;
}
blocks++;
/*
* Just assume we can enable the transition watermark. After
* computing the DDB we'll come back and disable it if that
* assumption turns out to be false.
*/
trans_wm->blocks = blocks;
trans_wm->min_ddb_alloc = max_t(u16, wm0->min_ddb_alloc, blocks + 1);
trans_wm->enable = true;
}
static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state,
enum plane_id plane_id, int color_plane)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
struct skl_wm_params wm_params;
int ret;
ret = skl_compute_plane_wm_params(crtc_state, plane_state,
&wm_params, color_plane);
if (ret)
return ret;
skl_compute_wm_levels(crtc_state, &wm_params, wm->wm);
skl_compute_transition_wm(dev_priv, &wm->trans_wm,
&wm->wm[0], &wm_params);
if (DISPLAY_VER(dev_priv) >= 12) {
tgl_compute_sagv_wm(crtc_state, &wm_params, wm);
skl_compute_transition_wm(dev_priv, &wm->sagv.trans_wm,
&wm->sagv.wm0, &wm_params);
}
return 0;
}
static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state,
enum plane_id plane_id)
{
struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
struct skl_wm_params wm_params;
int ret;
wm->is_planar = true;
/* uv plane watermarks must also be validated for NV12/Planar */
ret = skl_compute_plane_wm_params(crtc_state, plane_state,
&wm_params, 1);
if (ret)
return ret;
skl_compute_wm_levels(crtc_state, &wm_params, wm->uv_wm);
return 0;
}
static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state)
{
struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
enum plane_id plane_id = plane->id;
struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
const struct drm_framebuffer *fb = plane_state->hw.fb;
int ret;
memset(wm, 0, sizeof(*wm));
if (!intel_wm_plane_visible(crtc_state, plane_state))
return 0;
ret = skl_build_plane_wm_single(crtc_state, plane_state,
plane_id, 0);
if (ret)
return ret;
if (fb->format->is_yuv && fb->format->num_planes > 1) {
ret = skl_build_plane_wm_uv(crtc_state, plane_state,
plane_id);
if (ret)
return ret;
}
return 0;
}
static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state)
{
struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
enum plane_id plane_id = plane->id;
struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
int ret;
/* Watermarks calculated in master */
if (plane_state->planar_slave)
return 0;
memset(wm, 0, sizeof(*wm));
if (plane_state->planar_linked_plane) {
const struct drm_framebuffer *fb = plane_state->hw.fb;
enum plane_id y_plane_id = plane_state->planar_linked_plane->id;
drm_WARN_ON(&dev_priv->drm,
!intel_wm_plane_visible(crtc_state, plane_state));
drm_WARN_ON(&dev_priv->drm, !fb->format->is_yuv ||
fb->format->num_planes == 1);
ret = skl_build_plane_wm_single(crtc_state, plane_state,
y_plane_id, 0);
if (ret)
return ret;
ret = skl_build_plane_wm_single(crtc_state, plane_state,
plane_id, 1);
if (ret)
return ret;
} else if (intel_wm_plane_visible(crtc_state, plane_state)) {
ret = skl_build_plane_wm_single(crtc_state, plane_state,
plane_id, 0);
if (ret)
return ret;
}
return 0;
}
static int skl_build_pipe_wm(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
const struct intel_plane_state *plane_state;
struct intel_plane *plane;
int ret, i;
for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
/*
* FIXME should perhaps check {old,new}_plane_crtc->hw.crtc
* instead but we don't populate that correctly for NV12 Y
* planes so for now hack this.
*/
if (plane->pipe != crtc->pipe)
continue;
if (DISPLAY_VER(dev_priv) >= 11)
ret = icl_build_plane_wm(crtc_state, plane_state);
else
ret = skl_build_plane_wm(crtc_state, plane_state);
if (ret)
return ret;
}
crtc_state->wm.skl.optimal = crtc_state->wm.skl.raw;
return 0;
}
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
i915_reg_t reg,
const struct skl_ddb_entry *entry)
{
if (entry->end)
intel_de_write_fw(dev_priv, reg,
(entry->end - 1) << 16 | entry->start);
else
intel_de_write_fw(dev_priv, reg, 0);
}
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
i915_reg_t reg,
const struct skl_wm_level *level)
{
u32 val = 0;
if (level->enable)
val |= PLANE_WM_EN;
if (level->ignore_lines)
val |= PLANE_WM_IGNORE_LINES;
val |= level->blocks;
val |= REG_FIELD_PREP(PLANE_WM_LINES_MASK, level->lines);
intel_de_write_fw(dev_priv, reg, val);
}
void skl_write_plane_wm(struct intel_plane *plane,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
int level, max_level = ilk_wm_max_level(dev_priv);
enum plane_id plane_id = plane->id;
enum pipe pipe = plane->pipe;
const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
const struct skl_ddb_entry *ddb_y =
&crtc_state->wm.skl.plane_ddb_y[plane_id];
const struct skl_ddb_entry *ddb_uv =
&crtc_state->wm.skl.plane_ddb_uv[plane_id];
for (level = 0; level <= max_level; level++)
skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
skl_plane_wm_level(pipe_wm, plane_id, level));
skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
skl_plane_trans_wm(pipe_wm, plane_id));
if (HAS_HW_SAGV_WM(dev_priv)) {
skl_write_wm_level(dev_priv, PLANE_WM_SAGV(pipe, plane_id),
&wm->sagv.wm0);
skl_write_wm_level(dev_priv, PLANE_WM_SAGV_TRANS(pipe, plane_id),
&wm->sagv.trans_wm);
}
if (DISPLAY_VER(dev_priv) >= 11) {
skl_ddb_entry_write(dev_priv,
PLANE_BUF_CFG(pipe, plane_id), ddb_y);
return;
}
if (wm->is_planar)
swap(ddb_y, ddb_uv);
skl_ddb_entry_write(dev_priv,
PLANE_BUF_CFG(pipe, plane_id), ddb_y);
skl_ddb_entry_write(dev_priv,
PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_uv);
}
void skl_write_cursor_wm(struct intel_plane *plane,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
int level, max_level = ilk_wm_max_level(dev_priv);
enum plane_id plane_id = plane->id;
enum pipe pipe = plane->pipe;
const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
const struct skl_ddb_entry *ddb =
&crtc_state->wm.skl.plane_ddb_y[plane_id];
for (level = 0; level <= max_level; level++)
skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
skl_plane_wm_level(pipe_wm, plane_id, level));
skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe),
skl_plane_trans_wm(pipe_wm, plane_id));
if (HAS_HW_SAGV_WM(dev_priv)) {
const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
skl_write_wm_level(dev_priv, CUR_WM_SAGV(pipe),
&wm->sagv.wm0);
skl_write_wm_level(dev_priv, CUR_WM_SAGV_TRANS(pipe),
&wm->sagv.trans_wm);
}
skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
}
bool skl_wm_level_equals(const struct skl_wm_level *l1,
const struct skl_wm_level *l2)
{
return l1->enable == l2->enable &&
l1->ignore_lines == l2->ignore_lines &&
l1->lines == l2->lines &&
l1->blocks == l2->blocks;
}
static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
const struct skl_plane_wm *wm1,
const struct skl_plane_wm *wm2)
{
int level, max_level = ilk_wm_max_level(dev_priv);
for (level = 0; level <= max_level; level++) {
/*
* We don't check uv_wm as the hardware doesn't actually
* use it. It only gets used for calculating the required
* ddb allocation.
*/
if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]))
return false;
}
return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm) &&
skl_wm_level_equals(&wm1->sagv.wm0, &wm2->sagv.wm0) &&
skl_wm_level_equals(&wm1->sagv.trans_wm, &wm2->sagv.trans_wm);
}
static bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
const struct skl_ddb_entry *b)
{
return a->start < b->end && b->start < a->end;
}
static void skl_ddb_entry_union(struct skl_ddb_entry *a,
const struct skl_ddb_entry *b)
{
if (a->end && b->end) {
a->start = min(a->start, b->start);
a->end = max(a->end, b->end);
} else if (b->end) {
a->start = b->start;
a->end = b->end;
}
}
bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
const struct skl_ddb_entry *entries,
int num_entries, int ignore_idx)
{
int i;
for (i = 0; i < num_entries; i++) {
if (i != ignore_idx &&
skl_ddb_entries_overlap(ddb, &entries[i]))
return true;
}
return false;
}
static int
skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
struct intel_crtc_state *new_crtc_state)
{
struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state);
struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_plane *plane;
for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
struct intel_plane_state *plane_state;
enum plane_id plane_id = plane->id;
if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
&new_crtc_state->wm.skl.plane_ddb_y[plane_id]) &&
skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_uv[plane_id],
&new_crtc_state->wm.skl.plane_ddb_uv[plane_id]))
continue;
plane_state = intel_atomic_get_plane_state(state, plane);
if (IS_ERR(plane_state))
return PTR_ERR(plane_state);
new_crtc_state->update_planes |= BIT(plane_id);
}
return 0;
}
static u8 intel_dbuf_enabled_slices(const struct intel_dbuf_state *dbuf_state)
{
struct drm_i915_private *dev_priv = to_i915(dbuf_state->base.state->base.dev);
u8 enabled_slices;
enum pipe pipe;
/*
* FIXME: For now we always enable slice S1 as per
* the Bspec display initialization sequence.
*/
enabled_slices = BIT(DBUF_S1);
for_each_pipe(dev_priv, pipe)
enabled_slices |= dbuf_state->slices[pipe];
return enabled_slices;
}
static int
skl_compute_ddb(struct intel_atomic_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
const struct intel_dbuf_state *old_dbuf_state;
struct intel_dbuf_state *new_dbuf_state = NULL;
const struct intel_crtc_state *old_crtc_state;
struct intel_crtc_state *new_crtc_state;
struct intel_crtc *crtc;
int ret, i;
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
new_dbuf_state = intel_atomic_get_dbuf_state(state);
if (IS_ERR(new_dbuf_state))
return PTR_ERR(new_dbuf_state);
old_dbuf_state = intel_atomic_get_old_dbuf_state(state);
break;
}
if (!new_dbuf_state)
return 0;
new_dbuf_state->active_pipes =
intel_calc_active_pipes(state, old_dbuf_state->active_pipes);
if (old_dbuf_state->active_pipes != new_dbuf_state->active_pipes) {
ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
if (ret)
return ret;
}
if (IS_ALDERLAKE_P(dev_priv))
new_dbuf_state->joined_mbus =
adlp_check_mbus_joined(new_dbuf_state->active_pipes);
for_each_intel_crtc(&dev_priv->drm, crtc) {
enum pipe pipe = crtc->pipe;
new_dbuf_state->slices[pipe] =
skl_compute_dbuf_slices(crtc, new_dbuf_state->active_pipes,
new_dbuf_state->joined_mbus);
if (old_dbuf_state->slices[pipe] == new_dbuf_state->slices[pipe])
continue;
ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
if (ret)
return ret;
}
new_dbuf_state->enabled_slices = intel_dbuf_enabled_slices(new_dbuf_state);
if (old_dbuf_state->enabled_slices != new_dbuf_state->enabled_slices ||
old_dbuf_state->joined_mbus != new_dbuf_state->joined_mbus) {
ret = intel_atomic_serialize_global_state(&new_dbuf_state->base);
if (ret)
return ret;
if (old_dbuf_state->joined_mbus != new_dbuf_state->joined_mbus) {
/* TODO: Implement vblank synchronized MBUS joining changes */
ret = intel_modeset_all_pipes(state);
if (ret)
return ret;
}
drm_dbg_kms(&dev_priv->drm,
"Enabled dbuf slices 0x%x -> 0x%x (total dbuf slices 0x%x), mbus joined? %s->%s\n",
old_dbuf_state->enabled_slices,
new_dbuf_state->enabled_slices,
INTEL_INFO(dev_priv)->dbuf.slice_mask,
yesno(old_dbuf_state->joined_mbus),
yesno(new_dbuf_state->joined_mbus));
}
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
enum pipe pipe = crtc->pipe;
new_dbuf_state->weight[pipe] = intel_crtc_ddb_weight(new_crtc_state);
if (old_dbuf_state->weight[pipe] == new_dbuf_state->weight[pipe])
continue;
ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
if (ret)
return ret;
}
for_each_intel_crtc(&dev_priv->drm, crtc) {
ret = skl_crtc_allocate_ddb(state, crtc);
if (ret)
return ret;
}
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
ret = skl_allocate_plane_ddb(state, crtc);
if (ret)
return ret;
ret = skl_ddb_add_affected_planes(old_crtc_state,
new_crtc_state);
if (ret)
return ret;
}
return 0;
}
static char enast(bool enable)
{
return enable ? '*' : ' ';
}
static void
skl_print_wm_changes(struct intel_atomic_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
const struct intel_crtc_state *old_crtc_state;
const struct intel_crtc_state *new_crtc_state;
struct intel_plane *plane;
struct intel_crtc *crtc;
int i;
if (!drm_debug_enabled(DRM_UT_KMS))
return;
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;
old_pipe_wm = &old_crtc_state->wm.skl.optimal;
new_pipe_wm = &new_crtc_state->wm.skl.optimal;
for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
enum plane_id plane_id = plane->id;
const struct skl_ddb_entry *old, *new;
old = &old_crtc_state->wm.skl.plane_ddb_y[plane_id];
new = &new_crtc_state->wm.skl.plane_ddb_y[plane_id];
if (skl_ddb_entry_equal(old, new))
continue;
drm_dbg_kms(&dev_priv->drm,
"[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
plane->base.base.id, plane->base.name,
old->start, old->end, new->start, new->end,
skl_ddb_entry_size(old), skl_ddb_entry_size(new));
}
for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
enum plane_id plane_id = plane->id;
const struct skl_plane_wm *old_wm, *new_wm;
old_wm = &old_pipe_wm->planes[plane_id];
new_wm = &new_pipe_wm->planes[plane_id];
if (skl_plane_wm_equals(dev_priv, old_wm, new_wm))
continue;
drm_dbg_kms(&dev_priv->drm,
"[PLANE:%d:%s] level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm,%cstwm"
" -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm,%cstwm\n",
plane->base.base.id, plane->base.name,
enast(old_wm->wm[0].enable), enast(old_wm->wm[1].enable),
enast(old_wm->wm[2].enable), enast(old_wm->wm[3].enable),
enast(old_wm->wm[4].enable), enast(old_wm->wm[5].enable),
enast(old_wm->wm[6].enable), enast(old_wm->wm[7].enable),
enast(old_wm->trans_wm.enable),
enast(old_wm->sagv.wm0.enable),
enast(old_wm->sagv.trans_wm.enable),
enast(new_wm->wm[0].enable), enast(new_wm->wm[1].enable),
enast(new_wm->wm[2].enable), enast(new_wm->wm[3].enable),
enast(new_wm->wm[4].enable), enast(new_wm->wm[5].enable),
enast(new_wm->wm[6].enable), enast(new_wm->wm[7].enable),
enast(new_wm->trans_wm.enable),
enast(new_wm->sagv.wm0.enable),
enast(new_wm->sagv.trans_wm.enable));
drm_dbg_kms(&dev_priv->drm,
"[PLANE:%d:%s] lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%4d"
" -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%4d\n",
plane->base.base.id, plane->base.name,
enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].lines,
enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].lines,
enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].lines,
enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].lines,
enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].lines,
enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].lines,
enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].lines,
enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].lines,
enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.lines,
enast(old_wm->sagv.wm0.ignore_lines), old_wm->sagv.wm0.lines,
enast(old_wm->sagv.trans_wm.ignore_lines), old_wm->sagv.trans_wm.lines,
enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].lines,
enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].lines,
enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].lines,
enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].lines,
enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].lines,
enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].lines,
enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].lines,
enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].lines,
enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.lines,
enast(new_wm->sagv.wm0.ignore_lines), new_wm->sagv.wm0.lines,
enast(new_wm->sagv.trans_wm.ignore_lines), new_wm->sagv.trans_wm.lines);
drm_dbg_kms(&dev_priv->drm,
"[PLANE:%d:%s] blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d"
" -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d\n",
plane->base.base.id, plane->base.name,
old_wm->wm[0].blocks, old_wm->wm[1].blocks,
old_wm->wm[2].blocks, old_wm->wm[3].blocks,
old_wm->wm[4].blocks, old_wm->wm[5].blocks,
old_wm->wm[6].blocks, old_wm->wm[7].blocks,
old_wm->trans_wm.blocks,
old_wm->sagv.wm0.blocks,
old_wm->sagv.trans_wm.blocks,
new_wm->wm[0].blocks, new_wm->wm[1].blocks,
new_wm->wm[2].blocks, new_wm->wm[3].blocks,
new_wm->wm[4].blocks, new_wm->wm[5].blocks,
new_wm->wm[6].blocks, new_wm->wm[7].blocks,
new_wm->trans_wm.blocks,
new_wm->sagv.wm0.blocks,
new_wm->sagv.trans_wm.blocks);
drm_dbg_kms(&dev_priv->drm,
"[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d"
" -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d\n",
plane->base.base.id, plane->base.name,
old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
old_wm->trans_wm.min_ddb_alloc,
old_wm->sagv.wm0.min_ddb_alloc,
old_wm->sagv.trans_wm.min_ddb_alloc,
new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
new_wm->trans_wm.min_ddb_alloc,
new_wm->sagv.wm0.min_ddb_alloc,
new_wm->sagv.trans_wm.min_ddb_alloc);
}
}
}
static bool skl_plane_selected_wm_equals(struct intel_plane *plane,
const struct skl_pipe_wm *old_pipe_wm,
const struct skl_pipe_wm *new_pipe_wm)
{
struct drm_i915_private *i915 = to_i915(plane->base.dev);
int level, max_level = ilk_wm_max_level(i915);
for (level = 0; level <= max_level; level++) {
/*
* We don't check uv_wm as the hardware doesn't actually
* use it. It only gets used for calculating the required
* ddb allocation.
*/
if (!skl_wm_level_equals(skl_plane_wm_level(old_pipe_wm, plane->id, level),
skl_plane_wm_level(new_pipe_wm, plane->id, level)))
return false;
}
if (HAS_HW_SAGV_WM(i915)) {
const struct skl_plane_wm *old_wm = &old_pipe_wm->planes[plane->id];
const struct skl_plane_wm *new_wm = &new_pipe_wm->planes[plane->id];
if (!skl_wm_level_equals(&old_wm->sagv.wm0, &new_wm->sagv.wm0) ||
!skl_wm_level_equals(&old_wm->sagv.trans_wm, &new_wm->sagv.trans_wm))
return false;
}
return skl_wm_level_equals(skl_plane_trans_wm(old_pipe_wm, plane->id),
skl_plane_trans_wm(new_pipe_wm, plane->id));
}
/*
* To make sure the cursor watermark registers are always consistent
* with our computed state the following scenario needs special
* treatment:
*
* 1. enable cursor
* 2. move cursor entirely offscreen
* 3. disable cursor
*
* Step 2. does call .disable_plane() but does not zero the watermarks
* (since we consider an offscreen cursor still active for the purposes
* of watermarks). Step 3. would not normally call .disable_plane()
* because the actual plane visibility isn't changing, and we don't
* deallocate the cursor ddb until the pipe gets disabled. So we must
* force step 3. to call .disable_plane() to update the watermark
* registers properly.
*
* Other planes do not suffer from this issues as their watermarks are
* calculated based on the actual plane visibility. The only time this
* can trigger for the other planes is during the initial readout as the
* default value of the watermarks registers is not zero.
*/
static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct intel_plane *plane;
for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
struct intel_plane_state *plane_state;
enum plane_id plane_id = plane->id;
/*
* Force a full wm update for every plane on modeset.
* Required because the reset value of the wm registers
* is non-zero, whereas we want all disabled planes to
* have zero watermarks. So if we turn off the relevant
* power well the hardware state will go out of sync
* with the software state.
*/
if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi) &&
skl_plane_selected_wm_equals(plane,
&old_crtc_state->wm.skl.optimal,
&new_crtc_state->wm.skl.optimal))
continue;
plane_state = intel_atomic_get_plane_state(state, plane);
if (IS_ERR(plane_state))
return PTR_ERR(plane_state);
new_crtc_state->update_planes |= BIT(plane_id);
}
return 0;
}
static int
skl_compute_wm(struct intel_atomic_state *state)
{
struct intel_crtc *crtc;
struct intel_crtc_state *new_crtc_state;
int ret, i;
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
ret = skl_build_pipe_wm(state, crtc);
if (ret)
return ret;
}
ret = skl_compute_ddb(state);
if (ret)
return ret;
ret = intel_compute_sagv_mask(state);
if (ret)
return ret;
/*
* skl_compute_ddb() will have adjusted the final watermarks
* based on how much ddb is available. Now we can actually
* check if the final watermarks changed.
*/
for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
ret = skl_wm_add_affected_planes(state, crtc);
if (ret)
return ret;
}
skl_print_wm_changes(state);
return 0;
}
static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
struct intel_wm_config *config)
{
struct intel_crtc *crtc;
/* Compute the currently _active_ config */
for_each_intel_crtc(&dev_priv->drm, crtc) {
const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
if (!wm->pipe_enabled)
continue;
config->sprites_enabled |= wm->sprites_enabled;
config->sprites_scaled |= wm->sprites_scaled;
config->num_pipes_active++;
}
}
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
{
struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
struct ilk_wm_maximums max;
struct intel_wm_config config = {};
struct ilk_wm_values results = {};
enum intel_ddb_partitioning partitioning;
ilk_compute_wm_config(dev_priv, &config);
ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
/* 5/6 split only in single pipe config on IVB+ */
if (DISPLAY_VER(dev_priv) >= 7 &&
config.num_pipes_active == 1 && config.sprites_enabled) {
ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
} else {
best_lp_wm = &lp_wm_1_2;
}
partitioning = (best_lp_wm == &lp_wm_1_2) ?
INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
ilk_write_wm_values(dev_priv, &results);
}
static void ilk_initial_watermarks(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
const struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
mutex_lock(&dev_priv->wm.wm_mutex);
crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate;
ilk_program_watermarks(dev_priv);
mutex_unlock(&dev_priv->wm.wm_mutex);
}
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
const struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
if (!crtc_state->wm.need_postvbl_update)
return;
mutex_lock(&dev_priv->wm.wm_mutex);
crtc->wm.active.ilk = crtc_state->wm.ilk.optimal;
ilk_program_watermarks(dev_priv);
mutex_unlock(&dev_priv->wm.wm_mutex);
}
static void skl_wm_level_from_reg_val(u32 val, struct skl_wm_level *level)
{
level->enable = val & PLANE_WM_EN;
level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
level->blocks = val & PLANE_WM_BLOCKS_MASK;
level->lines = REG_FIELD_GET(PLANE_WM_LINES_MASK, val);
}
void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
struct skl_pipe_wm *out)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
int level, max_level;
enum plane_id plane_id;
u32 val;
max_level = ilk_wm_max_level(dev_priv);
for_each_plane_id_on_crtc(crtc, plane_id) {
struct skl_plane_wm *wm = &out->planes[plane_id];
for (level = 0; level <= max_level; level++) {
if (plane_id != PLANE_CURSOR)
val = intel_uncore_read(&dev_priv->uncore, PLANE_WM(pipe, plane_id, level));
else
val = intel_uncore_read(&dev_priv->uncore, CUR_WM(pipe, level));
skl_wm_level_from_reg_val(val, &wm->wm[level]);
}
if (plane_id != PLANE_CURSOR)
val = intel_uncore_read(&dev_priv->uncore, PLANE_WM_TRANS(pipe, plane_id));
else
val = intel_uncore_read(&dev_priv->uncore, CUR_WM_TRANS(pipe));
skl_wm_level_from_reg_val(val, &wm->trans_wm);
if (HAS_HW_SAGV_WM(dev_priv)) {
if (plane_id != PLANE_CURSOR)
val = intel_uncore_read(&dev_priv->uncore,
PLANE_WM_SAGV(pipe, plane_id));
else
val = intel_uncore_read(&dev_priv->uncore,
CUR_WM_SAGV(pipe));
skl_wm_level_from_reg_val(val, &wm->sagv.wm0);
if (plane_id != PLANE_CURSOR)
val = intel_uncore_read(&dev_priv->uncore,
PLANE_WM_SAGV_TRANS(pipe, plane_id));
else
val = intel_uncore_read(&dev_priv->uncore,
CUR_WM_SAGV_TRANS(pipe));
skl_wm_level_from_reg_val(val, &wm->sagv.trans_wm);
} else if (DISPLAY_VER(dev_priv) >= 12) {
wm->sagv.wm0 = wm->wm[0];
wm->sagv.trans_wm = wm->trans_wm;
}
}
}
void skl_wm_get_hw_state(struct drm_i915_private *dev_priv)
{
struct intel_dbuf_state *dbuf_state =
to_intel_dbuf_state(dev_priv->dbuf.obj.state);
struct intel_crtc *crtc;
if (IS_ALDERLAKE_P(dev_priv))
dbuf_state->joined_mbus = intel_de_read(dev_priv, MBUS_CTL) & MBUS_JOIN;
for_each_intel_crtc(&dev_priv->drm, crtc) {
struct intel_crtc_state *crtc_state =
to_intel_crtc_state(crtc->base.state);
enum pipe pipe = crtc->pipe;
unsigned int mbus_offset;
enum plane_id plane_id;
u8 slices;
memset(&crtc_state->wm.skl.optimal, 0,
sizeof(crtc_state->wm.skl.optimal));
if (crtc_state->hw.active)
skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal);
crtc_state->wm.skl.raw = crtc_state->wm.skl.optimal;
memset(&dbuf_state->ddb[pipe], 0, sizeof(dbuf_state->ddb[pipe]));
for_each_plane_id_on_crtc(crtc, plane_id) {
struct skl_ddb_entry *ddb_y =
&crtc_state->wm.skl.plane_ddb_y[plane_id];
struct skl_ddb_entry *ddb_uv =
&crtc_state->wm.skl.plane_ddb_uv[plane_id];
if (!crtc_state->hw.active)
continue;
skl_ddb_get_hw_plane_state(dev_priv, crtc->pipe,
plane_id, ddb_y, ddb_uv);
skl_ddb_entry_union(&dbuf_state->ddb[pipe], ddb_y);
skl_ddb_entry_union(&dbuf_state->ddb[pipe], ddb_uv);
}
dbuf_state->weight[pipe] = intel_crtc_ddb_weight(crtc_state);
/*
* Used for checking overlaps, so we need absolute
* offsets instead of MBUS relative offsets.
*/
slices = skl_compute_dbuf_slices(crtc, dbuf_state->active_pipes,
dbuf_state->joined_mbus);
mbus_offset = mbus_ddb_offset(dev_priv, slices);
crtc_state->wm.skl.ddb.start = mbus_offset + dbuf_state->ddb[pipe].start;
crtc_state->wm.skl.ddb.end = mbus_offset + dbuf_state->ddb[pipe].end;
/* The slices actually used by the planes on the pipe */
dbuf_state->slices[pipe] =
skl_ddb_dbuf_slice_mask(dev_priv, &crtc_state->wm.skl.ddb);
drm_dbg_kms(&dev_priv->drm,
"[CRTC:%d:%s] dbuf slices 0x%x, ddb (%d - %d), active pipes 0x%x, mbus joined: %s\n",
crtc->base.base.id, crtc->base.name,
dbuf_state->slices[pipe], dbuf_state->ddb[pipe].start,
dbuf_state->ddb[pipe].end, dbuf_state->active_pipes,
yesno(dbuf_state->joined_mbus));
}
dbuf_state->enabled_slices = dev_priv->dbuf.enabled_slices;
}
static bool skl_dbuf_is_misconfigured(struct drm_i915_private *i915)
{
const struct intel_dbuf_state *dbuf_state =
to_intel_dbuf_state(i915->dbuf.obj.state);
struct skl_ddb_entry entries[I915_MAX_PIPES] = {};
struct intel_crtc *crtc;
for_each_intel_crtc(&i915->drm, crtc) {
const struct intel_crtc_state *crtc_state =
to_intel_crtc_state(crtc->base.state);
entries[crtc->pipe] = crtc_state->wm.skl.ddb;
}
for_each_intel_crtc(&i915->drm, crtc) {
const struct intel_crtc_state *crtc_state =
to_intel_crtc_state(crtc->base.state);
u8 slices;
slices = skl_compute_dbuf_slices(crtc, dbuf_state->active_pipes,
dbuf_state->joined_mbus);
if (dbuf_state->slices[crtc->pipe] & ~slices)
return true;
if (skl_ddb_allocation_overlaps(&crtc_state->wm.skl.ddb, entries,
I915_MAX_PIPES, crtc->pipe))
return true;
}
return false;
}
void skl_wm_sanitize(struct drm_i915_private *i915)
{
struct intel_crtc *crtc;
/*
* On TGL/RKL (at least) the BIOS likes to assign the planes
* to the wrong DBUF slices. This will cause an infinite loop
* in skl_commit_modeset_enables() as it can't find a way to
* transition between the old bogus DBUF layout to the new
* proper DBUF layout without DBUF allocation overlaps between
* the planes (which cannot be allowed or else the hardware
* may hang). If we detect a bogus DBUF layout just turn off
* all the planes so that skl_commit_modeset_enables() can
* simply ignore them.
*/
if (!skl_dbuf_is_misconfigured(i915))
return;
drm_dbg_kms(&i915->drm, "BIOS has misprogrammed the DBUF, disabling all planes\n");
for_each_intel_crtc(&i915->drm, crtc) {
struct intel_plane *plane = to_intel_plane(crtc->base.primary);
const struct intel_plane_state *plane_state =
to_intel_plane_state(plane->base.state);
struct intel_crtc_state *crtc_state =
to_intel_crtc_state(crtc->base.state);
if (plane_state->uapi.visible)
intel_plane_disable_noatomic(crtc, plane);
drm_WARN_ON(&i915->drm, crtc_state->active_planes != 0);
memset(&crtc_state->wm.skl.ddb, 0, sizeof(crtc_state->wm.skl.ddb));
}
}
static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct ilk_wm_values *hw = &dev_priv->wm.hw;
struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal;
enum pipe pipe = crtc->pipe;
hw->wm_pipe[pipe] = intel_uncore_read(&dev_priv->uncore, WM0_PIPE_ILK(pipe));
memset(active, 0, sizeof(*active));
active->pipe_enabled = crtc->active;
if (active->pipe_enabled) {
u32 tmp = hw->wm_pipe[pipe];
/*
* For active pipes LP0 watermark is marked as
* enabled, and LP1+ watermaks as disabled since
* we can't really reverse compute them in case
* multiple pipes are active.
*/
active->wm[0].enable = true;
active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
} else {
int level, max_level = ilk_wm_max_level(dev_priv);
/*
* For inactive pipes, all watermark levels
* should be marked as enabled but zeroed,
* which is what we'd compute them to.
*/
for (level = 0; level <= max_level; level++)
active->wm[level].enable = true;
}
crtc->wm.active.ilk = *active;
}
#define _FW_WM(value, plane) \
(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
struct g4x_wm_values *wm)
{
u32 tmp;
tmp = intel_uncore_read(&dev_priv->uncore, DSPFW1);
wm->sr.plane = _FW_WM(tmp, SR);
wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
tmp = intel_uncore_read(&dev_priv->uncore, DSPFW2);
wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
wm->sr.fbc = _FW_WM(tmp, FBC_SR);
wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
tmp = intel_uncore_read(&dev_priv->uncore, DSPFW3);
wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
}
static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
struct vlv_wm_values *wm)
{
enum pipe pipe;
u32 tmp;
for_each_pipe(dev_priv, pipe) {
tmp = intel_uncore_read(&dev_priv->uncore, VLV_DDL(pipe));
wm->ddl[pipe].plane[PLANE_PRIMARY] =
(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
wm->ddl[pipe].plane[PLANE_CURSOR] =
(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
wm->ddl[pipe].plane[PLANE_SPRITE0] =
(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
wm->ddl[pipe].plane[PLANE_SPRITE1] =
(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
}
tmp = intel_uncore_read(&dev_priv->uncore, DSPFW1);
wm->sr.plane = _FW_WM(tmp, SR);
wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
tmp = intel_uncore_read(&dev_priv->uncore, DSPFW2);
wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
tmp = intel_uncore_read(&dev_priv->uncore, DSPFW3);
wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
if (IS_CHERRYVIEW(dev_priv)) {
tmp = intel_uncore_read(&dev_priv->uncore, DSPFW7_CHV);
wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
tmp = intel_uncore_read(&dev_priv->uncore, DSPFW8_CHV);
wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
tmp = intel_uncore_read(&dev_priv->uncore, DSPFW9_CHV);
wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
tmp = intel_uncore_read(&dev_priv->uncore, DSPHOWM);
wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
} else {
tmp = intel_uncore_read(&dev_priv->uncore, DSPFW7);
wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
tmp = intel_uncore_read(&dev_priv->uncore, DSPHOWM);
wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
}
}
#undef _FW_WM
#undef _FW_WM_VLV
void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
{
struct g4x_wm_values *wm = &dev_priv->wm.g4x;
struct intel_crtc *crtc;
g4x_read_wm_values(dev_priv, wm);
wm->cxsr = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF) & FW_BLC_SELF_EN;
for_each_intel_crtc(&dev_priv->drm, crtc) {
struct intel_crtc_state *crtc_state =
to_intel_crtc_state(crtc->base.state);
struct g4x_wm_state *active = &crtc->wm.active.g4x;
struct g4x_pipe_wm *raw;
enum pipe pipe = crtc->pipe;
enum plane_id plane_id;
int level, max_level;
active->cxsr = wm->cxsr;
active->hpll_en = wm->hpll_en;
active->fbc_en = wm->fbc_en;
active->sr = wm->sr;
active->hpll = wm->hpll;
for_each_plane_id_on_crtc(crtc, plane_id) {
active->wm.plane[plane_id] =
wm->pipe[pipe].plane[plane_id];
}
if (wm->cxsr && wm->hpll_en)
max_level = G4X_WM_LEVEL_HPLL;
else if (wm->cxsr)
max_level = G4X_WM_LEVEL_SR;
else
max_level = G4X_WM_LEVEL_NORMAL;
level = G4X_WM_LEVEL_NORMAL;
raw = &crtc_state->wm.g4x.raw[level];
for_each_plane_id_on_crtc(crtc, plane_id)
raw->plane[plane_id] = active->wm.plane[plane_id];
if (++level > max_level)
goto out;
raw = &crtc_state->wm.g4x.raw[level];
raw->plane[PLANE_PRIMARY] = active->sr.plane;
raw->plane[PLANE_CURSOR] = active->sr.cursor;
raw->plane[PLANE_SPRITE0] = 0;
raw->fbc = active->sr.fbc;
if (++level > max_level)
goto out;
raw = &crtc_state->wm.g4x.raw[level];
raw->plane[PLANE_PRIMARY] = active->hpll.plane;
raw->plane[PLANE_CURSOR] = active->hpll.cursor;
raw->plane[PLANE_SPRITE0] = 0;
raw->fbc = active->hpll.fbc;
out:
for_each_plane_id_on_crtc(crtc, plane_id)
g4x_raw_plane_wm_set(crtc_state, level,
plane_id, USHRT_MAX);
g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
crtc_state->wm.g4x.optimal = *active;
crtc_state->wm.g4x.intermediate = *active;
drm_dbg_kms(&dev_priv->drm,
"Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
pipe_name(pipe),
wm->pipe[pipe].plane[PLANE_PRIMARY],
wm->pipe[pipe].plane[PLANE_CURSOR],
wm->pipe[pipe].plane[PLANE_SPRITE0]);
}
drm_dbg_kms(&dev_priv->drm,
"Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
drm_dbg_kms(&dev_priv->drm,
"Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
drm_dbg_kms(&dev_priv->drm, "Initial SR=%s HPLL=%s FBC=%s\n",
yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
}
void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
{
struct intel_plane *plane;
struct intel_crtc *crtc;
mutex_lock(&dev_priv->wm.wm_mutex);
for_each_intel_plane(&dev_priv->drm, plane) {
struct intel_crtc *crtc =
intel_get_crtc_for_pipe(dev_priv, plane->pipe);
struct intel_crtc_state *crtc_state =
to_intel_crtc_state(crtc->base.state);
struct intel_plane_state *plane_state =
to_intel_plane_state(plane->base.state);
struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
enum plane_id plane_id = plane->id;
int level;
if (plane_state->uapi.visible)
continue;
for (level = 0; level < 3; level++) {
struct g4x_pipe_wm *raw =
&crtc_state->wm.g4x.raw[level];
raw->plane[plane_id] = 0;
wm_state->wm.plane[plane_id] = 0;
}
if (plane_id == PLANE_PRIMARY) {
for (level = 0; level < 3; level++) {
struct g4x_pipe_wm *raw =
&crtc_state->wm.g4x.raw[level];
raw->fbc = 0;
}
wm_state->sr.fbc = 0;
wm_state->hpll.fbc = 0;
wm_state->fbc_en = false;
}
}
for_each_intel_crtc(&dev_priv->drm, crtc) {
struct intel_crtc_state *crtc_state =
to_intel_crtc_state(crtc->base.state);
crtc_state->wm.g4x.intermediate =
crtc_state->wm.g4x.optimal;
crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
}
g4x_program_watermarks(dev_priv);
mutex_unlock(&dev_priv->wm.wm_mutex);
}
void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
{
struct vlv_wm_values *wm = &dev_priv->wm.vlv;
struct intel_crtc *crtc;
u32 val;
vlv_read_wm_values(dev_priv, wm);
wm->cxsr = intel_uncore_read(&dev_priv->uncore, FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
wm->level = VLV_WM_LEVEL_PM2;
if (IS_CHERRYVIEW(dev_priv)) {
vlv_punit_get(dev_priv);
val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
if (val & DSP_MAXFIFO_PM5_ENABLE)
wm->level = VLV_WM_LEVEL_PM5;
/*
* If DDR DVFS is disabled in the BIOS, Punit
* will never ack the request. So if that happens
* assume we don't have to enable/disable DDR DVFS
* dynamically. To test that just set the REQ_ACK
* bit to poke the Punit, but don't change the
* HIGH/LOW bits so that we don't actually change
* the current state.
*/
val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
val |= FORCE_DDR_FREQ_REQ_ACK;
vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
drm_dbg_kms(&dev_priv->drm,
"Punit not acking DDR DVFS request, "
"assuming DDR DVFS is disabled\n");
dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
} else {
val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
if ((val & FORCE_DDR_HIGH_FREQ) == 0)
wm->level = VLV_WM_LEVEL_DDR_DVFS;
}
vlv_punit_put(dev_priv);
}
for_each_intel_crtc(&dev_priv->drm, crtc) {
struct intel_crtc_state *crtc_state =
to_intel_crtc_state(crtc->base.state);
struct vlv_wm_state *active = &crtc->wm.active.vlv;
const struct vlv_fifo_state *fifo_state =
&crtc_state->wm.vlv.fifo_state;
enum pipe pipe = crtc->pipe;
enum plane_id plane_id;
int level;
vlv_get_fifo_size(crtc_state);
active->num_levels = wm->level + 1;
active->cxsr = wm->cxsr;
for (level = 0; level < active->num_levels; level++) {
struct g4x_pipe_wm *raw =
&crtc_state->wm.vlv.raw[level];
active->sr[level].plane = wm->sr.plane;
active->sr[level].cursor = wm->sr.cursor;
for_each_plane_id_on_crtc(crtc, plane_id) {
active->wm[level].plane[plane_id] =
wm->pipe[pipe].plane[plane_id];
raw->plane[plane_id] =
vlv_invert_wm_value(active->wm[level].plane[plane_id],
fifo_state->plane[plane_id]);
}
}
for_each_plane_id_on_crtc(crtc, plane_id)
vlv_raw_plane_wm_set(crtc_state, level,
plane_id, USHRT_MAX);
vlv_invalidate_wms(crtc, active, level);
crtc_state->wm.vlv.optimal = *active;
crtc_state->wm.vlv.intermediate = *active;
drm_dbg_kms(&dev_priv->drm,
"Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
pipe_name(pipe),
wm->pipe[pipe].plane[PLANE_PRIMARY],
wm->pipe[pipe].plane[PLANE_CURSOR],
wm->pipe[pipe].plane[PLANE_SPRITE0],
wm->pipe[pipe].plane[PLANE_SPRITE1]);
}
drm_dbg_kms(&dev_priv->drm,
"Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}
void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
{
struct intel_plane *plane;
struct intel_crtc *crtc;
mutex_lock(&dev_priv->wm.wm_mutex);
for_each_intel_plane(&dev_priv->drm, plane) {
struct intel_crtc *crtc =
intel_get_crtc_for_pipe(dev_priv, plane->pipe);
struct intel_crtc_state *crtc_state =
to_intel_crtc_state(crtc->base.state);
struct intel_plane_state *plane_state =
to_intel_plane_state(plane->base.state);
struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
const struct vlv_fifo_state *fifo_state =
&crtc_state->wm.vlv.fifo_state;
enum plane_id plane_id = plane->id;
int level;
if (plane_state->uapi.visible)
continue;
for (level = 0; level < wm_state->num_levels; level++) {
struct g4x_pipe_wm *raw =
&crtc_state->wm.vlv.raw[level];
raw->plane[plane_id] = 0;
wm_state->wm[level].plane[plane_id] =
vlv_invert_wm_value(raw->plane[plane_id],
fifo_state->plane[plane_id]);
}
}
for_each_intel_crtc(&dev_priv->drm, crtc) {
struct intel_crtc_state *crtc_state =
to_intel_crtc_state(crtc->base.state);
crtc_state->wm.vlv.intermediate =
crtc_state->wm.vlv.optimal;
crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
}
vlv_program_watermarks(dev_priv);
mutex_unlock(&dev_priv->wm.wm_mutex);
}
/*
* FIXME should probably kill this and improve
* the real watermark readout/sanitation instead
*/
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
{
intel_uncore_write(&dev_priv->uncore, WM3_LP_ILK, intel_uncore_read(&dev_priv->uncore, WM3_LP_ILK) & ~WM1_LP_SR_EN);
intel_uncore_write(&dev_priv->uncore, WM2_LP_ILK, intel_uncore_read(&dev_priv->uncore, WM2_LP_ILK) & ~WM1_LP_SR_EN);
intel_uncore_write(&dev_priv->uncore, WM1_LP_ILK, intel_uncore_read(&dev_priv->uncore, WM1_LP_ILK) & ~WM1_LP_SR_EN);
/*
* Don't touch WM1S_LP_EN here.
* Doing so could cause underruns.
*/
}
void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
{
struct ilk_wm_values *hw = &dev_priv->wm.hw;
struct intel_crtc *crtc;
ilk_init_lp_watermarks(dev_priv);
for_each_intel_crtc(&dev_priv->drm, crtc)
ilk_pipe_wm_get_hw_state(crtc);
hw->wm_lp[0] = intel_uncore_read(&dev_priv->uncore, WM1_LP_ILK);
hw->wm_lp[1] = intel_uncore_read(&dev_priv->uncore, WM2_LP_ILK);
hw->wm_lp[2] = intel_uncore_read(&dev_priv->uncore, WM3_LP_ILK);
hw->wm_lp_spr[0] = intel_uncore_read(&dev_priv->uncore, WM1S_LP_ILK);
if (DISPLAY_VER(dev_priv) >= 7) {
hw->wm_lp_spr[1] = intel_uncore_read(&dev_priv->uncore, WM2S_LP_IVB);
hw->wm_lp_spr[2] = intel_uncore_read(&dev_priv->uncore, WM3S_LP_IVB);
}
if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
hw->partitioning = (intel_uncore_read(&dev_priv->uncore, WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
else if (IS_IVYBRIDGE(dev_priv))
hw->partitioning = (intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
hw->enable_fbc_wm =
!(intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}
/**
* intel_update_watermarks - update FIFO watermark values based on current modes
* @crtc: the #intel_crtc on which to compute the WM
*
* Calculate watermark values for the various WM regs based on current mode
* and plane configuration.
*
* There are several cases to deal with here:
* - normal (i.e. non-self-refresh)
* - self-refresh (SR) mode
* - lines are large relative to FIFO size (buffer can hold up to 2)
* - lines are small relative to FIFO size (buffer can hold more than 2
* lines), so need to account for TLB latency
*
* The normal calculation is:
* watermark = dotclock * bytes per pixel * latency
* where latency is platform & configuration dependent (we assume pessimal
* values here).
*
* The SR calculation is:
* watermark = (trunc(latency/line time)+1) * surface width *
* bytes per pixel
* where
* line time = htotal / dotclock
* surface width = hdisplay for normal plane and 64 for cursor
* and latency is assumed to be high, as above.
*
* The final value programmed to the register should always be rounded up,
* and include an extra 2 entries to account for clock crossings.
*
* We don't use the sprite, so we can ignore that. And on Crestline we have
* to set the non-SR watermarks to 8.
*/
void intel_update_watermarks(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
if (dev_priv->display.update_wm)
dev_priv->display.update_wm(crtc);
}
void intel_enable_ipc(struct drm_i915_private *dev_priv)
{
u32 val;
if (!HAS_IPC(dev_priv))
return;
val = intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL2);
if (dev_priv->ipc_enabled)
val |= DISP_IPC_ENABLE;
else
val &= ~DISP_IPC_ENABLE;
intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL2, val);
}
static bool intel_can_enable_ipc(struct drm_i915_private *dev_priv)
{
/* Display WA #0477 WaDisableIPC: skl */
if (IS_SKYLAKE(dev_priv))
return false;
/* Display WA #1141: SKL:all KBL:all CFL */
if (IS_KABYLAKE(dev_priv) ||
IS_COFFEELAKE(dev_priv) ||
IS_COMETLAKE(dev_priv))
return dev_priv->dram_info.symmetric_memory;
return true;
}
void intel_init_ipc(struct drm_i915_private *dev_priv)
{
if (!HAS_IPC(dev_priv))
return;
dev_priv->ipc_enabled = intel_can_enable_ipc(dev_priv);
intel_enable_ipc(dev_priv);
}
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
{
/*
* On Ibex Peak and Cougar Point, we need to disable clock
* gating for the panel power sequencer or it will fail to
* start up when no ports are active.
*/
intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
{
enum pipe pipe;
for_each_pipe(dev_priv, pipe) {
intel_uncore_write(&dev_priv->uncore, DSPCNTR(pipe),
intel_uncore_read(&dev_priv->uncore, DSPCNTR(pipe)) |
DISPPLANE_TRICKLE_FEED_DISABLE);
intel_uncore_write(&dev_priv->uncore, DSPSURF(pipe), intel_uncore_read(&dev_priv->uncore, DSPSURF(pipe)));
intel_uncore_posting_read(&dev_priv->uncore, DSPSURF(pipe));
}
}
static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
{
u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
/*
* Required for FBC
* WaFbcDisableDpfcClockGating:ilk
*/
dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
intel_uncore_write(&dev_priv->uncore, PCH_3DCGDIS0,
MARIUNIT_CLOCK_GATE_DISABLE |
SVSMUNIT_CLOCK_GATE_DISABLE);
intel_uncore_write(&dev_priv->uncore, PCH_3DCGDIS1,
VFMUNIT_CLOCK_GATE_DISABLE);
/*
* According to the spec the following bits should be set in
* order to enable memory self-refresh
* The bit 22/21 of 0x42004
* The bit 5 of 0x42020
* The bit 15 of 0x45000
*/
intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
(intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
ILK_DPARB_GATE | ILK_VSDPFD_FULL));
dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL,
(intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
DISP_FBC_WM_DIS));
/*
* Based on the document from hardware guys the following bits
* should be set unconditionally in order to enable FBC.
* The bit 22 of 0x42000
* The bit 22 of 0x42004
* The bit 7,8,9 of 0x42020.
*/
if (IS_IRONLAKE_M(dev_priv)) {
/* WaFbcAsynchFlipDisableFbcQueue:ilk */
intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1,
intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1) |
ILK_FBCQ_DIS);
intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
ILK_DPARB_GATE);
}
intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D, dspclk_gate);
intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
ILK_ELPIN_409_SELECT);
g4x_disable_trickle_feed(dev_priv);
ibx_init_clock_gating(dev_priv);
}
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
{
enum pipe pipe;
u32 val;
/*
* On Ibex Peak and Cougar Point, we need to disable clock
* gating for the panel power sequencer or it will fail to
* start up when no ports are active.
*/
intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
PCH_DPLUNIT_CLOCK_GATE_DISABLE |
PCH_CPUNIT_CLOCK_GATE_DISABLE);
intel_uncore_write(&dev_priv->uncore, SOUTH_CHICKEN2, intel_uncore_read(&dev_priv->uncore, SOUTH_CHICKEN2) |
DPLS_EDP_PPS_FIX_DIS);
/* The below fixes the weird display corruption, a few pixels shifted
* downward, on (only) LVDS of some HP laptops with IVY.
*/
for_each_pipe(dev_priv, pipe) {
val = intel_uncore_read(&dev_priv->uncore, TRANS_CHICKEN2(pipe));
val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
if (dev_priv->vbt.fdi_rx_polarity_inverted)
val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
intel_uncore_write(&dev_priv->uncore, TRANS_CHICKEN2(pipe), val);
}
/* WADP0ClockGatingDisable */
for_each_pipe(dev_priv, pipe) {
intel_uncore_write(&dev_priv->uncore, TRANS_CHICKEN1(pipe),
TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
}
}
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
{
u32 tmp;
tmp = intel_uncore_read(&dev_priv->uncore, MCH_SSKPD);
if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
drm_dbg_kms(&dev_priv->drm,
"Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
tmp);
}
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
{
u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D, dspclk_gate);
intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
ILK_ELPIN_409_SELECT);
intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1,
intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) |
GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
GEN6_CSUNIT_CLOCK_GATE_DISABLE);
/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
* gating disable must be set. Failure to set it results in
* flickering pixels due to Z write ordering failures after
* some amount of runtime in the Mesa "fire" demo, and Unigine
* Sanctuary and Tropics, and apparently anything else with
* alpha test or pixel discard.
*
* According to the spec, bit 11 (RCCUNIT) must also be set,
* but we didn't debug actual testcases to find it out.
*
* WaDisableRCCUnitClockGating:snb
* WaDisableRCPBUnitClockGating:snb
*/
intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL2,
GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
/*
* According to the spec the following bits should be
* set in order to enable memory self-refresh and fbc:
* The bit21 and bit22 of 0x42000
* The bit21 and bit22 of 0x42004
* The bit5 and bit7 of 0x42020
* The bit14 of 0x70180
* The bit14 of 0x71180
*
* WaFbcAsynchFlipDisableFbcQueue:snb
*/
intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1,
intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1) |
ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2,
intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN2) |
ILK_DPARB_GATE | ILK_VSDPFD_FULL);
intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D,
intel_uncore_read(&dev_priv->uncore, ILK_DSPCLK_GATE_D) |
ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
g4x_disable_trickle_feed(dev_priv);
cpt_init_clock_gating(dev_priv);
gen6_check_mch_setup(dev_priv);
}
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
{
/*
* TODO: this bit should only be enabled when really needed, then
* disabled when not needed anymore in order to save power.
*/
if (HAS_PCH_LPT_LP(dev_priv))
intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D,
intel_uncore_read(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D) |
PCH_LP_PARTITION_LEVEL_DISABLE);
/* WADPOClockGatingDisable:hsw */
intel_uncore_write(&dev_priv->uncore, TRANS_CHICKEN1(PIPE_A),
intel_uncore_read(&dev_priv->uncore, TRANS_CHICKEN1(PIPE_A)) |
TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
}
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
{
if (HAS_PCH_LPT_LP(dev_priv)) {
u32 val = intel_uncore_read(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D);
val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, val);
}
}
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
int general_prio_credits,
int high_prio_credits)
{
u32 misccpctl;
u32 val;
/* WaTempDisableDOPClkGating:bdw */
misccpctl = intel_uncore_read(&dev_priv->uncore, GEN7_MISCCPCTL);
intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
val = intel_uncore_read(&dev_priv->uncore, GEN8_L3SQCREG1);
val &= ~L3_PRIO_CREDITS_MASK;
val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
intel_uncore_write(&dev_priv->uncore, GEN8_L3SQCREG1, val);
/*
* Wait at least 100 clocks before re-enabling clock gating.
* See the definition of L3SQCREG1 in BSpec.
*/
intel_uncore_posting_read(&dev_priv->uncore, GEN8_L3SQCREG1);
udelay(1);
intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, misccpctl);
}
static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
{
/* Wa_1409120013:icl,ehl */
intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN,
ILK_DPFC_CHICKEN_COMP_DUMMY_PIXEL);
/*Wa_14010594013:icl, ehl */
intel_uncore_rmw(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1,
0, ICL_DELAY_PMRSP);
}
static void gen12lp_init_clock_gating(struct drm_i915_private *dev_priv)
{
/* Wa_1409120013:tgl,rkl,adl-s,dg1 */
if (IS_TIGERLAKE(dev_priv) || IS_ROCKETLAKE(dev_priv) ||
IS_ALDERLAKE_S(dev_priv) || IS_DG1(dev_priv))
intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN,
ILK_DPFC_CHICKEN_COMP_DUMMY_PIXEL);
/* Wa_1409825376:tgl (pre-prod)*/
if (IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_C0))
intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_3, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_3) |
TGL_VRH_GATING_DIS);
/* Wa_14013723622:tgl,rkl,dg1,adl-s */
if (DISPLAY_VER(dev_priv) == 12)
intel_uncore_rmw(&dev_priv->uncore, CLKREQ_POLICY,
CLKREQ_POLICY_MEM_UP_OVRD, 0);
}
static void adlp_init_clock_gating(struct drm_i915_private *dev_priv)
{
gen12lp_init_clock_gating(dev_priv);
/* Wa_22011091694:adlp */
intel_de_rmw(dev_priv, GEN9_CLKGATE_DIS_5, 0, DPCE_GATING_DIS);
}
static void dg1_init_clock_gating(struct drm_i915_private *dev_priv)
{
gen12lp_init_clock_gating(dev_priv);
/* Wa_1409836686:dg1[a0] */
if (IS_DG1_GT_STEP(dev_priv, STEP_A0, STEP_B0))
intel_uncore_write(&dev_priv->uncore, GEN9_CLKGATE_DIS_3, intel_uncore_read(&dev_priv->uncore, GEN9_CLKGATE_DIS_3) |
DPT_GATING_DIS);
}
static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
{
if (!HAS_PCH_CNP(dev_priv))
return;
/* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
intel_uncore_write(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D, intel_uncore_read(&dev_priv->uncore, SOUTH_DSPCLK_GATE_D) |
CNP_PWM_CGE_GATING_DISABLE);
}
static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
{
cnp_init_clock_gating(dev_priv);
gen9_init_clock_gating(dev_priv);
/* WAC6entrylatency:cfl */
intel_uncore_write(&dev_priv->uncore, FBC_LLC_READ_CTRL, intel_uncore_read(&dev_priv->uncore, FBC_LLC_READ_CTRL) |
FBC_LLC_FULLY_OPEN);
/*
* WaFbcTurnOffFbcWatermark:cfl
* Display WA #0562: cfl
*/
intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
DISP_FBC_WM_DIS);
/*
* WaFbcNukeOnHostModify:cfl
* Display WA #0873: cfl
*/
intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN, intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN) |
ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
}
static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
{
gen9_init_clock_gating(dev_priv);
/* WAC6entrylatency:kbl */
intel_uncore_write(&dev_priv->uncore, FBC_LLC_READ_CTRL, intel_uncore_read(&dev_priv->uncore, FBC_LLC_READ_CTRL) |
FBC_LLC_FULLY_OPEN);
/* WaDisableSDEUnitClockGating:kbl */
if (IS_KBL_GT_STEP(dev_priv, 0, STEP_C0))
intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
/* WaDisableGamClockGating:kbl */
if (IS_KBL_GT_STEP(dev_priv, 0, STEP_C0))
intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1, intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) |
GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
/*
* WaFbcTurnOffFbcWatermark:kbl
* Display WA #0562: kbl
*/
intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
DISP_FBC_WM_DIS);
/*
* WaFbcNukeOnHostModify:kbl
* Display WA #0873: kbl
*/
intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN, intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN) |
ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
}
static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
{
gen9_init_clock_gating(dev_priv);
/* WaDisableDopClockGating:skl */
intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, intel_uncore_read(&dev_priv->uncore, GEN7_MISCCPCTL) &
~GEN7_DOP_CLOCK_GATE_ENABLE);
/* WAC6entrylatency:skl */
intel_uncore_write(&dev_priv->uncore, FBC_LLC_READ_CTRL, intel_uncore_read(&dev_priv->uncore, FBC_LLC_READ_CTRL) |
FBC_LLC_FULLY_OPEN);
/*
* WaFbcTurnOffFbcWatermark:skl
* Display WA #0562: skl
*/
intel_uncore_write(&dev_priv->uncore, DISP_ARB_CTL, intel_uncore_read(&dev_priv->uncore, DISP_ARB_CTL) |
DISP_FBC_WM_DIS);
/*
* WaFbcNukeOnHostModify:skl
* Display WA #0873: skl
*/
intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN, intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN) |
ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
/*
* WaFbcHighMemBwCorruptionAvoidance:skl
* Display WA #0883: skl
*/
intel_uncore_write(&dev_priv->uncore, ILK_DPFC_CHICKEN, intel_uncore_read(&dev_priv->uncore, ILK_DPFC_CHICKEN) |
ILK_DPFC_DISABLE_DUMMY0);
}
static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
{
enum pipe pipe;
/* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
intel_uncore_write(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A),
intel_uncore_read(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A)) |
HSW_FBCQ_DIS);
/* WaSwitchSolVfFArbitrationPriority:bdw */
intel_uncore_write(&dev_priv->uncore, GAM_ECOCHK, intel_uncore_read(&dev_priv->uncore, GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
/* WaPsrDPAMaskVBlankInSRD:bdw */
intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR1_1,
intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
for_each_pipe(dev_priv, pipe) {
/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
intel_uncore_write(&dev_priv->uncore, CHICKEN_PIPESL_1(pipe),
intel_uncore_read(&dev_priv->uncore, CHICKEN_PIPESL_1(pipe)) |
BDW_DPRS_MASK_VBLANK_SRD);
/* Undocumented but fixes async flip + VT-d corruption */
if (intel_vtd_active())
intel_uncore_rmw(&dev_priv->uncore, CHICKEN_PIPESL_1(pipe),
HSW_PRI_STRETCH_MAX_MASK, HSW_PRI_STRETCH_MAX_X1);
}
/* WaVSRefCountFullforceMissDisable:bdw */
/* WaDSRefCountFullforceMissDisable:bdw */
intel_uncore_write(&dev_priv->uncore, GEN7_FF_THREAD_MODE,
intel_uncore_read(&dev_priv->uncore, GEN7_FF_THREAD_MODE) &
~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
intel_uncore_write(&dev_priv->uncore, GEN6_RC_SLEEP_PSMI_CONTROL,
_MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
/* WaDisableSDEUnitClockGating:bdw */
intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
/* WaProgramL3SqcReg1Default:bdw */
gen8_set_l3sqc_credits(dev_priv, 30, 2);
/* WaKVMNotificationOnConfigChange:bdw */
intel_uncore_write(&dev_priv->uncore, CHICKEN_PAR2_1, intel_uncore_read(&dev_priv->uncore, CHICKEN_PAR2_1)
| KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
lpt_init_clock_gating(dev_priv);
/* WaDisableDopClockGating:bdw
*
* Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
* clock gating.
*/
intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1,
intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
}
static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
{
enum pipe pipe;
/* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
intel_uncore_write(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A),
intel_uncore_read(&dev_priv->uncore, CHICKEN_PIPESL_1(PIPE_A)) |
HSW_FBCQ_DIS);
for_each_pipe(dev_priv, pipe) {
/* Undocumented but fixes async flip + VT-d corruption */
if (intel_vtd_active())
intel_uncore_rmw(&dev_priv->uncore, CHICKEN_PIPESL_1(pipe),
HSW_PRI_STRETCH_MAX_MASK, HSW_PRI_STRETCH_MAX_X1);
}
/* This is required by WaCatErrorRejectionIssue:hsw */
intel_uncore_write(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
intel_uncore_read(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
/* WaSwitchSolVfFArbitrationPriority:hsw */
intel_uncore_write(&dev_priv->uncore, GAM_ECOCHK, intel_uncore_read(&dev_priv->uncore, GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
lpt_init_clock_gating(dev_priv);
}
static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
{
u32 snpcr;
intel_uncore_write(&dev_priv->uncore, ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
/* WaFbcAsynchFlipDisableFbcQueue:ivb */
intel_uncore_write(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1,
intel_uncore_read(&dev_priv->uncore, ILK_DISPLAY_CHICKEN1) |
ILK_FBCQ_DIS);
/* WaDisableBackToBackFlipFix:ivb */
intel_uncore_write(&dev_priv->uncore, IVB_CHICKEN3,
CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
CHICKEN3_DGMG_DONE_FIX_DISABLE);
if (IS_IVB_GT1(dev_priv))
intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2,
_MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
else {
/* must write both registers */
intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2,
_MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2_GT2,
_MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
}
/*
* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
* This implements the WaDisableRCZUnitClockGating:ivb workaround.
*/
intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL2,
GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
/* This is required by WaCatErrorRejectionIssue:ivb */
intel_uncore_write(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
intel_uncore_read(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
g4x_disable_trickle_feed(dev_priv);
snpcr = intel_uncore_read(&dev_priv->uncore, GEN6_MBCUNIT_SNPCR);
snpcr &= ~GEN6_MBC_SNPCR_MASK;
snpcr |= GEN6_MBC_SNPCR_MED;
intel_uncore_write(&dev_priv->uncore, GEN6_MBCUNIT_SNPCR, snpcr);
if (!HAS_PCH_NOP(dev_priv))
cpt_init_clock_gating(dev_priv);
gen6_check_mch_setup(dev_priv);
}
static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
{
/* WaDisableBackToBackFlipFix:vlv */
intel_uncore_write(&dev_priv->uncore, IVB_CHICKEN3,
CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
CHICKEN3_DGMG_DONE_FIX_DISABLE);
/* WaDisableDopClockGating:vlv */
intel_uncore_write(&dev_priv->uncore, GEN7_ROW_CHICKEN2,
_MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
/* This is required by WaCatErrorRejectionIssue:vlv */
intel_uncore_write(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
intel_uncore_read(&dev_priv->uncore, GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
/*
* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
* This implements the WaDisableRCZUnitClockGating:vlv workaround.
*/
intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL2,
GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
/* WaDisableL3Bank2xClockGate:vlv
* Disabling L3 clock gating- MMIO 940c[25] = 1
* Set bit 25, to disable L3_BANK_2x_CLK_GATING */
intel_uncore_write(&dev_priv->uncore, GEN7_UCGCTL4,
intel_uncore_read(&dev_priv->uncore, GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
/*
* WaDisableVLVClockGating_VBIIssue:vlv
* Disable clock gating on th GCFG unit to prevent a delay
* in the reporting of vblank events.
*/
intel_uncore_write(&dev_priv->uncore, VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
}
static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
{
/* WaVSRefCountFullforceMissDisable:chv */
/* WaDSRefCountFullforceMissDisable:chv */
intel_uncore_write(&dev_priv->uncore, GEN7_FF_THREAD_MODE,
intel_uncore_read(&dev_priv->uncore, GEN7_FF_THREAD_MODE) &
~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
/* WaDisableSemaphoreAndSyncFlipWait:chv */
intel_uncore_write(&dev_priv->uncore, GEN6_RC_SLEEP_PSMI_CONTROL,
_MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
/* WaDisableCSUnitClockGating:chv */
intel_uncore_write(&dev_priv->uncore, GEN6_UCGCTL1, intel_uncore_read(&dev_priv->uncore, GEN6_UCGCTL1) |
GEN6_CSUNIT_CLOCK_GATE_DISABLE);
/* WaDisableSDEUnitClockGating:chv */
intel_uncore_write(&dev_priv->uncore, GEN8_UCGCTL6, intel_uncore_read(&dev_priv->uncore, GEN8_UCGCTL6) |
GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
/*
* WaProgramL3SqcReg1Default:chv
* See gfxspecs/Related Documents/Performance Guide/
* LSQC Setting Recommendations.
*/
gen8_set_l3sqc_credits(dev_priv, 38, 2);
}
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
{
u32 dspclk_gate;
intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D1, 0);
intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
GS_UNIT_CLOCK_GATE_DISABLE |
CL_UNIT_CLOCK_GATE_DISABLE);
intel_uncore_write(&dev_priv->uncore, RAMCLK_GATE_D, 0);
dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
OVRUNIT_CLOCK_GATE_DISABLE |
OVCUNIT_CLOCK_GATE_DISABLE;
if (IS_GM45(dev_priv))
dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
intel_uncore_write(&dev_priv->uncore, DSPCLK_GATE_D, dspclk_gate);
g4x_disable_trickle_feed(dev_priv);
}
static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
intel_uncore_write(uncore, RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
intel_uncore_write(uncore, RENCLK_GATE_D2, 0);
intel_uncore_write(uncore, DSPCLK_GATE_D, 0);
intel_uncore_write(uncore, RAMCLK_GATE_D, 0);
intel_uncore_write16(uncore, DEUC, 0);
intel_uncore_write(uncore,
MI_ARB_STATE,
_MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
}
static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
{
intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
I965_RCC_CLOCK_GATE_DISABLE |
I965_RCPB_CLOCK_GATE_DISABLE |
I965_ISC_CLOCK_GATE_DISABLE |
I965_FBC_CLOCK_GATE_DISABLE);
intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D2, 0);
intel_uncore_write(&dev_priv->uncore, MI_ARB_STATE,
_MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
}
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
{
u32 dstate = intel_uncore_read(&dev_priv->uncore, D_STATE);
dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
DSTATE_DOT_CLOCK_GATING;
intel_uncore_write(&dev_priv->uncore, D_STATE, dstate);
if (IS_PINEVIEW(dev_priv))
intel_uncore_write(&dev_priv->uncore, ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
/* IIR "flip pending" means done if this bit is set */
intel_uncore_write(&dev_priv->uncore, ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
/* interrupts should cause a wake up from C3 */
intel_uncore_write(&dev_priv->uncore, INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
intel_uncore_write(&dev_priv->uncore, MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
intel_uncore_write(&dev_priv->uncore, MI_ARB_STATE,
_MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
}
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
{
intel_uncore_write(&dev_priv->uncore, RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
/* interrupts should cause a wake up from C3 */
intel_uncore_write(&dev_priv->uncore, MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
_MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
intel_uncore_write(&dev_priv->uncore, MEM_MODE,
_MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
/*
* Have FBC ignore 3D activity since we use software
* render tracking, and otherwise a pure 3D workload
* (even if it just renders a single frame and then does
* abosultely nothing) would not allow FBC to recompress
* until a 2D blit occurs.
*/
intel_uncore_write(&dev_priv->uncore, SCPD0,
_MASKED_BIT_ENABLE(SCPD_FBC_IGNORE_3D));
}
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
{
intel_uncore_write(&dev_priv->uncore, MEM_MODE,
_MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
_MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
}
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
{
dev_priv->display.init_clock_gating(dev_priv);
}
void intel_suspend_hw(struct drm_i915_private *dev_priv)
{
if (HAS_PCH_LPT(dev_priv))
lpt_suspend_hw(dev_priv);
}
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
{
drm_dbg_kms(&dev_priv->drm,
"No clock gating settings or workarounds applied.\n");
}
/**
* intel_init_clock_gating_hooks - setup the clock gating hooks
* @dev_priv: device private
*
* Setup the hooks that configure which clocks of a given platform can be
* gated and also apply various GT and display specific workarounds for these
* platforms. Note that some GT specific workarounds are applied separately
* when GPU contexts or batchbuffers start their execution.
*/
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
if (IS_ALDERLAKE_P(dev_priv))
dev_priv->display.init_clock_gating = adlp_init_clock_gating;
else if (IS_DG1(dev_priv))
dev_priv->display.init_clock_gating = dg1_init_clock_gating;
else if (GRAPHICS_VER(dev_priv) == 12)
dev_priv->display.init_clock_gating = gen12lp_init_clock_gating;
else if (GRAPHICS_VER(dev_priv) == 11)
dev_priv->display.init_clock_gating = icl_init_clock_gating;
else if (IS_COFFEELAKE(dev_priv) || IS_COMETLAKE(dev_priv))
dev_priv->display.init_clock_gating = cfl_init_clock_gating;
else if (IS_SKYLAKE(dev_priv))
dev_priv->display.init_clock_gating = skl_init_clock_gating;
else if (IS_KABYLAKE(dev_priv))
dev_priv->display.init_clock_gating = kbl_init_clock_gating;
else if (IS_BROXTON(dev_priv))
dev_priv->display.init_clock_gating = bxt_init_clock_gating;
else if (IS_GEMINILAKE(dev_priv))
dev_priv->display.init_clock_gating = glk_init_clock_gating;
else if (IS_BROADWELL(dev_priv))
dev_priv->display.init_clock_gating = bdw_init_clock_gating;
else if (IS_CHERRYVIEW(dev_priv))
dev_priv->display.init_clock_gating = chv_init_clock_gating;
else if (IS_HASWELL(dev_priv))
dev_priv->display.init_clock_gating = hsw_init_clock_gating;
else if (IS_IVYBRIDGE(dev_priv))
dev_priv->display.init_clock_gating = ivb_init_clock_gating;
else if (IS_VALLEYVIEW(dev_priv))
dev_priv->display.init_clock_gating = vlv_init_clock_gating;
else if (GRAPHICS_VER(dev_priv) == 6)
dev_priv->display.init_clock_gating = gen6_init_clock_gating;
else if (GRAPHICS_VER(dev_priv) == 5)
dev_priv->display.init_clock_gating = ilk_init_clock_gating;
else if (IS_G4X(dev_priv))
dev_priv->display.init_clock_gating = g4x_init_clock_gating;
else if (IS_I965GM(dev_priv))
dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
else if (IS_I965G(dev_priv))
dev_priv->display.init_clock_gating = i965g_init_clock_gating;
else if (GRAPHICS_VER(dev_priv) == 3)
dev_priv->display.init_clock_gating = gen3_init_clock_gating;
else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
dev_priv->display.init_clock_gating = i85x_init_clock_gating;
else if (GRAPHICS_VER(dev_priv) == 2)
dev_priv->display.init_clock_gating = i830_init_clock_gating;
else {
MISSING_CASE(INTEL_DEVID(dev_priv));
dev_priv->display.init_clock_gating = nop_init_clock_gating;
}
}
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_i915_private *dev_priv)
{
/* For cxsr */
if (IS_PINEVIEW(dev_priv))
pnv_get_mem_freq(dev_priv);
else if (GRAPHICS_VER(dev_priv) == 5)
ilk_get_mem_freq(dev_priv);
if (intel_has_sagv(dev_priv))
skl_setup_sagv_block_time(dev_priv);
/* For FIFO watermark updates */
if (DISPLAY_VER(dev_priv) >= 9) {
skl_setup_wm_latency(dev_priv);
dev_priv->display.compute_global_watermarks = skl_compute_wm;
} else if (HAS_PCH_SPLIT(dev_priv)) {
ilk_setup_wm_latency(dev_priv);
if ((DISPLAY_VER(dev_priv) == 5 && dev_priv->wm.pri_latency[1] &&
dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
(DISPLAY_VER(dev_priv) != 5 && dev_priv->wm.pri_latency[0] &&
dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
dev_priv->display.compute_intermediate_wm =
ilk_compute_intermediate_wm;
dev_priv->display.initial_watermarks =
ilk_initial_watermarks;
dev_priv->display.optimize_watermarks =
ilk_optimize_watermarks;
} else {
drm_dbg_kms(&dev_priv->drm,
"Failed to read display plane latency. "
"Disable CxSR\n");
}
} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
vlv_setup_wm_latency(dev_priv);
dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
dev_priv->display.initial_watermarks = vlv_initial_watermarks;
dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
} else if (IS_G4X(dev_priv)) {
g4x_setup_wm_latency(dev_priv);
dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
dev_priv->display.initial_watermarks = g4x_initial_watermarks;
dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
} else if (IS_PINEVIEW(dev_priv)) {
if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
dev_priv->is_ddr3,
dev_priv->fsb_freq,
dev_priv->mem_freq)) {
drm_info(&dev_priv->drm,
"failed to find known CxSR latency "
"(found ddr%s fsb freq %d, mem freq %d), "
"disabling CxSR\n",
(dev_priv->is_ddr3 == 1) ? "3" : "2",
dev_priv->fsb_freq, dev_priv->mem_freq);
/* Disable CxSR and never update its watermark again */
intel_set_memory_cxsr(dev_priv, false);
dev_priv->display.update_wm = NULL;
} else
dev_priv->display.update_wm = pnv_update_wm;
} else if (DISPLAY_VER(dev_priv) == 4) {
dev_priv->display.update_wm = i965_update_wm;
} else if (DISPLAY_VER(dev_priv) == 3) {
dev_priv->display.update_wm = i9xx_update_wm;
dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
} else if (DISPLAY_VER(dev_priv) == 2) {
if (INTEL_NUM_PIPES(dev_priv) == 1) {
dev_priv->display.update_wm = i845_update_wm;
dev_priv->display.get_fifo_size = i845_get_fifo_size;
} else {
dev_priv->display.update_wm = i9xx_update_wm;
dev_priv->display.get_fifo_size = i830_get_fifo_size;
}
} else {
drm_err(&dev_priv->drm,
"unexpected fall-through in %s\n", __func__);
}
}
void intel_pm_setup(struct drm_i915_private *dev_priv)
{
dev_priv->runtime_pm.suspended = false;
atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
}
static struct intel_global_state *intel_dbuf_duplicate_state(struct intel_global_obj *obj)
{
struct intel_dbuf_state *dbuf_state;
dbuf_state = kmemdup(obj->state, sizeof(*dbuf_state), GFP_KERNEL);
if (!dbuf_state)
return NULL;
return &dbuf_state->base;
}
static void intel_dbuf_destroy_state(struct intel_global_obj *obj,
struct intel_global_state *state)
{
kfree(state);
}
static const struct intel_global_state_funcs intel_dbuf_funcs = {
.atomic_duplicate_state = intel_dbuf_duplicate_state,
.atomic_destroy_state = intel_dbuf_destroy_state,
};
struct intel_dbuf_state *
intel_atomic_get_dbuf_state(struct intel_atomic_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
struct intel_global_state *dbuf_state;
dbuf_state = intel_atomic_get_global_obj_state(state, &dev_priv->dbuf.obj);
if (IS_ERR(dbuf_state))
return ERR_CAST(dbuf_state);
return to_intel_dbuf_state(dbuf_state);
}
int intel_dbuf_init(struct drm_i915_private *dev_priv)
{
struct intel_dbuf_state *dbuf_state;
dbuf_state = kzalloc(sizeof(*dbuf_state), GFP_KERNEL);
if (!dbuf_state)
return -ENOMEM;
intel_atomic_global_obj_init(dev_priv, &dev_priv->dbuf.obj,
&dbuf_state->base, &intel_dbuf_funcs);
return 0;
}
/*
* Configure MBUS_CTL and all DBUF_CTL_S of each slice to join_mbus state before
* update the request state of all DBUS slices.
*/
static void update_mbus_pre_enable(struct intel_atomic_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
u32 mbus_ctl, dbuf_min_tracker_val;
enum dbuf_slice slice;
const struct intel_dbuf_state *dbuf_state =
intel_atomic_get_new_dbuf_state(state);
if (!IS_ALDERLAKE_P(dev_priv))
return;
/*
* TODO: Implement vblank synchronized MBUS joining changes.
* Must be properly coordinated with dbuf reprogramming.
*/
if (dbuf_state->joined_mbus) {
mbus_ctl = MBUS_HASHING_MODE_1x4 | MBUS_JOIN |
MBUS_JOIN_PIPE_SELECT_NONE;
dbuf_min_tracker_val = DBUF_MIN_TRACKER_STATE_SERVICE(3);
} else {
mbus_ctl = MBUS_HASHING_MODE_2x2 |
MBUS_JOIN_PIPE_SELECT_NONE;
dbuf_min_tracker_val = DBUF_MIN_TRACKER_STATE_SERVICE(1);
}
intel_de_rmw(dev_priv, MBUS_CTL,
MBUS_HASHING_MODE_MASK | MBUS_JOIN |
MBUS_JOIN_PIPE_SELECT_MASK, mbus_ctl);
for_each_dbuf_slice(dev_priv, slice)
intel_de_rmw(dev_priv, DBUF_CTL_S(slice),
DBUF_MIN_TRACKER_STATE_SERVICE_MASK,
dbuf_min_tracker_val);
}
void intel_dbuf_pre_plane_update(struct intel_atomic_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
const struct intel_dbuf_state *new_dbuf_state =
intel_atomic_get_new_dbuf_state(state);
const struct intel_dbuf_state *old_dbuf_state =
intel_atomic_get_old_dbuf_state(state);
if (!new_dbuf_state ||
((new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices)
&& (new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus)))
return;
WARN_ON(!new_dbuf_state->base.changed);
update_mbus_pre_enable(state);
gen9_dbuf_slices_update(dev_priv,
old_dbuf_state->enabled_slices |
new_dbuf_state->enabled_slices);
}
void intel_dbuf_post_plane_update(struct intel_atomic_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
const struct intel_dbuf_state *new_dbuf_state =
intel_atomic_get_new_dbuf_state(state);
const struct intel_dbuf_state *old_dbuf_state =
intel_atomic_get_old_dbuf_state(state);
if (!new_dbuf_state ||
((new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices)
&& (new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus)))
return;
WARN_ON(!new_dbuf_state->base.changed);
gen9_dbuf_slices_update(dev_priv,
new_dbuf_state->enabled_slices);
}