kernel/drivers/bluetooth/dtl1_cs.c
2024-07-22 17:22:30 +08:00

615 lines
12 KiB
C

/*
*
* A driver for Nokia Connectivity Card DTL-1 devices
*
* Copyright (C) 2001-2002 Marcel Holtmann <marcel@holtmann.org>
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation;
*
* Software distributed under the License is distributed on an "AS
* IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
* implied. See the License for the specific language governing
* rights and limitations under the License.
*
* The initial developer of the original code is David A. Hinds
* <dahinds@users.sourceforge.net>. Portions created by David A. Hinds
* are Copyright (C) 1999 David A. Hinds. All Rights Reserved.
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/ptrace.h>
#include <linux/ioport.h>
#include <linux/spinlock.h>
#include <linux/moduleparam.h>
#include <linux/skbuff.h>
#include <linux/string.h>
#include <linux/serial.h>
#include <linux/serial_reg.h>
#include <linux/bitops.h>
#include <asm/io.h>
#include <pcmcia/cistpl.h>
#include <pcmcia/ciscode.h>
#include <pcmcia/ds.h>
#include <pcmcia/cisreg.h>
#include <net/bluetooth/bluetooth.h>
#include <net/bluetooth/hci_core.h>
/* ======================== Module parameters ======================== */
MODULE_AUTHOR("Marcel Holtmann <marcel@holtmann.org>");
MODULE_DESCRIPTION("Bluetooth driver for Nokia Connectivity Card DTL-1");
MODULE_LICENSE("GPL");
/* ======================== Local structures ======================== */
struct dtl1_info {
struct pcmcia_device *p_dev;
struct hci_dev *hdev;
spinlock_t lock; /* For serializing operations */
unsigned long flowmask; /* HCI flow mask */
int ri_latch;
struct sk_buff_head txq;
unsigned long tx_state;
unsigned long rx_state;
unsigned long rx_count;
struct sk_buff *rx_skb;
};
static int dtl1_config(struct pcmcia_device *link);
/* Transmit states */
#define XMIT_SENDING 1
#define XMIT_WAKEUP 2
#define XMIT_WAITING 8
/* Receiver States */
#define RECV_WAIT_NSH 0
#define RECV_WAIT_DATA 1
struct nsh {
u8 type;
u8 zero;
u16 len;
} __packed; /* Nokia Specific Header */
#define NSHL 4 /* Nokia Specific Header Length */
/* ======================== Interrupt handling ======================== */
static int dtl1_write(unsigned int iobase, int fifo_size, __u8 *buf, int len)
{
int actual = 0;
/* Tx FIFO should be empty */
if (!(inb(iobase + UART_LSR) & UART_LSR_THRE))
return 0;
/* Fill FIFO with current frame */
while ((fifo_size-- > 0) && (actual < len)) {
/* Transmit next byte */
outb(buf[actual], iobase + UART_TX);
actual++;
}
return actual;
}
static void dtl1_write_wakeup(struct dtl1_info *info)
{
if (!info) {
BT_ERR("Unknown device");
return;
}
if (test_bit(XMIT_WAITING, &(info->tx_state))) {
set_bit(XMIT_WAKEUP, &(info->tx_state));
return;
}
if (test_and_set_bit(XMIT_SENDING, &(info->tx_state))) {
set_bit(XMIT_WAKEUP, &(info->tx_state));
return;
}
do {
unsigned int iobase = info->p_dev->resource[0]->start;
register struct sk_buff *skb;
int len;
clear_bit(XMIT_WAKEUP, &(info->tx_state));
if (!pcmcia_dev_present(info->p_dev))
return;
skb = skb_dequeue(&(info->txq));
if (!skb)
break;
/* Send frame */
len = dtl1_write(iobase, 32, skb->data, skb->len);
if (len == skb->len) {
set_bit(XMIT_WAITING, &(info->tx_state));
kfree_skb(skb);
} else {
skb_pull(skb, len);
skb_queue_head(&(info->txq), skb);
}
info->hdev->stat.byte_tx += len;
} while (test_bit(XMIT_WAKEUP, &(info->tx_state)));
clear_bit(XMIT_SENDING, &(info->tx_state));
}
static void dtl1_control(struct dtl1_info *info, struct sk_buff *skb)
{
u8 flowmask = *(u8 *)skb->data;
int i;
printk(KERN_INFO "Bluetooth: Nokia control data =");
for (i = 0; i < skb->len; i++)
printk(" %02x", skb->data[i]);
printk("\n");
/* transition to active state */
if (((info->flowmask & 0x07) == 0) && ((flowmask & 0x07) != 0)) {
clear_bit(XMIT_WAITING, &(info->tx_state));
dtl1_write_wakeup(info);
}
info->flowmask = flowmask;
kfree_skb(skb);
}
static void dtl1_receive(struct dtl1_info *info)
{
unsigned int iobase;
struct nsh *nsh;
int boguscount = 0;
if (!info) {
BT_ERR("Unknown device");
return;
}
iobase = info->p_dev->resource[0]->start;
do {
info->hdev->stat.byte_rx++;
/* Allocate packet */
if (info->rx_skb == NULL) {
info->rx_skb = bt_skb_alloc(HCI_MAX_FRAME_SIZE, GFP_ATOMIC);
if (!info->rx_skb) {
BT_ERR("Can't allocate mem for new packet");
info->rx_state = RECV_WAIT_NSH;
info->rx_count = NSHL;
return;
}
}
skb_put_u8(info->rx_skb, inb(iobase + UART_RX));
nsh = (struct nsh *)info->rx_skb->data;
info->rx_count--;
if (info->rx_count == 0) {
switch (info->rx_state) {
case RECV_WAIT_NSH:
info->rx_state = RECV_WAIT_DATA;
info->rx_count = nsh->len + (nsh->len & 0x0001);
break;
case RECV_WAIT_DATA:
hci_skb_pkt_type(info->rx_skb) = nsh->type;
/* remove PAD byte if it exists */
if (nsh->len & 0x0001) {
info->rx_skb->tail--;
info->rx_skb->len--;
}
/* remove NSH */
skb_pull(info->rx_skb, NSHL);
switch (hci_skb_pkt_type(info->rx_skb)) {
case 0x80:
/* control data for the Nokia Card */
dtl1_control(info, info->rx_skb);
break;
case 0x82:
case 0x83:
case 0x84:
/* send frame to the HCI layer */
hci_skb_pkt_type(info->rx_skb) &= 0x0f;
hci_recv_frame(info->hdev, info->rx_skb);
break;
default:
/* unknown packet */
BT_ERR("Unknown HCI packet with type 0x%02x received",
hci_skb_pkt_type(info->rx_skb));
kfree_skb(info->rx_skb);
break;
}
info->rx_state = RECV_WAIT_NSH;
info->rx_count = NSHL;
info->rx_skb = NULL;
break;
}
}
/* Make sure we don't stay here too long */
if (boguscount++ > 32)
break;
} while (inb(iobase + UART_LSR) & UART_LSR_DR);
}
static irqreturn_t dtl1_interrupt(int irq, void *dev_inst)
{
struct dtl1_info *info = dev_inst;
unsigned int iobase;
unsigned char msr;
int boguscount = 0;
int iir, lsr;
irqreturn_t r = IRQ_NONE;
if (!info || !info->hdev)
/* our irq handler is shared */
return IRQ_NONE;
iobase = info->p_dev->resource[0]->start;
spin_lock(&(info->lock));
iir = inb(iobase + UART_IIR) & UART_IIR_ID;
while (iir) {
r = IRQ_HANDLED;
/* Clear interrupt */
lsr = inb(iobase + UART_LSR);
switch (iir) {
case UART_IIR_RLSI:
BT_ERR("RLSI");
break;
case UART_IIR_RDI:
/* Receive interrupt */
dtl1_receive(info);
break;
case UART_IIR_THRI:
if (lsr & UART_LSR_THRE) {
/* Transmitter ready for data */
dtl1_write_wakeup(info);
}
break;
default:
BT_ERR("Unhandled IIR=%#x", iir);
break;
}
/* Make sure we don't stay here too long */
if (boguscount++ > 100)
break;
iir = inb(iobase + UART_IIR) & UART_IIR_ID;
}
msr = inb(iobase + UART_MSR);
if (info->ri_latch ^ (msr & UART_MSR_RI)) {
info->ri_latch = msr & UART_MSR_RI;
clear_bit(XMIT_WAITING, &(info->tx_state));
dtl1_write_wakeup(info);
r = IRQ_HANDLED;
}
spin_unlock(&(info->lock));
return r;
}
/* ======================== HCI interface ======================== */
static int dtl1_hci_open(struct hci_dev *hdev)
{
return 0;
}
static int dtl1_hci_flush(struct hci_dev *hdev)
{
struct dtl1_info *info = hci_get_drvdata(hdev);
/* Drop TX queue */
skb_queue_purge(&(info->txq));
return 0;
}
static int dtl1_hci_close(struct hci_dev *hdev)
{
dtl1_hci_flush(hdev);
return 0;
}
static int dtl1_hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
{
struct dtl1_info *info = hci_get_drvdata(hdev);
struct sk_buff *s;
struct nsh nsh;
switch (hci_skb_pkt_type(skb)) {
case HCI_COMMAND_PKT:
hdev->stat.cmd_tx++;
nsh.type = 0x81;
break;
case HCI_ACLDATA_PKT:
hdev->stat.acl_tx++;
nsh.type = 0x82;
break;
case HCI_SCODATA_PKT:
hdev->stat.sco_tx++;
nsh.type = 0x83;
break;
default:
return -EILSEQ;
}
nsh.zero = 0;
nsh.len = skb->len;
s = bt_skb_alloc(NSHL + skb->len + 1, GFP_ATOMIC);
if (!s)
return -ENOMEM;
skb_reserve(s, NSHL);
skb_copy_from_linear_data(skb, skb_put(s, skb->len), skb->len);
if (skb->len & 0x0001)
skb_put_u8(s, 0); /* PAD */
/* Prepend skb with Nokia frame header and queue */
memcpy(skb_push(s, NSHL), &nsh, NSHL);
skb_queue_tail(&(info->txq), s);
dtl1_write_wakeup(info);
kfree_skb(skb);
return 0;
}
/* ======================== Card services HCI interaction ======================== */
static int dtl1_open(struct dtl1_info *info)
{
unsigned long flags;
unsigned int iobase = info->p_dev->resource[0]->start;
struct hci_dev *hdev;
spin_lock_init(&(info->lock));
skb_queue_head_init(&(info->txq));
info->rx_state = RECV_WAIT_NSH;
info->rx_count = NSHL;
info->rx_skb = NULL;
set_bit(XMIT_WAITING, &(info->tx_state));
/* Initialize HCI device */
hdev = hci_alloc_dev();
if (!hdev) {
BT_ERR("Can't allocate HCI device");
return -ENOMEM;
}
info->hdev = hdev;
hdev->bus = HCI_PCCARD;
hci_set_drvdata(hdev, info);
SET_HCIDEV_DEV(hdev, &info->p_dev->dev);
hdev->open = dtl1_hci_open;
hdev->close = dtl1_hci_close;
hdev->flush = dtl1_hci_flush;
hdev->send = dtl1_hci_send_frame;
spin_lock_irqsave(&(info->lock), flags);
/* Reset UART */
outb(0, iobase + UART_MCR);
/* Turn off interrupts */
outb(0, iobase + UART_IER);
/* Initialize UART */
outb(UART_LCR_WLEN8, iobase + UART_LCR); /* Reset DLAB */
outb((UART_MCR_DTR | UART_MCR_RTS | UART_MCR_OUT2), iobase + UART_MCR);
info->ri_latch = inb(info->p_dev->resource[0]->start + UART_MSR)
& UART_MSR_RI;
/* Turn on interrupts */
outb(UART_IER_RLSI | UART_IER_RDI | UART_IER_THRI, iobase + UART_IER);
spin_unlock_irqrestore(&(info->lock), flags);
/* Timeout before it is safe to send the first HCI packet */
msleep(2000);
/* Register HCI device */
if (hci_register_dev(hdev) < 0) {
BT_ERR("Can't register HCI device");
info->hdev = NULL;
hci_free_dev(hdev);
return -ENODEV;
}
return 0;
}
static int dtl1_close(struct dtl1_info *info)
{
unsigned long flags;
unsigned int iobase = info->p_dev->resource[0]->start;
struct hci_dev *hdev = info->hdev;
if (!hdev)
return -ENODEV;
dtl1_hci_close(hdev);
spin_lock_irqsave(&(info->lock), flags);
/* Reset UART */
outb(0, iobase + UART_MCR);
/* Turn off interrupts */
outb(0, iobase + UART_IER);
spin_unlock_irqrestore(&(info->lock), flags);
hci_unregister_dev(hdev);
hci_free_dev(hdev);
return 0;
}
static int dtl1_probe(struct pcmcia_device *link)
{
struct dtl1_info *info;
/* Create new info device */
info = devm_kzalloc(&link->dev, sizeof(*info), GFP_KERNEL);
if (!info)
return -ENOMEM;
info->p_dev = link;
link->priv = info;
link->config_flags |= CONF_ENABLE_IRQ | CONF_AUTO_SET_IO;
return dtl1_config(link);
}
static void dtl1_detach(struct pcmcia_device *link)
{
struct dtl1_info *info = link->priv;
dtl1_close(info);
pcmcia_disable_device(link);
}
static int dtl1_confcheck(struct pcmcia_device *p_dev, void *priv_data)
{
if ((p_dev->resource[1]->end) || (p_dev->resource[1]->end < 8))
return -ENODEV;
p_dev->resource[0]->flags &= ~IO_DATA_PATH_WIDTH;
p_dev->resource[0]->flags |= IO_DATA_PATH_WIDTH_8;
return pcmcia_request_io(p_dev);
}
static int dtl1_config(struct pcmcia_device *link)
{
struct dtl1_info *info = link->priv;
int ret;
/* Look for a generic full-sized window */
link->resource[0]->end = 8;
ret = pcmcia_loop_config(link, dtl1_confcheck, NULL);
if (ret)
goto failed;
ret = pcmcia_request_irq(link, dtl1_interrupt);
if (ret)
goto failed;
ret = pcmcia_enable_device(link);
if (ret)
goto failed;
ret = dtl1_open(info);
if (ret)
goto failed;
return 0;
failed:
dtl1_detach(link);
return ret;
}
static const struct pcmcia_device_id dtl1_ids[] = {
PCMCIA_DEVICE_PROD_ID12("Nokia Mobile Phones", "DTL-1", 0xe1bfdd64, 0xe168480d),
PCMCIA_DEVICE_PROD_ID12("Nokia Mobile Phones", "DTL-4", 0xe1bfdd64, 0x9102bc82),
PCMCIA_DEVICE_PROD_ID12("Socket", "CF", 0xb38bcc2e, 0x44ebf863),
PCMCIA_DEVICE_PROD_ID12("Socket", "CF+ Personal Network Card", 0xb38bcc2e, 0xe732bae3),
PCMCIA_DEVICE_NULL
};
MODULE_DEVICE_TABLE(pcmcia, dtl1_ids);
static struct pcmcia_driver dtl1_driver = {
.owner = THIS_MODULE,
.name = "dtl1_cs",
.probe = dtl1_probe,
.remove = dtl1_detach,
.id_table = dtl1_ids,
};
module_pcmcia_driver(dtl1_driver);