// SPDX-License-Identifier: GPL-2.0 // tscs454.c -- TSCS454 ALSA SoC Audio driver // Copyright 2018 Tempo Semiconductor, Inc. // Author: Steven Eckhoff #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "tscs454.h" static const unsigned int PLL_44_1K_RATE = (44100 * 256); #define COEFF_SIZE 3 #define BIQUAD_COEFF_COUNT 5 #define BIQUAD_SIZE (COEFF_SIZE * BIQUAD_COEFF_COUNT) #define COEFF_RAM_MAX_ADDR 0xcd #define COEFF_RAM_COEFF_COUNT (COEFF_RAM_MAX_ADDR + 1) #define COEFF_RAM_SIZE (COEFF_SIZE * COEFF_RAM_COEFF_COUNT) enum { TSCS454_DAI1_ID, TSCS454_DAI2_ID, TSCS454_DAI3_ID, TSCS454_DAI_COUNT, }; struct pll { int id; unsigned int users; struct mutex lock; }; static inline void pll_init(struct pll *pll, int id) { pll->id = id; mutex_init(&pll->lock); } struct internal_rate { struct pll *pll; }; struct aif { unsigned int id; bool master; struct pll *pll; }; static inline void aif_init(struct aif *aif, unsigned int id) { aif->id = id; } struct coeff_ram { u8 cache[COEFF_RAM_SIZE]; bool synced; struct mutex lock; }; static inline void init_coeff_ram_cache(u8 *cache) { static const u8 norm_addrs[] = { 0x00, 0x05, 0x0a, 0x0f, 0x14, 0x19, 0x1f, 0x20, 0x25, 0x2a, 0x2f, 0x34, 0x39, 0x3f, 0x40, 0x45, 0x4a, 0x4f, 0x54, 0x59, 0x5f, 0x60, 0x65, 0x6a, 0x6f, 0x74, 0x79, 0x7f, 0x80, 0x85, 0x8c, 0x91, 0x96, 0x97, 0x9c, 0xa3, 0xa8, 0xad, 0xaf, 0xb0, 0xb5, 0xba, 0xbf, 0xc4, 0xc9}; int i; for (i = 0; i < ARRAY_SIZE(norm_addrs); i++) cache[((norm_addrs[i] + 1) * COEFF_SIZE) - 1] = 0x40; } static inline void coeff_ram_init(struct coeff_ram *ram) { init_coeff_ram_cache(ram->cache); mutex_init(&ram->lock); } struct aifs_status { u8 streams; }; static inline void set_aif_status_active(struct aifs_status *status, int aif_id, bool playback) { u8 mask = 0x01 << (aif_id * 2 + !playback); status->streams |= mask; } static inline void set_aif_status_inactive(struct aifs_status *status, int aif_id, bool playback) { u8 mask = ~(0x01 << (aif_id * 2 + !playback)); status->streams &= mask; } static bool aifs_active(struct aifs_status *status) { return status->streams; } static bool aif_active(struct aifs_status *status, int aif_id) { return (0x03 << aif_id * 2) & status->streams; } struct tscs454 { struct regmap *regmap; struct aif aifs[TSCS454_DAI_COUNT]; struct aifs_status aifs_status; struct mutex aifs_status_lock; struct pll pll1; struct pll pll2; struct internal_rate internal_rate; struct coeff_ram dac_ram; struct coeff_ram spk_ram; struct coeff_ram sub_ram; struct clk *sysclk; int sysclk_src_id; unsigned int bclk_freq; }; struct coeff_ram_ctl { unsigned int addr; struct soc_bytes_ext bytes_ext; }; static const struct reg_sequence tscs454_patch[] = { /* Assign ASRC out of the box so DAI 1 just works */ { R_AUDIOMUX1, FV_ASRCIMUX_I2S1 | FV_I2S2MUX_I2S2 }, { R_AUDIOMUX2, FV_ASRCOMUX_I2S1 | FV_DACMUX_I2S1 | FV_I2S3MUX_I2S3 }, { R_AUDIOMUX3, FV_CLSSDMUX_I2S1 | FV_SUBMUX_I2S1_LR }, { R_TDMCTL0, FV_TDMMD_256 }, { VIRT_ADDR(0x0A, 0x13), 1 << 3 }, }; static bool tscs454_volatile(struct device *dev, unsigned int reg) { switch (reg) { case R_PLLSTAT: case R_SPKCRRDL: case R_SPKCRRDM: case R_SPKCRRDH: case R_SPKCRS: case R_DACCRRDL: case R_DACCRRDM: case R_DACCRRDH: case R_DACCRS: case R_SUBCRRDL: case R_SUBCRRDM: case R_SUBCRRDH: case R_SUBCRS: return true; default: return false; } } static bool tscs454_writable(struct device *dev, unsigned int reg) { switch (reg) { case R_SPKCRRDL: case R_SPKCRRDM: case R_SPKCRRDH: case R_DACCRRDL: case R_DACCRRDM: case R_DACCRRDH: case R_SUBCRRDL: case R_SUBCRRDM: case R_SUBCRRDH: return false; default: return true; } } static bool tscs454_readable(struct device *dev, unsigned int reg) { switch (reg) { case R_SPKCRWDL: case R_SPKCRWDM: case R_SPKCRWDH: case R_DACCRWDL: case R_DACCRWDM: case R_DACCRWDH: case R_SUBCRWDL: case R_SUBCRWDM: case R_SUBCRWDH: return false; default: return true; } } static bool tscs454_precious(struct device *dev, unsigned int reg) { switch (reg) { case R_SPKCRWDL: case R_SPKCRWDM: case R_SPKCRWDH: case R_SPKCRRDL: case R_SPKCRRDM: case R_SPKCRRDH: case R_DACCRWDL: case R_DACCRWDM: case R_DACCRWDH: case R_DACCRRDL: case R_DACCRRDM: case R_DACCRRDH: case R_SUBCRWDL: case R_SUBCRWDM: case R_SUBCRWDH: case R_SUBCRRDL: case R_SUBCRRDM: case R_SUBCRRDH: return true; default: return false; } } static const struct regmap_range_cfg tscs454_regmap_range_cfg = { .name = "Pages", .range_min = VIRT_BASE, .range_max = VIRT_ADDR(0xFE, 0x02), .selector_reg = R_PAGESEL, .selector_mask = 0xff, .selector_shift = 0, .window_start = 0, .window_len = 0x100, }; static struct regmap_config const tscs454_regmap_cfg = { .reg_bits = 8, .val_bits = 8, .writeable_reg = tscs454_writable, .readable_reg = tscs454_readable, .volatile_reg = tscs454_volatile, .precious_reg = tscs454_precious, .ranges = &tscs454_regmap_range_cfg, .num_ranges = 1, .max_register = VIRT_ADDR(0xFE, 0x02), .cache_type = REGCACHE_RBTREE, }; static inline int tscs454_data_init(struct tscs454 *tscs454, struct i2c_client *i2c) { int i; int ret; tscs454->regmap = devm_regmap_init_i2c(i2c, &tscs454_regmap_cfg); if (IS_ERR(tscs454->regmap)) { ret = PTR_ERR(tscs454->regmap); return ret; } for (i = 0; i < TSCS454_DAI_COUNT; i++) aif_init(&tscs454->aifs[i], i); mutex_init(&tscs454->aifs_status_lock); pll_init(&tscs454->pll1, 1); pll_init(&tscs454->pll2, 2); coeff_ram_init(&tscs454->dac_ram); coeff_ram_init(&tscs454->spk_ram); coeff_ram_init(&tscs454->sub_ram); return 0; } struct reg_setting { unsigned int addr; unsigned int val; }; static int coeff_ram_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); struct tscs454 *tscs454 = snd_soc_component_get_drvdata(component); struct coeff_ram_ctl *ctl = (struct coeff_ram_ctl *)kcontrol->private_value; struct soc_bytes_ext *params = &ctl->bytes_ext; u8 *coeff_ram; struct mutex *coeff_ram_lock; if (strstr(kcontrol->id.name, "DAC")) { coeff_ram = tscs454->dac_ram.cache; coeff_ram_lock = &tscs454->dac_ram.lock; } else if (strstr(kcontrol->id.name, "Speaker")) { coeff_ram = tscs454->spk_ram.cache; coeff_ram_lock = &tscs454->spk_ram.lock; } else if (strstr(kcontrol->id.name, "Sub")) { coeff_ram = tscs454->sub_ram.cache; coeff_ram_lock = &tscs454->sub_ram.lock; } else { return -EINVAL; } mutex_lock(coeff_ram_lock); memcpy(ucontrol->value.bytes.data, &coeff_ram[ctl->addr * COEFF_SIZE], params->max); mutex_unlock(coeff_ram_lock); return 0; } #define DACCRSTAT_MAX_TRYS 10 static int write_coeff_ram(struct snd_soc_component *component, u8 *coeff_ram, unsigned int r_stat, unsigned int r_addr, unsigned int r_wr, unsigned int coeff_addr, unsigned int coeff_cnt) { struct tscs454 *tscs454 = snd_soc_component_get_drvdata(component); unsigned int val; int cnt; int trys; int ret; for (cnt = 0; cnt < coeff_cnt; cnt++, coeff_addr++) { for (trys = 0; trys < DACCRSTAT_MAX_TRYS; trys++) { val = snd_soc_component_read(component, r_stat); if (!val) break; } if (trys == DACCRSTAT_MAX_TRYS) { ret = -EIO; dev_err(component->dev, "Coefficient write error (%d)\n", ret); return ret; } ret = regmap_write(tscs454->regmap, r_addr, coeff_addr); if (ret < 0) { dev_err(component->dev, "Failed to write dac ram address (%d)\n", ret); return ret; } ret = regmap_bulk_write(tscs454->regmap, r_wr, &coeff_ram[coeff_addr * COEFF_SIZE], COEFF_SIZE); if (ret < 0) { dev_err(component->dev, "Failed to write dac ram (%d)\n", ret); return ret; } } return 0; } static int coeff_ram_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol); struct tscs454 *tscs454 = snd_soc_component_get_drvdata(component); struct coeff_ram_ctl *ctl = (struct coeff_ram_ctl *)kcontrol->private_value; struct soc_bytes_ext *params = &ctl->bytes_ext; unsigned int coeff_cnt = params->max / COEFF_SIZE; u8 *coeff_ram; struct mutex *coeff_ram_lock; bool *coeff_ram_synced; unsigned int r_stat; unsigned int r_addr; unsigned int r_wr; unsigned int val; int ret; if (strstr(kcontrol->id.name, "DAC")) { coeff_ram = tscs454->dac_ram.cache; coeff_ram_lock = &tscs454->dac_ram.lock; coeff_ram_synced = &tscs454->dac_ram.synced; r_stat = R_DACCRS; r_addr = R_DACCRADD; r_wr = R_DACCRWDL; } else if (strstr(kcontrol->id.name, "Speaker")) { coeff_ram = tscs454->spk_ram.cache; coeff_ram_lock = &tscs454->spk_ram.lock; coeff_ram_synced = &tscs454->spk_ram.synced; r_stat = R_SPKCRS; r_addr = R_SPKCRADD; r_wr = R_SPKCRWDL; } else if (strstr(kcontrol->id.name, "Sub")) { coeff_ram = tscs454->sub_ram.cache; coeff_ram_lock = &tscs454->sub_ram.lock; coeff_ram_synced = &tscs454->sub_ram.synced; r_stat = R_SUBCRS; r_addr = R_SUBCRADD; r_wr = R_SUBCRWDL; } else { return -EINVAL; } mutex_lock(coeff_ram_lock); *coeff_ram_synced = false; memcpy(&coeff_ram[ctl->addr * COEFF_SIZE], ucontrol->value.bytes.data, params->max); mutex_lock(&tscs454->pll1.lock); mutex_lock(&tscs454->pll2.lock); val = snd_soc_component_read(component, R_PLLSTAT); if (val) { /* PLLs locked */ ret = write_coeff_ram(component, coeff_ram, r_stat, r_addr, r_wr, ctl->addr, coeff_cnt); if (ret < 0) { dev_err(component->dev, "Failed to flush coeff ram cache (%d)\n", ret); goto exit; } *coeff_ram_synced = true; } ret = 0; exit: mutex_unlock(&tscs454->pll2.lock); mutex_unlock(&tscs454->pll1.lock); mutex_unlock(coeff_ram_lock); return ret; } static inline int coeff_ram_sync(struct snd_soc_component *component, struct tscs454 *tscs454) { int ret; mutex_lock(&tscs454->dac_ram.lock); if (!tscs454->dac_ram.synced) { ret = write_coeff_ram(component, tscs454->dac_ram.cache, R_DACCRS, R_DACCRADD, R_DACCRWDL, 0x00, COEFF_RAM_COEFF_COUNT); if (ret < 0) { mutex_unlock(&tscs454->dac_ram.lock); return ret; } } mutex_unlock(&tscs454->dac_ram.lock); mutex_lock(&tscs454->spk_ram.lock); if (!tscs454->spk_ram.synced) { ret = write_coeff_ram(component, tscs454->spk_ram.cache, R_SPKCRS, R_SPKCRADD, R_SPKCRWDL, 0x00, COEFF_RAM_COEFF_COUNT); if (ret < 0) { mutex_unlock(&tscs454->spk_ram.lock); return ret; } } mutex_unlock(&tscs454->spk_ram.lock); mutex_lock(&tscs454->sub_ram.lock); if (!tscs454->sub_ram.synced) { ret = write_coeff_ram(component, tscs454->sub_ram.cache, R_SUBCRS, R_SUBCRADD, R_SUBCRWDL, 0x00, COEFF_RAM_COEFF_COUNT); if (ret < 0) { mutex_unlock(&tscs454->sub_ram.lock); return ret; } } mutex_unlock(&tscs454->sub_ram.lock); return 0; } #define PLL_REG_SETTINGS_COUNT 11 struct pll_ctl { int freq_in; struct reg_setting settings[PLL_REG_SETTINGS_COUNT]; }; #define PLL_CTL(f, t, c1, r1, o1, f1l, f1h, c2, r2, o2, f2l, f2h) \ { \ .freq_in = f, \ .settings = { \ {R_PLL1CTL, c1}, \ {R_PLL1RDIV, r1}, \ {R_PLL1ODIV, o1}, \ {R_PLL1FDIVL, f1l}, \ {R_PLL1FDIVH, f1h}, \ {R_PLL2CTL, c2}, \ {R_PLL2RDIV, r2}, \ {R_PLL2ODIV, o2}, \ {R_PLL2FDIVL, f2l}, \ {R_PLL2FDIVH, f2h}, \ {R_TIMEBASE, t}, \ }, \ } static const struct pll_ctl pll_ctls[] = { PLL_CTL(1411200, 0x05, 0xB9, 0x07, 0x02, 0xC3, 0x04, 0x5A, 0x02, 0x03, 0xE0, 0x01), PLL_CTL(1536000, 0x05, 0x5A, 0x02, 0x03, 0xE0, 0x01, 0x5A, 0x02, 0x03, 0xB9, 0x01), PLL_CTL(2822400, 0x0A, 0x63, 0x07, 0x04, 0xC3, 0x04, 0x62, 0x07, 0x03, 0x48, 0x03), PLL_CTL(3072000, 0x0B, 0x62, 0x07, 0x03, 0x48, 0x03, 0x5A, 0x04, 0x03, 0xB9, 0x01), PLL_CTL(5644800, 0x15, 0x63, 0x0E, 0x04, 0xC3, 0x04, 0x5A, 0x08, 0x03, 0xE0, 0x01), PLL_CTL(6144000, 0x17, 0x5A, 0x08, 0x03, 0xE0, 0x01, 0x5A, 0x08, 0x03, 0xB9, 0x01), PLL_CTL(12000000, 0x2E, 0x5B, 0x19, 0x03, 0x00, 0x03, 0x6A, 0x19, 0x05, 0x98, 0x04), PLL_CTL(19200000, 0x4A, 0x53, 0x14, 0x03, 0x80, 0x01, 0x5A, 0x19, 0x03, 0xB9, 0x01), PLL_CTL(22000000, 0x55, 0x6A, 0x37, 0x05, 0x00, 0x06, 0x62, 0x26, 0x03, 0x49, 0x02), PLL_CTL(22579200, 0x57, 0x62, 0x31, 0x03, 0x20, 0x03, 0x53, 0x1D, 0x03, 0xB3, 0x01), PLL_CTL(24000000, 0x5D, 0x53, 0x19, 0x03, 0x80, 0x01, 0x5B, 0x19, 0x05, 0x4C, 0x02), PLL_CTL(24576000, 0x5F, 0x53, 0x1D, 0x03, 0xB3, 0x01, 0x62, 0x40, 0x03, 0x72, 0x03), PLL_CTL(27000000, 0x68, 0x62, 0x4B, 0x03, 0x00, 0x04, 0x6A, 0x7D, 0x03, 0x20, 0x06), PLL_CTL(36000000, 0x8C, 0x5B, 0x4B, 0x03, 0x00, 0x03, 0x6A, 0x7D, 0x03, 0x98, 0x04), PLL_CTL(11289600, 0x2B, 0x6A, 0x31, 0x03, 0x40, 0x06, 0x5A, 0x12, 0x03, 0x1C, 0x02), PLL_CTL(26000000, 0x65, 0x63, 0x41, 0x05, 0x00, 0x06, 0x5A, 0x26, 0x03, 0xEF, 0x01), PLL_CTL(12288000, 0x2F, 0x5A, 0x12, 0x03, 0x1C, 0x02, 0x62, 0x20, 0x03, 0x72, 0x03), PLL_CTL(40000000, 0x9B, 0xA2, 0x7D, 0x03, 0x80, 0x04, 0x63, 0x7D, 0x05, 0xE4, 0x06), PLL_CTL(512000, 0x01, 0x62, 0x01, 0x03, 0xD0, 0x02, 0x5B, 0x01, 0x04, 0x72, 0x03), PLL_CTL(705600, 0x02, 0x62, 0x02, 0x03, 0x15, 0x04, 0x62, 0x01, 0x04, 0x80, 0x02), PLL_CTL(1024000, 0x03, 0x62, 0x02, 0x03, 0xD0, 0x02, 0x5B, 0x02, 0x04, 0x72, 0x03), PLL_CTL(2048000, 0x07, 0x62, 0x04, 0x03, 0xD0, 0x02, 0x5B, 0x04, 0x04, 0x72, 0x03), PLL_CTL(2400000, 0x08, 0x62, 0x05, 0x03, 0x00, 0x03, 0x63, 0x05, 0x05, 0x98, 0x04), }; static inline const struct pll_ctl *get_pll_ctl(unsigned long freq_in) { int i; struct pll_ctl const *pll_ctl = NULL; for (i = 0; i < ARRAY_SIZE(pll_ctls); ++i) if (pll_ctls[i].freq_in == freq_in) { pll_ctl = &pll_ctls[i]; break; } return pll_ctl; } enum { PLL_INPUT_XTAL = 0, PLL_INPUT_MCLK1, PLL_INPUT_MCLK2, PLL_INPUT_BCLK, }; static int set_sysclk(struct snd_soc_component *component) { struct tscs454 *tscs454 = snd_soc_component_get_drvdata(component); struct pll_ctl const *pll_ctl; unsigned long freq; int i; int ret; if (tscs454->sysclk_src_id < PLL_INPUT_BCLK) freq = clk_get_rate(tscs454->sysclk); else freq = tscs454->bclk_freq; pll_ctl = get_pll_ctl(freq); if (!pll_ctl) { ret = -EINVAL; dev_err(component->dev, "Invalid PLL input %lu (%d)\n", freq, ret); return ret; } for (i = 0; i < PLL_REG_SETTINGS_COUNT; ++i) { ret = snd_soc_component_write(component, pll_ctl->settings[i].addr, pll_ctl->settings[i].val); if (ret < 0) { dev_err(component->dev, "Failed to set pll setting (%d)\n", ret); return ret; } } return 0; } static inline void reserve_pll(struct pll *pll) { mutex_lock(&pll->lock); pll->users++; mutex_unlock(&pll->lock); } static inline void free_pll(struct pll *pll) { mutex_lock(&pll->lock); pll->users--; mutex_unlock(&pll->lock); } static int pll_connected(struct snd_soc_dapm_widget *source, struct snd_soc_dapm_widget *sink) { struct snd_soc_component *component = snd_soc_dapm_to_component(source->dapm); struct tscs454 *tscs454 = snd_soc_component_get_drvdata(component); int users; if (strstr(source->name, "PLL 1")) { mutex_lock(&tscs454->pll1.lock); users = tscs454->pll1.users; mutex_unlock(&tscs454->pll1.lock); dev_dbg(component->dev, "%s(): PLL 1 users = %d\n", __func__, users); } else { mutex_lock(&tscs454->pll2.lock); users = tscs454->pll2.users; mutex_unlock(&tscs454->pll2.lock); dev_dbg(component->dev, "%s(): PLL 2 users = %d\n", __func__, users); } return users; } /* * PLL must be enabled after power up and must be disabled before power down * for proper clock switching. */ static int pll_power_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); struct tscs454 *tscs454 = snd_soc_component_get_drvdata(component); bool enable; bool pll1; unsigned int msk; unsigned int val; int ret; if (strstr(w->name, "PLL 1")) pll1 = true; else pll1 = false; msk = pll1 ? FM_PLLCTL_PLL1CLKEN : FM_PLLCTL_PLL2CLKEN; if (event == SND_SOC_DAPM_POST_PMU) enable = true; else enable = false; if (enable) val = pll1 ? FV_PLL1CLKEN_ENABLE : FV_PLL2CLKEN_ENABLE; else /* * FV_PLL1CLKEN_DISABLE and FV_PLL2CLKEN_DISABLE are * identical zero vzalues, there is no need to test * the PLL index */ val = FV_PLL1CLKEN_DISABLE; ret = snd_soc_component_update_bits(component, R_PLLCTL, msk, val); if (ret < 0) { dev_err(component->dev, "Failed to %s PLL %d (%d)\n", enable ? "enable" : "disable", pll1 ? 1 : 2, ret); return ret; } if (enable) { msleep(20); // Wait for lock ret = coeff_ram_sync(component, tscs454); if (ret < 0) { dev_err(component->dev, "Failed to sync coeff ram (%d)\n", ret); return ret; } } return 0; } static inline int aif_set_master(struct snd_soc_component *component, unsigned int aif_id, bool master) { unsigned int reg; unsigned int mask; unsigned int val; int ret; switch (aif_id) { case TSCS454_DAI1_ID: reg = R_I2SP1CTL; break; case TSCS454_DAI2_ID: reg = R_I2SP2CTL; break; case TSCS454_DAI3_ID: reg = R_I2SP3CTL; break; default: ret = -ENODEV; dev_err(component->dev, "Unknown DAI %d (%d)\n", aif_id, ret); return ret; } mask = FM_I2SPCTL_PORTMS; val = master ? FV_PORTMS_MASTER : FV_PORTMS_SLAVE; ret = snd_soc_component_update_bits(component, reg, mask, val); if (ret < 0) { dev_err(component->dev, "Failed to set DAI %d to %s (%d)\n", aif_id, master ? "master" : "slave", ret); return ret; } return 0; } static inline int aif_prepare(struct snd_soc_component *component, struct aif *aif) { int ret; ret = aif_set_master(component, aif->id, aif->master); if (ret < 0) return ret; return 0; } static inline int aif_free(struct snd_soc_component *component, struct aif *aif, bool playback) { struct tscs454 *tscs454 = snd_soc_component_get_drvdata(component); mutex_lock(&tscs454->aifs_status_lock); dev_dbg(component->dev, "%s(): aif %d\n", __func__, aif->id); set_aif_status_inactive(&tscs454->aifs_status, aif->id, playback); dev_dbg(component->dev, "Set aif %d inactive. Streams status is 0x%x\n", aif->id, tscs454->aifs_status.streams); if (!aif_active(&tscs454->aifs_status, aif->id)) { /* Do config in slave mode */ aif_set_master(component, aif->id, false); dev_dbg(component->dev, "Freeing pll %d from aif %d\n", aif->pll->id, aif->id); free_pll(aif->pll); } if (!aifs_active(&tscs454->aifs_status)) { dev_dbg(component->dev, "Freeing pll %d from ir\n", tscs454->internal_rate.pll->id); free_pll(tscs454->internal_rate.pll); } mutex_unlock(&tscs454->aifs_status_lock); return 0; } /* R_PLLCTL PG 0 ADDR 0x15 */ static char const * const bclk_sel_txt[] = { "BCLK 1", "BCLK 2", "BCLK 3"}; static struct soc_enum const bclk_sel_enum = SOC_ENUM_SINGLE(R_PLLCTL, FB_PLLCTL_BCLKSEL, ARRAY_SIZE(bclk_sel_txt), bclk_sel_txt); /* R_ISRC PG 0 ADDR 0x16 */ static char const * const isrc_br_txt[] = { "44.1kHz", "48kHz"}; static struct soc_enum const isrc_br_enum = SOC_ENUM_SINGLE(R_ISRC, FB_ISRC_IBR, ARRAY_SIZE(isrc_br_txt), isrc_br_txt); static char const * const isrc_bm_txt[] = { "0.25x", "0.5x", "1.0x", "2.0x"}; static struct soc_enum const isrc_bm_enum = SOC_ENUM_SINGLE(R_ISRC, FB_ISRC_IBM, ARRAY_SIZE(isrc_bm_txt), isrc_bm_txt); /* R_SCLKCTL PG 0 ADDR 0x18 */ static char const * const modular_rate_txt[] = { "Reserved", "Half", "Full", "Auto",}; static struct soc_enum const adc_modular_rate_enum = SOC_ENUM_SINGLE(R_SCLKCTL, FB_SCLKCTL_ASDM, ARRAY_SIZE(modular_rate_txt), modular_rate_txt); static struct soc_enum const dac_modular_rate_enum = SOC_ENUM_SINGLE(R_SCLKCTL, FB_SCLKCTL_DSDM, ARRAY_SIZE(modular_rate_txt), modular_rate_txt); /* R_I2SIDCTL PG 0 ADDR 0x38 */ static char const * const data_ctrl_txt[] = { "L/R", "L/L", "R/R", "R/L"}; static struct soc_enum const data_in_ctrl_enums[] = { SOC_ENUM_SINGLE(R_I2SIDCTL, FB_I2SIDCTL_I2SI1DCTL, ARRAY_SIZE(data_ctrl_txt), data_ctrl_txt), SOC_ENUM_SINGLE(R_I2SIDCTL, FB_I2SIDCTL_I2SI2DCTL, ARRAY_SIZE(data_ctrl_txt), data_ctrl_txt), SOC_ENUM_SINGLE(R_I2SIDCTL, FB_I2SIDCTL_I2SI3DCTL, ARRAY_SIZE(data_ctrl_txt), data_ctrl_txt), }; /* R_I2SODCTL PG 0 ADDR 0x39 */ static struct soc_enum const data_out_ctrl_enums[] = { SOC_ENUM_SINGLE(R_I2SODCTL, FB_I2SODCTL_I2SO1DCTL, ARRAY_SIZE(data_ctrl_txt), data_ctrl_txt), SOC_ENUM_SINGLE(R_I2SODCTL, FB_I2SODCTL_I2SO2DCTL, ARRAY_SIZE(data_ctrl_txt), data_ctrl_txt), SOC_ENUM_SINGLE(R_I2SODCTL, FB_I2SODCTL_I2SO3DCTL, ARRAY_SIZE(data_ctrl_txt), data_ctrl_txt), }; /* R_AUDIOMUX1 PG 0 ADDR 0x3A */ static char const * const asrc_mux_txt[] = { "None", "DAI 1", "DAI 2", "DAI 3"}; static struct soc_enum const asrc_in_mux_enum = SOC_ENUM_SINGLE(R_AUDIOMUX1, FB_AUDIOMUX1_ASRCIMUX, ARRAY_SIZE(asrc_mux_txt), asrc_mux_txt); static char const * const dai_mux_txt[] = { "CH 0_1", "CH 2_3", "CH 4_5", "ADC/DMic 1", "DMic 2", "ClassD", "DAC", "Sub"}; static struct soc_enum const dai2_mux_enum = SOC_ENUM_SINGLE(R_AUDIOMUX1, FB_AUDIOMUX1_I2S2MUX, ARRAY_SIZE(dai_mux_txt), dai_mux_txt); static struct snd_kcontrol_new const dai2_mux_dapm_enum = SOC_DAPM_ENUM("DAI 2 Mux", dai2_mux_enum); static struct soc_enum const dai1_mux_enum = SOC_ENUM_SINGLE(R_AUDIOMUX1, FB_AUDIOMUX1_I2S1MUX, ARRAY_SIZE(dai_mux_txt), dai_mux_txt); static struct snd_kcontrol_new const dai1_mux_dapm_enum = SOC_DAPM_ENUM("DAI 1 Mux", dai1_mux_enum); /* R_AUDIOMUX2 PG 0 ADDR 0x3B */ static struct soc_enum const asrc_out_mux_enum = SOC_ENUM_SINGLE(R_AUDIOMUX2, FB_AUDIOMUX2_ASRCOMUX, ARRAY_SIZE(asrc_mux_txt), asrc_mux_txt); static struct soc_enum const dac_mux_enum = SOC_ENUM_SINGLE(R_AUDIOMUX2, FB_AUDIOMUX2_DACMUX, ARRAY_SIZE(dai_mux_txt), dai_mux_txt); static struct snd_kcontrol_new const dac_mux_dapm_enum = SOC_DAPM_ENUM("DAC Mux", dac_mux_enum); static struct soc_enum const dai3_mux_enum = SOC_ENUM_SINGLE(R_AUDIOMUX2, FB_AUDIOMUX2_I2S3MUX, ARRAY_SIZE(dai_mux_txt), dai_mux_txt); static struct snd_kcontrol_new const dai3_mux_dapm_enum = SOC_DAPM_ENUM("DAI 3 Mux", dai3_mux_enum); /* R_AUDIOMUX3 PG 0 ADDR 0x3C */ static char const * const sub_mux_txt[] = { "CH 0", "CH 1", "CH 0 + 1", "CH 2", "CH 3", "CH 2 + 3", "CH 4", "CH 5", "CH 4 + 5", "ADC/DMic 1 Left", "ADC/DMic 1 Right", "ADC/DMic 1 Left Plus Right", "DMic 2 Left", "DMic 2 Right", "DMic 2 Left Plus Right", "ClassD Left", "ClassD Right", "ClassD Left Plus Right"}; static struct soc_enum const sub_mux_enum = SOC_ENUM_SINGLE(R_AUDIOMUX3, FB_AUDIOMUX3_SUBMUX, ARRAY_SIZE(sub_mux_txt), sub_mux_txt); static struct snd_kcontrol_new const sub_mux_dapm_enum = SOC_DAPM_ENUM("Sub Mux", sub_mux_enum); static struct soc_enum const classd_mux_enum = SOC_ENUM_SINGLE(R_AUDIOMUX3, FB_AUDIOMUX3_CLSSDMUX, ARRAY_SIZE(dai_mux_txt), dai_mux_txt); static struct snd_kcontrol_new const classd_mux_dapm_enum = SOC_DAPM_ENUM("ClassD Mux", classd_mux_enum); /* R_HSDCTL1 PG 1 ADDR 0x01 */ static char const * const jack_type_txt[] = { "3 Terminal", "4 Terminal"}; static struct soc_enum const hp_jack_type_enum = SOC_ENUM_SINGLE(R_HSDCTL1, FB_HSDCTL1_HPJKTYPE, ARRAY_SIZE(jack_type_txt), jack_type_txt); static char const * const hs_det_pol_txt[] = { "Rising", "Falling"}; static struct soc_enum const hs_det_pol_enum = SOC_ENUM_SINGLE(R_HSDCTL1, FB_HSDCTL1_HSDETPOL, ARRAY_SIZE(hs_det_pol_txt), hs_det_pol_txt); /* R_HSDCTL1 PG 1 ADDR 0x02 */ static char const * const hs_mic_bias_force_txt[] = { "Off", "Ring", "Sleeve"}; static struct soc_enum const hs_mic_bias_force_enum = SOC_ENUM_SINGLE(R_HSDCTL2, FB_HSDCTL2_FMICBIAS1, ARRAY_SIZE(hs_mic_bias_force_txt), hs_mic_bias_force_txt); static char const * const plug_type_txt[] = { "OMTP", "CTIA", "Reserved", "Headphone"}; static struct soc_enum const plug_type_force_enum = SOC_ENUM_SINGLE(R_HSDCTL2, FB_HSDCTL2_FPLUGTYPE, ARRAY_SIZE(plug_type_txt), plug_type_txt); /* R_CH0AIC PG 1 ADDR 0x06 */ static char const * const in_bst_mux_txt[] = { "Input 1", "Input 2", "Input 3", "D2S"}; static struct soc_enum const in_bst_mux_ch0_enum = SOC_ENUM_SINGLE(R_CH0AIC, FB_CH0AIC_INSELL, ARRAY_SIZE(in_bst_mux_txt), in_bst_mux_txt); static struct snd_kcontrol_new const in_bst_mux_ch0_dapm_enum = SOC_DAPM_ENUM("Input Boost Channel 0 Enum", in_bst_mux_ch0_enum); static DECLARE_TLV_DB_SCALE(in_bst_vol_tlv_arr, 0, 1000, 0); static char const * const adc_mux_txt[] = { "Input 1 Boost Bypass", "Input 2 Boost Bypass", "Input 3 Boost Bypass", "Input Boost"}; static struct soc_enum const adc_mux_ch0_enum = SOC_ENUM_SINGLE(R_CH0AIC, FB_CH0AIC_LADCIN, ARRAY_SIZE(adc_mux_txt), adc_mux_txt); static struct snd_kcontrol_new const adc_mux_ch0_dapm_enum = SOC_DAPM_ENUM("ADC Channel 0 Enum", adc_mux_ch0_enum); static char const * const in_proc_mux_txt[] = { "ADC", "DMic"}; static struct soc_enum const in_proc_ch0_enum = SOC_ENUM_SINGLE(R_CH0AIC, FB_CH0AIC_IPCH0S, ARRAY_SIZE(in_proc_mux_txt), in_proc_mux_txt); static struct snd_kcontrol_new const in_proc_mux_ch0_dapm_enum = SOC_DAPM_ENUM("Input Processor Channel 0 Enum", in_proc_ch0_enum); /* R_CH1AIC PG 1 ADDR 0x07 */ static struct soc_enum const in_bst_mux_ch1_enum = SOC_ENUM_SINGLE(R_CH1AIC, FB_CH1AIC_INSELR, ARRAY_SIZE(in_bst_mux_txt), in_bst_mux_txt); static struct snd_kcontrol_new const in_bst_mux_ch1_dapm_enum = SOC_DAPM_ENUM("Input Boost Channel 1 Enum", in_bst_mux_ch1_enum); static struct soc_enum const adc_mux_ch1_enum = SOC_ENUM_SINGLE(R_CH1AIC, FB_CH1AIC_RADCIN, ARRAY_SIZE(adc_mux_txt), adc_mux_txt); static struct snd_kcontrol_new const adc_mux_ch1_dapm_enum = SOC_DAPM_ENUM("ADC Channel 1 Enum", adc_mux_ch1_enum); static struct soc_enum const in_proc_ch1_enum = SOC_ENUM_SINGLE(R_CH1AIC, FB_CH1AIC_IPCH1S, ARRAY_SIZE(in_proc_mux_txt), in_proc_mux_txt); static struct snd_kcontrol_new const in_proc_mux_ch1_dapm_enum = SOC_DAPM_ENUM("Input Processor Channel 1 Enum", in_proc_ch1_enum); /* R_ICTL0 PG 1 ADDR 0x0A */ static char const * const pol_txt[] = { "Normal", "Invert"}; static struct soc_enum const in_pol_ch1_enum = SOC_ENUM_SINGLE(R_ICTL0, FB_ICTL0_IN0POL, ARRAY_SIZE(pol_txt), pol_txt); static struct soc_enum const in_pol_ch0_enum = SOC_ENUM_SINGLE(R_ICTL0, FB_ICTL0_IN1POL, ARRAY_SIZE(pol_txt), pol_txt); static char const * const in_proc_ch_sel_txt[] = { "Normal", "Mono Mix to Channel 0", "Mono Mix to Channel 1", "Add"}; static struct soc_enum const in_proc_ch01_sel_enum = SOC_ENUM_SINGLE(R_ICTL0, FB_ICTL0_INPCH10SEL, ARRAY_SIZE(in_proc_ch_sel_txt), in_proc_ch_sel_txt); /* R_ICTL1 PG 1 ADDR 0x0B */ static struct soc_enum const in_pol_ch3_enum = SOC_ENUM_SINGLE(R_ICTL1, FB_ICTL1_IN2POL, ARRAY_SIZE(pol_txt), pol_txt); static struct soc_enum const in_pol_ch2_enum = SOC_ENUM_SINGLE(R_ICTL1, FB_ICTL1_IN3POL, ARRAY_SIZE(pol_txt), pol_txt); static struct soc_enum const in_proc_ch23_sel_enum = SOC_ENUM_SINGLE(R_ICTL1, FB_ICTL1_INPCH32SEL, ARRAY_SIZE(in_proc_ch_sel_txt), in_proc_ch_sel_txt); /* R_MICBIAS PG 1 ADDR 0x0C */ static char const * const mic_bias_txt[] = { "2.5V", "2.1V", "1.8V", "Vdd"}; static struct soc_enum const mic_bias_2_enum = SOC_ENUM_SINGLE(R_MICBIAS, FB_MICBIAS_MICBOV2, ARRAY_SIZE(mic_bias_txt), mic_bias_txt); static struct soc_enum const mic_bias_1_enum = SOC_ENUM_SINGLE(R_MICBIAS, FB_MICBIAS_MICBOV1, ARRAY_SIZE(mic_bias_txt), mic_bias_txt); /* R_PGACTL0 PG 1 ADDR 0x0D */ /* R_PGACTL1 PG 1 ADDR 0x0E */ /* R_PGACTL2 PG 1 ADDR 0x0F */ /* R_PGACTL3 PG 1 ADDR 0x10 */ static DECLARE_TLV_DB_SCALE(in_pga_vol_tlv_arr, -1725, 75, 0); /* R_ICH0VOL PG1 ADDR 0x12 */ /* R_ICH1VOL PG1 ADDR 0x13 */ /* R_ICH2VOL PG1 ADDR 0x14 */ /* R_ICH3VOL PG1 ADDR 0x15 */ static DECLARE_TLV_DB_MINMAX(in_vol_tlv_arr, -7125, 2400); /* R_ASRCILVOL PG1 ADDR 0x16 */ /* R_ASRCIRVOL PG1 ADDR 0x17 */ /* R_ASRCOLVOL PG1 ADDR 0x18 */ /* R_ASRCORVOL PG1 ADDR 0x19 */ static DECLARE_TLV_DB_MINMAX(asrc_vol_tlv_arr, -9562, 600); /* R_ALCCTL0 PG1 ADDR 0x1D */ static char const * const alc_mode_txt[] = { "ALC", "Limiter"}; static struct soc_enum const alc_mode_enum = SOC_ENUM_SINGLE(R_ALCCTL0, FB_ALCCTL0_ALCMODE, ARRAY_SIZE(alc_mode_txt), alc_mode_txt); static char const * const alc_ref_text[] = { "Channel 0", "Channel 1", "Channel 2", "Channel 3", "Peak"}; static struct soc_enum const alc_ref_enum = SOC_ENUM_SINGLE(R_ALCCTL0, FB_ALCCTL0_ALCREF, ARRAY_SIZE(alc_ref_text), alc_ref_text); /* R_ALCCTL1 PG 1 ADDR 0x1E */ static DECLARE_TLV_DB_SCALE(alc_max_gain_tlv_arr, -1200, 600, 0); static DECLARE_TLV_DB_SCALE(alc_target_tlv_arr, -2850, 150, 0); /* R_ALCCTL2 PG 1 ADDR 0x1F */ static DECLARE_TLV_DB_SCALE(alc_min_gain_tlv_arr, -1725, 600, 0); /* R_NGATE PG 1 ADDR 0x21 */ static DECLARE_TLV_DB_SCALE(ngth_tlv_arr, -7650, 150, 0); static char const * const ngate_type_txt[] = { "PGA Constant", "ADC Mute"}; static struct soc_enum const ngate_type_enum = SOC_ENUM_SINGLE(R_NGATE, FB_NGATE_NGG, ARRAY_SIZE(ngate_type_txt), ngate_type_txt); /* R_DMICCTL PG 1 ADDR 0x22 */ static char const * const dmic_mono_sel_txt[] = { "Stereo", "Mono"}; static struct soc_enum const dmic_mono_sel_enum = SOC_ENUM_SINGLE(R_DMICCTL, FB_DMICCTL_DMONO, ARRAY_SIZE(dmic_mono_sel_txt), dmic_mono_sel_txt); /* R_DACCTL PG 2 ADDR 0x01 */ static struct soc_enum const dac_pol_r_enum = SOC_ENUM_SINGLE(R_DACCTL, FB_DACCTL_DACPOLR, ARRAY_SIZE(pol_txt), pol_txt); static struct soc_enum const dac_pol_l_enum = SOC_ENUM_SINGLE(R_DACCTL, FB_DACCTL_DACPOLL, ARRAY_SIZE(pol_txt), pol_txt); static char const * const dac_dith_txt[] = { "Half", "Full", "Disabled", "Static"}; static struct soc_enum const dac_dith_enum = SOC_ENUM_SINGLE(R_DACCTL, FB_DACCTL_DACDITH, ARRAY_SIZE(dac_dith_txt), dac_dith_txt); /* R_SPKCTL PG 2 ADDR 0x02 */ static struct soc_enum const spk_pol_r_enum = SOC_ENUM_SINGLE(R_SPKCTL, FB_SPKCTL_SPKPOLR, ARRAY_SIZE(pol_txt), pol_txt); static struct soc_enum const spk_pol_l_enum = SOC_ENUM_SINGLE(R_SPKCTL, FB_SPKCTL_SPKPOLL, ARRAY_SIZE(pol_txt), pol_txt); /* R_SUBCTL PG 2 ADDR 0x03 */ static struct soc_enum const sub_pol_enum = SOC_ENUM_SINGLE(R_SUBCTL, FB_SUBCTL_SUBPOL, ARRAY_SIZE(pol_txt), pol_txt); /* R_MVOLL PG 2 ADDR 0x08 */ /* R_MVOLR PG 2 ADDR 0x09 */ static DECLARE_TLV_DB_MINMAX(mvol_tlv_arr, -9562, 0); /* R_HPVOLL PG 2 ADDR 0x0A */ /* R_HPVOLR PG 2 ADDR 0x0B */ static DECLARE_TLV_DB_SCALE(hp_vol_tlv_arr, -8850, 75, 0); /* R_SPKVOLL PG 2 ADDR 0x0C */ /* R_SPKVOLR PG 2 ADDR 0x0D */ static DECLARE_TLV_DB_SCALE(spk_vol_tlv_arr, -7725, 75, 0); /* R_SPKEQFILT PG 3 ADDR 0x01 */ static char const * const eq_txt[] = { "Pre Scale", "Pre Scale + EQ Band 0", "Pre Scale + EQ Band 0 - 1", "Pre Scale + EQ Band 0 - 2", "Pre Scale + EQ Band 0 - 3", "Pre Scale + EQ Band 0 - 4", "Pre Scale + EQ Band 0 - 5", }; static struct soc_enum const spk_eq_enums[] = { SOC_ENUM_SINGLE(R_SPKEQFILT, FB_SPKEQFILT_EQ2BE, ARRAY_SIZE(eq_txt), eq_txt), SOC_ENUM_SINGLE(R_SPKEQFILT, FB_SPKEQFILT_EQ1BE, ARRAY_SIZE(eq_txt), eq_txt), }; /* R_SPKMBCCTL PG 3 ADDR 0x0B */ static char const * const lvl_mode_txt[] = { "Average", "Peak"}; static struct soc_enum const spk_mbc3_lvl_det_mode_enum = SOC_ENUM_SINGLE(R_SPKMBCCTL, FB_SPKMBCCTL_LVLMODE3, ARRAY_SIZE(lvl_mode_txt), lvl_mode_txt); static char const * const win_sel_txt[] = { "512", "64"}; static struct soc_enum const spk_mbc3_win_sel_enum = SOC_ENUM_SINGLE(R_SPKMBCCTL, FB_SPKMBCCTL_WINSEL3, ARRAY_SIZE(win_sel_txt), win_sel_txt); static struct soc_enum const spk_mbc2_lvl_det_mode_enum = SOC_ENUM_SINGLE(R_SPKMBCCTL, FB_SPKMBCCTL_LVLMODE2, ARRAY_SIZE(lvl_mode_txt), lvl_mode_txt); static struct soc_enum const spk_mbc2_win_sel_enum = SOC_ENUM_SINGLE(R_SPKMBCCTL, FB_SPKMBCCTL_WINSEL2, ARRAY_SIZE(win_sel_txt), win_sel_txt); static struct soc_enum const spk_mbc1_lvl_det_mode_enum = SOC_ENUM_SINGLE(R_SPKMBCCTL, FB_SPKMBCCTL_LVLMODE1, ARRAY_SIZE(lvl_mode_txt), lvl_mode_txt); static struct soc_enum const spk_mbc1_win_sel_enum = SOC_ENUM_SINGLE(R_SPKMBCCTL, FB_SPKMBCCTL_WINSEL1, ARRAY_SIZE(win_sel_txt), win_sel_txt); /* R_SPKMBCMUG1 PG 3 ADDR 0x0C */ static struct soc_enum const spk_mbc1_phase_pol_enum = SOC_ENUM_SINGLE(R_SPKMBCMUG1, FB_SPKMBCMUG_PHASE, ARRAY_SIZE(pol_txt), pol_txt); static DECLARE_TLV_DB_MINMAX(mbc_mug_tlv_arr, -4650, 0); /* R_SPKMBCTHR1 PG 3 ADDR 0x0D */ static DECLARE_TLV_DB_MINMAX(thr_tlv_arr, -9562, 0); /* R_SPKMBCRAT1 PG 3 ADDR 0x0E */ static char const * const comp_rat_txt[] = { "Reserved", "1.5:1", "2:1", "3:1", "4:1", "5:1", "6:1", "7:1", "8:1", "9:1", "10:1", "11:1", "12:1", "13:1", "14:1", "15:1", "16:1", "17:1", "18:1", "19:1", "20:1"}; static struct soc_enum const spk_mbc1_comp_rat_enum = SOC_ENUM_SINGLE(R_SPKMBCRAT1, FB_SPKMBCRAT_RATIO, ARRAY_SIZE(comp_rat_txt), comp_rat_txt); /* R_SPKMBCMUG2 PG 3 ADDR 0x13 */ static struct soc_enum const spk_mbc2_phase_pol_enum = SOC_ENUM_SINGLE(R_SPKMBCMUG2, FB_SPKMBCMUG_PHASE, ARRAY_SIZE(pol_txt), pol_txt); /* R_SPKMBCRAT2 PG 3 ADDR 0x15 */ static struct soc_enum const spk_mbc2_comp_rat_enum = SOC_ENUM_SINGLE(R_SPKMBCRAT2, FB_SPKMBCRAT_RATIO, ARRAY_SIZE(comp_rat_txt), comp_rat_txt); /* R_SPKMBCMUG3 PG 3 ADDR 0x1A */ static struct soc_enum const spk_mbc3_phase_pol_enum = SOC_ENUM_SINGLE(R_SPKMBCMUG3, FB_SPKMBCMUG_PHASE, ARRAY_SIZE(pol_txt), pol_txt); /* R_SPKMBCRAT3 PG 3 ADDR 0x1C */ static struct soc_enum const spk_mbc3_comp_rat_enum = SOC_ENUM_SINGLE(R_SPKMBCRAT3, FB_SPKMBCRAT_RATIO, ARRAY_SIZE(comp_rat_txt), comp_rat_txt); /* R_SPKCLECTL PG 3 ADDR 0x21 */ static struct soc_enum const spk_cle_lvl_mode_enum = SOC_ENUM_SINGLE(R_SPKCLECTL, FB_SPKCLECTL_LVLMODE, ARRAY_SIZE(lvl_mode_txt), lvl_mode_txt); static struct soc_enum const spk_cle_win_sel_enum = SOC_ENUM_SINGLE(R_SPKCLECTL, FB_SPKCLECTL_WINSEL, ARRAY_SIZE(win_sel_txt), win_sel_txt); /* R_SPKCLEMUG PG 3 ADDR 0x22 */ static DECLARE_TLV_DB_MINMAX(cle_mug_tlv_arr, 0, 4650); /* R_SPKCOMPRAT PG 3 ADDR 0x24 */ static struct soc_enum const spk_comp_rat_enum = SOC_ENUM_SINGLE(R_SPKCOMPRAT, FB_SPKCOMPRAT_RATIO, ARRAY_SIZE(comp_rat_txt), comp_rat_txt); /* R_SPKEXPTHR PG 3 ADDR 0x2F */ static char const * const exp_rat_txt[] = { "Reserved", "Reserved", "1:2", "1:3", "1:4", "1:5", "1:6", "1:7"}; static struct soc_enum const spk_exp_rat_enum = SOC_ENUM_SINGLE(R_SPKEXPRAT, FB_SPKEXPRAT_RATIO, ARRAY_SIZE(exp_rat_txt), exp_rat_txt); /* R_DACEQFILT PG 4 ADDR 0x01 */ static struct soc_enum const dac_eq_enums[] = { SOC_ENUM_SINGLE(R_DACEQFILT, FB_DACEQFILT_EQ2BE, ARRAY_SIZE(eq_txt), eq_txt), SOC_ENUM_SINGLE(R_DACEQFILT, FB_DACEQFILT_EQ1BE, ARRAY_SIZE(eq_txt), eq_txt), }; /* R_DACMBCCTL PG 4 ADDR 0x0B */ static struct soc_enum const dac_mbc3_lvl_det_mode_enum = SOC_ENUM_SINGLE(R_DACMBCCTL, FB_DACMBCCTL_LVLMODE3, ARRAY_SIZE(lvl_mode_txt), lvl_mode_txt); static struct soc_enum const dac_mbc3_win_sel_enum = SOC_ENUM_SINGLE(R_DACMBCCTL, FB_DACMBCCTL_WINSEL3, ARRAY_SIZE(win_sel_txt), win_sel_txt); static struct soc_enum const dac_mbc2_lvl_det_mode_enum = SOC_ENUM_SINGLE(R_DACMBCCTL, FB_DACMBCCTL_LVLMODE2, ARRAY_SIZE(lvl_mode_txt), lvl_mode_txt); static struct soc_enum const dac_mbc2_win_sel_enum = SOC_ENUM_SINGLE(R_DACMBCCTL, FB_DACMBCCTL_WINSEL2, ARRAY_SIZE(win_sel_txt), win_sel_txt); static struct soc_enum const dac_mbc1_lvl_det_mode_enum = SOC_ENUM_SINGLE(R_DACMBCCTL, FB_DACMBCCTL_LVLMODE1, ARRAY_SIZE(lvl_mode_txt), lvl_mode_txt); static struct soc_enum const dac_mbc1_win_sel_enum = SOC_ENUM_SINGLE(R_DACMBCCTL, FB_DACMBCCTL_WINSEL1, ARRAY_SIZE(win_sel_txt), win_sel_txt); /* R_DACMBCMUG1 PG 4 ADDR 0x0C */ static struct soc_enum const dac_mbc1_phase_pol_enum = SOC_ENUM_SINGLE(R_DACMBCMUG1, FB_DACMBCMUG_PHASE, ARRAY_SIZE(pol_txt), pol_txt); /* R_DACMBCRAT1 PG 4 ADDR 0x0E */ static struct soc_enum const dac_mbc1_comp_rat_enum = SOC_ENUM_SINGLE(R_DACMBCRAT1, FB_DACMBCRAT_RATIO, ARRAY_SIZE(comp_rat_txt), comp_rat_txt); /* R_DACMBCMUG2 PG 4 ADDR 0x13 */ static struct soc_enum const dac_mbc2_phase_pol_enum = SOC_ENUM_SINGLE(R_DACMBCMUG2, FB_DACMBCMUG_PHASE, ARRAY_SIZE(pol_txt), pol_txt); /* R_DACMBCRAT2 PG 4 ADDR 0x15 */ static struct soc_enum const dac_mbc2_comp_rat_enum = SOC_ENUM_SINGLE(R_DACMBCRAT2, FB_DACMBCRAT_RATIO, ARRAY_SIZE(comp_rat_txt), comp_rat_txt); /* R_DACMBCMUG3 PG 4 ADDR 0x1A */ static struct soc_enum const dac_mbc3_phase_pol_enum = SOC_ENUM_SINGLE(R_DACMBCMUG3, FB_DACMBCMUG_PHASE, ARRAY_SIZE(pol_txt), pol_txt); /* R_DACMBCRAT3 PG 4 ADDR 0x1C */ static struct soc_enum const dac_mbc3_comp_rat_enum = SOC_ENUM_SINGLE(R_DACMBCRAT3, FB_DACMBCRAT_RATIO, ARRAY_SIZE(comp_rat_txt), comp_rat_txt); /* R_DACCLECTL PG 4 ADDR 0x21 */ static struct soc_enum const dac_cle_lvl_mode_enum = SOC_ENUM_SINGLE(R_DACCLECTL, FB_DACCLECTL_LVLMODE, ARRAY_SIZE(lvl_mode_txt), lvl_mode_txt); static struct soc_enum const dac_cle_win_sel_enum = SOC_ENUM_SINGLE(R_DACCLECTL, FB_DACCLECTL_WINSEL, ARRAY_SIZE(win_sel_txt), win_sel_txt); /* R_DACCOMPRAT PG 4 ADDR 0x24 */ static struct soc_enum const dac_comp_rat_enum = SOC_ENUM_SINGLE(R_DACCOMPRAT, FB_DACCOMPRAT_RATIO, ARRAY_SIZE(comp_rat_txt), comp_rat_txt); /* R_DACEXPRAT PG 4 ADDR 0x30 */ static struct soc_enum const dac_exp_rat_enum = SOC_ENUM_SINGLE(R_DACEXPRAT, FB_DACEXPRAT_RATIO, ARRAY_SIZE(exp_rat_txt), exp_rat_txt); /* R_SUBEQFILT PG 5 ADDR 0x01 */ static struct soc_enum const sub_eq_enums[] = { SOC_ENUM_SINGLE(R_SUBEQFILT, FB_SUBEQFILT_EQ2BE, ARRAY_SIZE(eq_txt), eq_txt), SOC_ENUM_SINGLE(R_SUBEQFILT, FB_SUBEQFILT_EQ1BE, ARRAY_SIZE(eq_txt), eq_txt), }; /* R_SUBMBCCTL PG 5 ADDR 0x0B */ static struct soc_enum const sub_mbc3_lvl_det_mode_enum = SOC_ENUM_SINGLE(R_SUBMBCCTL, FB_SUBMBCCTL_LVLMODE3, ARRAY_SIZE(lvl_mode_txt), lvl_mode_txt); static struct soc_enum const sub_mbc3_win_sel_enum = SOC_ENUM_SINGLE(R_SUBMBCCTL, FB_SUBMBCCTL_WINSEL3, ARRAY_SIZE(win_sel_txt), win_sel_txt); static struct soc_enum const sub_mbc2_lvl_det_mode_enum = SOC_ENUM_SINGLE(R_SUBMBCCTL, FB_SUBMBCCTL_LVLMODE2, ARRAY_SIZE(lvl_mode_txt), lvl_mode_txt); static struct soc_enum const sub_mbc2_win_sel_enum = SOC_ENUM_SINGLE(R_SUBMBCCTL, FB_SUBMBCCTL_WINSEL2, ARRAY_SIZE(win_sel_txt), win_sel_txt); static struct soc_enum const sub_mbc1_lvl_det_mode_enum = SOC_ENUM_SINGLE(R_SUBMBCCTL, FB_SUBMBCCTL_LVLMODE1, ARRAY_SIZE(lvl_mode_txt), lvl_mode_txt); static struct soc_enum const sub_mbc1_win_sel_enum = SOC_ENUM_SINGLE(R_SUBMBCCTL, FB_SUBMBCCTL_WINSEL1, ARRAY_SIZE(win_sel_txt), win_sel_txt); /* R_SUBMBCMUG1 PG 5 ADDR 0x0C */ static struct soc_enum const sub_mbc1_phase_pol_enum = SOC_ENUM_SINGLE(R_SUBMBCMUG1, FB_SUBMBCMUG_PHASE, ARRAY_SIZE(pol_txt), pol_txt); /* R_SUBMBCRAT1 PG 5 ADDR 0x0E */ static struct soc_enum const sub_mbc1_comp_rat_enum = SOC_ENUM_SINGLE(R_SUBMBCRAT1, FB_SUBMBCRAT_RATIO, ARRAY_SIZE(comp_rat_txt), comp_rat_txt); /* R_SUBMBCMUG2 PG 5 ADDR 0x13 */ static struct soc_enum const sub_mbc2_phase_pol_enum = SOC_ENUM_SINGLE(R_SUBMBCMUG2, FB_SUBMBCMUG_PHASE, ARRAY_SIZE(pol_txt), pol_txt); /* R_SUBMBCRAT2 PG 5 ADDR 0x15 */ static struct soc_enum const sub_mbc2_comp_rat_enum = SOC_ENUM_SINGLE(R_SUBMBCRAT2, FB_SUBMBCRAT_RATIO, ARRAY_SIZE(comp_rat_txt), comp_rat_txt); /* R_SUBMBCMUG3 PG 5 ADDR 0x1A */ static struct soc_enum const sub_mbc3_phase_pol_enum = SOC_ENUM_SINGLE(R_SUBMBCMUG3, FB_SUBMBCMUG_PHASE, ARRAY_SIZE(pol_txt), pol_txt); /* R_SUBMBCRAT3 PG 5 ADDR 0x1C */ static struct soc_enum const sub_mbc3_comp_rat_enum = SOC_ENUM_SINGLE(R_SUBMBCRAT3, FB_SUBMBCRAT_RATIO, ARRAY_SIZE(comp_rat_txt), comp_rat_txt); /* R_SUBCLECTL PG 5 ADDR 0x21 */ static struct soc_enum const sub_cle_lvl_mode_enum = SOC_ENUM_SINGLE(R_SUBCLECTL, FB_SUBCLECTL_LVLMODE, ARRAY_SIZE(lvl_mode_txt), lvl_mode_txt); static struct soc_enum const sub_cle_win_sel_enum = SOC_ENUM_SINGLE(R_SUBCLECTL, FB_SUBCLECTL_WINSEL, ARRAY_SIZE(win_sel_txt), win_sel_txt); /* R_SUBCOMPRAT PG 5 ADDR 0x24 */ static struct soc_enum const sub_comp_rat_enum = SOC_ENUM_SINGLE(R_SUBCOMPRAT, FB_SUBCOMPRAT_RATIO, ARRAY_SIZE(comp_rat_txt), comp_rat_txt); /* R_SUBEXPRAT PG 5 ADDR 0x30 */ static struct soc_enum const sub_exp_rat_enum = SOC_ENUM_SINGLE(R_SUBEXPRAT, FB_SUBEXPRAT_RATIO, ARRAY_SIZE(exp_rat_txt), exp_rat_txt); static int bytes_info_ext(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *ucontrol) { struct coeff_ram_ctl *ctl = (struct coeff_ram_ctl *)kcontrol->private_value; struct soc_bytes_ext *params = &ctl->bytes_ext; ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES; ucontrol->count = params->max; return 0; } /* CH 0_1 Input Mux */ static char const * const ch_0_1_mux_txt[] = {"DAI 1", "TDM 0_1"}; static struct soc_enum const ch_0_1_mux_enum = SOC_ENUM_SINGLE(SND_SOC_NOPM, 0, ARRAY_SIZE(ch_0_1_mux_txt), ch_0_1_mux_txt); static struct snd_kcontrol_new const ch_0_1_mux_dapm_enum = SOC_DAPM_ENUM("CH 0_1 Input Mux", ch_0_1_mux_enum); /* CH 2_3 Input Mux */ static char const * const ch_2_3_mux_txt[] = {"DAI 2", "TDM 2_3"}; static struct soc_enum const ch_2_3_mux_enum = SOC_ENUM_SINGLE(SND_SOC_NOPM, 0, ARRAY_SIZE(ch_2_3_mux_txt), ch_2_3_mux_txt); static struct snd_kcontrol_new const ch_2_3_mux_dapm_enum = SOC_DAPM_ENUM("CH 2_3 Input Mux", ch_2_3_mux_enum); /* CH 4_5 Input Mux */ static char const * const ch_4_5_mux_txt[] = {"DAI 3", "TDM 4_5"}; static struct soc_enum const ch_4_5_mux_enum = SOC_ENUM_SINGLE(SND_SOC_NOPM, 0, ARRAY_SIZE(ch_4_5_mux_txt), ch_4_5_mux_txt); static struct snd_kcontrol_new const ch_4_5_mux_dapm_enum = SOC_DAPM_ENUM("CH 4_5 Input Mux", ch_4_5_mux_enum); #define COEFF_RAM_CTL(xname, xcount, xaddr) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ .info = bytes_info_ext, \ .get = coeff_ram_get, .put = coeff_ram_put, \ .private_value = (unsigned long)&(struct coeff_ram_ctl) { \ .addr = xaddr, \ .bytes_ext = {.max = xcount, }, \ } \ } static struct snd_kcontrol_new const tscs454_snd_controls[] = { /* R_PLLCTL PG 0 ADDR 0x15 */ SOC_ENUM("PLL BCLK Input", bclk_sel_enum), /* R_ISRC PG 0 ADDR 0x16 */ SOC_ENUM("Internal Rate", isrc_br_enum), SOC_ENUM("Internal Rate Multiple", isrc_bm_enum), /* R_SCLKCTL PG 0 ADDR 0x18 */ SOC_ENUM("ADC Modular Rate", adc_modular_rate_enum), SOC_ENUM("DAC Modular Rate", dac_modular_rate_enum), /* R_ASRC PG 0 ADDR 0x28 */ SOC_SINGLE("ASRC Out High Bandwidth Switch", R_ASRC, FB_ASRC_ASRCOBW, 1, 0), SOC_SINGLE("ASRC In High Bandwidth Switch", R_ASRC, FB_ASRC_ASRCIBW, 1, 0), /* R_I2SIDCTL PG 0 ADDR 0x38 */ SOC_ENUM("I2S 1 Data In Control", data_in_ctrl_enums[0]), SOC_ENUM("I2S 2 Data In Control", data_in_ctrl_enums[1]), SOC_ENUM("I2S 3 Data In Control", data_in_ctrl_enums[2]), /* R_I2SODCTL PG 0 ADDR 0x39 */ SOC_ENUM("I2S 1 Data Out Control", data_out_ctrl_enums[0]), SOC_ENUM("I2S 2 Data Out Control", data_out_ctrl_enums[1]), SOC_ENUM("I2S 3 Data Out Control", data_out_ctrl_enums[2]), /* R_AUDIOMUX1 PG 0 ADDR 0x3A */ SOC_ENUM("ASRC In", asrc_in_mux_enum), /* R_AUDIOMUX2 PG 0 ADDR 0x3B */ SOC_ENUM("ASRC Out", asrc_out_mux_enum), /* R_HSDCTL1 PG 1 ADDR 0x01 */ SOC_ENUM("Headphone Jack Type", hp_jack_type_enum), SOC_ENUM("Headset Detection Polarity", hs_det_pol_enum), SOC_SINGLE("Headphone Detection Switch", R_HSDCTL1, FB_HSDCTL1_HPID_EN, 1, 0), SOC_SINGLE("Headset OMTP/CTIA Switch", R_HSDCTL1, FB_HSDCTL1_GBLHS_EN, 1, 0), /* R_HSDCTL1 PG 1 ADDR 0x02 */ SOC_ENUM("Headset Mic Bias Force", hs_mic_bias_force_enum), SOC_SINGLE("Manual Mic Bias Switch", R_HSDCTL2, FB_HSDCTL2_MB1MODE, 1, 0), SOC_SINGLE("Ring/Sleeve Auto Switch", R_HSDCTL2, FB_HSDCTL2_SWMODE, 1, 0), SOC_ENUM("Manual Mode Plug Type", plug_type_force_enum), /* R_CH0AIC PG 1 ADDR 0x06 */ SOC_SINGLE_TLV("Input Boost Channel 0 Volume", R_CH0AIC, FB_CHAIC_MICBST, 0x3, 0, in_bst_vol_tlv_arr), /* R_CH1AIC PG 1 ADDR 0x07 */ SOC_SINGLE_TLV("Input Boost Channel 1 Volume", R_CH1AIC, FB_CHAIC_MICBST, 0x3, 0, in_bst_vol_tlv_arr), /* R_CH2AIC PG 1 ADDR 0x08 */ SOC_SINGLE_TLV("Input Boost Channel 2 Volume", R_CH2AIC, FB_CHAIC_MICBST, 0x3, 0, in_bst_vol_tlv_arr), /* R_CH3AIC PG 1 ADDR 0x09 */ SOC_SINGLE_TLV("Input Boost Channel 3 Volume", R_CH3AIC, FB_CHAIC_MICBST, 0x3, 0, in_bst_vol_tlv_arr), /* R_ICTL0 PG 1 ADDR 0x0A */ SOC_ENUM("Input Channel 1 Polarity", in_pol_ch1_enum), SOC_ENUM("Input Channel 0 Polarity", in_pol_ch0_enum), SOC_ENUM("Input Processor Channel 0/1 Operation", in_proc_ch01_sel_enum), SOC_SINGLE("Input Channel 1 Mute Switch", R_ICTL0, FB_ICTL0_IN1MUTE, 1, 0), SOC_SINGLE("Input Channel 0 Mute Switch", R_ICTL0, FB_ICTL0_IN0MUTE, 1, 0), SOC_SINGLE("Input Channel 1 HPF Disable Switch", R_ICTL0, FB_ICTL0_IN1HP, 1, 0), SOC_SINGLE("Input Channel 0 HPF Disable Switch", R_ICTL0, FB_ICTL0_IN0HP, 1, 0), /* R_ICTL1 PG 1 ADDR 0x0B */ SOC_ENUM("Input Channel 3 Polarity", in_pol_ch3_enum), SOC_ENUM("Input Channel 2 Polarity", in_pol_ch2_enum), SOC_ENUM("Input Processor Channel 2/3 Operation", in_proc_ch23_sel_enum), SOC_SINGLE("Input Channel 3 Mute Switch", R_ICTL1, FB_ICTL1_IN3MUTE, 1, 0), SOC_SINGLE("Input Channel 2 Mute Switch", R_ICTL1, FB_ICTL1_IN2MUTE, 1, 0), SOC_SINGLE("Input Channel 3 HPF Disable Switch", R_ICTL1, FB_ICTL1_IN3HP, 1, 0), SOC_SINGLE("Input Channel 2 HPF Disable Switch", R_ICTL1, FB_ICTL1_IN2HP, 1, 0), /* R_MICBIAS PG 1 ADDR 0x0C */ SOC_ENUM("Mic Bias 2 Voltage", mic_bias_2_enum), SOC_ENUM("Mic Bias 1 Voltage", mic_bias_1_enum), /* R_PGACTL0 PG 1 ADDR 0x0D */ SOC_SINGLE("Input Channel 0 PGA Mute Switch", R_PGACTL0, FB_PGACTL_PGAMUTE, 1, 0), SOC_SINGLE_TLV("Input Channel 0 PGA Volume", R_PGACTL0, FB_PGACTL_PGAVOL, FM_PGACTL_PGAVOL, 0, in_pga_vol_tlv_arr), /* R_PGACTL1 PG 1 ADDR 0x0E */ SOC_SINGLE("Input Channel 1 PGA Mute Switch", R_PGACTL1, FB_PGACTL_PGAMUTE, 1, 0), SOC_SINGLE_TLV("Input Channel 1 PGA Volume", R_PGACTL1, FB_PGACTL_PGAVOL, FM_PGACTL_PGAVOL, 0, in_pga_vol_tlv_arr), /* R_PGACTL2 PG 1 ADDR 0x0F */ SOC_SINGLE("Input Channel 2 PGA Mute Switch", R_PGACTL2, FB_PGACTL_PGAMUTE, 1, 0), SOC_SINGLE_TLV("Input Channel 2 PGA Volume", R_PGACTL2, FB_PGACTL_PGAVOL, FM_PGACTL_PGAVOL, 0, in_pga_vol_tlv_arr), /* R_PGACTL3 PG 1 ADDR 0x10 */ SOC_SINGLE("Input Channel 3 PGA Mute Switch", R_PGACTL3, FB_PGACTL_PGAMUTE, 1, 0), SOC_SINGLE_TLV("Input Channel 3 PGA Volume", R_PGACTL3, FB_PGACTL_PGAVOL, FM_PGACTL_PGAVOL, 0, in_pga_vol_tlv_arr), /* R_ICH0VOL PG 1 ADDR 0x12 */ SOC_SINGLE_TLV("Input Channel 0 Volume", R_ICH0VOL, FB_ICHVOL_ICHVOL, FM_ICHVOL_ICHVOL, 0, in_vol_tlv_arr), /* R_ICH1VOL PG 1 ADDR 0x13 */ SOC_SINGLE_TLV("Input Channel 1 Volume", R_ICH1VOL, FB_ICHVOL_ICHVOL, FM_ICHVOL_ICHVOL, 0, in_vol_tlv_arr), /* R_ICH2VOL PG 1 ADDR 0x14 */ SOC_SINGLE_TLV("Input Channel 2 Volume", R_ICH2VOL, FB_ICHVOL_ICHVOL, FM_ICHVOL_ICHVOL, 0, in_vol_tlv_arr), /* R_ICH3VOL PG 1 ADDR 0x15 */ SOC_SINGLE_TLV("Input Channel 3 Volume", R_ICH3VOL, FB_ICHVOL_ICHVOL, FM_ICHVOL_ICHVOL, 0, in_vol_tlv_arr), /* R_ASRCILVOL PG 1 ADDR 0x16 */ SOC_SINGLE_TLV("ASRC Input Left Volume", R_ASRCILVOL, FB_ASRCILVOL_ASRCILVOL, FM_ASRCILVOL_ASRCILVOL, 0, asrc_vol_tlv_arr), /* R_ASRCIRVOL PG 1 ADDR 0x17 */ SOC_SINGLE_TLV("ASRC Input Right Volume", R_ASRCIRVOL, FB_ASRCIRVOL_ASRCIRVOL, FM_ASRCIRVOL_ASRCIRVOL, 0, asrc_vol_tlv_arr), /* R_ASRCOLVOL PG 1 ADDR 0x18 */ SOC_SINGLE_TLV("ASRC Output Left Volume", R_ASRCOLVOL, FB_ASRCOLVOL_ASRCOLVOL, FM_ASRCOLVOL_ASRCOLVOL, 0, asrc_vol_tlv_arr), /* R_ASRCORVOL PG 1 ADDR 0x19 */ SOC_SINGLE_TLV("ASRC Output Right Volume", R_ASRCORVOL, FB_ASRCORVOL_ASRCOLVOL, FM_ASRCORVOL_ASRCOLVOL, 0, asrc_vol_tlv_arr), /* R_IVOLCTLU PG 1 ADDR 0x1C */ /* R_ALCCTL0 PG 1 ADDR 0x1D */ SOC_ENUM("ALC Mode", alc_mode_enum), SOC_ENUM("ALC Reference", alc_ref_enum), SOC_SINGLE("Input Channel 3 ALC Switch", R_ALCCTL0, FB_ALCCTL0_ALCEN3, 1, 0), SOC_SINGLE("Input Channel 2 ALC Switch", R_ALCCTL0, FB_ALCCTL0_ALCEN2, 1, 0), SOC_SINGLE("Input Channel 1 ALC Switch", R_ALCCTL0, FB_ALCCTL0_ALCEN1, 1, 0), SOC_SINGLE("Input Channel 0 ALC Switch", R_ALCCTL0, FB_ALCCTL0_ALCEN0, 1, 0), /* R_ALCCTL1 PG 1 ADDR 0x1E */ SOC_SINGLE_TLV("ALC Max Gain Volume", R_ALCCTL1, FB_ALCCTL1_MAXGAIN, FM_ALCCTL1_MAXGAIN, 0, alc_max_gain_tlv_arr), SOC_SINGLE_TLV("ALC Target Volume", R_ALCCTL1, FB_ALCCTL1_ALCL, FM_ALCCTL1_ALCL, 0, alc_target_tlv_arr), /* R_ALCCTL2 PG 1 ADDR 0x1F */ SOC_SINGLE("ALC Zero Cross Switch", R_ALCCTL2, FB_ALCCTL2_ALCZC, 1, 0), SOC_SINGLE_TLV("ALC Min Gain Volume", R_ALCCTL2, FB_ALCCTL2_MINGAIN, FM_ALCCTL2_MINGAIN, 0, alc_min_gain_tlv_arr), SOC_SINGLE_RANGE("ALC Hold", R_ALCCTL2, FB_ALCCTL2_HLD, 0, FM_ALCCTL2_HLD, 0), /* R_ALCCTL3 PG 1 ADDR 0x20 */ SOC_SINGLE_RANGE("ALC Decay", R_ALCCTL3, FB_ALCCTL3_DCY, 0, FM_ALCCTL3_DCY, 0), SOC_SINGLE_RANGE("ALC Attack", R_ALCCTL3, FB_ALCCTL3_ATK, 0, FM_ALCCTL3_ATK, 0), /* R_NGATE PG 1 ADDR 0x21 */ SOC_SINGLE_TLV("Noise Gate Threshold Volume", R_NGATE, FB_NGATE_NGTH, FM_NGATE_NGTH, 0, ngth_tlv_arr), SOC_ENUM("Noise Gate Type", ngate_type_enum), SOC_SINGLE("Noise Gate Switch", R_NGATE, FB_NGATE_NGAT, 1, 0), /* R_DMICCTL PG 1 ADDR 0x22 */ SOC_SINGLE("Digital Mic 2 Switch", R_DMICCTL, FB_DMICCTL_DMIC2EN, 1, 0), SOC_SINGLE("Digital Mic 1 Switch", R_DMICCTL, FB_DMICCTL_DMIC1EN, 1, 0), SOC_ENUM("Digital Mic Mono Select", dmic_mono_sel_enum), /* R_DACCTL PG 2 ADDR 0x01 */ SOC_ENUM("DAC Polarity Left", dac_pol_r_enum), SOC_ENUM("DAC Polarity Right", dac_pol_l_enum), SOC_ENUM("DAC Dither", dac_dith_enum), SOC_SINGLE("DAC Mute Switch", R_DACCTL, FB_DACCTL_DACMUTE, 1, 0), SOC_SINGLE("DAC De-Emphasis Switch", R_DACCTL, FB_DACCTL_DACDEM, 1, 0), /* R_SPKCTL PG 2 ADDR 0x02 */ SOC_ENUM("Speaker Polarity Right", spk_pol_r_enum), SOC_ENUM("Speaker Polarity Left", spk_pol_l_enum), SOC_SINGLE("Speaker Mute Switch", R_SPKCTL, FB_SPKCTL_SPKMUTE, 1, 0), SOC_SINGLE("Speaker De-Emphasis Switch", R_SPKCTL, FB_SPKCTL_SPKDEM, 1, 0), /* R_SUBCTL PG 2 ADDR 0x03 */ SOC_ENUM("Sub Polarity", sub_pol_enum), SOC_SINGLE("SUB Mute Switch", R_SUBCTL, FB_SUBCTL_SUBMUTE, 1, 0), SOC_SINGLE("Sub De-Emphasis Switch", R_SUBCTL, FB_SUBCTL_SUBDEM, 1, 0), /* R_DCCTL PG 2 ADDR 0x04 */ SOC_SINGLE("Sub DC Removal Switch", R_DCCTL, FB_DCCTL_SUBDCBYP, 1, 1), SOC_SINGLE("DAC DC Removal Switch", R_DCCTL, FB_DCCTL_DACDCBYP, 1, 1), SOC_SINGLE("Speaker DC Removal Switch", R_DCCTL, FB_DCCTL_SPKDCBYP, 1, 1), SOC_SINGLE("DC Removal Coefficient Switch", R_DCCTL, FB_DCCTL_DCCOEFSEL, FM_DCCTL_DCCOEFSEL, 0), /* R_OVOLCTLU PG 2 ADDR 0x06 */ SOC_SINGLE("Output Fade Switch", R_OVOLCTLU, FB_OVOLCTLU_OFADE, 1, 0), /* R_MVOLL PG 2 ADDR 0x08 */ /* R_MVOLR PG 2 ADDR 0x09 */ SOC_DOUBLE_R_TLV("Master Volume", R_MVOLL, R_MVOLR, FB_MVOLL_MVOL_L, FM_MVOLL_MVOL_L, 0, mvol_tlv_arr), /* R_HPVOLL PG 2 ADDR 0x0A */ /* R_HPVOLR PG 2 ADDR 0x0B */ SOC_DOUBLE_R_TLV("Headphone Volume", R_HPVOLL, R_HPVOLR, FB_HPVOLL_HPVOL_L, FM_HPVOLL_HPVOL_L, 0, hp_vol_tlv_arr), /* R_SPKVOLL PG 2 ADDR 0x0C */ /* R_SPKVOLR PG 2 ADDR 0x0D */ SOC_DOUBLE_R_TLV("Speaker Volume", R_SPKVOLL, R_SPKVOLR, FB_SPKVOLL_SPKVOL_L, FM_SPKVOLL_SPKVOL_L, 0, spk_vol_tlv_arr), /* R_SUBVOL PG 2 ADDR 0x10 */ SOC_SINGLE_TLV("Sub Volume", R_SUBVOL, FB_SUBVOL_SUBVOL, FM_SUBVOL_SUBVOL, 0, spk_vol_tlv_arr), /* R_SPKEQFILT PG 3 ADDR 0x01 */ SOC_SINGLE("Speaker EQ 2 Switch", R_SPKEQFILT, FB_SPKEQFILT_EQ2EN, 1, 0), SOC_ENUM("Speaker EQ 2 Band", spk_eq_enums[0]), SOC_SINGLE("Speaker EQ 1 Switch", R_SPKEQFILT, FB_SPKEQFILT_EQ1EN, 1, 0), SOC_ENUM("Speaker EQ 1 Band", spk_eq_enums[1]), /* R_SPKMBCEN PG 3 ADDR 0x0A */ SOC_SINGLE("Speaker MBC 3 Switch", R_SPKMBCEN, FB_SPKMBCEN_MBCEN3, 1, 0), SOC_SINGLE("Speaker MBC 2 Switch", R_SPKMBCEN, FB_SPKMBCEN_MBCEN2, 1, 0), SOC_SINGLE("Speaker MBC 1 Switch", R_SPKMBCEN, FB_SPKMBCEN_MBCEN1, 1, 0), /* R_SPKMBCCTL PG 3 ADDR 0x0B */ SOC_ENUM("Speaker MBC 3 Mode", spk_mbc3_lvl_det_mode_enum), SOC_ENUM("Speaker MBC 3 Window", spk_mbc3_win_sel_enum), SOC_ENUM("Speaker MBC 2 Mode", spk_mbc2_lvl_det_mode_enum), SOC_ENUM("Speaker MBC 2 Window", spk_mbc2_win_sel_enum), SOC_ENUM("Speaker MBC 1 Mode", spk_mbc1_lvl_det_mode_enum), SOC_ENUM("Speaker MBC 1 Window", spk_mbc1_win_sel_enum), /* R_SPKMBCMUG1 PG 3 ADDR 0x0C */ SOC_ENUM("Speaker MBC 1 Phase Polarity", spk_mbc1_phase_pol_enum), SOC_SINGLE_TLV("Speaker MBC1 Make-Up Gain Volume", R_SPKMBCMUG1, FB_SPKMBCMUG_MUGAIN, FM_SPKMBCMUG_MUGAIN, 0, mbc_mug_tlv_arr), /* R_SPKMBCTHR1 PG 3 ADDR 0x0D */ SOC_SINGLE_TLV("Speaker MBC 1 Compressor Threshold Volume", R_SPKMBCTHR1, FB_SPKMBCTHR_THRESH, FM_SPKMBCTHR_THRESH, 0, thr_tlv_arr), /* R_SPKMBCRAT1 PG 3 ADDR 0x0E */ SOC_ENUM("Speaker MBC 1 Compressor Ratio", spk_mbc1_comp_rat_enum), /* R_SPKMBCATK1L PG 3 ADDR 0x0F */ /* R_SPKMBCATK1H PG 3 ADDR 0x10 */ SND_SOC_BYTES("Speaker MBC 1 Attack", R_SPKMBCATK1L, 2), /* R_SPKMBCREL1L PG 3 ADDR 0x11 */ /* R_SPKMBCREL1H PG 3 ADDR 0x12 */ SND_SOC_BYTES("Speaker MBC 1 Release", R_SPKMBCREL1L, 2), /* R_SPKMBCMUG2 PG 3 ADDR 0x13 */ SOC_ENUM("Speaker MBC 2 Phase Polarity", spk_mbc2_phase_pol_enum), SOC_SINGLE_TLV("Speaker MBC2 Make-Up Gain Volume", R_SPKMBCMUG2, FB_SPKMBCMUG_MUGAIN, FM_SPKMBCMUG_MUGAIN, 0, mbc_mug_tlv_arr), /* R_SPKMBCTHR2 PG 3 ADDR 0x14 */ SOC_SINGLE_TLV("Speaker MBC 2 Compressor Threshold Volume", R_SPKMBCTHR2, FB_SPKMBCTHR_THRESH, FM_SPKMBCTHR_THRESH, 0, thr_tlv_arr), /* R_SPKMBCRAT2 PG 3 ADDR 0x15 */ SOC_ENUM("Speaker MBC 2 Compressor Ratio", spk_mbc2_comp_rat_enum), /* R_SPKMBCATK2L PG 3 ADDR 0x16 */ /* R_SPKMBCATK2H PG 3 ADDR 0x17 */ SND_SOC_BYTES("Speaker MBC 2 Attack", R_SPKMBCATK2L, 2), /* R_SPKMBCREL2L PG 3 ADDR 0x18 */ /* R_SPKMBCREL2H PG 3 ADDR 0x19 */ SND_SOC_BYTES("Speaker MBC 2 Release", R_SPKMBCREL2L, 2), /* R_SPKMBCMUG3 PG 3 ADDR 0x1A */ SOC_ENUM("Speaker MBC 3 Phase Polarity", spk_mbc3_phase_pol_enum), SOC_SINGLE_TLV("Speaker MBC 3 Make-Up Gain Volume", R_SPKMBCMUG3, FB_SPKMBCMUG_MUGAIN, FM_SPKMBCMUG_MUGAIN, 0, mbc_mug_tlv_arr), /* R_SPKMBCTHR3 PG 3 ADDR 0x1B */ SOC_SINGLE_TLV("Speaker MBC 3 Threshold Volume", R_SPKMBCTHR3, FB_SPKMBCTHR_THRESH, FM_SPKMBCTHR_THRESH, 0, thr_tlv_arr), /* R_SPKMBCRAT3 PG 3 ADDR 0x1C */ SOC_ENUM("Speaker MBC 3 Compressor Ratio", spk_mbc3_comp_rat_enum), /* R_SPKMBCATK3L PG 3 ADDR 0x1D */ /* R_SPKMBCATK3H PG 3 ADDR 0x1E */ SND_SOC_BYTES("Speaker MBC 3 Attack", R_SPKMBCATK3L, 3), /* R_SPKMBCREL3L PG 3 ADDR 0x1F */ /* R_SPKMBCREL3H PG 3 ADDR 0x20 */ SND_SOC_BYTES("Speaker MBC 3 Release", R_SPKMBCREL3L, 3), /* R_SPKCLECTL PG 3 ADDR 0x21 */ SOC_ENUM("Speaker CLE Level Mode", spk_cle_lvl_mode_enum), SOC_ENUM("Speaker CLE Window", spk_cle_win_sel_enum), SOC_SINGLE("Speaker CLE Expander Switch", R_SPKCLECTL, FB_SPKCLECTL_EXPEN, 1, 0), SOC_SINGLE("Speaker CLE Limiter Switch", R_SPKCLECTL, FB_SPKCLECTL_LIMEN, 1, 0), SOC_SINGLE("Speaker CLE Compressor Switch", R_SPKCLECTL, FB_SPKCLECTL_COMPEN, 1, 0), /* R_SPKCLEMUG PG 3 ADDR 0x22 */ SOC_SINGLE_TLV("Speaker CLE Make-Up Gain Volume", R_SPKCLEMUG, FB_SPKCLEMUG_MUGAIN, FM_SPKCLEMUG_MUGAIN, 0, cle_mug_tlv_arr), /* R_SPKCOMPTHR PG 3 ADDR 0x23 */ SOC_SINGLE_TLV("Speaker Compressor Threshold Volume", R_SPKCOMPTHR, FB_SPKCOMPTHR_THRESH, FM_SPKCOMPTHR_THRESH, 0, thr_tlv_arr), /* R_SPKCOMPRAT PG 3 ADDR 0x24 */ SOC_ENUM("Speaker Compressor Ratio", spk_comp_rat_enum), /* R_SPKCOMPATKL PG 3 ADDR 0x25 */ /* R_SPKCOMPATKH PG 3 ADDR 0x26 */ SND_SOC_BYTES("Speaker Compressor Attack", R_SPKCOMPATKL, 2), /* R_SPKCOMPRELL PG 3 ADDR 0x27 */ /* R_SPKCOMPRELH PG 3 ADDR 0x28 */ SND_SOC_BYTES("Speaker Compressor Release", R_SPKCOMPRELL, 2), /* R_SPKLIMTHR PG 3 ADDR 0x29 */ SOC_SINGLE_TLV("Speaker Limiter Threshold Volume", R_SPKLIMTHR, FB_SPKLIMTHR_THRESH, FM_SPKLIMTHR_THRESH, 0, thr_tlv_arr), /* R_SPKLIMTGT PG 3 ADDR 0x2A */ SOC_SINGLE_TLV("Speaker Limiter Target Volume", R_SPKLIMTGT, FB_SPKLIMTGT_TARGET, FM_SPKLIMTGT_TARGET, 0, thr_tlv_arr), /* R_SPKLIMATKL PG 3 ADDR 0x2B */ /* R_SPKLIMATKH PG 3 ADDR 0x2C */ SND_SOC_BYTES("Speaker Limiter Attack", R_SPKLIMATKL, 2), /* R_SPKLIMRELL PG 3 ADDR 0x2D */ /* R_SPKLIMRELR PG 3 ADDR 0x2E */ SND_SOC_BYTES("Speaker Limiter Release", R_SPKLIMRELL, 2), /* R_SPKEXPTHR PG 3 ADDR 0x2F */ SOC_SINGLE_TLV("Speaker Expander Threshold Volume", R_SPKEXPTHR, FB_SPKEXPTHR_THRESH, FM_SPKEXPTHR_THRESH, 0, thr_tlv_arr), /* R_SPKEXPRAT PG 3 ADDR 0x30 */ SOC_ENUM("Speaker Expander Ratio", spk_exp_rat_enum), /* R_SPKEXPATKL PG 3 ADDR 0x31 */ /* R_SPKEXPATKR PG 3 ADDR 0x32 */ SND_SOC_BYTES("Speaker Expander Attack", R_SPKEXPATKL, 2), /* R_SPKEXPRELL PG 3 ADDR 0x33 */ /* R_SPKEXPRELR PG 3 ADDR 0x34 */ SND_SOC_BYTES("Speaker Expander Release", R_SPKEXPRELL, 2), /* R_SPKFXCTL PG 3 ADDR 0x35 */ SOC_SINGLE("Speaker 3D Switch", R_SPKFXCTL, FB_SPKFXCTL_3DEN, 1, 0), SOC_SINGLE("Speaker Treble Enhancement Switch", R_SPKFXCTL, FB_SPKFXCTL_TEEN, 1, 0), SOC_SINGLE("Speaker Treble NLF Switch", R_SPKFXCTL, FB_SPKFXCTL_TNLFBYP, 1, 1), SOC_SINGLE("Speaker Bass Enhancement Switch", R_SPKFXCTL, FB_SPKFXCTL_BEEN, 1, 0), SOC_SINGLE("Speaker Bass NLF Switch", R_SPKFXCTL, FB_SPKFXCTL_BNLFBYP, 1, 1), /* R_DACEQFILT PG 4 ADDR 0x01 */ SOC_SINGLE("DAC EQ 2 Switch", R_DACEQFILT, FB_DACEQFILT_EQ2EN, 1, 0), SOC_ENUM("DAC EQ 2 Band", dac_eq_enums[0]), SOC_SINGLE("DAC EQ 1 Switch", R_DACEQFILT, FB_DACEQFILT_EQ1EN, 1, 0), SOC_ENUM("DAC EQ 1 Band", dac_eq_enums[1]), /* R_DACMBCEN PG 4 ADDR 0x0A */ SOC_SINGLE("DAC MBC 3 Switch", R_DACMBCEN, FB_DACMBCEN_MBCEN3, 1, 0), SOC_SINGLE("DAC MBC 2 Switch", R_DACMBCEN, FB_DACMBCEN_MBCEN2, 1, 0), SOC_SINGLE("DAC MBC 1 Switch", R_DACMBCEN, FB_DACMBCEN_MBCEN1, 1, 0), /* R_DACMBCCTL PG 4 ADDR 0x0B */ SOC_ENUM("DAC MBC 3 Mode", dac_mbc3_lvl_det_mode_enum), SOC_ENUM("DAC MBC 3 Window", dac_mbc3_win_sel_enum), SOC_ENUM("DAC MBC 2 Mode", dac_mbc2_lvl_det_mode_enum), SOC_ENUM("DAC MBC 2 Window", dac_mbc2_win_sel_enum), SOC_ENUM("DAC MBC 1 Mode", dac_mbc1_lvl_det_mode_enum), SOC_ENUM("DAC MBC 1 Window", dac_mbc1_win_sel_enum), /* R_DACMBCMUG1 PG 4 ADDR 0x0C */ SOC_ENUM("DAC MBC 1 Phase Polarity", dac_mbc1_phase_pol_enum), SOC_SINGLE_TLV("DAC MBC 1 Make-Up Gain Volume", R_DACMBCMUG1, FB_DACMBCMUG_MUGAIN, FM_DACMBCMUG_MUGAIN, 0, mbc_mug_tlv_arr), /* R_DACMBCTHR1 PG 4 ADDR 0x0D */ SOC_SINGLE_TLV("DAC MBC 1 Compressor Threshold Volume", R_DACMBCTHR1, FB_DACMBCTHR_THRESH, FM_DACMBCTHR_THRESH, 0, thr_tlv_arr), /* R_DACMBCRAT1 PG 4 ADDR 0x0E */ SOC_ENUM("DAC MBC 1 Compressor Ratio", dac_mbc1_comp_rat_enum), /* R_DACMBCATK1L PG 4 ADDR 0x0F */ /* R_DACMBCATK1H PG 4 ADDR 0x10 */ SND_SOC_BYTES("DAC MBC 1 Attack", R_DACMBCATK1L, 2), /* R_DACMBCREL1L PG 4 ADDR 0x11 */ /* R_DACMBCREL1H PG 4 ADDR 0x12 */ SND_SOC_BYTES("DAC MBC 1 Release", R_DACMBCREL1L, 2), /* R_DACMBCMUG2 PG 4 ADDR 0x13 */ SOC_ENUM("DAC MBC 2 Phase Polarity", dac_mbc2_phase_pol_enum), SOC_SINGLE_TLV("DAC MBC 2 Make-Up Gain Volume", R_DACMBCMUG2, FB_DACMBCMUG_MUGAIN, FM_DACMBCMUG_MUGAIN, 0, mbc_mug_tlv_arr), /* R_DACMBCTHR2 PG 4 ADDR 0x14 */ SOC_SINGLE_TLV("DAC MBC 2 Compressor Threshold Volume", R_DACMBCTHR2, FB_DACMBCTHR_THRESH, FM_DACMBCTHR_THRESH, 0, thr_tlv_arr), /* R_DACMBCRAT2 PG 4 ADDR 0x15 */ SOC_ENUM("DAC MBC 2 Compressor Ratio", dac_mbc2_comp_rat_enum), /* R_DACMBCATK2L PG 4 ADDR 0x16 */ /* R_DACMBCATK2H PG 4 ADDR 0x17 */ SND_SOC_BYTES("DAC MBC 2 Attack", R_DACMBCATK2L, 2), /* R_DACMBCREL2L PG 4 ADDR 0x18 */ /* R_DACMBCREL2H PG 4 ADDR 0x19 */ SND_SOC_BYTES("DAC MBC 2 Release", R_DACMBCREL2L, 2), /* R_DACMBCMUG3 PG 4 ADDR 0x1A */ SOC_ENUM("DAC MBC 3 Phase Polarity", dac_mbc3_phase_pol_enum), SOC_SINGLE_TLV("DAC MBC 3 Make-Up Gain Volume", R_DACMBCMUG3, FB_DACMBCMUG_MUGAIN, FM_DACMBCMUG_MUGAIN, 0, mbc_mug_tlv_arr), /* R_DACMBCTHR3 PG 4 ADDR 0x1B */ SOC_SINGLE_TLV("DAC MBC 3 Threshold Volume", R_DACMBCTHR3, FB_DACMBCTHR_THRESH, FM_DACMBCTHR_THRESH, 0, thr_tlv_arr), /* R_DACMBCRAT3 PG 4 ADDR 0x1C */ SOC_ENUM("DAC MBC 3 Compressor Ratio", dac_mbc3_comp_rat_enum), /* R_DACMBCATK3L PG 4 ADDR 0x1D */ /* R_DACMBCATK3H PG 4 ADDR 0x1E */ SND_SOC_BYTES("DAC MBC 3 Attack", R_DACMBCATK3L, 3), /* R_DACMBCREL3L PG 4 ADDR 0x1F */ /* R_DACMBCREL3H PG 4 ADDR 0x20 */ SND_SOC_BYTES("DAC MBC 3 Release", R_DACMBCREL3L, 3), /* R_DACCLECTL PG 4 ADDR 0x21 */ SOC_ENUM("DAC CLE Level Mode", dac_cle_lvl_mode_enum), SOC_ENUM("DAC CLE Window", dac_cle_win_sel_enum), SOC_SINGLE("DAC CLE Expander Switch", R_DACCLECTL, FB_DACCLECTL_EXPEN, 1, 0), SOC_SINGLE("DAC CLE Limiter Switch", R_DACCLECTL, FB_DACCLECTL_LIMEN, 1, 0), SOC_SINGLE("DAC CLE Compressor Switch", R_DACCLECTL, FB_DACCLECTL_COMPEN, 1, 0), /* R_DACCLEMUG PG 4 ADDR 0x22 */ SOC_SINGLE_TLV("DAC CLE Make-Up Gain Volume", R_DACCLEMUG, FB_DACCLEMUG_MUGAIN, FM_DACCLEMUG_MUGAIN, 0, cle_mug_tlv_arr), /* R_DACCOMPTHR PG 4 ADDR 0x23 */ SOC_SINGLE_TLV("DAC Compressor Threshold Volume", R_DACCOMPTHR, FB_DACCOMPTHR_THRESH, FM_DACCOMPTHR_THRESH, 0, thr_tlv_arr), /* R_DACCOMPRAT PG 4 ADDR 0x24 */ SOC_ENUM("DAC Compressor Ratio", dac_comp_rat_enum), /* R_DACCOMPATKL PG 4 ADDR 0x25 */ /* R_DACCOMPATKH PG 4 ADDR 0x26 */ SND_SOC_BYTES("DAC Compressor Attack", R_DACCOMPATKL, 2), /* R_DACCOMPRELL PG 4 ADDR 0x27 */ /* R_DACCOMPRELH PG 4 ADDR 0x28 */ SND_SOC_BYTES("DAC Compressor Release", R_DACCOMPRELL, 2), /* R_DACLIMTHR PG 4 ADDR 0x29 */ SOC_SINGLE_TLV("DAC Limiter Threshold Volume", R_DACLIMTHR, FB_DACLIMTHR_THRESH, FM_DACLIMTHR_THRESH, 0, thr_tlv_arr), /* R_DACLIMTGT PG 4 ADDR 0x2A */ SOC_SINGLE_TLV("DAC Limiter Target Volume", R_DACLIMTGT, FB_DACLIMTGT_TARGET, FM_DACLIMTGT_TARGET, 0, thr_tlv_arr), /* R_DACLIMATKL PG 4 ADDR 0x2B */ /* R_DACLIMATKH PG 4 ADDR 0x2C */ SND_SOC_BYTES("DAC Limiter Attack", R_DACLIMATKL, 2), /* R_DACLIMRELL PG 4 ADDR 0x2D */ /* R_DACLIMRELR PG 4 ADDR 0x2E */ SND_SOC_BYTES("DAC Limiter Release", R_DACLIMRELL, 2), /* R_DACEXPTHR PG 4 ADDR 0x2F */ SOC_SINGLE_TLV("DAC Expander Threshold Volume", R_DACEXPTHR, FB_DACEXPTHR_THRESH, FM_DACEXPTHR_THRESH, 0, thr_tlv_arr), /* R_DACEXPRAT PG 4 ADDR 0x30 */ SOC_ENUM("DAC Expander Ratio", dac_exp_rat_enum), /* R_DACEXPATKL PG 4 ADDR 0x31 */ /* R_DACEXPATKR PG 4 ADDR 0x32 */ SND_SOC_BYTES("DAC Expander Attack", R_DACEXPATKL, 2), /* R_DACEXPRELL PG 4 ADDR 0x33 */ /* R_DACEXPRELR PG 4 ADDR 0x34 */ SND_SOC_BYTES("DAC Expander Release", R_DACEXPRELL, 2), /* R_DACFXCTL PG 4 ADDR 0x35 */ SOC_SINGLE("DAC 3D Switch", R_DACFXCTL, FB_DACFXCTL_3DEN, 1, 0), SOC_SINGLE("DAC Treble Enhancement Switch", R_DACFXCTL, FB_DACFXCTL_TEEN, 1, 0), SOC_SINGLE("DAC Treble NLF Switch", R_DACFXCTL, FB_DACFXCTL_TNLFBYP, 1, 1), SOC_SINGLE("DAC Bass Enhancement Switch", R_DACFXCTL, FB_DACFXCTL_BEEN, 1, 0), SOC_SINGLE("DAC Bass NLF Switch", R_DACFXCTL, FB_DACFXCTL_BNLFBYP, 1, 1), /* R_SUBEQFILT PG 5 ADDR 0x01 */ SOC_SINGLE("Sub EQ 2 Switch", R_SUBEQFILT, FB_SUBEQFILT_EQ2EN, 1, 0), SOC_ENUM("Sub EQ 2 Band", sub_eq_enums[0]), SOC_SINGLE("Sub EQ 1 Switch", R_SUBEQFILT, FB_SUBEQFILT_EQ1EN, 1, 0), SOC_ENUM("Sub EQ 1 Band", sub_eq_enums[1]), /* R_SUBMBCEN PG 5 ADDR 0x0A */ SOC_SINGLE("Sub MBC 3 Switch", R_SUBMBCEN, FB_SUBMBCEN_MBCEN3, 1, 0), SOC_SINGLE("Sub MBC 2 Switch", R_SUBMBCEN, FB_SUBMBCEN_MBCEN2, 1, 0), SOC_SINGLE("Sub MBC 1 Switch", R_SUBMBCEN, FB_SUBMBCEN_MBCEN1, 1, 0), /* R_SUBMBCCTL PG 5 ADDR 0x0B */ SOC_ENUM("Sub MBC 3 Mode", sub_mbc3_lvl_det_mode_enum), SOC_ENUM("Sub MBC 3 Window", sub_mbc3_win_sel_enum), SOC_ENUM("Sub MBC 2 Mode", sub_mbc2_lvl_det_mode_enum), SOC_ENUM("Sub MBC 2 Window", sub_mbc2_win_sel_enum), SOC_ENUM("Sub MBC 1 Mode", sub_mbc1_lvl_det_mode_enum), SOC_ENUM("Sub MBC 1 Window", sub_mbc1_win_sel_enum), /* R_SUBMBCMUG1 PG 5 ADDR 0x0C */ SOC_ENUM("Sub MBC 1 Phase Polarity", sub_mbc1_phase_pol_enum), SOC_SINGLE_TLV("Sub MBC 1 Make-Up Gain Volume", R_SUBMBCMUG1, FB_SUBMBCMUG_MUGAIN, FM_SUBMBCMUG_MUGAIN, 0, mbc_mug_tlv_arr), /* R_SUBMBCTHR1 PG 5 ADDR 0x0D */ SOC_SINGLE_TLV("Sub MBC 1 Compressor Threshold Volume", R_SUBMBCTHR1, FB_SUBMBCTHR_THRESH, FM_SUBMBCTHR_THRESH, 0, thr_tlv_arr), /* R_SUBMBCRAT1 PG 5 ADDR 0x0E */ SOC_ENUM("Sub MBC 1 Compressor Ratio", sub_mbc1_comp_rat_enum), /* R_SUBMBCATK1L PG 5 ADDR 0x0F */ /* R_SUBMBCATK1H PG 5 ADDR 0x10 */ SND_SOC_BYTES("Sub MBC 1 Attack", R_SUBMBCATK1L, 2), /* R_SUBMBCREL1L PG 5 ADDR 0x11 */ /* R_SUBMBCREL1H PG 5 ADDR 0x12 */ SND_SOC_BYTES("Sub MBC 1 Release", R_SUBMBCREL1L, 2), /* R_SUBMBCMUG2 PG 5 ADDR 0x13 */ SOC_ENUM("Sub MBC 2 Phase Polarity", sub_mbc2_phase_pol_enum), SOC_SINGLE_TLV("Sub MBC 2 Make-Up Gain Volume", R_SUBMBCMUG2, FB_SUBMBCMUG_MUGAIN, FM_SUBMBCMUG_MUGAIN, 0, mbc_mug_tlv_arr), /* R_SUBMBCTHR2 PG 5 ADDR 0x14 */ SOC_SINGLE_TLV("Sub MBC 2 Compressor Threshold Volume", R_SUBMBCTHR2, FB_SUBMBCTHR_THRESH, FM_SUBMBCTHR_THRESH, 0, thr_tlv_arr), /* R_SUBMBCRAT2 PG 5 ADDR 0x15 */ SOC_ENUM("Sub MBC 2 Compressor Ratio", sub_mbc2_comp_rat_enum), /* R_SUBMBCATK2L PG 5 ADDR 0x16 */ /* R_SUBMBCATK2H PG 5 ADDR 0x17 */ SND_SOC_BYTES("Sub MBC 2 Attack", R_SUBMBCATK2L, 2), /* R_SUBMBCREL2L PG 5 ADDR 0x18 */ /* R_SUBMBCREL2H PG 5 ADDR 0x19 */ SND_SOC_BYTES("Sub MBC 2 Release", R_SUBMBCREL2L, 2), /* R_SUBMBCMUG3 PG 5 ADDR 0x1A */ SOC_ENUM("Sub MBC 3 Phase Polarity", sub_mbc3_phase_pol_enum), SOC_SINGLE_TLV("Sub MBC 3 Make-Up Gain Volume", R_SUBMBCMUG3, FB_SUBMBCMUG_MUGAIN, FM_SUBMBCMUG_MUGAIN, 0, mbc_mug_tlv_arr), /* R_SUBMBCTHR3 PG 5 ADDR 0x1B */ SOC_SINGLE_TLV("Sub MBC 3 Threshold Volume", R_SUBMBCTHR3, FB_SUBMBCTHR_THRESH, FM_SUBMBCTHR_THRESH, 0, thr_tlv_arr), /* R_SUBMBCRAT3 PG 5 ADDR 0x1C */ SOC_ENUM("Sub MBC 3 Compressor Ratio", sub_mbc3_comp_rat_enum), /* R_SUBMBCATK3L PG 5 ADDR 0x1D */ /* R_SUBMBCATK3H PG 5 ADDR 0x1E */ SND_SOC_BYTES("Sub MBC 3 Attack", R_SUBMBCATK3L, 3), /* R_SUBMBCREL3L PG 5 ADDR 0x1F */ /* R_SUBMBCREL3H PG 5 ADDR 0x20 */ SND_SOC_BYTES("Sub MBC 3 Release", R_SUBMBCREL3L, 3), /* R_SUBCLECTL PG 5 ADDR 0x21 */ SOC_ENUM("Sub CLE Level Mode", sub_cle_lvl_mode_enum), SOC_ENUM("Sub CLE Window", sub_cle_win_sel_enum), SOC_SINGLE("Sub CLE Expander Switch", R_SUBCLECTL, FB_SUBCLECTL_EXPEN, 1, 0), SOC_SINGLE("Sub CLE Limiter Switch", R_SUBCLECTL, FB_SUBCLECTL_LIMEN, 1, 0), SOC_SINGLE("Sub CLE Compressor Switch", R_SUBCLECTL, FB_SUBCLECTL_COMPEN, 1, 0), /* R_SUBCLEMUG PG 5 ADDR 0x22 */ SOC_SINGLE_TLV("Sub CLE Make-Up Gain Volume", R_SUBCLEMUG, FB_SUBCLEMUG_MUGAIN, FM_SUBCLEMUG_MUGAIN, 0, cle_mug_tlv_arr), /* R_SUBCOMPTHR PG 5 ADDR 0x23 */ SOC_SINGLE_TLV("Sub Compressor Threshold Volume", R_SUBCOMPTHR, FB_SUBCOMPTHR_THRESH, FM_SUBCOMPTHR_THRESH, 0, thr_tlv_arr), /* R_SUBCOMPRAT PG 5 ADDR 0x24 */ SOC_ENUM("Sub Compressor Ratio", sub_comp_rat_enum), /* R_SUBCOMPATKL PG 5 ADDR 0x25 */ /* R_SUBCOMPATKH PG 5 ADDR 0x26 */ SND_SOC_BYTES("Sub Compressor Attack", R_SUBCOMPATKL, 2), /* R_SUBCOMPRELL PG 5 ADDR 0x27 */ /* R_SUBCOMPRELH PG 5 ADDR 0x28 */ SND_SOC_BYTES("Sub Compressor Release", R_SUBCOMPRELL, 2), /* R_SUBLIMTHR PG 5 ADDR 0x29 */ SOC_SINGLE_TLV("Sub Limiter Threshold Volume", R_SUBLIMTHR, FB_SUBLIMTHR_THRESH, FM_SUBLIMTHR_THRESH, 0, thr_tlv_arr), /* R_SUBLIMTGT PG 5 ADDR 0x2A */ SOC_SINGLE_TLV("Sub Limiter Target Volume", R_SUBLIMTGT, FB_SUBLIMTGT_TARGET, FM_SUBLIMTGT_TARGET, 0, thr_tlv_arr), /* R_SUBLIMATKL PG 5 ADDR 0x2B */ /* R_SUBLIMATKH PG 5 ADDR 0x2C */ SND_SOC_BYTES("Sub Limiter Attack", R_SUBLIMATKL, 2), /* R_SUBLIMRELL PG 5 ADDR 0x2D */ /* R_SUBLIMRELR PG 5 ADDR 0x2E */ SND_SOC_BYTES("Sub Limiter Release", R_SUBLIMRELL, 2), /* R_SUBEXPTHR PG 5 ADDR 0x2F */ SOC_SINGLE_TLV("Sub Expander Threshold Volume", R_SUBEXPTHR, FB_SUBEXPTHR_THRESH, FM_SUBEXPTHR_THRESH, 0, thr_tlv_arr), /* R_SUBEXPRAT PG 5 ADDR 0x30 */ SOC_ENUM("Sub Expander Ratio", sub_exp_rat_enum), /* R_SUBEXPATKL PG 5 ADDR 0x31 */ /* R_SUBEXPATKR PG 5 ADDR 0x32 */ SND_SOC_BYTES("Sub Expander Attack", R_SUBEXPATKL, 2), /* R_SUBEXPRELL PG 5 ADDR 0x33 */ /* R_SUBEXPRELR PG 5 ADDR 0x34 */ SND_SOC_BYTES("Sub Expander Release", R_SUBEXPRELL, 2), /* R_SUBFXCTL PG 5 ADDR 0x35 */ SOC_SINGLE("Sub Treble Enhancement Switch", R_SUBFXCTL, FB_SUBFXCTL_TEEN, 1, 0), SOC_SINGLE("Sub Treble NLF Switch", R_SUBFXCTL, FB_SUBFXCTL_TNLFBYP, 1, 1), SOC_SINGLE("Sub Bass Enhancement Switch", R_SUBFXCTL, FB_SUBFXCTL_BEEN, 1, 0), SOC_SINGLE("Sub Bass NLF Switch", R_SUBFXCTL, FB_SUBFXCTL_BNLFBYP, 1, 1), COEFF_RAM_CTL("DAC Cascade 1 Left BiQuad 1", BIQUAD_SIZE, 0x00), COEFF_RAM_CTL("DAC Cascade 1 Left BiQuad 2", BIQUAD_SIZE, 0x05), COEFF_RAM_CTL("DAC Cascade 1 Left BiQuad 3", BIQUAD_SIZE, 0x0a), COEFF_RAM_CTL("DAC Cascade 1 Left BiQuad 4", BIQUAD_SIZE, 0x0f), COEFF_RAM_CTL("DAC Cascade 1 Left BiQuad 5", BIQUAD_SIZE, 0x14), COEFF_RAM_CTL("DAC Cascade 1 Left BiQuad 6", BIQUAD_SIZE, 0x19), COEFF_RAM_CTL("DAC Cascade 1 Right BiQuad 1", BIQUAD_SIZE, 0x20), COEFF_RAM_CTL("DAC Cascade 1 Right BiQuad 2", BIQUAD_SIZE, 0x25), COEFF_RAM_CTL("DAC Cascade 1 Right BiQuad 3", BIQUAD_SIZE, 0x2a), COEFF_RAM_CTL("DAC Cascade 1 Right BiQuad 4", BIQUAD_SIZE, 0x2f), COEFF_RAM_CTL("DAC Cascade 1 Right BiQuad 5", BIQUAD_SIZE, 0x34), COEFF_RAM_CTL("DAC Cascade 1 Right BiQuad 6", BIQUAD_SIZE, 0x39), COEFF_RAM_CTL("DAC Cascade 1 Left Prescale", COEFF_SIZE, 0x1f), COEFF_RAM_CTL("DAC Cascade 1 Right Prescale", COEFF_SIZE, 0x3f), COEFF_RAM_CTL("DAC Cascade 2 Left BiQuad 1", BIQUAD_SIZE, 0x40), COEFF_RAM_CTL("DAC Cascade 2 Left BiQuad 2", BIQUAD_SIZE, 0x45), COEFF_RAM_CTL("DAC Cascade 2 Left BiQuad 3", BIQUAD_SIZE, 0x4a), COEFF_RAM_CTL("DAC Cascade 2 Left BiQuad 4", BIQUAD_SIZE, 0x4f), COEFF_RAM_CTL("DAC Cascade 2 Left BiQuad 5", BIQUAD_SIZE, 0x54), COEFF_RAM_CTL("DAC Cascade 2 Left BiQuad 6", BIQUAD_SIZE, 0x59), COEFF_RAM_CTL("DAC Cascade 2 Right BiQuad 1", BIQUAD_SIZE, 0x60), COEFF_RAM_CTL("DAC Cascade 2 Right BiQuad 2", BIQUAD_SIZE, 0x65), COEFF_RAM_CTL("DAC Cascade 2 Right BiQuad 3", BIQUAD_SIZE, 0x6a), COEFF_RAM_CTL("DAC Cascade 2 Right BiQuad 4", BIQUAD_SIZE, 0x6f), COEFF_RAM_CTL("DAC Cascade 2 Right BiQuad 5", BIQUAD_SIZE, 0x74), COEFF_RAM_CTL("DAC Cascade 2 Right BiQuad 6", BIQUAD_SIZE, 0x79), COEFF_RAM_CTL("DAC Cascade 2 Left Prescale", COEFF_SIZE, 0x5f), COEFF_RAM_CTL("DAC Cascade 2 Right Prescale", COEFF_SIZE, 0x7f), COEFF_RAM_CTL("DAC Bass Extraction BiQuad 1", BIQUAD_SIZE, 0x80), COEFF_RAM_CTL("DAC Bass Extraction BiQuad 2", BIQUAD_SIZE, 0x85), COEFF_RAM_CTL("DAC Bass Non Linear Function 1", COEFF_SIZE, 0x8a), COEFF_RAM_CTL("DAC Bass Non Linear Function 2", COEFF_SIZE, 0x8b), COEFF_RAM_CTL("DAC Bass Limiter BiQuad", BIQUAD_SIZE, 0x8c), COEFF_RAM_CTL("DAC Bass Cut Off BiQuad", BIQUAD_SIZE, 0x91), COEFF_RAM_CTL("DAC Bass Mix", COEFF_SIZE, 0x96), COEFF_RAM_CTL("DAC Treb Extraction BiQuad 1", BIQUAD_SIZE, 0x97), COEFF_RAM_CTL("DAC Treb Extraction BiQuad 2", BIQUAD_SIZE, 0x9c), COEFF_RAM_CTL("DAC Treb Non Linear Function 1", COEFF_SIZE, 0xa1), COEFF_RAM_CTL("DAC Treb Non Linear Function 2", COEFF_SIZE, 0xa2), COEFF_RAM_CTL("DAC Treb Limiter BiQuad", BIQUAD_SIZE, 0xa3), COEFF_RAM_CTL("DAC Treb Cut Off BiQuad", BIQUAD_SIZE, 0xa8), COEFF_RAM_CTL("DAC Treb Mix", COEFF_SIZE, 0xad), COEFF_RAM_CTL("DAC 3D", COEFF_SIZE, 0xae), COEFF_RAM_CTL("DAC 3D Mix", COEFF_SIZE, 0xaf), COEFF_RAM_CTL("DAC MBC 1 BiQuad 1", BIQUAD_SIZE, 0xb0), COEFF_RAM_CTL("DAC MBC 1 BiQuad 2", BIQUAD_SIZE, 0xb5), COEFF_RAM_CTL("DAC MBC 2 BiQuad 1", BIQUAD_SIZE, 0xba), COEFF_RAM_CTL("DAC MBC 2 BiQuad 2", BIQUAD_SIZE, 0xbf), COEFF_RAM_CTL("DAC MBC 3 BiQuad 1", BIQUAD_SIZE, 0xc4), COEFF_RAM_CTL("DAC MBC 3 BiQuad 2", BIQUAD_SIZE, 0xc9), COEFF_RAM_CTL("Speaker Cascade 1 Left BiQuad 1", BIQUAD_SIZE, 0x00), COEFF_RAM_CTL("Speaker Cascade 1 Left BiQuad 2", BIQUAD_SIZE, 0x05), COEFF_RAM_CTL("Speaker Cascade 1 Left BiQuad 3", BIQUAD_SIZE, 0x0a), COEFF_RAM_CTL("Speaker Cascade 1 Left BiQuad 4", BIQUAD_SIZE, 0x0f), COEFF_RAM_CTL("Speaker Cascade 1 Left BiQuad 5", BIQUAD_SIZE, 0x14), COEFF_RAM_CTL("Speaker Cascade 1 Left BiQuad 6", BIQUAD_SIZE, 0x19), COEFF_RAM_CTL("Speaker Cascade 1 Right BiQuad 1", BIQUAD_SIZE, 0x20), COEFF_RAM_CTL("Speaker Cascade 1 Right BiQuad 2", BIQUAD_SIZE, 0x25), COEFF_RAM_CTL("Speaker Cascade 1 Right BiQuad 3", BIQUAD_SIZE, 0x2a), COEFF_RAM_CTL("Speaker Cascade 1 Right BiQuad 4", BIQUAD_SIZE, 0x2f), COEFF_RAM_CTL("Speaker Cascade 1 Right BiQuad 5", BIQUAD_SIZE, 0x34), COEFF_RAM_CTL("Speaker Cascade 1 Right BiQuad 6", BIQUAD_SIZE, 0x39), COEFF_RAM_CTL("Speaker Cascade 1 Left Prescale", COEFF_SIZE, 0x1f), COEFF_RAM_CTL("Speaker Cascade 1 Right Prescale", COEFF_SIZE, 0x3f), COEFF_RAM_CTL("Speaker Cascade 2 Left BiQuad 1", BIQUAD_SIZE, 0x40), COEFF_RAM_CTL("Speaker Cascade 2 Left BiQuad 2", BIQUAD_SIZE, 0x45), COEFF_RAM_CTL("Speaker Cascade 2 Left BiQuad 3", BIQUAD_SIZE, 0x4a), COEFF_RAM_CTL("Speaker Cascade 2 Left BiQuad 4", BIQUAD_SIZE, 0x4f), COEFF_RAM_CTL("Speaker Cascade 2 Left BiQuad 5", BIQUAD_SIZE, 0x54), COEFF_RAM_CTL("Speaker Cascade 2 Left BiQuad 6", BIQUAD_SIZE, 0x59), COEFF_RAM_CTL("Speaker Cascade 2 Right BiQuad 1", BIQUAD_SIZE, 0x60), COEFF_RAM_CTL("Speaker Cascade 2 Right BiQuad 2", BIQUAD_SIZE, 0x65), COEFF_RAM_CTL("Speaker Cascade 2 Right BiQuad 3", BIQUAD_SIZE, 0x6a), COEFF_RAM_CTL("Speaker Cascade 2 Right BiQuad 4", BIQUAD_SIZE, 0x6f), COEFF_RAM_CTL("Speaker Cascade 2 Right BiQuad 5", BIQUAD_SIZE, 0x74), COEFF_RAM_CTL("Speaker Cascade 2 Right BiQuad 6", BIQUAD_SIZE, 0x79), COEFF_RAM_CTL("Speaker Cascade 2 Left Prescale", COEFF_SIZE, 0x5f), COEFF_RAM_CTL("Speaker Cascade 2 Right Prescale", COEFF_SIZE, 0x7f), COEFF_RAM_CTL("Speaker Bass Extraction BiQuad 1", BIQUAD_SIZE, 0x80), COEFF_RAM_CTL("Speaker Bass Extraction BiQuad 2", BIQUAD_SIZE, 0x85), COEFF_RAM_CTL("Speaker Bass Non Linear Function 1", COEFF_SIZE, 0x8a), COEFF_RAM_CTL("Speaker Bass Non Linear Function 2", COEFF_SIZE, 0x8b), COEFF_RAM_CTL("Speaker Bass Limiter BiQuad", BIQUAD_SIZE, 0x8c), COEFF_RAM_CTL("Speaker Bass Cut Off BiQuad", BIQUAD_SIZE, 0x91), COEFF_RAM_CTL("Speaker Bass Mix", COEFF_SIZE, 0x96), COEFF_RAM_CTL("Speaker Treb Extraction BiQuad 1", BIQUAD_SIZE, 0x97), COEFF_RAM_CTL("Speaker Treb Extraction BiQuad 2", BIQUAD_SIZE, 0x9c), COEFF_RAM_CTL("Speaker Treb Non Linear Function 1", COEFF_SIZE, 0xa1), COEFF_RAM_CTL("Speaker Treb Non Linear Function 2", COEFF_SIZE, 0xa2), COEFF_RAM_CTL("Speaker Treb Limiter BiQuad", BIQUAD_SIZE, 0xa3), COEFF_RAM_CTL("Speaker Treb Cut Off BiQuad", BIQUAD_SIZE, 0xa8), COEFF_RAM_CTL("Speaker Treb Mix", COEFF_SIZE, 0xad), COEFF_RAM_CTL("Speaker 3D", COEFF_SIZE, 0xae), COEFF_RAM_CTL("Speaker 3D Mix", COEFF_SIZE, 0xaf), COEFF_RAM_CTL("Speaker MBC 1 BiQuad 1", BIQUAD_SIZE, 0xb0), COEFF_RAM_CTL("Speaker MBC 1 BiQuad 2", BIQUAD_SIZE, 0xb5), COEFF_RAM_CTL("Speaker MBC 2 BiQuad 1", BIQUAD_SIZE, 0xba), COEFF_RAM_CTL("Speaker MBC 2 BiQuad 2", BIQUAD_SIZE, 0xbf), COEFF_RAM_CTL("Speaker MBC 3 BiQuad 1", BIQUAD_SIZE, 0xc4), COEFF_RAM_CTL("Speaker MBC 3 BiQuad 2", BIQUAD_SIZE, 0xc9), COEFF_RAM_CTL("Sub Cascade 1 Left BiQuad 1", BIQUAD_SIZE, 0x00), COEFF_RAM_CTL("Sub Cascade 1 Left BiQuad 2", BIQUAD_SIZE, 0x05), COEFF_RAM_CTL("Sub Cascade 1 Left BiQuad 3", BIQUAD_SIZE, 0x0a), COEFF_RAM_CTL("Sub Cascade 1 Left BiQuad 4", BIQUAD_SIZE, 0x0f), COEFF_RAM_CTL("Sub Cascade 1 Left BiQuad 5", BIQUAD_SIZE, 0x14), COEFF_RAM_CTL("Sub Cascade 1 Left BiQuad 6", BIQUAD_SIZE, 0x19), COEFF_RAM_CTL("Sub Cascade 1 Right BiQuad 1", BIQUAD_SIZE, 0x20), COEFF_RAM_CTL("Sub Cascade 1 Right BiQuad 2", BIQUAD_SIZE, 0x25), COEFF_RAM_CTL("Sub Cascade 1 Right BiQuad 3", BIQUAD_SIZE, 0x2a), COEFF_RAM_CTL("Sub Cascade 1 Right BiQuad 4", BIQUAD_SIZE, 0x2f), COEFF_RAM_CTL("Sub Cascade 1 Right BiQuad 5", BIQUAD_SIZE, 0x34), COEFF_RAM_CTL("Sub Cascade 1 Right BiQuad 6", BIQUAD_SIZE, 0x39), COEFF_RAM_CTL("Sub Cascade 1 Left Prescale", COEFF_SIZE, 0x1f), COEFF_RAM_CTL("Sub Cascade 1 Right Prescale", COEFF_SIZE, 0x3f), COEFF_RAM_CTL("Sub Cascade 2 Left BiQuad 1", BIQUAD_SIZE, 0x40), COEFF_RAM_CTL("Sub Cascade 2 Left BiQuad 2", BIQUAD_SIZE, 0x45), COEFF_RAM_CTL("Sub Cascade 2 Left BiQuad 3", BIQUAD_SIZE, 0x4a), COEFF_RAM_CTL("Sub Cascade 2 Left BiQuad 4", BIQUAD_SIZE, 0x4f), COEFF_RAM_CTL("Sub Cascade 2 Left BiQuad 5", BIQUAD_SIZE, 0x54), COEFF_RAM_CTL("Sub Cascade 2 Left BiQuad 6", BIQUAD_SIZE, 0x59), COEFF_RAM_CTL("Sub Cascade 2 Right BiQuad 1", BIQUAD_SIZE, 0x60), COEFF_RAM_CTL("Sub Cascade 2 Right BiQuad 2", BIQUAD_SIZE, 0x65), COEFF_RAM_CTL("Sub Cascade 2 Right BiQuad 3", BIQUAD_SIZE, 0x6a), COEFF_RAM_CTL("Sub Cascade 2 Right BiQuad 4", BIQUAD_SIZE, 0x6f), COEFF_RAM_CTL("Sub Cascade 2 Right BiQuad 5", BIQUAD_SIZE, 0x74), COEFF_RAM_CTL("Sub Cascade 2 Right BiQuad 6", BIQUAD_SIZE, 0x79), COEFF_RAM_CTL("Sub Cascade 2 Left Prescale", COEFF_SIZE, 0x5f), COEFF_RAM_CTL("Sub Cascade 2 Right Prescale", COEFF_SIZE, 0x7f), COEFF_RAM_CTL("Sub Bass Extraction BiQuad 1", BIQUAD_SIZE, 0x80), COEFF_RAM_CTL("Sub Bass Extraction BiQuad 2", BIQUAD_SIZE, 0x85), COEFF_RAM_CTL("Sub Bass Non Linear Function 1", COEFF_SIZE, 0x8a), COEFF_RAM_CTL("Sub Bass Non Linear Function 2", COEFF_SIZE, 0x8b), COEFF_RAM_CTL("Sub Bass Limiter BiQuad", BIQUAD_SIZE, 0x8c), COEFF_RAM_CTL("Sub Bass Cut Off BiQuad", BIQUAD_SIZE, 0x91), COEFF_RAM_CTL("Sub Bass Mix", COEFF_SIZE, 0x96), COEFF_RAM_CTL("Sub Treb Extraction BiQuad 1", BIQUAD_SIZE, 0x97), COEFF_RAM_CTL("Sub Treb Extraction BiQuad 2", BIQUAD_SIZE, 0x9c), COEFF_RAM_CTL("Sub Treb Non Linear Function 1", COEFF_SIZE, 0xa1), COEFF_RAM_CTL("Sub Treb Non Linear Function 2", COEFF_SIZE, 0xa2), COEFF_RAM_CTL("Sub Treb Limiter BiQuad", BIQUAD_SIZE, 0xa3), COEFF_RAM_CTL("Sub Treb Cut Off BiQuad", BIQUAD_SIZE, 0xa8), COEFF_RAM_CTL("Sub Treb Mix", COEFF_SIZE, 0xad), COEFF_RAM_CTL("Sub 3D", COEFF_SIZE, 0xae), COEFF_RAM_CTL("Sub 3D Mix", COEFF_SIZE, 0xaf), COEFF_RAM_CTL("Sub MBC 1 BiQuad 1", BIQUAD_SIZE, 0xb0), COEFF_RAM_CTL("Sub MBC 1 BiQuad 2", BIQUAD_SIZE, 0xb5), COEFF_RAM_CTL("Sub MBC 2 BiQuad 1", BIQUAD_SIZE, 0xba), COEFF_RAM_CTL("Sub MBC 2 BiQuad 2", BIQUAD_SIZE, 0xbf), COEFF_RAM_CTL("Sub MBC 3 BiQuad 1", BIQUAD_SIZE, 0xc4), COEFF_RAM_CTL("Sub MBC 3 BiQuad 2", BIQUAD_SIZE, 0xc9), }; static struct snd_soc_dapm_widget const tscs454_dapm_widgets[] = { /* R_PLLCTL PG 0 ADDR 0x15 */ SND_SOC_DAPM_SUPPLY("PLL 1 Power", R_PLLCTL, FB_PLLCTL_PU_PLL1, 0, pll_power_event, SND_SOC_DAPM_POST_PMU|SND_SOC_DAPM_PRE_PMD), SND_SOC_DAPM_SUPPLY("PLL 2 Power", R_PLLCTL, FB_PLLCTL_PU_PLL2, 0, pll_power_event, SND_SOC_DAPM_POST_PMU|SND_SOC_DAPM_PRE_PMD), /* R_I2SPINC0 PG 0 ADDR 0x22 */ SND_SOC_DAPM_AIF_OUT("DAI 3 Out", "DAI 3 Capture", 0, R_I2SPINC0, FB_I2SPINC0_SDO3TRI, 1), SND_SOC_DAPM_AIF_OUT("DAI 2 Out", "DAI 2 Capture", 0, R_I2SPINC0, FB_I2SPINC0_SDO2TRI, 1), SND_SOC_DAPM_AIF_OUT("DAI 1 Out", "DAI 1 Capture", 0, R_I2SPINC0, FB_I2SPINC0_SDO1TRI, 1), /* R_PWRM0 PG 0 ADDR 0x33 */ SND_SOC_DAPM_ADC("Input Processor Channel 3", NULL, R_PWRM0, FB_PWRM0_INPROC3PU, 0), SND_SOC_DAPM_ADC("Input Processor Channel 2", NULL, R_PWRM0, FB_PWRM0_INPROC2PU, 0), SND_SOC_DAPM_ADC("Input Processor Channel 1", NULL, R_PWRM0, FB_PWRM0_INPROC1PU, 0), SND_SOC_DAPM_ADC("Input Processor Channel 0", NULL, R_PWRM0, FB_PWRM0_INPROC0PU, 0), SND_SOC_DAPM_SUPPLY("Mic Bias 2", R_PWRM0, FB_PWRM0_MICB2PU, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("Mic Bias 1", R_PWRM0, FB_PWRM0_MICB1PU, 0, NULL, 0), /* R_PWRM1 PG 0 ADDR 0x34 */ SND_SOC_DAPM_SUPPLY("Sub Power", R_PWRM1, FB_PWRM1_SUBPU, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("Headphone Left Power", R_PWRM1, FB_PWRM1_HPLPU, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("Headphone Right Power", R_PWRM1, FB_PWRM1_HPRPU, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("Speaker Left Power", R_PWRM1, FB_PWRM1_SPKLPU, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("Speaker Right Power", R_PWRM1, FB_PWRM1_SPKRPU, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("Differential Input 2 Power", R_PWRM1, FB_PWRM1_D2S2PU, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("Differential Input 1 Power", R_PWRM1, FB_PWRM1_D2S1PU, 0, NULL, 0), /* R_PWRM2 PG 0 ADDR 0x35 */ SND_SOC_DAPM_SUPPLY("DAI 3 Out Power", R_PWRM2, FB_PWRM2_I2S3OPU, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("DAI 2 Out Power", R_PWRM2, FB_PWRM2_I2S2OPU, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("DAI 1 Out Power", R_PWRM2, FB_PWRM2_I2S1OPU, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("DAI 3 In Power", R_PWRM2, FB_PWRM2_I2S3IPU, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("DAI 2 In Power", R_PWRM2, FB_PWRM2_I2S2IPU, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("DAI 1 In Power", R_PWRM2, FB_PWRM2_I2S1IPU, 0, NULL, 0), /* R_PWRM3 PG 0 ADDR 0x36 */ SND_SOC_DAPM_SUPPLY("Line Out Left Power", R_PWRM3, FB_PWRM3_LLINEPU, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("Line Out Right Power", R_PWRM3, FB_PWRM3_RLINEPU, 0, NULL, 0), /* R_PWRM4 PG 0 ADDR 0x37 */ SND_SOC_DAPM_DAC("Sub", NULL, R_PWRM4, FB_PWRM4_OPSUBPU, 0), SND_SOC_DAPM_DAC("DAC Left", NULL, R_PWRM4, FB_PWRM4_OPDACLPU, 0), SND_SOC_DAPM_DAC("DAC Right", NULL, R_PWRM4, FB_PWRM4_OPDACRPU, 0), SND_SOC_DAPM_DAC("ClassD Left", NULL, R_PWRM4, FB_PWRM4_OPSPKLPU, 0), SND_SOC_DAPM_DAC("ClassD Right", NULL, R_PWRM4, FB_PWRM4_OPSPKRPU, 0), /* R_AUDIOMUX1 PG 0 ADDR 0x3A */ SND_SOC_DAPM_MUX("DAI 2 Out Mux", SND_SOC_NOPM, 0, 0, &dai2_mux_dapm_enum), SND_SOC_DAPM_MUX("DAI 1 Out Mux", SND_SOC_NOPM, 0, 0, &dai1_mux_dapm_enum), /* R_AUDIOMUX2 PG 0 ADDR 0x3B */ SND_SOC_DAPM_MUX("DAC Mux", SND_SOC_NOPM, 0, 0, &dac_mux_dapm_enum), SND_SOC_DAPM_MUX("DAI 3 Out Mux", SND_SOC_NOPM, 0, 0, &dai3_mux_dapm_enum), /* R_AUDIOMUX3 PG 0 ADDR 0x3C */ SND_SOC_DAPM_MUX("Sub Mux", SND_SOC_NOPM, 0, 0, &sub_mux_dapm_enum), SND_SOC_DAPM_MUX("Speaker Mux", SND_SOC_NOPM, 0, 0, &classd_mux_dapm_enum), /* R_HSDCTL1 PG 1 ADDR 0x01 */ SND_SOC_DAPM_SUPPLY("GHS Detect Power", R_HSDCTL1, FB_HSDCTL1_CON_DET_PWD, 1, NULL, 0), /* R_CH0AIC PG 1 ADDR 0x06 */ SND_SOC_DAPM_MUX("Input Boost Channel 0 Mux", SND_SOC_NOPM, 0, 0, &in_bst_mux_ch0_dapm_enum), SND_SOC_DAPM_MUX("ADC Channel 0 Mux", SND_SOC_NOPM, 0, 0, &adc_mux_ch0_dapm_enum), SND_SOC_DAPM_MUX("Input Processor Channel 0 Mux", SND_SOC_NOPM, 0, 0, &in_proc_mux_ch0_dapm_enum), /* R_CH1AIC PG 1 ADDR 0x07 */ SND_SOC_DAPM_MUX("Input Boost Channel 1 Mux", SND_SOC_NOPM, 0, 0, &in_bst_mux_ch1_dapm_enum), SND_SOC_DAPM_MUX("ADC Channel 1 Mux", SND_SOC_NOPM, 0, 0, &adc_mux_ch1_dapm_enum), SND_SOC_DAPM_MUX("Input Processor Channel 1 Mux", SND_SOC_NOPM, 0, 0, &in_proc_mux_ch1_dapm_enum), /* Virtual */ SND_SOC_DAPM_AIF_IN("DAI 3 In", "DAI 3 Playback", 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_AIF_IN("DAI 2 In", "DAI 2 Playback", 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_AIF_IN("DAI 1 In", "DAI 1 Playback", 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_SUPPLY("PLLs", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_OUTPUT("Sub Out"), SND_SOC_DAPM_OUTPUT("Headphone Left"), SND_SOC_DAPM_OUTPUT("Headphone Right"), SND_SOC_DAPM_OUTPUT("Speaker Left"), SND_SOC_DAPM_OUTPUT("Speaker Right"), SND_SOC_DAPM_OUTPUT("Line Out Left"), SND_SOC_DAPM_OUTPUT("Line Out Right"), SND_SOC_DAPM_INPUT("D2S 2"), SND_SOC_DAPM_INPUT("D2S 1"), SND_SOC_DAPM_INPUT("Line In 1 Left"), SND_SOC_DAPM_INPUT("Line In 1 Right"), SND_SOC_DAPM_INPUT("Line In 2 Left"), SND_SOC_DAPM_INPUT("Line In 2 Right"), SND_SOC_DAPM_INPUT("Line In 3 Left"), SND_SOC_DAPM_INPUT("Line In 3 Right"), SND_SOC_DAPM_INPUT("DMic 1"), SND_SOC_DAPM_INPUT("DMic 2"), SND_SOC_DAPM_MUX("CH 0_1 Mux", SND_SOC_NOPM, 0, 0, &ch_0_1_mux_dapm_enum), SND_SOC_DAPM_MUX("CH 2_3 Mux", SND_SOC_NOPM, 0, 0, &ch_2_3_mux_dapm_enum), SND_SOC_DAPM_MUX("CH 4_5 Mux", SND_SOC_NOPM, 0, 0, &ch_4_5_mux_dapm_enum), }; static struct snd_soc_dapm_route const tscs454_intercon[] = { /* PLLs */ {"PLLs", NULL, "PLL 1 Power", pll_connected}, {"PLLs", NULL, "PLL 2 Power", pll_connected}, /* Inputs */ {"DAI 3 In", NULL, "DAI 3 In Power"}, {"DAI 2 In", NULL, "DAI 2 In Power"}, {"DAI 1 In", NULL, "DAI 1 In Power"}, /* Outputs */ {"DAI 3 Out", NULL, "DAI 3 Out Power"}, {"DAI 2 Out", NULL, "DAI 2 Out Power"}, {"DAI 1 Out", NULL, "DAI 1 Out Power"}, /* Ch Muxing */ {"CH 0_1 Mux", "DAI 1", "DAI 1 In"}, {"CH 0_1 Mux", "TDM 0_1", "DAI 1 In"}, {"CH 2_3 Mux", "DAI 2", "DAI 2 In"}, {"CH 2_3 Mux", "TDM 2_3", "DAI 1 In"}, {"CH 4_5 Mux", "DAI 3", "DAI 2 In"}, {"CH 4_5 Mux", "TDM 4_5", "DAI 1 In"}, /* In/Out Muxing */ {"DAI 1 Out Mux", "CH 0_1", "CH 0_1 Mux"}, {"DAI 1 Out Mux", "CH 2_3", "CH 2_3 Mux"}, {"DAI 1 Out Mux", "CH 4_5", "CH 4_5 Mux"}, {"DAI 2 Out Mux", "CH 0_1", "CH 0_1 Mux"}, {"DAI 2 Out Mux", "CH 2_3", "CH 2_3 Mux"}, {"DAI 2 Out Mux", "CH 4_5", "CH 4_5 Mux"}, {"DAI 3 Out Mux", "CH 0_1", "CH 0_1 Mux"}, {"DAI 3 Out Mux", "CH 2_3", "CH 2_3 Mux"}, {"DAI 3 Out Mux", "CH 4_5", "CH 4_5 Mux"}, /****************** * Playback Paths * ******************/ /* DAC Path */ {"DAC Mux", "CH 4_5", "CH 4_5 Mux"}, {"DAC Mux", "CH 2_3", "CH 2_3 Mux"}, {"DAC Mux", "CH 0_1", "CH 0_1 Mux"}, {"DAC Left", NULL, "DAC Mux"}, {"DAC Right", NULL, "DAC Mux"}, {"DAC Left", NULL, "PLLs"}, {"DAC Right", NULL, "PLLs"}, {"Headphone Left", NULL, "Headphone Left Power"}, {"Headphone Right", NULL, "Headphone Right Power"}, {"Headphone Left", NULL, "DAC Left"}, {"Headphone Right", NULL, "DAC Right"}, /* Line Out */ {"Line Out Left", NULL, "Line Out Left Power"}, {"Line Out Right", NULL, "Line Out Right Power"}, {"Line Out Left", NULL, "DAC Left"}, {"Line Out Right", NULL, "DAC Right"}, /* ClassD Path */ {"Speaker Mux", "CH 4_5", "CH 4_5 Mux"}, {"Speaker Mux", "CH 2_3", "CH 2_3 Mux"}, {"Speaker Mux", "CH 0_1", "CH 0_1 Mux"}, {"ClassD Left", NULL, "Speaker Mux"}, {"ClassD Right", NULL, "Speaker Mux"}, {"ClassD Left", NULL, "PLLs"}, {"ClassD Right", NULL, "PLLs"}, {"Speaker Left", NULL, "Speaker Left Power"}, {"Speaker Right", NULL, "Speaker Right Power"}, {"Speaker Left", NULL, "ClassD Left"}, {"Speaker Right", NULL, "ClassD Right"}, /* Sub Path */ {"Sub Mux", "CH 4", "CH 4_5 Mux"}, {"Sub Mux", "CH 5", "CH 4_5 Mux"}, {"Sub Mux", "CH 4 + 5", "CH 4_5 Mux"}, {"Sub Mux", "CH 2", "CH 2_3 Mux"}, {"Sub Mux", "CH 3", "CH 2_3 Mux"}, {"Sub Mux", "CH 2 + 3", "CH 2_3 Mux"}, {"Sub Mux", "CH 0", "CH 0_1 Mux"}, {"Sub Mux", "CH 1", "CH 0_1 Mux"}, {"Sub Mux", "CH 0 + 1", "CH 0_1 Mux"}, {"Sub Mux", "ADC/DMic 1 Left", "Input Processor Channel 0"}, {"Sub Mux", "ADC/DMic 1 Right", "Input Processor Channel 1"}, {"Sub Mux", "ADC/DMic 1 Left Plus Right", "Input Processor Channel 0"}, {"Sub Mux", "ADC/DMic 1 Left Plus Right", "Input Processor Channel 1"}, {"Sub Mux", "DMic 2 Left", "DMic 2"}, {"Sub Mux", "DMic 2 Right", "DMic 2"}, {"Sub Mux", "DMic 2 Left Plus Right", "DMic 2"}, {"Sub Mux", "ClassD Left", "ClassD Left"}, {"Sub Mux", "ClassD Right", "ClassD Right"}, {"Sub Mux", "ClassD Left Plus Right", "ClassD Left"}, {"Sub Mux", "ClassD Left Plus Right", "ClassD Right"}, {"Sub", NULL, "Sub Mux"}, {"Sub", NULL, "PLLs"}, {"Sub Out", NULL, "Sub Power"}, {"Sub Out", NULL, "Sub"}, /***************** * Capture Paths * *****************/ {"Input Boost Channel 0 Mux", "Input 3", "Line In 3 Left"}, {"Input Boost Channel 0 Mux", "Input 2", "Line In 2 Left"}, {"Input Boost Channel 0 Mux", "Input 1", "Line In 1 Left"}, {"Input Boost Channel 0 Mux", "D2S", "D2S 1"}, {"Input Boost Channel 1 Mux", "Input 3", "Line In 3 Right"}, {"Input Boost Channel 1 Mux", "Input 2", "Line In 2 Right"}, {"Input Boost Channel 1 Mux", "Input 1", "Line In 1 Right"}, {"Input Boost Channel 1 Mux", "D2S", "D2S 2"}, {"ADC Channel 0 Mux", "Input 3 Boost Bypass", "Line In 3 Left"}, {"ADC Channel 0 Mux", "Input 2 Boost Bypass", "Line In 2 Left"}, {"ADC Channel 0 Mux", "Input 1 Boost Bypass", "Line In 1 Left"}, {"ADC Channel 0 Mux", "Input Boost", "Input Boost Channel 0 Mux"}, {"ADC Channel 1 Mux", "Input 3 Boost Bypass", "Line In 3 Right"}, {"ADC Channel 1 Mux", "Input 2 Boost Bypass", "Line In 2 Right"}, {"ADC Channel 1 Mux", "Input 1 Boost Bypass", "Line In 1 Right"}, {"ADC Channel 1 Mux", "Input Boost", "Input Boost Channel 1 Mux"}, {"Input Processor Channel 0 Mux", "ADC", "ADC Channel 0 Mux"}, {"Input Processor Channel 0 Mux", "DMic", "DMic 1"}, {"Input Processor Channel 0", NULL, "PLLs"}, {"Input Processor Channel 0", NULL, "Input Processor Channel 0 Mux"}, {"Input Processor Channel 1 Mux", "ADC", "ADC Channel 1 Mux"}, {"Input Processor Channel 1 Mux", "DMic", "DMic 1"}, {"Input Processor Channel 1", NULL, "PLLs"}, {"Input Processor Channel 1", NULL, "Input Processor Channel 1 Mux"}, {"Input Processor Channel 2", NULL, "PLLs"}, {"Input Processor Channel 2", NULL, "DMic 2"}, {"Input Processor Channel 3", NULL, "PLLs"}, {"Input Processor Channel 3", NULL, "DMic 2"}, {"DAI 1 Out Mux", "ADC/DMic 1", "Input Processor Channel 0"}, {"DAI 1 Out Mux", "ADC/DMic 1", "Input Processor Channel 1"}, {"DAI 1 Out Mux", "DMic 2", "Input Processor Channel 2"}, {"DAI 1 Out Mux", "DMic 2", "Input Processor Channel 3"}, {"DAI 2 Out Mux", "ADC/DMic 1", "Input Processor Channel 0"}, {"DAI 2 Out Mux", "ADC/DMic 1", "Input Processor Channel 1"}, {"DAI 2 Out Mux", "DMic 2", "Input Processor Channel 2"}, {"DAI 2 Out Mux", "DMic 2", "Input Processor Channel 3"}, {"DAI 3 Out Mux", "ADC/DMic 1", "Input Processor Channel 0"}, {"DAI 3 Out Mux", "ADC/DMic 1", "Input Processor Channel 1"}, {"DAI 3 Out Mux", "DMic 2", "Input Processor Channel 2"}, {"DAI 3 Out Mux", "DMic 2", "Input Processor Channel 3"}, {"DAI 1 Out", NULL, "DAI 1 Out Mux"}, {"DAI 2 Out", NULL, "DAI 2 Out Mux"}, {"DAI 3 Out", NULL, "DAI 3 Out Mux"}, }; /* This is used when BCLK is sourcing the PLLs */ static int tscs454_set_sysclk(struct snd_soc_dai *dai, int clk_id, unsigned int freq, int dir) { struct snd_soc_component *component = dai->component; struct tscs454 *tscs454 = snd_soc_component_get_drvdata(component); unsigned int val; int bclk_dai; dev_dbg(component->dev, "%s(): freq = %u\n", __func__, freq); val = snd_soc_component_read(component, R_PLLCTL); bclk_dai = (val & FM_PLLCTL_BCLKSEL) >> FB_PLLCTL_BCLKSEL; if (bclk_dai != dai->id) return 0; tscs454->bclk_freq = freq; return set_sysclk(component); } static int tscs454_set_bclk_ratio(struct snd_soc_dai *dai, unsigned int ratio) { unsigned int mask; int ret; struct snd_soc_component *component = dai->component; unsigned int val; int shift; dev_dbg(component->dev, "set_bclk_ratio() id = %d ratio = %u\n", dai->id, ratio); switch (dai->id) { case TSCS454_DAI1_ID: mask = FM_I2SCMC_BCMP1; shift = FB_I2SCMC_BCMP1; break; case TSCS454_DAI2_ID: mask = FM_I2SCMC_BCMP2; shift = FB_I2SCMC_BCMP2; break; case TSCS454_DAI3_ID: mask = FM_I2SCMC_BCMP3; shift = FB_I2SCMC_BCMP3; break; default: ret = -EINVAL; dev_err(component->dev, "Unknown audio interface (%d)\n", ret); return ret; } switch (ratio) { case 32: val = I2SCMC_BCMP_32X; break; case 40: val = I2SCMC_BCMP_40X; break; case 64: val = I2SCMC_BCMP_64X; break; default: ret = -EINVAL; dev_err(component->dev, "Unsupported bclk ratio (%d)\n", ret); return ret; } ret = snd_soc_component_update_bits(component, R_I2SCMC, mask, val << shift); if (ret < 0) { dev_err(component->dev, "Failed to set DAI BCLK ratio (%d)\n", ret); return ret; } return 0; } static inline int set_aif_master_from_fmt(struct snd_soc_component *component, struct aif *aif, unsigned int fmt) { int ret; switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { case SND_SOC_DAIFMT_CBM_CFM: aif->master = true; break; case SND_SOC_DAIFMT_CBS_CFS: aif->master = false; break; default: ret = -EINVAL; dev_err(component->dev, "Unsupported format (%d)\n", ret); return ret; } return 0; } static inline int set_aif_tdm_delay(struct snd_soc_component *component, unsigned int dai_id, bool delay) { unsigned int reg; int ret; switch (dai_id) { case TSCS454_DAI1_ID: reg = R_TDMCTL0; break; case TSCS454_DAI2_ID: reg = R_PCMP2CTL0; break; case TSCS454_DAI3_ID: reg = R_PCMP3CTL0; break; default: ret = -EINVAL; dev_err(component->dev, "DAI %d unknown (%d)\n", dai_id + 1, ret); return ret; } ret = snd_soc_component_update_bits(component, reg, FM_TDMCTL0_BDELAY, delay); if (ret < 0) { dev_err(component->dev, "Failed to setup tdm format (%d)\n", ret); return ret; } return 0; } static inline int set_aif_format_from_fmt(struct snd_soc_component *component, unsigned int dai_id, unsigned int fmt) { unsigned int reg; unsigned int val; int ret; switch (dai_id) { case TSCS454_DAI1_ID: reg = R_I2SP1CTL; break; case TSCS454_DAI2_ID: reg = R_I2SP2CTL; break; case TSCS454_DAI3_ID: reg = R_I2SP3CTL; break; default: ret = -EINVAL; dev_err(component->dev, "DAI %d unknown (%d)\n", dai_id + 1, ret); return ret; } switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_RIGHT_J: val = FV_FORMAT_RIGHT; break; case SND_SOC_DAIFMT_LEFT_J: val = FV_FORMAT_LEFT; break; case SND_SOC_DAIFMT_I2S: val = FV_FORMAT_I2S; break; case SND_SOC_DAIFMT_DSP_A: ret = set_aif_tdm_delay(component, dai_id, true); if (ret < 0) return ret; val = FV_FORMAT_TDM; break; case SND_SOC_DAIFMT_DSP_B: ret = set_aif_tdm_delay(component, dai_id, false); if (ret < 0) return ret; val = FV_FORMAT_TDM; break; default: ret = -EINVAL; dev_err(component->dev, "Format unsupported (%d)\n", ret); return ret; } ret = snd_soc_component_update_bits(component, reg, FM_I2SPCTL_FORMAT, val); if (ret < 0) { dev_err(component->dev, "Failed to set DAI %d format (%d)\n", dai_id + 1, ret); return ret; } return 0; } static inline int set_aif_clock_format_from_fmt(struct snd_soc_component *component, unsigned int dai_id, unsigned int fmt) { unsigned int reg; unsigned int val; int ret; switch (dai_id) { case TSCS454_DAI1_ID: reg = R_I2SP1CTL; break; case TSCS454_DAI2_ID: reg = R_I2SP2CTL; break; case TSCS454_DAI3_ID: reg = R_I2SP3CTL; break; default: ret = -EINVAL; dev_err(component->dev, "DAI %d unknown (%d)\n", dai_id + 1, ret); return ret; } switch (fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_NB_NF: val = FV_BCLKP_NOT_INVERTED | FV_LRCLKP_NOT_INVERTED; break; case SND_SOC_DAIFMT_NB_IF: val = FV_BCLKP_NOT_INVERTED | FV_LRCLKP_INVERTED; break; case SND_SOC_DAIFMT_IB_NF: val = FV_BCLKP_INVERTED | FV_LRCLKP_NOT_INVERTED; break; case SND_SOC_DAIFMT_IB_IF: val = FV_BCLKP_INVERTED | FV_LRCLKP_INVERTED; break; default: ret = -EINVAL; dev_err(component->dev, "Format unknown (%d)\n", ret); return ret; } ret = snd_soc_component_update_bits(component, reg, FM_I2SPCTL_BCLKP | FM_I2SPCTL_LRCLKP, val); if (ret < 0) { dev_err(component->dev, "Failed to set clock polarity for DAI%d (%d)\n", dai_id + 1, ret); return ret; } return 0; } static int tscs454_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt) { struct snd_soc_component *component = dai->component; struct tscs454 *tscs454 = snd_soc_component_get_drvdata(component); struct aif *aif = &tscs454->aifs[dai->id]; int ret; ret = set_aif_master_from_fmt(component, aif, fmt); if (ret < 0) return ret; ret = set_aif_format_from_fmt(component, dai->id, fmt); if (ret < 0) return ret; ret = set_aif_clock_format_from_fmt(component, dai->id, fmt); if (ret < 0) return ret; return 0; } static int tscs454_dai1_set_tdm_slot(struct snd_soc_dai *dai, unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width) { struct snd_soc_component *component = dai->component; unsigned int val; int ret; if (!slots) return 0; if (tx_mask >= (1 << slots) || rx_mask >= (1 << slots)) { ret = -EINVAL; dev_err(component->dev, "Invalid TDM slot mask (%d)\n", ret); return ret; } switch (slots) { case 2: val = FV_TDMSO_2 | FV_TDMSI_2; break; case 4: val = FV_TDMSO_4 | FV_TDMSI_4; break; case 6: val = FV_TDMSO_6 | FV_TDMSI_6; break; default: ret = -EINVAL; dev_err(component->dev, "Invalid number of slots (%d)\n", ret); return ret; } switch (slot_width) { case 16: val = val | FV_TDMDSS_16; break; case 24: val = val | FV_TDMDSS_24; break; case 32: val = val | FV_TDMDSS_32; break; default: ret = -EINVAL; dev_err(component->dev, "Invalid TDM slot width (%d)\n", ret); return ret; } ret = snd_soc_component_write(component, R_TDMCTL1, val); if (ret < 0) { dev_err(component->dev, "Failed to set slots (%d)\n", ret); return ret; } return 0; } static int tscs454_dai23_set_tdm_slot(struct snd_soc_dai *dai, unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width) { struct snd_soc_component *component = dai->component; unsigned int reg; unsigned int val; int ret; if (!slots) return 0; if (tx_mask >= (1 << slots) || rx_mask >= (1 << slots)) { ret = -EINVAL; dev_err(component->dev, "Invalid TDM slot mask (%d)\n", ret); return ret; } switch (dai->id) { case TSCS454_DAI2_ID: reg = R_PCMP2CTL1; break; case TSCS454_DAI3_ID: reg = R_PCMP3CTL1; break; default: ret = -EINVAL; dev_err(component->dev, "Unrecognized interface %d (%d)\n", dai->id, ret); return ret; } switch (slots) { case 1: val = FV_PCMSOP_1 | FV_PCMSIP_1; break; case 2: val = FV_PCMSOP_2 | FV_PCMSIP_2; break; default: ret = -EINVAL; dev_err(component->dev, "Invalid number of slots (%d)\n", ret); return ret; } switch (slot_width) { case 16: val = val | FV_PCMDSSP_16; break; case 24: val = val | FV_PCMDSSP_24; break; case 32: val = val | FV_PCMDSSP_32; break; default: ret = -EINVAL; dev_err(component->dev, "Invalid TDM slot width (%d)\n", ret); return ret; } ret = snd_soc_component_write(component, reg, val); if (ret < 0) { dev_err(component->dev, "Failed to set slots (%d)\n", ret); return ret; } return 0; } static int set_aif_fs(struct snd_soc_component *component, unsigned int id, unsigned int rate) { unsigned int reg; unsigned int br; unsigned int bm; int ret; switch (rate) { case 8000: br = FV_I2SMBR_32; bm = FV_I2SMBM_0PT25; break; case 16000: br = FV_I2SMBR_32; bm = FV_I2SMBM_0PT5; break; case 24000: br = FV_I2SMBR_48; bm = FV_I2SMBM_0PT5; break; case 32000: br = FV_I2SMBR_32; bm = FV_I2SMBM_1; break; case 48000: br = FV_I2SMBR_48; bm = FV_I2SMBM_1; break; case 96000: br = FV_I2SMBR_48; bm = FV_I2SMBM_2; break; case 11025: br = FV_I2SMBR_44PT1; bm = FV_I2SMBM_0PT25; break; case 22050: br = FV_I2SMBR_44PT1; bm = FV_I2SMBM_0PT5; break; case 44100: br = FV_I2SMBR_44PT1; bm = FV_I2SMBM_1; break; case 88200: br = FV_I2SMBR_44PT1; bm = FV_I2SMBM_2; break; default: ret = -EINVAL; dev_err(component->dev, "Unsupported sample rate (%d)\n", ret); return ret; } switch (id) { case TSCS454_DAI1_ID: reg = R_I2S1MRATE; break; case TSCS454_DAI2_ID: reg = R_I2S2MRATE; break; case TSCS454_DAI3_ID: reg = R_I2S3MRATE; break; default: ret = -EINVAL; dev_err(component->dev, "DAI ID not recognized (%d)\n", ret); return ret; } ret = snd_soc_component_update_bits(component, reg, FM_I2SMRATE_I2SMBR | FM_I2SMRATE_I2SMBM, br|bm); if (ret < 0) { dev_err(component->dev, "Failed to update register (%d)\n", ret); return ret; } return 0; } static int set_aif_sample_format(struct snd_soc_component *component, snd_pcm_format_t format, int aif_id) { unsigned int reg; unsigned int width; int ret; switch (snd_pcm_format_width(format)) { case 16: width = FV_WL_16; break; case 20: width = FV_WL_20; break; case 24: width = FV_WL_24; break; case 32: width = FV_WL_32; break; default: ret = -EINVAL; dev_err(component->dev, "Unsupported format width (%d)\n", ret); return ret; } switch (aif_id) { case TSCS454_DAI1_ID: reg = R_I2SP1CTL; break; case TSCS454_DAI2_ID: reg = R_I2SP2CTL; break; case TSCS454_DAI3_ID: reg = R_I2SP3CTL; break; default: ret = -EINVAL; dev_err(component->dev, "AIF ID not recognized (%d)\n", ret); return ret; } ret = snd_soc_component_update_bits(component, reg, FM_I2SPCTL_WL, width); if (ret < 0) { dev_err(component->dev, "Failed to set sample width (%d)\n", ret); return ret; } return 0; } static int tscs454_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct snd_soc_component *component = dai->component; struct tscs454 *tscs454 = snd_soc_component_get_drvdata(component); unsigned int fs = params_rate(params); struct aif *aif = &tscs454->aifs[dai->id]; unsigned int val; int ret; mutex_lock(&tscs454->aifs_status_lock); dev_dbg(component->dev, "%s(): aif %d fs = %u\n", __func__, aif->id, fs); if (!aif_active(&tscs454->aifs_status, aif->id)) { if (PLL_44_1K_RATE % fs) aif->pll = &tscs454->pll1; else aif->pll = &tscs454->pll2; dev_dbg(component->dev, "Reserving pll %d for aif %d\n", aif->pll->id, aif->id); reserve_pll(aif->pll); } if (!aifs_active(&tscs454->aifs_status)) { /* First active aif */ val = snd_soc_component_read(component, R_ISRC); if ((val & FM_ISRC_IBR) == FV_IBR_48) tscs454->internal_rate.pll = &tscs454->pll1; else tscs454->internal_rate.pll = &tscs454->pll2; dev_dbg(component->dev, "Reserving pll %d for ir\n", tscs454->internal_rate.pll->id); reserve_pll(tscs454->internal_rate.pll); } ret = set_aif_fs(component, aif->id, fs); if (ret < 0) { dev_err(component->dev, "Failed to set aif fs (%d)\n", ret); goto exit; } ret = set_aif_sample_format(component, params_format(params), aif->id); if (ret < 0) { dev_err(component->dev, "Failed to set aif sample format (%d)\n", ret); goto exit; } set_aif_status_active(&tscs454->aifs_status, aif->id, substream->stream == SNDRV_PCM_STREAM_PLAYBACK); dev_dbg(component->dev, "Set aif %d active. Streams status is 0x%x\n", aif->id, tscs454->aifs_status.streams); ret = 0; exit: mutex_unlock(&tscs454->aifs_status_lock); return ret; } static int tscs454_hw_free(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct snd_soc_component *component = dai->component; struct tscs454 *tscs454 = snd_soc_component_get_drvdata(component); struct aif *aif = &tscs454->aifs[dai->id]; return aif_free(component, aif, substream->stream == SNDRV_PCM_STREAM_PLAYBACK); } static int tscs454_prepare(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { int ret; struct snd_soc_component *component = dai->component; struct tscs454 *tscs454 = snd_soc_component_get_drvdata(component); struct aif *aif = &tscs454->aifs[dai->id]; ret = aif_prepare(component, aif); if (ret < 0) return ret; return 0; } static struct snd_soc_dai_ops const tscs454_dai1_ops = { .set_sysclk = tscs454_set_sysclk, .set_bclk_ratio = tscs454_set_bclk_ratio, .set_fmt = tscs454_set_dai_fmt, .set_tdm_slot = tscs454_dai1_set_tdm_slot, .hw_params = tscs454_hw_params, .hw_free = tscs454_hw_free, .prepare = tscs454_prepare, }; static struct snd_soc_dai_ops const tscs454_dai23_ops = { .set_sysclk = tscs454_set_sysclk, .set_bclk_ratio = tscs454_set_bclk_ratio, .set_fmt = tscs454_set_dai_fmt, .set_tdm_slot = tscs454_dai23_set_tdm_slot, .hw_params = tscs454_hw_params, .hw_free = tscs454_hw_free, .prepare = tscs454_prepare, }; static int tscs454_probe(struct snd_soc_component *component) { struct tscs454 *tscs454 = snd_soc_component_get_drvdata(component); unsigned int val; int ret = 0; switch (tscs454->sysclk_src_id) { case PLL_INPUT_XTAL: val = FV_PLLISEL_XTAL; break; case PLL_INPUT_MCLK1: val = FV_PLLISEL_MCLK1; break; case PLL_INPUT_MCLK2: val = FV_PLLISEL_MCLK2; break; case PLL_INPUT_BCLK: val = FV_PLLISEL_BCLK; break; default: ret = -EINVAL; dev_err(component->dev, "Invalid sysclk src id (%d)\n", ret); return ret; } ret = snd_soc_component_update_bits(component, R_PLLCTL, FM_PLLCTL_PLLISEL, val); if (ret < 0) { dev_err(component->dev, "Failed to set PLL input (%d)\n", ret); return ret; } if (tscs454->sysclk_src_id < PLL_INPUT_BCLK) ret = set_sysclk(component); return ret; } static const struct snd_soc_component_driver soc_component_dev_tscs454 = { .probe = tscs454_probe, .dapm_widgets = tscs454_dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(tscs454_dapm_widgets), .dapm_routes = tscs454_intercon, .num_dapm_routes = ARRAY_SIZE(tscs454_intercon), .controls = tscs454_snd_controls, .num_controls = ARRAY_SIZE(tscs454_snd_controls), .endianness = 1, }; #define TSCS454_RATES SNDRV_PCM_RATE_8000_96000 #define TSCS454_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE \ | SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE \ | SNDRV_PCM_FMTBIT_S32_LE) static struct snd_soc_dai_driver tscs454_dais[] = { { .name = "tscs454-dai1", .id = TSCS454_DAI1_ID, .playback = { .stream_name = "DAI 1 Playback", .channels_min = 1, .channels_max = 6, .rates = TSCS454_RATES, .formats = TSCS454_FORMATS,}, .capture = { .stream_name = "DAI 1 Capture", .channels_min = 1, .channels_max = 6, .rates = TSCS454_RATES, .formats = TSCS454_FORMATS,}, .ops = &tscs454_dai1_ops, .symmetric_rate = 1, .symmetric_channels = 1, .symmetric_sample_bits = 1, }, { .name = "tscs454-dai2", .id = TSCS454_DAI2_ID, .playback = { .stream_name = "DAI 2 Playback", .channels_min = 1, .channels_max = 2, .rates = TSCS454_RATES, .formats = TSCS454_FORMATS,}, .capture = { .stream_name = "DAI 2 Capture", .channels_min = 1, .channels_max = 2, .rates = TSCS454_RATES, .formats = TSCS454_FORMATS,}, .ops = &tscs454_dai23_ops, .symmetric_rate = 1, .symmetric_channels = 1, .symmetric_sample_bits = 1, }, { .name = "tscs454-dai3", .id = TSCS454_DAI3_ID, .playback = { .stream_name = "DAI 3 Playback", .channels_min = 1, .channels_max = 2, .rates = TSCS454_RATES, .formats = TSCS454_FORMATS,}, .capture = { .stream_name = "DAI 3 Capture", .channels_min = 1, .channels_max = 2, .rates = TSCS454_RATES, .formats = TSCS454_FORMATS,}, .ops = &tscs454_dai23_ops, .symmetric_rate = 1, .symmetric_channels = 1, .symmetric_sample_bits = 1, }, }; static char const * const src_names[] = { "xtal", "mclk1", "mclk2", "bclk"}; static int tscs454_i2c_probe(struct i2c_client *i2c, const struct i2c_device_id *id) { struct tscs454 *tscs454; int src; int ret; tscs454 = devm_kzalloc(&i2c->dev, sizeof(*tscs454), GFP_KERNEL); if (!tscs454) return -ENOMEM; ret = tscs454_data_init(tscs454, i2c); if (ret < 0) return ret; i2c_set_clientdata(i2c, tscs454); for (src = PLL_INPUT_XTAL; src < PLL_INPUT_BCLK; src++) { tscs454->sysclk = devm_clk_get(&i2c->dev, src_names[src]); if (!IS_ERR(tscs454->sysclk)) { break; } else if (PTR_ERR(tscs454->sysclk) != -ENOENT) { ret = PTR_ERR(tscs454->sysclk); dev_err(&i2c->dev, "Failed to get sysclk (%d)\n", ret); return ret; } } dev_dbg(&i2c->dev, "PLL input is %s\n", src_names[src]); tscs454->sysclk_src_id = src; ret = regmap_write(tscs454->regmap, R_RESET, FV_RESET_PWR_ON_DEFAULTS); if (ret < 0) { dev_err(&i2c->dev, "Failed to reset the component (%d)\n", ret); return ret; } regcache_mark_dirty(tscs454->regmap); ret = regmap_register_patch(tscs454->regmap, tscs454_patch, ARRAY_SIZE(tscs454_patch)); if (ret < 0) { dev_err(&i2c->dev, "Failed to apply patch (%d)\n", ret); return ret; } /* Sync pg sel reg with cache */ regmap_write(tscs454->regmap, R_PAGESEL, 0x00); ret = devm_snd_soc_register_component(&i2c->dev, &soc_component_dev_tscs454, tscs454_dais, ARRAY_SIZE(tscs454_dais)); if (ret) { dev_err(&i2c->dev, "Failed to register component (%d)\n", ret); return ret; } return 0; } static const struct i2c_device_id tscs454_i2c_id[] = { { "tscs454", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, tscs454_i2c_id); static const struct of_device_id tscs454_of_match[] = { { .compatible = "tempo,tscs454", }, { } }; MODULE_DEVICE_TABLE(of, tscs454_of_match); static struct i2c_driver tscs454_i2c_driver = { .driver = { .name = "tscs454", .of_match_table = tscs454_of_match, }, .probe = tscs454_i2c_probe, .id_table = tscs454_i2c_id, }; module_i2c_driver(tscs454_i2c_driver); MODULE_AUTHOR("Tempo Semiconductor