/* * Copyright (c) 2014 Mellanox Technologies. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "uverbs.h" static inline int ib_init_umem_odp(struct ib_umem_odp *umem_odp, const struct mmu_interval_notifier_ops *ops) { int ret; umem_odp->umem.is_odp = 1; mutex_init(&umem_odp->umem_mutex); if (!umem_odp->is_implicit_odp) { size_t page_size = 1UL << umem_odp->page_shift; unsigned long start; unsigned long end; size_t ndmas, npfns; start = ALIGN_DOWN(umem_odp->umem.address, page_size); if (check_add_overflow(umem_odp->umem.address, (unsigned long)umem_odp->umem.length, &end)) return -EOVERFLOW; end = ALIGN(end, page_size); if (unlikely(end < page_size)) return -EOVERFLOW; ndmas = (end - start) >> umem_odp->page_shift; if (!ndmas) return -EINVAL; npfns = (end - start) >> PAGE_SHIFT; umem_odp->pfn_list = kvcalloc( npfns, sizeof(*umem_odp->pfn_list), GFP_KERNEL); if (!umem_odp->pfn_list) return -ENOMEM; umem_odp->dma_list = kvcalloc( ndmas, sizeof(*umem_odp->dma_list), GFP_KERNEL); if (!umem_odp->dma_list) { ret = -ENOMEM; goto out_pfn_list; } ret = mmu_interval_notifier_insert(&umem_odp->notifier, umem_odp->umem.owning_mm, start, end - start, ops); if (ret) goto out_dma_list; } return 0; out_dma_list: kvfree(umem_odp->dma_list); out_pfn_list: kvfree(umem_odp->pfn_list); return ret; } /** * ib_umem_odp_alloc_implicit - Allocate a parent implicit ODP umem * * Implicit ODP umems do not have a VA range and do not have any page lists. * They exist only to hold the per_mm reference to help the driver create * children umems. * * @device: IB device to create UMEM * @access: ib_reg_mr access flags */ struct ib_umem_odp *ib_umem_odp_alloc_implicit(struct ib_device *device, int access) { struct ib_umem *umem; struct ib_umem_odp *umem_odp; int ret; if (access & IB_ACCESS_HUGETLB) return ERR_PTR(-EINVAL); umem_odp = kzalloc(sizeof(*umem_odp), GFP_KERNEL); if (!umem_odp) return ERR_PTR(-ENOMEM); umem = &umem_odp->umem; umem->ibdev = device; umem->writable = ib_access_writable(access); umem->owning_mm = current->mm; umem_odp->is_implicit_odp = 1; umem_odp->page_shift = PAGE_SHIFT; umem_odp->tgid = get_task_pid(current->group_leader, PIDTYPE_PID); ret = ib_init_umem_odp(umem_odp, NULL); if (ret) { put_pid(umem_odp->tgid); kfree(umem_odp); return ERR_PTR(ret); } return umem_odp; } EXPORT_SYMBOL(ib_umem_odp_alloc_implicit); /** * ib_umem_odp_alloc_child - Allocate a child ODP umem under an implicit * parent ODP umem * * @root: The parent umem enclosing the child. This must be allocated using * ib_alloc_implicit_odp_umem() * @addr: The starting userspace VA * @size: The length of the userspace VA * @ops: MMU interval ops, currently only @invalidate */ struct ib_umem_odp * ib_umem_odp_alloc_child(struct ib_umem_odp *root, unsigned long addr, size_t size, const struct mmu_interval_notifier_ops *ops) { /* * Caller must ensure that root cannot be freed during the call to * ib_alloc_odp_umem. */ struct ib_umem_odp *odp_data; struct ib_umem *umem; int ret; if (WARN_ON(!root->is_implicit_odp)) return ERR_PTR(-EINVAL); odp_data = kzalloc(sizeof(*odp_data), GFP_KERNEL); if (!odp_data) return ERR_PTR(-ENOMEM); umem = &odp_data->umem; umem->ibdev = root->umem.ibdev; umem->length = size; umem->address = addr; umem->writable = root->umem.writable; umem->owning_mm = root->umem.owning_mm; odp_data->page_shift = PAGE_SHIFT; odp_data->notifier.ops = ops; /* * A mmget must be held when registering a notifier, the owming_mm only * has a mm_grab at this point. */ if (!mmget_not_zero(umem->owning_mm)) { ret = -EFAULT; goto out_free; } odp_data->tgid = get_pid(root->tgid); ret = ib_init_umem_odp(odp_data, ops); if (ret) goto out_tgid; mmput(umem->owning_mm); return odp_data; out_tgid: put_pid(odp_data->tgid); mmput(umem->owning_mm); out_free: kfree(odp_data); return ERR_PTR(ret); } EXPORT_SYMBOL(ib_umem_odp_alloc_child); /** * ib_umem_odp_get - Create a umem_odp for a userspace va * * @device: IB device struct to get UMEM * @addr: userspace virtual address to start at * @size: length of region to pin * @access: IB_ACCESS_xxx flags for memory being pinned * @ops: MMU interval ops, currently only @invalidate * * The driver should use when the access flags indicate ODP memory. It avoids * pinning, instead, stores the mm for future page fault handling in * conjunction with MMU notifiers. */ struct ib_umem_odp *ib_umem_odp_get(struct ib_device *device, unsigned long addr, size_t size, int access, const struct mmu_interval_notifier_ops *ops) { struct ib_umem_odp *umem_odp; struct mm_struct *mm; int ret; if (WARN_ON_ONCE(!(access & IB_ACCESS_ON_DEMAND))) return ERR_PTR(-EINVAL); umem_odp = kzalloc(sizeof(struct ib_umem_odp), GFP_KERNEL); if (!umem_odp) return ERR_PTR(-ENOMEM); umem_odp->umem.ibdev = device; umem_odp->umem.length = size; umem_odp->umem.address = addr; umem_odp->umem.writable = ib_access_writable(access); umem_odp->umem.owning_mm = mm = current->mm; umem_odp->notifier.ops = ops; umem_odp->page_shift = PAGE_SHIFT; #ifdef CONFIG_HUGETLB_PAGE if (access & IB_ACCESS_HUGETLB) umem_odp->page_shift = HPAGE_SHIFT; #endif umem_odp->tgid = get_task_pid(current->group_leader, PIDTYPE_PID); ret = ib_init_umem_odp(umem_odp, ops); if (ret) goto err_put_pid; return umem_odp; err_put_pid: put_pid(umem_odp->tgid); kfree(umem_odp); return ERR_PTR(ret); } EXPORT_SYMBOL(ib_umem_odp_get); void ib_umem_odp_release(struct ib_umem_odp *umem_odp) { /* * Ensure that no more pages are mapped in the umem. * * It is the driver's responsibility to ensure, before calling us, * that the hardware will not attempt to access the MR any more. */ if (!umem_odp->is_implicit_odp) { mutex_lock(&umem_odp->umem_mutex); ib_umem_odp_unmap_dma_pages(umem_odp, ib_umem_start(umem_odp), ib_umem_end(umem_odp)); mutex_unlock(&umem_odp->umem_mutex); mmu_interval_notifier_remove(&umem_odp->notifier); kvfree(umem_odp->dma_list); kvfree(umem_odp->pfn_list); } put_pid(umem_odp->tgid); kfree(umem_odp); } EXPORT_SYMBOL(ib_umem_odp_release); /* * Map for DMA and insert a single page into the on-demand paging page tables. * * @umem: the umem to insert the page to. * @dma_index: index in the umem to add the dma to. * @page: the page struct to map and add. * @access_mask: access permissions needed for this page. * * The function returns -EFAULT if the DMA mapping operation fails. * */ static int ib_umem_odp_map_dma_single_page( struct ib_umem_odp *umem_odp, unsigned int dma_index, struct page *page, u64 access_mask) { struct ib_device *dev = umem_odp->umem.ibdev; dma_addr_t *dma_addr = &umem_odp->dma_list[dma_index]; if (*dma_addr) { /* * If the page is already dma mapped it means it went through * a non-invalidating trasition, like read-only to writable. * Resync the flags. */ *dma_addr = (*dma_addr & ODP_DMA_ADDR_MASK) | access_mask; return 0; } *dma_addr = ib_dma_map_page(dev, page, 0, 1 << umem_odp->page_shift, DMA_BIDIRECTIONAL); if (ib_dma_mapping_error(dev, *dma_addr)) { *dma_addr = 0; return -EFAULT; } umem_odp->npages++; *dma_addr |= access_mask; return 0; } /** * ib_umem_odp_map_dma_and_lock - DMA map userspace memory in an ODP MR and lock it. * * Maps the range passed in the argument to DMA addresses. * The DMA addresses of the mapped pages is updated in umem_odp->dma_list. * Upon success the ODP MR will be locked to let caller complete its device * page table update. * * Returns the number of pages mapped in success, negative error code * for failure. * @umem_odp: the umem to map and pin * @user_virt: the address from which we need to map. * @bcnt: the minimal number of bytes to pin and map. The mapping might be * bigger due to alignment, and may also be smaller in case of an error * pinning or mapping a page. The actual pages mapped is returned in * the return value. * @access_mask: bit mask of the requested access permissions for the given * range. * @fault: is faulting required for the given range */ int ib_umem_odp_map_dma_and_lock(struct ib_umem_odp *umem_odp, u64 user_virt, u64 bcnt, u64 access_mask, bool fault) __acquires(&umem_odp->umem_mutex) { struct task_struct *owning_process = NULL; struct mm_struct *owning_mm = umem_odp->umem.owning_mm; int pfn_index, dma_index, ret = 0, start_idx; unsigned int page_shift, hmm_order, pfn_start_idx; unsigned long num_pfns, current_seq; struct hmm_range range = {}; unsigned long timeout; if (access_mask == 0) return -EINVAL; if (user_virt < ib_umem_start(umem_odp) || user_virt + bcnt > ib_umem_end(umem_odp)) return -EFAULT; page_shift = umem_odp->page_shift; /* * owning_process is allowed to be NULL, this means somehow the mm is * existing beyond the lifetime of the originating process.. Presumably * mmget_not_zero will fail in this case. */ owning_process = get_pid_task(umem_odp->tgid, PIDTYPE_PID); if (!owning_process || !mmget_not_zero(owning_mm)) { ret = -EINVAL; goto out_put_task; } range.notifier = &umem_odp->notifier; range.start = ALIGN_DOWN(user_virt, 1UL << page_shift); range.end = ALIGN(user_virt + bcnt, 1UL << page_shift); pfn_start_idx = (range.start - ib_umem_start(umem_odp)) >> PAGE_SHIFT; num_pfns = (range.end - range.start) >> PAGE_SHIFT; if (fault) { range.default_flags = HMM_PFN_REQ_FAULT; if (access_mask & ODP_WRITE_ALLOWED_BIT) range.default_flags |= HMM_PFN_REQ_WRITE; } range.hmm_pfns = &(umem_odp->pfn_list[pfn_start_idx]); timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT); retry: current_seq = range.notifier_seq = mmu_interval_read_begin(&umem_odp->notifier); mmap_read_lock(owning_mm); ret = hmm_range_fault(&range); mmap_read_unlock(owning_mm); if (unlikely(ret)) { if (ret == -EBUSY && !time_after(jiffies, timeout)) goto retry; goto out_put_mm; } start_idx = (range.start - ib_umem_start(umem_odp)) >> page_shift; dma_index = start_idx; mutex_lock(&umem_odp->umem_mutex); if (mmu_interval_read_retry(&umem_odp->notifier, current_seq)) { mutex_unlock(&umem_odp->umem_mutex); goto retry; } for (pfn_index = 0; pfn_index < num_pfns; pfn_index += 1 << (page_shift - PAGE_SHIFT), dma_index++) { if (fault) { /* * Since we asked for hmm_range_fault() to populate * pages it shouldn't return an error entry on success. */ WARN_ON(range.hmm_pfns[pfn_index] & HMM_PFN_ERROR); WARN_ON(!(range.hmm_pfns[pfn_index] & HMM_PFN_VALID)); } else { if (!(range.hmm_pfns[pfn_index] & HMM_PFN_VALID)) { WARN_ON(umem_odp->dma_list[dma_index]); continue; } access_mask = ODP_READ_ALLOWED_BIT; if (range.hmm_pfns[pfn_index] & HMM_PFN_WRITE) access_mask |= ODP_WRITE_ALLOWED_BIT; } hmm_order = hmm_pfn_to_map_order(range.hmm_pfns[pfn_index]); /* If a hugepage was detected and ODP wasn't set for, the umem * page_shift will be used, the opposite case is an error. */ if (hmm_order + PAGE_SHIFT < page_shift) { ret = -EINVAL; ibdev_dbg(umem_odp->umem.ibdev, "%s: un-expected hmm_order %u, page_shift %u\n", __func__, hmm_order, page_shift); break; } ret = ib_umem_odp_map_dma_single_page( umem_odp, dma_index, hmm_pfn_to_page(range.hmm_pfns[pfn_index]), access_mask); if (ret < 0) { ibdev_dbg(umem_odp->umem.ibdev, "ib_umem_odp_map_dma_single_page failed with error %d\n", ret); break; } } /* upon sucesss lock should stay on hold for the callee */ if (!ret) ret = dma_index - start_idx; else mutex_unlock(&umem_odp->umem_mutex); out_put_mm: mmput_async(owning_mm); out_put_task: if (owning_process) put_task_struct(owning_process); return ret; } EXPORT_SYMBOL(ib_umem_odp_map_dma_and_lock); void ib_umem_odp_unmap_dma_pages(struct ib_umem_odp *umem_odp, u64 virt, u64 bound) { dma_addr_t dma_addr; dma_addr_t dma; int idx; u64 addr; struct ib_device *dev = umem_odp->umem.ibdev; lockdep_assert_held(&umem_odp->umem_mutex); virt = max_t(u64, virt, ib_umem_start(umem_odp)); bound = min_t(u64, bound, ib_umem_end(umem_odp)); for (addr = virt; addr < bound; addr += BIT(umem_odp->page_shift)) { idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift; dma = umem_odp->dma_list[idx]; /* The access flags guaranteed a valid DMA address in case was NULL */ if (dma) { unsigned long pfn_idx = (addr - ib_umem_start(umem_odp)) >> PAGE_SHIFT; struct page *page = hmm_pfn_to_page(umem_odp->pfn_list[pfn_idx]); dma_addr = dma & ODP_DMA_ADDR_MASK; ib_dma_unmap_page(dev, dma_addr, BIT(umem_odp->page_shift), DMA_BIDIRECTIONAL); if (dma & ODP_WRITE_ALLOWED_BIT) { struct page *head_page = compound_head(page); /* * set_page_dirty prefers being called with * the page lock. However, MMU notifiers are * called sometimes with and sometimes without * the lock. We rely on the umem_mutex instead * to prevent other mmu notifiers from * continuing and allowing the page mapping to * be removed. */ set_page_dirty(head_page); } umem_odp->dma_list[idx] = 0; umem_odp->npages--; } } } EXPORT_SYMBOL(ib_umem_odp_unmap_dma_pages);