// SPDX-License-Identifier: GPL-2.0 /* * AD7190 AD7192 AD7193 AD7195 SPI ADC driver * * Copyright 2011-2015 Analog Devices Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Registers */ #define AD7192_REG_COMM 0 /* Communications Register (WO, 8-bit) */ #define AD7192_REG_STAT 0 /* Status Register (RO, 8-bit) */ #define AD7192_REG_MODE 1 /* Mode Register (RW, 24-bit */ #define AD7192_REG_CONF 2 /* Configuration Register (RW, 24-bit) */ #define AD7192_REG_DATA 3 /* Data Register (RO, 24/32-bit) */ #define AD7192_REG_ID 4 /* ID Register (RO, 8-bit) */ #define AD7192_REG_GPOCON 5 /* GPOCON Register (RO, 8-bit) */ #define AD7192_REG_OFFSET 6 /* Offset Register (RW, 16-bit */ /* (AD7792)/24-bit (AD7192)) */ #define AD7192_REG_FULLSALE 7 /* Full-Scale Register */ /* (RW, 16-bit (AD7792)/24-bit (AD7192)) */ /* Communications Register Bit Designations (AD7192_REG_COMM) */ #define AD7192_COMM_WEN BIT(7) /* Write Enable */ #define AD7192_COMM_WRITE 0 /* Write Operation */ #define AD7192_COMM_READ BIT(6) /* Read Operation */ #define AD7192_COMM_ADDR(x) (((x) & 0x7) << 3) /* Register Address */ #define AD7192_COMM_CREAD BIT(2) /* Continuous Read of Data Register */ /* Status Register Bit Designations (AD7192_REG_STAT) */ #define AD7192_STAT_RDY BIT(7) /* Ready */ #define AD7192_STAT_ERR BIT(6) /* Error (Overrange, Underrange) */ #define AD7192_STAT_NOREF BIT(5) /* Error no external reference */ #define AD7192_STAT_PARITY BIT(4) /* Parity */ #define AD7192_STAT_CH3 BIT(2) /* Channel 3 */ #define AD7192_STAT_CH2 BIT(1) /* Channel 2 */ #define AD7192_STAT_CH1 BIT(0) /* Channel 1 */ /* Mode Register Bit Designations (AD7192_REG_MODE) */ #define AD7192_MODE_SEL(x) (((x) & 0x7) << 21) /* Operation Mode Select */ #define AD7192_MODE_SEL_MASK (0x7 << 21) /* Operation Mode Select Mask */ #define AD7192_MODE_DAT_STA BIT(20) /* Status Register transmission */ #define AD7192_MODE_CLKSRC(x) (((x) & 0x3) << 18) /* Clock Source Select */ #define AD7192_MODE_SINC3 BIT(15) /* SINC3 Filter Select */ #define AD7192_MODE_ACX BIT(14) /* AC excitation enable(AD7195 only)*/ #define AD7192_MODE_ENPAR BIT(13) /* Parity Enable */ #define AD7192_MODE_CLKDIV BIT(12) /* Clock divide by 2 (AD7190/2 only)*/ #define AD7192_MODE_SCYCLE BIT(11) /* Single cycle conversion */ #define AD7192_MODE_REJ60 BIT(10) /* 50/60Hz notch filter */ #define AD7192_MODE_RATE(x) ((x) & 0x3FF) /* Filter Update Rate Select */ /* Mode Register: AD7192_MODE_SEL options */ #define AD7192_MODE_CONT 0 /* Continuous Conversion Mode */ #define AD7192_MODE_SINGLE 1 /* Single Conversion Mode */ #define AD7192_MODE_IDLE 2 /* Idle Mode */ #define AD7192_MODE_PWRDN 3 /* Power-Down Mode */ #define AD7192_MODE_CAL_INT_ZERO 4 /* Internal Zero-Scale Calibration */ #define AD7192_MODE_CAL_INT_FULL 5 /* Internal Full-Scale Calibration */ #define AD7192_MODE_CAL_SYS_ZERO 6 /* System Zero-Scale Calibration */ #define AD7192_MODE_CAL_SYS_FULL 7 /* System Full-Scale Calibration */ /* Mode Register: AD7192_MODE_CLKSRC options */ #define AD7192_CLK_EXT_MCLK1_2 0 /* External 4.92 MHz Clock connected*/ /* from MCLK1 to MCLK2 */ #define AD7192_CLK_EXT_MCLK2 1 /* External Clock applied to MCLK2 */ #define AD7192_CLK_INT 2 /* Internal 4.92 MHz Clock not */ /* available at the MCLK2 pin */ #define AD7192_CLK_INT_CO 3 /* Internal 4.92 MHz Clock available*/ /* at the MCLK2 pin */ /* Configuration Register Bit Designations (AD7192_REG_CONF) */ #define AD7192_CONF_CHOP BIT(23) /* CHOP enable */ #define AD7192_CONF_REFSEL BIT(20) /* REFIN1/REFIN2 Reference Select */ #define AD7192_CONF_CHAN(x) ((x) << 8) /* Channel select */ #define AD7192_CONF_CHAN_MASK (0x7FF << 8) /* Channel select mask */ #define AD7192_CONF_BURN BIT(7) /* Burnout current enable */ #define AD7192_CONF_REFDET BIT(6) /* Reference detect enable */ #define AD7192_CONF_BUF BIT(4) /* Buffered Mode Enable */ #define AD7192_CONF_UNIPOLAR BIT(3) /* Unipolar/Bipolar Enable */ #define AD7192_CONF_GAIN(x) ((x) & 0x7) /* Gain Select */ #define AD7192_CH_AIN1P_AIN2M BIT(0) /* AIN1(+) - AIN2(-) */ #define AD7192_CH_AIN3P_AIN4M BIT(1) /* AIN3(+) - AIN4(-) */ #define AD7192_CH_TEMP BIT(2) /* Temp Sensor */ #define AD7192_CH_AIN2P_AIN2M BIT(3) /* AIN2(+) - AIN2(-) */ #define AD7192_CH_AIN1 BIT(4) /* AIN1 - AINCOM */ #define AD7192_CH_AIN2 BIT(5) /* AIN2 - AINCOM */ #define AD7192_CH_AIN3 BIT(6) /* AIN3 - AINCOM */ #define AD7192_CH_AIN4 BIT(7) /* AIN4 - AINCOM */ #define AD7193_CH_AIN1P_AIN2M 0x001 /* AIN1(+) - AIN2(-) */ #define AD7193_CH_AIN3P_AIN4M 0x002 /* AIN3(+) - AIN4(-) */ #define AD7193_CH_AIN5P_AIN6M 0x004 /* AIN5(+) - AIN6(-) */ #define AD7193_CH_AIN7P_AIN8M 0x008 /* AIN7(+) - AIN8(-) */ #define AD7193_CH_TEMP 0x100 /* Temp senseor */ #define AD7193_CH_AIN2P_AIN2M 0x200 /* AIN2(+) - AIN2(-) */ #define AD7193_CH_AIN1 0x401 /* AIN1 - AINCOM */ #define AD7193_CH_AIN2 0x402 /* AIN2 - AINCOM */ #define AD7193_CH_AIN3 0x404 /* AIN3 - AINCOM */ #define AD7193_CH_AIN4 0x408 /* AIN4 - AINCOM */ #define AD7193_CH_AIN5 0x410 /* AIN5 - AINCOM */ #define AD7193_CH_AIN6 0x420 /* AIN6 - AINCOM */ #define AD7193_CH_AIN7 0x440 /* AIN7 - AINCOM */ #define AD7193_CH_AIN8 0x480 /* AIN7 - AINCOM */ #define AD7193_CH_AINCOM 0x600 /* AINCOM - AINCOM */ /* ID Register Bit Designations (AD7192_REG_ID) */ #define CHIPID_AD7190 0x4 #define CHIPID_AD7192 0x0 #define CHIPID_AD7193 0x2 #define CHIPID_AD7195 0x6 #define AD7192_ID_MASK 0x0F /* GPOCON Register Bit Designations (AD7192_REG_GPOCON) */ #define AD7192_GPOCON_BPDSW BIT(6) /* Bridge power-down switch enable */ #define AD7192_GPOCON_GP32EN BIT(5) /* Digital Output P3 and P2 enable */ #define AD7192_GPOCON_GP10EN BIT(4) /* Digital Output P1 and P0 enable */ #define AD7192_GPOCON_P3DAT BIT(3) /* P3 state */ #define AD7192_GPOCON_P2DAT BIT(2) /* P2 state */ #define AD7192_GPOCON_P1DAT BIT(1) /* P1 state */ #define AD7192_GPOCON_P0DAT BIT(0) /* P0 state */ #define AD7192_EXT_FREQ_MHZ_MIN 2457600 #define AD7192_EXT_FREQ_MHZ_MAX 5120000 #define AD7192_INT_FREQ_MHZ 4915200 #define AD7192_NO_SYNC_FILTER 1 #define AD7192_SYNC3_FILTER 3 #define AD7192_SYNC4_FILTER 4 /* NOTE: * The AD7190/2/5 features a dual use data out ready DOUT/RDY output. * In order to avoid contentions on the SPI bus, it's therefore necessary * to use spi bus locking. * * The DOUT/RDY output must also be wired to an interrupt capable GPIO. */ enum { AD7192_SYSCALIB_ZERO_SCALE, AD7192_SYSCALIB_FULL_SCALE, }; enum { ID_AD7190, ID_AD7192, ID_AD7193, ID_AD7195, }; struct ad7192_chip_info { unsigned int chip_id; const char *name; }; struct ad7192_state { const struct ad7192_chip_info *chip_info; struct regulator *avdd; struct regulator *dvdd; struct regulator *vref; struct clk *mclk; u16 int_vref_mv; u32 fclk; u32 f_order; u32 mode; u32 conf; u32 scale_avail[8][2]; u8 gpocon; u8 clock_sel; struct mutex lock; /* protect sensor state */ u8 syscalib_mode[8]; struct ad_sigma_delta sd; }; static const char * const ad7192_syscalib_modes[] = { [AD7192_SYSCALIB_ZERO_SCALE] = "zero_scale", [AD7192_SYSCALIB_FULL_SCALE] = "full_scale", }; static int ad7192_set_syscalib_mode(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, unsigned int mode) { struct ad7192_state *st = iio_priv(indio_dev); st->syscalib_mode[chan->channel] = mode; return 0; } static int ad7192_get_syscalib_mode(struct iio_dev *indio_dev, const struct iio_chan_spec *chan) { struct ad7192_state *st = iio_priv(indio_dev); return st->syscalib_mode[chan->channel]; } static ssize_t ad7192_write_syscalib(struct iio_dev *indio_dev, uintptr_t private, const struct iio_chan_spec *chan, const char *buf, size_t len) { struct ad7192_state *st = iio_priv(indio_dev); bool sys_calib; int ret, temp; ret = strtobool(buf, &sys_calib); if (ret) return ret; temp = st->syscalib_mode[chan->channel]; if (sys_calib) { if (temp == AD7192_SYSCALIB_ZERO_SCALE) ret = ad_sd_calibrate(&st->sd, AD7192_MODE_CAL_SYS_ZERO, chan->address); else ret = ad_sd_calibrate(&st->sd, AD7192_MODE_CAL_SYS_FULL, chan->address); } return ret ? ret : len; } static const struct iio_enum ad7192_syscalib_mode_enum = { .items = ad7192_syscalib_modes, .num_items = ARRAY_SIZE(ad7192_syscalib_modes), .set = ad7192_set_syscalib_mode, .get = ad7192_get_syscalib_mode }; static const struct iio_chan_spec_ext_info ad7192_calibsys_ext_info[] = { { .name = "sys_calibration", .write = ad7192_write_syscalib, .shared = IIO_SEPARATE, }, IIO_ENUM("sys_calibration_mode", IIO_SEPARATE, &ad7192_syscalib_mode_enum), IIO_ENUM_AVAILABLE("sys_calibration_mode", &ad7192_syscalib_mode_enum), {} }; static struct ad7192_state *ad_sigma_delta_to_ad7192(struct ad_sigma_delta *sd) { return container_of(sd, struct ad7192_state, sd); } static int ad7192_set_channel(struct ad_sigma_delta *sd, unsigned int channel) { struct ad7192_state *st = ad_sigma_delta_to_ad7192(sd); st->conf &= ~AD7192_CONF_CHAN_MASK; st->conf |= AD7192_CONF_CHAN(channel); return ad_sd_write_reg(&st->sd, AD7192_REG_CONF, 3, st->conf); } static int ad7192_set_mode(struct ad_sigma_delta *sd, enum ad_sigma_delta_mode mode) { struct ad7192_state *st = ad_sigma_delta_to_ad7192(sd); st->mode &= ~AD7192_MODE_SEL_MASK; st->mode |= AD7192_MODE_SEL(mode); return ad_sd_write_reg(&st->sd, AD7192_REG_MODE, 3, st->mode); } static const struct ad_sigma_delta_info ad7192_sigma_delta_info = { .set_channel = ad7192_set_channel, .set_mode = ad7192_set_mode, .has_registers = true, .addr_shift = 3, .read_mask = BIT(6), .irq_flags = IRQF_TRIGGER_FALLING, }; static const struct ad_sd_calib_data ad7192_calib_arr[8] = { {AD7192_MODE_CAL_INT_ZERO, AD7192_CH_AIN1}, {AD7192_MODE_CAL_INT_FULL, AD7192_CH_AIN1}, {AD7192_MODE_CAL_INT_ZERO, AD7192_CH_AIN2}, {AD7192_MODE_CAL_INT_FULL, AD7192_CH_AIN2}, {AD7192_MODE_CAL_INT_ZERO, AD7192_CH_AIN3}, {AD7192_MODE_CAL_INT_FULL, AD7192_CH_AIN3}, {AD7192_MODE_CAL_INT_ZERO, AD7192_CH_AIN4}, {AD7192_MODE_CAL_INT_FULL, AD7192_CH_AIN4} }; static int ad7192_calibrate_all(struct ad7192_state *st) { return ad_sd_calibrate_all(&st->sd, ad7192_calib_arr, ARRAY_SIZE(ad7192_calib_arr)); } static inline bool ad7192_valid_external_frequency(u32 freq) { return (freq >= AD7192_EXT_FREQ_MHZ_MIN && freq <= AD7192_EXT_FREQ_MHZ_MAX); } static int ad7192_of_clock_select(struct ad7192_state *st) { struct device_node *np = st->sd.spi->dev.of_node; unsigned int clock_sel; clock_sel = AD7192_CLK_INT; /* use internal clock */ if (!st->mclk) { if (of_property_read_bool(np, "adi,int-clock-output-enable")) clock_sel = AD7192_CLK_INT_CO; } else { if (of_property_read_bool(np, "adi,clock-xtal")) clock_sel = AD7192_CLK_EXT_MCLK1_2; else clock_sel = AD7192_CLK_EXT_MCLK2; } return clock_sel; } static int ad7192_setup(struct iio_dev *indio_dev, struct device_node *np) { struct ad7192_state *st = iio_priv(indio_dev); bool rej60_en, refin2_en; bool buf_en, bipolar, burnout_curr_en; unsigned long long scale_uv; int i, ret, id; /* reset the serial interface */ ret = ad_sd_reset(&st->sd, 48); if (ret < 0) return ret; usleep_range(500, 1000); /* Wait for at least 500us */ /* write/read test for device presence */ ret = ad_sd_read_reg(&st->sd, AD7192_REG_ID, 1, &id); if (ret) return ret; id &= AD7192_ID_MASK; if (id != st->chip_info->chip_id) dev_warn(&st->sd.spi->dev, "device ID query failed (0x%X)\n", id); st->mode = AD7192_MODE_SEL(AD7192_MODE_IDLE) | AD7192_MODE_CLKSRC(st->clock_sel) | AD7192_MODE_RATE(480); st->conf = AD7192_CONF_GAIN(0); rej60_en = of_property_read_bool(np, "adi,rejection-60-Hz-enable"); if (rej60_en) st->mode |= AD7192_MODE_REJ60; refin2_en = of_property_read_bool(np, "adi,refin2-pins-enable"); if (refin2_en && st->chip_info->chip_id != CHIPID_AD7195) st->conf |= AD7192_CONF_REFSEL; st->conf &= ~AD7192_CONF_CHOP; st->f_order = AD7192_NO_SYNC_FILTER; buf_en = of_property_read_bool(np, "adi,buffer-enable"); if (buf_en) st->conf |= AD7192_CONF_BUF; bipolar = of_property_read_bool(np, "bipolar"); if (!bipolar) st->conf |= AD7192_CONF_UNIPOLAR; burnout_curr_en = of_property_read_bool(np, "adi,burnout-currents-enable"); if (burnout_curr_en && buf_en) { st->conf |= AD7192_CONF_BURN; } else if (burnout_curr_en) { dev_warn(&st->sd.spi->dev, "Can't enable burnout currents: see CHOP or buffer\n"); } ret = ad_sd_write_reg(&st->sd, AD7192_REG_MODE, 3, st->mode); if (ret) return ret; ret = ad_sd_write_reg(&st->sd, AD7192_REG_CONF, 3, st->conf); if (ret) return ret; ret = ad7192_calibrate_all(st); if (ret) return ret; /* Populate available ADC input ranges */ for (i = 0; i < ARRAY_SIZE(st->scale_avail); i++) { scale_uv = ((u64)st->int_vref_mv * 100000000) >> (indio_dev->channels[0].scan_type.realbits - ((st->conf & AD7192_CONF_UNIPOLAR) ? 0 : 1)); scale_uv >>= i; st->scale_avail[i][1] = do_div(scale_uv, 100000000) * 10; st->scale_avail[i][0] = scale_uv; } return 0; } static ssize_t ad7192_show_ac_excitation(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct ad7192_state *st = iio_priv(indio_dev); return sprintf(buf, "%d\n", !!(st->mode & AD7192_MODE_ACX)); } static ssize_t ad7192_show_bridge_switch(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct ad7192_state *st = iio_priv(indio_dev); return sprintf(buf, "%d\n", !!(st->gpocon & AD7192_GPOCON_BPDSW)); } static ssize_t ad7192_set(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct ad7192_state *st = iio_priv(indio_dev); struct iio_dev_attr *this_attr = to_iio_dev_attr(attr); int ret; bool val; ret = strtobool(buf, &val); if (ret < 0) return ret; ret = iio_device_claim_direct_mode(indio_dev); if (ret) return ret; switch ((u32)this_attr->address) { case AD7192_REG_GPOCON: if (val) st->gpocon |= AD7192_GPOCON_BPDSW; else st->gpocon &= ~AD7192_GPOCON_BPDSW; ad_sd_write_reg(&st->sd, AD7192_REG_GPOCON, 1, st->gpocon); break; case AD7192_REG_MODE: if (val) st->mode |= AD7192_MODE_ACX; else st->mode &= ~AD7192_MODE_ACX; ad_sd_write_reg(&st->sd, AD7192_REG_MODE, 3, st->mode); break; default: ret = -EINVAL; } iio_device_release_direct_mode(indio_dev); return ret ? ret : len; } static void ad7192_get_available_filter_freq(struct ad7192_state *st, int *freq) { unsigned int fadc; /* Formulas for filter at page 25 of the datasheet */ fadc = DIV_ROUND_CLOSEST(st->fclk, AD7192_SYNC4_FILTER * AD7192_MODE_RATE(st->mode)); freq[0] = DIV_ROUND_CLOSEST(fadc * 240, 1024); fadc = DIV_ROUND_CLOSEST(st->fclk, AD7192_SYNC3_FILTER * AD7192_MODE_RATE(st->mode)); freq[1] = DIV_ROUND_CLOSEST(fadc * 240, 1024); fadc = DIV_ROUND_CLOSEST(st->fclk, AD7192_MODE_RATE(st->mode)); freq[2] = DIV_ROUND_CLOSEST(fadc * 230, 1024); freq[3] = DIV_ROUND_CLOSEST(fadc * 272, 1024); } static ssize_t ad7192_show_filter_avail(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct ad7192_state *st = iio_priv(indio_dev); unsigned int freq_avail[4], i; size_t len = 0; ad7192_get_available_filter_freq(st, freq_avail); for (i = 0; i < ARRAY_SIZE(freq_avail); i++) len += scnprintf(buf + len, PAGE_SIZE - len, "%d.%d ", freq_avail[i] / 1000, freq_avail[i] % 1000); buf[len - 1] = '\n'; return len; } static IIO_DEVICE_ATTR(filter_low_pass_3db_frequency_available, 0444, ad7192_show_filter_avail, NULL, 0); static IIO_DEVICE_ATTR(bridge_switch_en, 0644, ad7192_show_bridge_switch, ad7192_set, AD7192_REG_GPOCON); static IIO_DEVICE_ATTR(ac_excitation_en, 0644, ad7192_show_ac_excitation, ad7192_set, AD7192_REG_MODE); static struct attribute *ad7192_attributes[] = { &iio_dev_attr_filter_low_pass_3db_frequency_available.dev_attr.attr, &iio_dev_attr_bridge_switch_en.dev_attr.attr, &iio_dev_attr_ac_excitation_en.dev_attr.attr, NULL }; static const struct attribute_group ad7192_attribute_group = { .attrs = ad7192_attributes, }; static struct attribute *ad7195_attributes[] = { &iio_dev_attr_filter_low_pass_3db_frequency_available.dev_attr.attr, &iio_dev_attr_bridge_switch_en.dev_attr.attr, NULL }; static const struct attribute_group ad7195_attribute_group = { .attrs = ad7195_attributes, }; static unsigned int ad7192_get_temp_scale(bool unipolar) { return unipolar ? 2815 * 2 : 2815; } static int ad7192_set_3db_filter_freq(struct ad7192_state *st, int val, int val2) { int freq_avail[4], i, ret, freq; unsigned int diff_new, diff_old; int idx = 0; diff_old = U32_MAX; freq = val * 1000 + val2; ad7192_get_available_filter_freq(st, freq_avail); for (i = 0; i < ARRAY_SIZE(freq_avail); i++) { diff_new = abs(freq - freq_avail[i]); if (diff_new < diff_old) { diff_old = diff_new; idx = i; } } switch (idx) { case 0: st->f_order = AD7192_SYNC4_FILTER; st->mode &= ~AD7192_MODE_SINC3; st->conf |= AD7192_CONF_CHOP; break; case 1: st->f_order = AD7192_SYNC3_FILTER; st->mode |= AD7192_MODE_SINC3; st->conf |= AD7192_CONF_CHOP; break; case 2: st->f_order = AD7192_NO_SYNC_FILTER; st->mode &= ~AD7192_MODE_SINC3; st->conf &= ~AD7192_CONF_CHOP; break; case 3: st->f_order = AD7192_NO_SYNC_FILTER; st->mode |= AD7192_MODE_SINC3; st->conf &= ~AD7192_CONF_CHOP; break; } ret = ad_sd_write_reg(&st->sd, AD7192_REG_MODE, 3, st->mode); if (ret < 0) return ret; return ad_sd_write_reg(&st->sd, AD7192_REG_CONF, 3, st->conf); } static int ad7192_get_3db_filter_freq(struct ad7192_state *st) { unsigned int fadc; fadc = DIV_ROUND_CLOSEST(st->fclk, st->f_order * AD7192_MODE_RATE(st->mode)); if (st->conf & AD7192_CONF_CHOP) return DIV_ROUND_CLOSEST(fadc * 240, 1024); if (st->mode & AD7192_MODE_SINC3) return DIV_ROUND_CLOSEST(fadc * 272, 1024); else return DIV_ROUND_CLOSEST(fadc * 230, 1024); } static int ad7192_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long m) { struct ad7192_state *st = iio_priv(indio_dev); bool unipolar = !!(st->conf & AD7192_CONF_UNIPOLAR); switch (m) { case IIO_CHAN_INFO_RAW: return ad_sigma_delta_single_conversion(indio_dev, chan, val); case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_VOLTAGE: mutex_lock(&st->lock); *val = st->scale_avail[AD7192_CONF_GAIN(st->conf)][0]; *val2 = st->scale_avail[AD7192_CONF_GAIN(st->conf)][1]; mutex_unlock(&st->lock); return IIO_VAL_INT_PLUS_NANO; case IIO_TEMP: *val = 0; *val2 = 1000000000 / ad7192_get_temp_scale(unipolar); return IIO_VAL_INT_PLUS_NANO; default: return -EINVAL; } case IIO_CHAN_INFO_OFFSET: if (!unipolar) *val = -(1 << (chan->scan_type.realbits - 1)); else *val = 0; /* Kelvin to Celsius */ if (chan->type == IIO_TEMP) *val -= 273 * ad7192_get_temp_scale(unipolar); return IIO_VAL_INT; case IIO_CHAN_INFO_SAMP_FREQ: *val = st->fclk / (st->f_order * 1024 * AD7192_MODE_RATE(st->mode)); return IIO_VAL_INT; case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: *val = ad7192_get_3db_filter_freq(st); *val2 = 1000; return IIO_VAL_FRACTIONAL; } return -EINVAL; } static int ad7192_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct ad7192_state *st = iio_priv(indio_dev); int ret, i, div; unsigned int tmp; ret = iio_device_claim_direct_mode(indio_dev); if (ret) return ret; switch (mask) { case IIO_CHAN_INFO_SCALE: ret = -EINVAL; mutex_lock(&st->lock); for (i = 0; i < ARRAY_SIZE(st->scale_avail); i++) if (val2 == st->scale_avail[i][1]) { ret = 0; tmp = st->conf; st->conf &= ~AD7192_CONF_GAIN(-1); st->conf |= AD7192_CONF_GAIN(i); if (tmp == st->conf) break; ad_sd_write_reg(&st->sd, AD7192_REG_CONF, 3, st->conf); ad7192_calibrate_all(st); break; } mutex_unlock(&st->lock); break; case IIO_CHAN_INFO_SAMP_FREQ: if (!val) { ret = -EINVAL; break; } div = st->fclk / (val * st->f_order * 1024); if (div < 1 || div > 1023) { ret = -EINVAL; break; } st->mode &= ~AD7192_MODE_RATE(-1); st->mode |= AD7192_MODE_RATE(div); ad_sd_write_reg(&st->sd, AD7192_REG_MODE, 3, st->mode); break; case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: ret = ad7192_set_3db_filter_freq(st, val, val2 / 1000); break; default: ret = -EINVAL; } iio_device_release_direct_mode(indio_dev); return ret; } static int ad7192_write_raw_get_fmt(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, long mask) { switch (mask) { case IIO_CHAN_INFO_SCALE: return IIO_VAL_INT_PLUS_NANO; case IIO_CHAN_INFO_SAMP_FREQ: return IIO_VAL_INT; case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } } static int ad7192_read_avail(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, const int **vals, int *type, int *length, long mask) { struct ad7192_state *st = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_SCALE: *vals = (int *)st->scale_avail; *type = IIO_VAL_INT_PLUS_NANO; /* Values are stored in a 2D matrix */ *length = ARRAY_SIZE(st->scale_avail) * 2; return IIO_AVAIL_LIST; } return -EINVAL; } static const struct iio_info ad7192_info = { .read_raw = ad7192_read_raw, .write_raw = ad7192_write_raw, .write_raw_get_fmt = ad7192_write_raw_get_fmt, .read_avail = ad7192_read_avail, .attrs = &ad7192_attribute_group, .validate_trigger = ad_sd_validate_trigger, }; static const struct iio_info ad7195_info = { .read_raw = ad7192_read_raw, .write_raw = ad7192_write_raw, .write_raw_get_fmt = ad7192_write_raw_get_fmt, .read_avail = ad7192_read_avail, .attrs = &ad7195_attribute_group, .validate_trigger = ad_sd_validate_trigger, }; #define __AD719x_CHANNEL(_si, _channel1, _channel2, _address, _extend_name, \ _type, _mask_type_av, _ext_info) \ { \ .type = (_type), \ .differential = ((_channel2) == -1 ? 0 : 1), \ .indexed = 1, \ .channel = (_channel1), \ .channel2 = (_channel2), \ .address = (_address), \ .extend_name = (_extend_name), \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_OFFSET), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \ .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \ BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), \ .info_mask_shared_by_type_available = (_mask_type_av), \ .ext_info = (_ext_info), \ .scan_index = (_si), \ .scan_type = { \ .sign = 'u', \ .realbits = 24, \ .storagebits = 32, \ .endianness = IIO_BE, \ }, \ } #define AD719x_DIFF_CHANNEL(_si, _channel1, _channel2, _address) \ __AD719x_CHANNEL(_si, _channel1, _channel2, _address, NULL, \ IIO_VOLTAGE, BIT(IIO_CHAN_INFO_SCALE), \ ad7192_calibsys_ext_info) #define AD719x_CHANNEL(_si, _channel1, _address) \ __AD719x_CHANNEL(_si, _channel1, -1, _address, NULL, IIO_VOLTAGE, \ BIT(IIO_CHAN_INFO_SCALE), ad7192_calibsys_ext_info) #define AD719x_TEMP_CHANNEL(_si, _address) \ __AD719x_CHANNEL(_si, 0, -1, _address, NULL, IIO_TEMP, 0, NULL) static const struct iio_chan_spec ad7192_channels[] = { AD719x_DIFF_CHANNEL(0, 1, 2, AD7192_CH_AIN1P_AIN2M), AD719x_DIFF_CHANNEL(1, 3, 4, AD7192_CH_AIN3P_AIN4M), AD719x_TEMP_CHANNEL(2, AD7192_CH_TEMP), AD719x_DIFF_CHANNEL(3, 2, 2, AD7192_CH_AIN2P_AIN2M), AD719x_CHANNEL(4, 1, AD7192_CH_AIN1), AD719x_CHANNEL(5, 2, AD7192_CH_AIN2), AD719x_CHANNEL(6, 3, AD7192_CH_AIN3), AD719x_CHANNEL(7, 4, AD7192_CH_AIN4), IIO_CHAN_SOFT_TIMESTAMP(8), }; static const struct iio_chan_spec ad7193_channels[] = { AD719x_DIFF_CHANNEL(0, 1, 2, AD7193_CH_AIN1P_AIN2M), AD719x_DIFF_CHANNEL(1, 3, 4, AD7193_CH_AIN3P_AIN4M), AD719x_DIFF_CHANNEL(2, 5, 6, AD7193_CH_AIN5P_AIN6M), AD719x_DIFF_CHANNEL(3, 7, 8, AD7193_CH_AIN7P_AIN8M), AD719x_TEMP_CHANNEL(4, AD7193_CH_TEMP), AD719x_DIFF_CHANNEL(5, 2, 2, AD7193_CH_AIN2P_AIN2M), AD719x_CHANNEL(6, 1, AD7193_CH_AIN1), AD719x_CHANNEL(7, 2, AD7193_CH_AIN2), AD719x_CHANNEL(8, 3, AD7193_CH_AIN3), AD719x_CHANNEL(9, 4, AD7193_CH_AIN4), AD719x_CHANNEL(10, 5, AD7193_CH_AIN5), AD719x_CHANNEL(11, 6, AD7193_CH_AIN6), AD719x_CHANNEL(12, 7, AD7193_CH_AIN7), AD719x_CHANNEL(13, 8, AD7193_CH_AIN8), IIO_CHAN_SOFT_TIMESTAMP(14), }; static const struct ad7192_chip_info ad7192_chip_info_tbl[] = { [ID_AD7190] = { .chip_id = CHIPID_AD7190, .name = "ad7190", }, [ID_AD7192] = { .chip_id = CHIPID_AD7192, .name = "ad7192", }, [ID_AD7193] = { .chip_id = CHIPID_AD7193, .name = "ad7193", }, [ID_AD7195] = { .chip_id = CHIPID_AD7195, .name = "ad7195", }, }; static int ad7192_channels_config(struct iio_dev *indio_dev) { struct ad7192_state *st = iio_priv(indio_dev); switch (st->chip_info->chip_id) { case CHIPID_AD7193: indio_dev->channels = ad7193_channels; indio_dev->num_channels = ARRAY_SIZE(ad7193_channels); break; default: indio_dev->channels = ad7192_channels; indio_dev->num_channels = ARRAY_SIZE(ad7192_channels); break; } return 0; } static void ad7192_reg_disable(void *reg) { regulator_disable(reg); } static void ad7192_clk_disable(void *clk) { clk_disable_unprepare(clk); } static int ad7192_probe(struct spi_device *spi) { struct ad7192_state *st; struct iio_dev *indio_dev; int ret; if (!spi->irq) { dev_err(&spi->dev, "no IRQ?\n"); return -ENODEV; } indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st)); if (!indio_dev) return -ENOMEM; st = iio_priv(indio_dev); mutex_init(&st->lock); st->avdd = devm_regulator_get(&spi->dev, "avdd"); if (IS_ERR(st->avdd)) return PTR_ERR(st->avdd); ret = regulator_enable(st->avdd); if (ret) { dev_err(&spi->dev, "Failed to enable specified AVdd supply\n"); return ret; } ret = devm_add_action_or_reset(&spi->dev, ad7192_reg_disable, st->avdd); if (ret) return ret; st->dvdd = devm_regulator_get(&spi->dev, "dvdd"); if (IS_ERR(st->dvdd)) return PTR_ERR(st->dvdd); ret = regulator_enable(st->dvdd); if (ret) { dev_err(&spi->dev, "Failed to enable specified DVdd supply\n"); return ret; } ret = devm_add_action_or_reset(&spi->dev, ad7192_reg_disable, st->dvdd); if (ret) return ret; st->vref = devm_regulator_get_optional(&spi->dev, "vref"); if (IS_ERR(st->vref)) { if (PTR_ERR(st->vref) != -ENODEV) return PTR_ERR(st->vref); ret = regulator_get_voltage(st->avdd); if (ret < 0) return dev_err_probe(&spi->dev, ret, "Device tree error, AVdd voltage undefined\n"); } else { ret = regulator_enable(st->vref); if (ret) { dev_err(&spi->dev, "Failed to enable specified Vref supply\n"); return ret; } ret = devm_add_action_or_reset(&spi->dev, ad7192_reg_disable, st->vref); if (ret) return ret; ret = regulator_get_voltage(st->vref); if (ret < 0) return dev_err_probe(&spi->dev, ret, "Device tree error, Vref voltage undefined\n"); } st->int_vref_mv = ret / 1000; st->chip_info = of_device_get_match_data(&spi->dev); indio_dev->name = st->chip_info->name; indio_dev->modes = INDIO_DIRECT_MODE; ret = ad7192_channels_config(indio_dev); if (ret < 0) return ret; if (st->chip_info->chip_id == CHIPID_AD7195) indio_dev->info = &ad7195_info; else indio_dev->info = &ad7192_info; ad_sd_init(&st->sd, indio_dev, spi, &ad7192_sigma_delta_info); ret = devm_ad_sd_setup_buffer_and_trigger(&spi->dev, indio_dev); if (ret) return ret; st->fclk = AD7192_INT_FREQ_MHZ; st->mclk = devm_clk_get_optional(&spi->dev, "mclk"); if (IS_ERR(st->mclk)) return PTR_ERR(st->mclk); st->clock_sel = ad7192_of_clock_select(st); if (st->clock_sel == AD7192_CLK_EXT_MCLK1_2 || st->clock_sel == AD7192_CLK_EXT_MCLK2) { ret = clk_prepare_enable(st->mclk); if (ret < 0) return ret; ret = devm_add_action_or_reset(&spi->dev, ad7192_clk_disable, st->mclk); if (ret) return ret; st->fclk = clk_get_rate(st->mclk); if (!ad7192_valid_external_frequency(st->fclk)) { dev_err(&spi->dev, "External clock frequency out of bounds\n"); return -EINVAL; } } ret = ad7192_setup(indio_dev, spi->dev.of_node); if (ret) return ret; return devm_iio_device_register(&spi->dev, indio_dev); } static const struct of_device_id ad7192_of_match[] = { { .compatible = "adi,ad7190", .data = &ad7192_chip_info_tbl[ID_AD7190] }, { .compatible = "adi,ad7192", .data = &ad7192_chip_info_tbl[ID_AD7192] }, { .compatible = "adi,ad7193", .data = &ad7192_chip_info_tbl[ID_AD7193] }, { .compatible = "adi,ad7195", .data = &ad7192_chip_info_tbl[ID_AD7195] }, {} }; MODULE_DEVICE_TABLE(of, ad7192_of_match); static struct spi_driver ad7192_driver = { .driver = { .name = "ad7192", .of_match_table = ad7192_of_match, }, .probe = ad7192_probe, }; module_spi_driver(ad7192_driver); MODULE_AUTHOR("Michael Hennerich "); MODULE_DESCRIPTION("Analog Devices AD7190, AD7192, AD7193, AD7195 ADC"); MODULE_LICENSE("GPL v2");