// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2015 Broadcom */ /** * DOC: VC4 HVS module. * * The Hardware Video Scaler (HVS) is the piece of hardware that does * translation, scaling, colorspace conversion, and compositing of * pixels stored in framebuffers into a FIFO of pixels going out to * the Pixel Valve (CRTC). It operates at the system clock rate (the * system audio clock gate, specifically), which is much higher than * the pixel clock rate. * * There is a single global HVS, with multiple output FIFOs that can * be consumed by the PVs. This file just manages the resources for * the HVS, while the vc4_crtc.c code actually drives HVS setup for * each CRTC. */ #include #include #include #include #include #include #include "vc4_drv.h" #include "vc4_regs.h" static const struct debugfs_reg32 hvs_regs[] = { VC4_REG32(SCALER_DISPCTRL), VC4_REG32(SCALER_DISPSTAT), VC4_REG32(SCALER_DISPID), VC4_REG32(SCALER_DISPECTRL), VC4_REG32(SCALER_DISPPROF), VC4_REG32(SCALER_DISPDITHER), VC4_REG32(SCALER_DISPEOLN), VC4_REG32(SCALER_DISPLIST0), VC4_REG32(SCALER_DISPLIST1), VC4_REG32(SCALER_DISPLIST2), VC4_REG32(SCALER_DISPLSTAT), VC4_REG32(SCALER_DISPLACT0), VC4_REG32(SCALER_DISPLACT1), VC4_REG32(SCALER_DISPLACT2), VC4_REG32(SCALER_DISPCTRL0), VC4_REG32(SCALER_DISPBKGND0), VC4_REG32(SCALER_DISPSTAT0), VC4_REG32(SCALER_DISPBASE0), VC4_REG32(SCALER_DISPCTRL1), VC4_REG32(SCALER_DISPBKGND1), VC4_REG32(SCALER_DISPSTAT1), VC4_REG32(SCALER_DISPBASE1), VC4_REG32(SCALER_DISPCTRL2), VC4_REG32(SCALER_DISPBKGND2), VC4_REG32(SCALER_DISPSTAT2), VC4_REG32(SCALER_DISPBASE2), VC4_REG32(SCALER_DISPALPHA2), VC4_REG32(SCALER_OLEDOFFS), VC4_REG32(SCALER_OLEDCOEF0), VC4_REG32(SCALER_OLEDCOEF1), VC4_REG32(SCALER_OLEDCOEF2), }; void vc4_hvs_dump_state(struct drm_device *dev) { struct vc4_dev *vc4 = to_vc4_dev(dev); struct drm_printer p = drm_info_printer(&vc4->hvs->pdev->dev); int i; drm_print_regset32(&p, &vc4->hvs->regset); DRM_INFO("HVS ctx:\n"); for (i = 0; i < 64; i += 4) { DRM_INFO("0x%08x (%s): 0x%08x 0x%08x 0x%08x 0x%08x\n", i * 4, i < HVS_BOOTLOADER_DLIST_END ? "B" : "D", readl((u32 __iomem *)vc4->hvs->dlist + i + 0), readl((u32 __iomem *)vc4->hvs->dlist + i + 1), readl((u32 __iomem *)vc4->hvs->dlist + i + 2), readl((u32 __iomem *)vc4->hvs->dlist + i + 3)); } } static int vc4_hvs_debugfs_underrun(struct seq_file *m, void *data) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); struct drm_printer p = drm_seq_file_printer(m); drm_printf(&p, "%d\n", atomic_read(&vc4->underrun)); return 0; } /* The filter kernel is composed of dwords each containing 3 9-bit * signed integers packed next to each other. */ #define VC4_INT_TO_COEFF(coeff) (coeff & 0x1ff) #define VC4_PPF_FILTER_WORD(c0, c1, c2) \ ((((c0) & 0x1ff) << 0) | \ (((c1) & 0x1ff) << 9) | \ (((c2) & 0x1ff) << 18)) /* The whole filter kernel is arranged as the coefficients 0-16 going * up, then a pad, then 17-31 going down and reversed within the * dwords. This means that a linear phase kernel (where it's * symmetrical at the boundary between 15 and 16) has the last 5 * dwords matching the first 5, but reversed. */ #define VC4_LINEAR_PHASE_KERNEL(c0, c1, c2, c3, c4, c5, c6, c7, c8, \ c9, c10, c11, c12, c13, c14, c15) \ {VC4_PPF_FILTER_WORD(c0, c1, c2), \ VC4_PPF_FILTER_WORD(c3, c4, c5), \ VC4_PPF_FILTER_WORD(c6, c7, c8), \ VC4_PPF_FILTER_WORD(c9, c10, c11), \ VC4_PPF_FILTER_WORD(c12, c13, c14), \ VC4_PPF_FILTER_WORD(c15, c15, 0)} #define VC4_LINEAR_PHASE_KERNEL_DWORDS 6 #define VC4_KERNEL_DWORDS (VC4_LINEAR_PHASE_KERNEL_DWORDS * 2 - 1) /* Recommended B=1/3, C=1/3 filter choice from Mitchell/Netravali. * http://www.cs.utexas.edu/~fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf */ static const u32 mitchell_netravali_1_3_1_3_kernel[] = VC4_LINEAR_PHASE_KERNEL(0, -2, -6, -8, -10, -8, -3, 2, 18, 50, 82, 119, 155, 187, 213, 227); static int vc4_hvs_upload_linear_kernel(struct vc4_hvs *hvs, struct drm_mm_node *space, const u32 *kernel) { int ret, i; u32 __iomem *dst_kernel; ret = drm_mm_insert_node(&hvs->dlist_mm, space, VC4_KERNEL_DWORDS); if (ret) { DRM_ERROR("Failed to allocate space for filter kernel: %d\n", ret); return ret; } dst_kernel = hvs->dlist + space->start; for (i = 0; i < VC4_KERNEL_DWORDS; i++) { if (i < VC4_LINEAR_PHASE_KERNEL_DWORDS) writel(kernel[i], &dst_kernel[i]); else { writel(kernel[VC4_KERNEL_DWORDS - i - 1], &dst_kernel[i]); } } return 0; } static void vc4_hvs_lut_load(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); u32 i; /* The LUT memory is laid out with each HVS channel in order, * each of which takes 256 writes for R, 256 for G, then 256 * for B. */ HVS_WRITE(SCALER_GAMADDR, SCALER_GAMADDR_AUTOINC | (vc4_state->assigned_channel * 3 * crtc->gamma_size)); for (i = 0; i < crtc->gamma_size; i++) HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]); for (i = 0; i < crtc->gamma_size; i++) HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]); for (i = 0; i < crtc->gamma_size; i++) HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]); } static void vc4_hvs_update_gamma_lut(struct drm_crtc *crtc) { struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); struct drm_color_lut *lut = crtc->state->gamma_lut->data; u32 length = drm_color_lut_size(crtc->state->gamma_lut); u32 i; for (i = 0; i < length; i++) { vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8); vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8); vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8); } vc4_hvs_lut_load(crtc); } u8 vc4_hvs_get_fifo_frame_count(struct drm_device *dev, unsigned int fifo) { struct vc4_dev *vc4 = to_vc4_dev(dev); u8 field = 0; switch (fifo) { case 0: field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT1), SCALER_DISPSTAT1_FRCNT0); break; case 1: field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT1), SCALER_DISPSTAT1_FRCNT1); break; case 2: field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT2), SCALER_DISPSTAT2_FRCNT2); break; } return field; } int vc4_hvs_get_fifo_from_output(struct drm_device *dev, unsigned int output) { struct vc4_dev *vc4 = to_vc4_dev(dev); u32 reg; int ret; if (!vc4->hvs->hvs5) return output; switch (output) { case 0: return 0; case 1: return 1; case 2: reg = HVS_READ(SCALER_DISPECTRL); ret = FIELD_GET(SCALER_DISPECTRL_DSP2_MUX_MASK, reg); if (ret == 0) return 2; return 0; case 3: reg = HVS_READ(SCALER_DISPCTRL); ret = FIELD_GET(SCALER_DISPCTRL_DSP3_MUX_MASK, reg); if (ret == 3) return -EPIPE; return ret; case 4: reg = HVS_READ(SCALER_DISPEOLN); ret = FIELD_GET(SCALER_DISPEOLN_DSP4_MUX_MASK, reg); if (ret == 3) return -EPIPE; return ret; case 5: reg = HVS_READ(SCALER_DISPDITHER); ret = FIELD_GET(SCALER_DISPDITHER_DSP5_MUX_MASK, reg); if (ret == 3) return -EPIPE; return ret; default: return -EPIPE; } } static int vc4_hvs_init_channel(struct vc4_dev *vc4, struct drm_crtc *crtc, struct drm_display_mode *mode, bool oneshot) { struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state); unsigned int chan = vc4_crtc_state->assigned_channel; bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE; u32 dispbkgndx; u32 dispctrl; HVS_WRITE(SCALER_DISPCTRLX(chan), 0); HVS_WRITE(SCALER_DISPCTRLX(chan), SCALER_DISPCTRLX_RESET); HVS_WRITE(SCALER_DISPCTRLX(chan), 0); /* Turn on the scaler, which will wait for vstart to start * compositing. * When feeding the transposer, we should operate in oneshot * mode. */ dispctrl = SCALER_DISPCTRLX_ENABLE; if (!vc4->hvs->hvs5) dispctrl |= VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) | VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) | (oneshot ? SCALER_DISPCTRLX_ONESHOT : 0); else dispctrl |= VC4_SET_FIELD(mode->hdisplay, SCALER5_DISPCTRLX_WIDTH) | VC4_SET_FIELD(mode->vdisplay, SCALER5_DISPCTRLX_HEIGHT) | (oneshot ? SCALER5_DISPCTRLX_ONESHOT : 0); HVS_WRITE(SCALER_DISPCTRLX(chan), dispctrl); dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(chan)); dispbkgndx &= ~SCALER_DISPBKGND_GAMMA; dispbkgndx &= ~SCALER_DISPBKGND_INTERLACE; HVS_WRITE(SCALER_DISPBKGNDX(chan), dispbkgndx | SCALER_DISPBKGND_AUTOHS | ((!vc4->hvs->hvs5) ? SCALER_DISPBKGND_GAMMA : 0) | (interlace ? SCALER_DISPBKGND_INTERLACE : 0)); /* Reload the LUT, since the SRAMs would have been disabled if * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once. */ vc4_hvs_lut_load(crtc); return 0; } void vc4_hvs_stop_channel(struct drm_device *dev, unsigned int chan) { struct vc4_dev *vc4 = to_vc4_dev(dev); if (HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_ENABLE) return; HVS_WRITE(SCALER_DISPCTRLX(chan), HVS_READ(SCALER_DISPCTRLX(chan)) | SCALER_DISPCTRLX_RESET); HVS_WRITE(SCALER_DISPCTRLX(chan), HVS_READ(SCALER_DISPCTRLX(chan)) & ~SCALER_DISPCTRLX_ENABLE); /* Once we leave, the scaler should be disabled and its fifo empty. */ WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET); WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)), SCALER_DISPSTATX_MODE) != SCALER_DISPSTATX_MODE_DISABLED); WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) & (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) != SCALER_DISPSTATX_EMPTY); } int vc4_hvs_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc); struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state); struct drm_device *dev = crtc->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); struct drm_plane *plane; unsigned long flags; const struct drm_plane_state *plane_state; u32 dlist_count = 0; int ret; /* The pixelvalve can only feed one encoder (and encoders are * 1:1 with connectors.) */ if (hweight32(crtc_state->connector_mask) > 1) return -EINVAL; drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) dlist_count += vc4_plane_dlist_size(plane_state); dlist_count++; /* Account for SCALER_CTL0_END. */ spin_lock_irqsave(&vc4->hvs->mm_lock, flags); ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm, dlist_count); spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags); if (ret) return ret; return 0; } static void vc4_hvs_update_dlist(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); unsigned long flags; if (crtc->state->event) { crtc->state->event->pipe = drm_crtc_index(crtc); WARN_ON(drm_crtc_vblank_get(crtc) != 0); spin_lock_irqsave(&dev->event_lock, flags); if (!vc4_crtc->feeds_txp || vc4_state->txp_armed) { vc4_crtc->event = crtc->state->event; crtc->state->event = NULL; } HVS_WRITE(SCALER_DISPLISTX(vc4_state->assigned_channel), vc4_state->mm.start); spin_unlock_irqrestore(&dev->event_lock, flags); } else { HVS_WRITE(SCALER_DISPLISTX(vc4_state->assigned_channel), vc4_state->mm.start); } spin_lock_irqsave(&vc4_crtc->irq_lock, flags); vc4_crtc->current_dlist = vc4_state->mm.start; spin_unlock_irqrestore(&vc4_crtc->irq_lock, flags); } void vc4_hvs_atomic_begin(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); unsigned long flags; spin_lock_irqsave(&vc4_crtc->irq_lock, flags); vc4_crtc->current_hvs_channel = vc4_state->assigned_channel; spin_unlock_irqrestore(&vc4_crtc->irq_lock, flags); } void vc4_hvs_atomic_enable(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct drm_device *dev = crtc->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); struct drm_display_mode *mode = &crtc->state->adjusted_mode; struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); bool oneshot = vc4_crtc->feeds_txp; vc4_hvs_update_dlist(crtc); vc4_hvs_init_channel(vc4, crtc, mode, oneshot); } void vc4_hvs_atomic_disable(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct drm_device *dev = crtc->dev; struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state, crtc); struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(old_state); unsigned int chan = vc4_state->assigned_channel; vc4_hvs_stop_channel(dev, chan); } void vc4_hvs_atomic_flush(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state, crtc); struct drm_device *dev = crtc->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); struct drm_plane *plane; struct vc4_plane_state *vc4_plane_state; bool debug_dump_regs = false; bool enable_bg_fill = false; u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start; u32 __iomem *dlist_next = dlist_start; if (debug_dump_regs) { DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc)); vc4_hvs_dump_state(dev); } /* Copy all the active planes' dlist contents to the hardware dlist. */ drm_atomic_crtc_for_each_plane(plane, crtc) { /* Is this the first active plane? */ if (dlist_next == dlist_start) { /* We need to enable background fill when a plane * could be alpha blending from the background, i.e. * where no other plane is underneath. It suffices to * consider the first active plane here since we set * needs_bg_fill such that either the first plane * already needs it or all planes on top blend from * the first or a lower plane. */ vc4_plane_state = to_vc4_plane_state(plane->state); enable_bg_fill = vc4_plane_state->needs_bg_fill; } dlist_next += vc4_plane_write_dlist(plane, dlist_next); } writel(SCALER_CTL0_END, dlist_next); dlist_next++; WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size); if (enable_bg_fill) /* This sets a black background color fill, as is the case * with other DRM drivers. */ HVS_WRITE(SCALER_DISPBKGNDX(vc4_state->assigned_channel), HVS_READ(SCALER_DISPBKGNDX(vc4_state->assigned_channel)) | SCALER_DISPBKGND_FILL); /* Only update DISPLIST if the CRTC was already running and is not * being disabled. * vc4_crtc_enable() takes care of updating the dlist just after * re-enabling VBLANK interrupts and before enabling the engine. * If the CRTC is being disabled, there's no point in updating this * information. */ if (crtc->state->active && old_state->active) vc4_hvs_update_dlist(crtc); if (crtc->state->color_mgmt_changed) { u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(vc4_state->assigned_channel)); if (crtc->state->gamma_lut) { vc4_hvs_update_gamma_lut(crtc); dispbkgndx |= SCALER_DISPBKGND_GAMMA; } else { /* Unsetting DISPBKGND_GAMMA skips the gamma lut step * in hardware, which is the same as a linear lut that * DRM expects us to use in absence of a user lut. */ dispbkgndx &= ~SCALER_DISPBKGND_GAMMA; } HVS_WRITE(SCALER_DISPBKGNDX(vc4_state->assigned_channel), dispbkgndx); } if (debug_dump_regs) { DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc)); vc4_hvs_dump_state(dev); } } void vc4_hvs_mask_underrun(struct drm_device *dev, int channel) { struct vc4_dev *vc4 = to_vc4_dev(dev); u32 dispctrl = HVS_READ(SCALER_DISPCTRL); dispctrl &= ~SCALER_DISPCTRL_DSPEISLUR(channel); HVS_WRITE(SCALER_DISPCTRL, dispctrl); } void vc4_hvs_unmask_underrun(struct drm_device *dev, int channel) { struct vc4_dev *vc4 = to_vc4_dev(dev); u32 dispctrl = HVS_READ(SCALER_DISPCTRL); dispctrl |= SCALER_DISPCTRL_DSPEISLUR(channel); HVS_WRITE(SCALER_DISPSTAT, SCALER_DISPSTAT_EUFLOW(channel)); HVS_WRITE(SCALER_DISPCTRL, dispctrl); } static void vc4_hvs_report_underrun(struct drm_device *dev) { struct vc4_dev *vc4 = to_vc4_dev(dev); atomic_inc(&vc4->underrun); DRM_DEV_ERROR(dev->dev, "HVS underrun\n"); } static irqreturn_t vc4_hvs_irq_handler(int irq, void *data) { struct drm_device *dev = data; struct vc4_dev *vc4 = to_vc4_dev(dev); irqreturn_t irqret = IRQ_NONE; int channel; u32 control; u32 status; status = HVS_READ(SCALER_DISPSTAT); control = HVS_READ(SCALER_DISPCTRL); for (channel = 0; channel < SCALER_CHANNELS_COUNT; channel++) { /* Interrupt masking is not always honored, so check it here. */ if (status & SCALER_DISPSTAT_EUFLOW(channel) && control & SCALER_DISPCTRL_DSPEISLUR(channel)) { vc4_hvs_mask_underrun(dev, channel); vc4_hvs_report_underrun(dev); irqret = IRQ_HANDLED; } } /* Clear every per-channel interrupt flag. */ HVS_WRITE(SCALER_DISPSTAT, SCALER_DISPSTAT_IRQMASK(0) | SCALER_DISPSTAT_IRQMASK(1) | SCALER_DISPSTAT_IRQMASK(2)); return irqret; } static int vc4_hvs_bind(struct device *dev, struct device *master, void *data) { struct platform_device *pdev = to_platform_device(dev); struct drm_device *drm = dev_get_drvdata(master); struct vc4_dev *vc4 = to_vc4_dev(drm); struct vc4_hvs *hvs = NULL; int ret; u32 dispctrl; u32 reg; hvs = devm_kzalloc(&pdev->dev, sizeof(*hvs), GFP_KERNEL); if (!hvs) return -ENOMEM; hvs->pdev = pdev; if (of_device_is_compatible(pdev->dev.of_node, "brcm,bcm2711-hvs")) hvs->hvs5 = true; hvs->regs = vc4_ioremap_regs(pdev, 0); if (IS_ERR(hvs->regs)) return PTR_ERR(hvs->regs); hvs->regset.base = hvs->regs; hvs->regset.regs = hvs_regs; hvs->regset.nregs = ARRAY_SIZE(hvs_regs); if (hvs->hvs5) { hvs->core_clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(hvs->core_clk)) { dev_err(&pdev->dev, "Couldn't get core clock\n"); return PTR_ERR(hvs->core_clk); } ret = clk_prepare_enable(hvs->core_clk); if (ret) { dev_err(&pdev->dev, "Couldn't enable the core clock\n"); return ret; } } if (!hvs->hvs5) hvs->dlist = hvs->regs + SCALER_DLIST_START; else hvs->dlist = hvs->regs + SCALER5_DLIST_START; spin_lock_init(&hvs->mm_lock); /* Set up the HVS display list memory manager. We never * overwrite the setup from the bootloader (just 128b out of * our 16K), since we don't want to scramble the screen when * transitioning from the firmware's boot setup to runtime. */ drm_mm_init(&hvs->dlist_mm, HVS_BOOTLOADER_DLIST_END, (SCALER_DLIST_SIZE >> 2) - HVS_BOOTLOADER_DLIST_END); /* Set up the HVS LBM memory manager. We could have some more * complicated data structure that allowed reuse of LBM areas * between planes when they don't overlap on the screen, but * for now we just allocate globally. */ if (!hvs->hvs5) /* 48k words of 2x12-bit pixels */ drm_mm_init(&hvs->lbm_mm, 0, 48 * 1024); else /* 60k words of 4x12-bit pixels */ drm_mm_init(&hvs->lbm_mm, 0, 60 * 1024); /* Upload filter kernels. We only have the one for now, so we * keep it around for the lifetime of the driver. */ ret = vc4_hvs_upload_linear_kernel(hvs, &hvs->mitchell_netravali_filter, mitchell_netravali_1_3_1_3_kernel); if (ret) return ret; vc4->hvs = hvs; reg = HVS_READ(SCALER_DISPECTRL); reg &= ~SCALER_DISPECTRL_DSP2_MUX_MASK; HVS_WRITE(SCALER_DISPECTRL, reg | VC4_SET_FIELD(0, SCALER_DISPECTRL_DSP2_MUX)); reg = HVS_READ(SCALER_DISPCTRL); reg &= ~SCALER_DISPCTRL_DSP3_MUX_MASK; HVS_WRITE(SCALER_DISPCTRL, reg | VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX)); reg = HVS_READ(SCALER_DISPEOLN); reg &= ~SCALER_DISPEOLN_DSP4_MUX_MASK; HVS_WRITE(SCALER_DISPEOLN, reg | VC4_SET_FIELD(3, SCALER_DISPEOLN_DSP4_MUX)); reg = HVS_READ(SCALER_DISPDITHER); reg &= ~SCALER_DISPDITHER_DSP5_MUX_MASK; HVS_WRITE(SCALER_DISPDITHER, reg | VC4_SET_FIELD(3, SCALER_DISPDITHER_DSP5_MUX)); dispctrl = HVS_READ(SCALER_DISPCTRL); dispctrl |= SCALER_DISPCTRL_ENABLE; dispctrl |= SCALER_DISPCTRL_DISPEIRQ(0) | SCALER_DISPCTRL_DISPEIRQ(1) | SCALER_DISPCTRL_DISPEIRQ(2); dispctrl &= ~(SCALER_DISPCTRL_DMAEIRQ | SCALER_DISPCTRL_SLVWREIRQ | SCALER_DISPCTRL_SLVRDEIRQ | SCALER_DISPCTRL_DSPEIEOF(0) | SCALER_DISPCTRL_DSPEIEOF(1) | SCALER_DISPCTRL_DSPEIEOF(2) | SCALER_DISPCTRL_DSPEIEOLN(0) | SCALER_DISPCTRL_DSPEIEOLN(1) | SCALER_DISPCTRL_DSPEIEOLN(2) | SCALER_DISPCTRL_DSPEISLUR(0) | SCALER_DISPCTRL_DSPEISLUR(1) | SCALER_DISPCTRL_DSPEISLUR(2) | SCALER_DISPCTRL_SCLEIRQ); /* Set AXI panic mode. * VC4 panics when < 2 lines in FIFO. * VC5 panics when less than 1 line in the FIFO. */ dispctrl &= ~(SCALER_DISPCTRL_PANIC0_MASK | SCALER_DISPCTRL_PANIC1_MASK | SCALER_DISPCTRL_PANIC2_MASK); dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC0); dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC1); dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC2); HVS_WRITE(SCALER_DISPCTRL, dispctrl); ret = devm_request_irq(dev, platform_get_irq(pdev, 0), vc4_hvs_irq_handler, 0, "vc4 hvs", drm); if (ret) return ret; vc4_debugfs_add_regset32(drm, "hvs_regs", &hvs->regset); vc4_debugfs_add_file(drm, "hvs_underrun", vc4_hvs_debugfs_underrun, NULL); return 0; } static void vc4_hvs_unbind(struct device *dev, struct device *master, void *data) { struct drm_device *drm = dev_get_drvdata(master); struct vc4_dev *vc4 = to_vc4_dev(drm); struct vc4_hvs *hvs = vc4->hvs; if (drm_mm_node_allocated(&vc4->hvs->mitchell_netravali_filter)) drm_mm_remove_node(&vc4->hvs->mitchell_netravali_filter); drm_mm_takedown(&vc4->hvs->dlist_mm); drm_mm_takedown(&vc4->hvs->lbm_mm); clk_disable_unprepare(hvs->core_clk); vc4->hvs = NULL; } static const struct component_ops vc4_hvs_ops = { .bind = vc4_hvs_bind, .unbind = vc4_hvs_unbind, }; static int vc4_hvs_dev_probe(struct platform_device *pdev) { return component_add(&pdev->dev, &vc4_hvs_ops); } static int vc4_hvs_dev_remove(struct platform_device *pdev) { component_del(&pdev->dev, &vc4_hvs_ops); return 0; } static const struct of_device_id vc4_hvs_dt_match[] = { { .compatible = "brcm,bcm2711-hvs" }, { .compatible = "brcm,bcm2835-hvs" }, {} }; struct platform_driver vc4_hvs_driver = { .probe = vc4_hvs_dev_probe, .remove = vc4_hvs_dev_remove, .driver = { .name = "vc4_hvs", .of_match_table = vc4_hvs_dt_match, }, };