/* * Copyright © 2016 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include #include #include "display/intel_frontbuffer.h" #include "gem/i915_gem_lmem.h" #include "gt/intel_engine.h" #include "gt/intel_engine_heartbeat.h" #include "gt/intel_gt.h" #include "gt/intel_gt_requests.h" #include "i915_drv.h" #include "i915_sw_fence_work.h" #include "i915_trace.h" #include "i915_vma.h" static struct kmem_cache *slab_vmas; struct i915_vma *i915_vma_alloc(void) { return kmem_cache_zalloc(slab_vmas, GFP_KERNEL); } void i915_vma_free(struct i915_vma *vma) { return kmem_cache_free(slab_vmas, vma); } #if IS_ENABLED(CONFIG_DRM_I915_ERRLOG_GEM) && IS_ENABLED(CONFIG_DRM_DEBUG_MM) #include static void vma_print_allocator(struct i915_vma *vma, const char *reason) { unsigned long *entries; unsigned int nr_entries; char buf[512]; if (!vma->node.stack) { DRM_DEBUG_DRIVER("vma.node [%08llx + %08llx] %s: unknown owner\n", vma->node.start, vma->node.size, reason); return; } nr_entries = stack_depot_fetch(vma->node.stack, &entries); stack_trace_snprint(buf, sizeof(buf), entries, nr_entries, 0); DRM_DEBUG_DRIVER("vma.node [%08llx + %08llx] %s: inserted at %s\n", vma->node.start, vma->node.size, reason, buf); } #else static void vma_print_allocator(struct i915_vma *vma, const char *reason) { } #endif static inline struct i915_vma *active_to_vma(struct i915_active *ref) { return container_of(ref, typeof(struct i915_vma), active); } static int __i915_vma_active(struct i915_active *ref) { return i915_vma_tryget(active_to_vma(ref)) ? 0 : -ENOENT; } static void __i915_vma_retire(struct i915_active *ref) { i915_vma_put(active_to_vma(ref)); } static struct i915_vma * vma_create(struct drm_i915_gem_object *obj, struct i915_address_space *vm, const struct i915_ggtt_view *view) { struct i915_vma *pos = ERR_PTR(-E2BIG); struct i915_vma *vma; struct rb_node *rb, **p; /* The aliasing_ppgtt should never be used directly! */ GEM_BUG_ON(vm == &vm->gt->ggtt->alias->vm); vma = i915_vma_alloc(); if (vma == NULL) return ERR_PTR(-ENOMEM); kref_init(&vma->ref); mutex_init(&vma->pages_mutex); vma->vm = i915_vm_get(vm); vma->ops = &vm->vma_ops; vma->obj = obj; vma->resv = obj->base.resv; vma->size = obj->base.size; vma->display_alignment = I915_GTT_MIN_ALIGNMENT; i915_active_init(&vma->active, __i915_vma_active, __i915_vma_retire, 0); /* Declare ourselves safe for use inside shrinkers */ if (IS_ENABLED(CONFIG_LOCKDEP)) { fs_reclaim_acquire(GFP_KERNEL); might_lock(&vma->active.mutex); fs_reclaim_release(GFP_KERNEL); } INIT_LIST_HEAD(&vma->closed_link); if (view && view->type != I915_GGTT_VIEW_NORMAL) { vma->ggtt_view = *view; if (view->type == I915_GGTT_VIEW_PARTIAL) { GEM_BUG_ON(range_overflows_t(u64, view->partial.offset, view->partial.size, obj->base.size >> PAGE_SHIFT)); vma->size = view->partial.size; vma->size <<= PAGE_SHIFT; GEM_BUG_ON(vma->size > obj->base.size); } else if (view->type == I915_GGTT_VIEW_ROTATED) { vma->size = intel_rotation_info_size(&view->rotated); vma->size <<= PAGE_SHIFT; } else if (view->type == I915_GGTT_VIEW_REMAPPED) { vma->size = intel_remapped_info_size(&view->remapped); vma->size <<= PAGE_SHIFT; } } if (unlikely(vma->size > vm->total)) goto err_vma; GEM_BUG_ON(!IS_ALIGNED(vma->size, I915_GTT_PAGE_SIZE)); spin_lock(&obj->vma.lock); if (i915_is_ggtt(vm)) { if (unlikely(overflows_type(vma->size, u32))) goto err_unlock; vma->fence_size = i915_gem_fence_size(vm->i915, vma->size, i915_gem_object_get_tiling(obj), i915_gem_object_get_stride(obj)); if (unlikely(vma->fence_size < vma->size || /* overflow */ vma->fence_size > vm->total)) goto err_unlock; GEM_BUG_ON(!IS_ALIGNED(vma->fence_size, I915_GTT_MIN_ALIGNMENT)); vma->fence_alignment = i915_gem_fence_alignment(vm->i915, vma->size, i915_gem_object_get_tiling(obj), i915_gem_object_get_stride(obj)); GEM_BUG_ON(!is_power_of_2(vma->fence_alignment)); __set_bit(I915_VMA_GGTT_BIT, __i915_vma_flags(vma)); } rb = NULL; p = &obj->vma.tree.rb_node; while (*p) { long cmp; rb = *p; pos = rb_entry(rb, struct i915_vma, obj_node); /* * If the view already exists in the tree, another thread * already created a matching vma, so return the older instance * and dispose of ours. */ cmp = i915_vma_compare(pos, vm, view); if (cmp < 0) p = &rb->rb_right; else if (cmp > 0) p = &rb->rb_left; else goto err_unlock; } rb_link_node(&vma->obj_node, rb, p); rb_insert_color(&vma->obj_node, &obj->vma.tree); if (i915_vma_is_ggtt(vma)) /* * We put the GGTT vma at the start of the vma-list, followed * by the ppGGTT vma. This allows us to break early when * iterating over only the GGTT vma for an object, see * for_each_ggtt_vma() */ list_add(&vma->obj_link, &obj->vma.list); else list_add_tail(&vma->obj_link, &obj->vma.list); spin_unlock(&obj->vma.lock); return vma; err_unlock: spin_unlock(&obj->vma.lock); err_vma: i915_vm_put(vm); i915_vma_free(vma); return pos; } static struct i915_vma * i915_vma_lookup(struct drm_i915_gem_object *obj, struct i915_address_space *vm, const struct i915_ggtt_view *view) { struct rb_node *rb; rb = obj->vma.tree.rb_node; while (rb) { struct i915_vma *vma = rb_entry(rb, struct i915_vma, obj_node); long cmp; cmp = i915_vma_compare(vma, vm, view); if (cmp == 0) return vma; if (cmp < 0) rb = rb->rb_right; else rb = rb->rb_left; } return NULL; } /** * i915_vma_instance - return the singleton instance of the VMA * @obj: parent &struct drm_i915_gem_object to be mapped * @vm: address space in which the mapping is located * @view: additional mapping requirements * * i915_vma_instance() looks up an existing VMA of the @obj in the @vm with * the same @view characteristics. If a match is not found, one is created. * Once created, the VMA is kept until either the object is freed, or the * address space is closed. * * Returns the vma, or an error pointer. */ struct i915_vma * i915_vma_instance(struct drm_i915_gem_object *obj, struct i915_address_space *vm, const struct i915_ggtt_view *view) { struct i915_vma *vma; GEM_BUG_ON(view && !i915_is_ggtt_or_dpt(vm)); GEM_BUG_ON(!atomic_read(&vm->open)); spin_lock(&obj->vma.lock); vma = i915_vma_lookup(obj, vm, view); spin_unlock(&obj->vma.lock); /* vma_create() will resolve the race if another creates the vma */ if (unlikely(!vma)) vma = vma_create(obj, vm, view); GEM_BUG_ON(!IS_ERR(vma) && i915_vma_compare(vma, vm, view)); return vma; } struct i915_vma_work { struct dma_fence_work base; struct i915_address_space *vm; struct i915_vm_pt_stash stash; struct i915_vma *vma; struct drm_i915_gem_object *pinned; struct i915_sw_dma_fence_cb cb; enum i915_cache_level cache_level; unsigned int flags; }; static void __vma_bind(struct dma_fence_work *work) { struct i915_vma_work *vw = container_of(work, typeof(*vw), base); struct i915_vma *vma = vw->vma; vma->ops->bind_vma(vw->vm, &vw->stash, vma, vw->cache_level, vw->flags); } static void __vma_release(struct dma_fence_work *work) { struct i915_vma_work *vw = container_of(work, typeof(*vw), base); if (vw->pinned) { __i915_gem_object_unpin_pages(vw->pinned); i915_gem_object_put(vw->pinned); } i915_vm_free_pt_stash(vw->vm, &vw->stash); i915_vm_put(vw->vm); } static const struct dma_fence_work_ops bind_ops = { .name = "bind", .work = __vma_bind, .release = __vma_release, }; struct i915_vma_work *i915_vma_work(void) { struct i915_vma_work *vw; vw = kzalloc(sizeof(*vw), GFP_KERNEL); if (!vw) return NULL; dma_fence_work_init(&vw->base, &bind_ops); vw->base.dma.error = -EAGAIN; /* disable the worker by default */ return vw; } int i915_vma_wait_for_bind(struct i915_vma *vma) { int err = 0; if (rcu_access_pointer(vma->active.excl.fence)) { struct dma_fence *fence; rcu_read_lock(); fence = dma_fence_get_rcu_safe(&vma->active.excl.fence); rcu_read_unlock(); if (fence) { err = dma_fence_wait(fence, MAX_SCHEDULE_TIMEOUT); dma_fence_put(fence); } } return err; } /** * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space. * @vma: VMA to map * @cache_level: mapping cache level * @flags: flags like global or local mapping * @work: preallocated worker for allocating and binding the PTE * * DMA addresses are taken from the scatter-gather table of this object (or of * this VMA in case of non-default GGTT views) and PTE entries set up. * Note that DMA addresses are also the only part of the SG table we care about. */ int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level, u32 flags, struct i915_vma_work *work) { u32 bind_flags; u32 vma_flags; lockdep_assert_held(&vma->vm->mutex); GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); GEM_BUG_ON(vma->size > vma->node.size); if (GEM_DEBUG_WARN_ON(range_overflows(vma->node.start, vma->node.size, vma->vm->total))) return -ENODEV; if (GEM_DEBUG_WARN_ON(!flags)) return -EINVAL; bind_flags = flags; bind_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; vma_flags = atomic_read(&vma->flags); vma_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; bind_flags &= ~vma_flags; if (bind_flags == 0) return 0; GEM_BUG_ON(!vma->pages); trace_i915_vma_bind(vma, bind_flags); if (work && bind_flags & vma->vm->bind_async_flags) { struct dma_fence *prev; work->vma = vma; work->cache_level = cache_level; work->flags = bind_flags; /* * Note we only want to chain up to the migration fence on * the pages (not the object itself). As we don't track that, * yet, we have to use the exclusive fence instead. * * Also note that we do not want to track the async vma as * part of the obj->resv->excl_fence as it only affects * execution and not content or object's backing store lifetime. */ prev = i915_active_set_exclusive(&vma->active, &work->base.dma); if (prev) { __i915_sw_fence_await_dma_fence(&work->base.chain, prev, &work->cb); dma_fence_put(prev); } work->base.dma.error = 0; /* enable the queue_work() */ if (vma->obj) { __i915_gem_object_pin_pages(vma->obj); work->pinned = i915_gem_object_get(vma->obj); } } else { vma->ops->bind_vma(vma->vm, NULL, vma, cache_level, bind_flags); } if (vma->obj) set_bit(I915_BO_WAS_BOUND_BIT, &vma->obj->flags); atomic_or(bind_flags, &vma->flags); return 0; } void __iomem *i915_vma_pin_iomap(struct i915_vma *vma) { void __iomem *ptr; int err; if (!i915_gem_object_is_lmem(vma->obj)) { if (GEM_WARN_ON(!i915_vma_is_map_and_fenceable(vma))) { err = -ENODEV; goto err; } } GEM_BUG_ON(!i915_vma_is_ggtt(vma)); GEM_BUG_ON(!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)); ptr = READ_ONCE(vma->iomap); if (ptr == NULL) { /* * TODO: consider just using i915_gem_object_pin_map() for lmem * instead, which already supports mapping non-contiguous chunks * of pages, that way we can also drop the * I915_BO_ALLOC_CONTIGUOUS when allocating the object. */ if (i915_gem_object_is_lmem(vma->obj)) ptr = i915_gem_object_lmem_io_map(vma->obj, 0, vma->obj->base.size); else ptr = io_mapping_map_wc(&i915_vm_to_ggtt(vma->vm)->iomap, vma->node.start, vma->node.size); if (ptr == NULL) { err = -ENOMEM; goto err; } if (unlikely(cmpxchg(&vma->iomap, NULL, ptr))) { io_mapping_unmap(ptr); ptr = vma->iomap; } } __i915_vma_pin(vma); err = i915_vma_pin_fence(vma); if (err) goto err_unpin; i915_vma_set_ggtt_write(vma); /* NB Access through the GTT requires the device to be awake. */ return ptr; err_unpin: __i915_vma_unpin(vma); err: return IO_ERR_PTR(err); } void i915_vma_flush_writes(struct i915_vma *vma) { if (i915_vma_unset_ggtt_write(vma)) intel_gt_flush_ggtt_writes(vma->vm->gt); } void i915_vma_unpin_iomap(struct i915_vma *vma) { GEM_BUG_ON(vma->iomap == NULL); i915_vma_flush_writes(vma); i915_vma_unpin_fence(vma); i915_vma_unpin(vma); } void i915_vma_unpin_and_release(struct i915_vma **p_vma, unsigned int flags) { struct i915_vma *vma; struct drm_i915_gem_object *obj; vma = fetch_and_zero(p_vma); if (!vma) return; obj = vma->obj; GEM_BUG_ON(!obj); i915_vma_unpin(vma); if (flags & I915_VMA_RELEASE_MAP) i915_gem_object_unpin_map(obj); i915_gem_object_put(obj); } bool i915_vma_misplaced(const struct i915_vma *vma, u64 size, u64 alignment, u64 flags) { if (!drm_mm_node_allocated(&vma->node)) return false; if (test_bit(I915_VMA_ERROR_BIT, __i915_vma_flags(vma))) return true; if (vma->node.size < size) return true; GEM_BUG_ON(alignment && !is_power_of_2(alignment)); if (alignment && !IS_ALIGNED(vma->node.start, alignment)) return true; if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma)) return true; if (flags & PIN_OFFSET_BIAS && vma->node.start < (flags & PIN_OFFSET_MASK)) return true; if (flags & PIN_OFFSET_FIXED && vma->node.start != (flags & PIN_OFFSET_MASK)) return true; return false; } void __i915_vma_set_map_and_fenceable(struct i915_vma *vma) { bool mappable, fenceable; GEM_BUG_ON(!i915_vma_is_ggtt(vma)); GEM_BUG_ON(!vma->fence_size); fenceable = (vma->node.size >= vma->fence_size && IS_ALIGNED(vma->node.start, vma->fence_alignment)); mappable = vma->node.start + vma->fence_size <= i915_vm_to_ggtt(vma->vm)->mappable_end; if (mappable && fenceable) set_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma)); else clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma)); } bool i915_gem_valid_gtt_space(struct i915_vma *vma, unsigned long color) { struct drm_mm_node *node = &vma->node; struct drm_mm_node *other; /* * On some machines we have to be careful when putting differing types * of snoopable memory together to avoid the prefetcher crossing memory * domains and dying. During vm initialisation, we decide whether or not * these constraints apply and set the drm_mm.color_adjust * appropriately. */ if (!i915_vm_has_cache_coloring(vma->vm)) return true; /* Only valid to be called on an already inserted vma */ GEM_BUG_ON(!drm_mm_node_allocated(node)); GEM_BUG_ON(list_empty(&node->node_list)); other = list_prev_entry(node, node_list); if (i915_node_color_differs(other, color) && !drm_mm_hole_follows(other)) return false; other = list_next_entry(node, node_list); if (i915_node_color_differs(other, color) && !drm_mm_hole_follows(node)) return false; return true; } /** * i915_vma_insert - finds a slot for the vma in its address space * @vma: the vma * @size: requested size in bytes (can be larger than the VMA) * @alignment: required alignment * @flags: mask of PIN_* flags to use * * First we try to allocate some free space that meets the requirements for * the VMA. Failiing that, if the flags permit, it will evict an old VMA, * preferrably the oldest idle entry to make room for the new VMA. * * Returns: * 0 on success, negative error code otherwise. */ static int i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags) { unsigned long color; u64 start, end; int ret; GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND)); GEM_BUG_ON(drm_mm_node_allocated(&vma->node)); size = max(size, vma->size); alignment = max(alignment, vma->display_alignment); if (flags & PIN_MAPPABLE) { size = max_t(typeof(size), size, vma->fence_size); alignment = max_t(typeof(alignment), alignment, vma->fence_alignment); } GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE)); GEM_BUG_ON(!IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT)); GEM_BUG_ON(!is_power_of_2(alignment)); start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0; GEM_BUG_ON(!IS_ALIGNED(start, I915_GTT_PAGE_SIZE)); end = vma->vm->total; if (flags & PIN_MAPPABLE) end = min_t(u64, end, i915_vm_to_ggtt(vma->vm)->mappable_end); if (flags & PIN_ZONE_4G) end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE); GEM_BUG_ON(!IS_ALIGNED(end, I915_GTT_PAGE_SIZE)); /* If binding the object/GGTT view requires more space than the entire * aperture has, reject it early before evicting everything in a vain * attempt to find space. */ if (size > end) { DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu > %s aperture=%llu\n", size, flags & PIN_MAPPABLE ? "mappable" : "total", end); return -ENOSPC; } color = 0; if (vma->obj && i915_vm_has_cache_coloring(vma->vm)) color = vma->obj->cache_level; if (flags & PIN_OFFSET_FIXED) { u64 offset = flags & PIN_OFFSET_MASK; if (!IS_ALIGNED(offset, alignment) || range_overflows(offset, size, end)) return -EINVAL; ret = i915_gem_gtt_reserve(vma->vm, &vma->node, size, offset, color, flags); if (ret) return ret; } else { /* * We only support huge gtt pages through the 48b PPGTT, * however we also don't want to force any alignment for * objects which need to be tightly packed into the low 32bits. * * Note that we assume that GGTT are limited to 4GiB for the * forseeable future. See also i915_ggtt_offset(). */ if (upper_32_bits(end - 1) && vma->page_sizes.sg > I915_GTT_PAGE_SIZE) { /* * We can't mix 64K and 4K PTEs in the same page-table * (2M block), and so to avoid the ugliness and * complexity of coloring we opt for just aligning 64K * objects to 2M. */ u64 page_alignment = rounddown_pow_of_two(vma->page_sizes.sg | I915_GTT_PAGE_SIZE_2M); /* * Check we don't expand for the limited Global GTT * (mappable aperture is even more precious!). This * also checks that we exclude the aliasing-ppgtt. */ GEM_BUG_ON(i915_vma_is_ggtt(vma)); alignment = max(alignment, page_alignment); if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K) size = round_up(size, I915_GTT_PAGE_SIZE_2M); } ret = i915_gem_gtt_insert(vma->vm, &vma->node, size, alignment, color, start, end, flags); if (ret) return ret; GEM_BUG_ON(vma->node.start < start); GEM_BUG_ON(vma->node.start + vma->node.size > end); } GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, color)); list_add_tail(&vma->vm_link, &vma->vm->bound_list); return 0; } static void i915_vma_detach(struct i915_vma *vma) { GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND)); /* * And finally now the object is completely decoupled from this * vma, we can drop its hold on the backing storage and allow * it to be reaped by the shrinker. */ list_del(&vma->vm_link); } static bool try_qad_pin(struct i915_vma *vma, unsigned int flags) { unsigned int bound; bool pinned = true; bound = atomic_read(&vma->flags); do { if (unlikely(flags & ~bound)) return false; if (unlikely(bound & (I915_VMA_OVERFLOW | I915_VMA_ERROR))) return false; if (!(bound & I915_VMA_PIN_MASK)) goto unpinned; GEM_BUG_ON(((bound + 1) & I915_VMA_PIN_MASK) == 0); } while (!atomic_try_cmpxchg(&vma->flags, &bound, bound + 1)); return true; unpinned: /* * If pin_count==0, but we are bound, check under the lock to avoid * racing with a concurrent i915_vma_unbind(). */ mutex_lock(&vma->vm->mutex); do { if (unlikely(bound & (I915_VMA_OVERFLOW | I915_VMA_ERROR))) { pinned = false; break; } if (unlikely(flags & ~bound)) { pinned = false; break; } } while (!atomic_try_cmpxchg(&vma->flags, &bound, bound + 1)); mutex_unlock(&vma->vm->mutex); return pinned; } static int vma_get_pages(struct i915_vma *vma) { int err = 0; bool pinned_pages = false; if (atomic_add_unless(&vma->pages_count, 1, 0)) return 0; if (vma->obj) { err = i915_gem_object_pin_pages(vma->obj); if (err) return err; pinned_pages = true; } /* Allocations ahoy! */ if (mutex_lock_interruptible(&vma->pages_mutex)) { err = -EINTR; goto unpin; } if (!atomic_read(&vma->pages_count)) { err = vma->ops->set_pages(vma); if (err) goto unlock; pinned_pages = false; } atomic_inc(&vma->pages_count); unlock: mutex_unlock(&vma->pages_mutex); unpin: if (pinned_pages) __i915_gem_object_unpin_pages(vma->obj); return err; } static void __vma_put_pages(struct i915_vma *vma, unsigned int count) { /* We allocate under vma_get_pages, so beware the shrinker */ mutex_lock_nested(&vma->pages_mutex, SINGLE_DEPTH_NESTING); GEM_BUG_ON(atomic_read(&vma->pages_count) < count); if (atomic_sub_return(count, &vma->pages_count) == 0) { vma->ops->clear_pages(vma); GEM_BUG_ON(vma->pages); if (vma->obj) i915_gem_object_unpin_pages(vma->obj); } mutex_unlock(&vma->pages_mutex); } static void vma_put_pages(struct i915_vma *vma) { if (atomic_add_unless(&vma->pages_count, -1, 1)) return; __vma_put_pages(vma, 1); } static void vma_unbind_pages(struct i915_vma *vma) { unsigned int count; lockdep_assert_held(&vma->vm->mutex); /* The upper portion of pages_count is the number of bindings */ count = atomic_read(&vma->pages_count); count >>= I915_VMA_PAGES_BIAS; GEM_BUG_ON(!count); __vma_put_pages(vma, count | count << I915_VMA_PAGES_BIAS); } int i915_vma_pin_ww(struct i915_vma *vma, struct i915_gem_ww_ctx *ww, u64 size, u64 alignment, u64 flags) { struct i915_vma_work *work = NULL; intel_wakeref_t wakeref = 0; unsigned int bound; int err; #ifdef CONFIG_PROVE_LOCKING if (debug_locks && !WARN_ON(!ww) && vma->resv) assert_vma_held(vma); #endif BUILD_BUG_ON(PIN_GLOBAL != I915_VMA_GLOBAL_BIND); BUILD_BUG_ON(PIN_USER != I915_VMA_LOCAL_BIND); GEM_BUG_ON(!(flags & (PIN_USER | PIN_GLOBAL))); /* First try and grab the pin without rebinding the vma */ if (try_qad_pin(vma, flags & I915_VMA_BIND_MASK)) return 0; err = vma_get_pages(vma); if (err) return err; if (flags & PIN_GLOBAL) wakeref = intel_runtime_pm_get(&vma->vm->i915->runtime_pm); if (flags & vma->vm->bind_async_flags) { /* lock VM */ err = i915_vm_lock_objects(vma->vm, ww); if (err) goto err_rpm; work = i915_vma_work(); if (!work) { err = -ENOMEM; goto err_rpm; } work->vm = i915_vm_get(vma->vm); /* Allocate enough page directories to used PTE */ if (vma->vm->allocate_va_range) { err = i915_vm_alloc_pt_stash(vma->vm, &work->stash, vma->size); if (err) goto err_fence; err = i915_vm_map_pt_stash(vma->vm, &work->stash); if (err) goto err_fence; } } /* * Differentiate between user/kernel vma inside the aliasing-ppgtt. * * We conflate the Global GTT with the user's vma when using the * aliasing-ppgtt, but it is still vitally important to try and * keep the use cases distinct. For example, userptr objects are * not allowed inside the Global GTT as that will cause lock * inversions when we have to evict them the mmu_notifier callbacks - * but they are allowed to be part of the user ppGTT which can never * be mapped. As such we try to give the distinct users of the same * mutex, distinct lockclasses [equivalent to how we keep i915_ggtt * and i915_ppgtt separate]. * * NB this may cause us to mask real lock inversions -- while the * code is safe today, lockdep may not be able to spot future * transgressions. */ err = mutex_lock_interruptible_nested(&vma->vm->mutex, !(flags & PIN_GLOBAL)); if (err) goto err_fence; /* No more allocations allowed now we hold vm->mutex */ if (unlikely(i915_vma_is_closed(vma))) { err = -ENOENT; goto err_unlock; } bound = atomic_read(&vma->flags); if (unlikely(bound & I915_VMA_ERROR)) { err = -ENOMEM; goto err_unlock; } if (unlikely(!((bound + 1) & I915_VMA_PIN_MASK))) { err = -EAGAIN; /* pins are meant to be fairly temporary */ goto err_unlock; } if (unlikely(!(flags & ~bound & I915_VMA_BIND_MASK))) { __i915_vma_pin(vma); goto err_unlock; } err = i915_active_acquire(&vma->active); if (err) goto err_unlock; if (!(bound & I915_VMA_BIND_MASK)) { err = i915_vma_insert(vma, size, alignment, flags); if (err) goto err_active; if (i915_is_ggtt(vma->vm)) __i915_vma_set_map_and_fenceable(vma); } GEM_BUG_ON(!vma->pages); err = i915_vma_bind(vma, vma->obj ? vma->obj->cache_level : 0, flags, work); if (err) goto err_remove; /* There should only be at most 2 active bindings (user, global) */ GEM_BUG_ON(bound + I915_VMA_PAGES_ACTIVE < bound); atomic_add(I915_VMA_PAGES_ACTIVE, &vma->pages_count); list_move_tail(&vma->vm_link, &vma->vm->bound_list); __i915_vma_pin(vma); GEM_BUG_ON(!i915_vma_is_pinned(vma)); GEM_BUG_ON(!i915_vma_is_bound(vma, flags)); GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags)); err_remove: if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK)) { i915_vma_detach(vma); drm_mm_remove_node(&vma->node); } err_active: i915_active_release(&vma->active); err_unlock: mutex_unlock(&vma->vm->mutex); err_fence: if (work) dma_fence_work_commit_imm(&work->base); err_rpm: if (wakeref) intel_runtime_pm_put(&vma->vm->i915->runtime_pm, wakeref); vma_put_pages(vma); return err; } static void flush_idle_contexts(struct intel_gt *gt) { struct intel_engine_cs *engine; enum intel_engine_id id; for_each_engine(engine, gt, id) intel_engine_flush_barriers(engine); intel_gt_wait_for_idle(gt, MAX_SCHEDULE_TIMEOUT); } int i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww, u32 align, unsigned int flags) { struct i915_address_space *vm = vma->vm; int err; GEM_BUG_ON(!i915_vma_is_ggtt(vma)); #ifdef CONFIG_LOCKDEP WARN_ON(!ww && vma->resv && dma_resv_held(vma->resv)); #endif do { if (ww) err = i915_vma_pin_ww(vma, ww, 0, align, flags | PIN_GLOBAL); else err = i915_vma_pin(vma, 0, align, flags | PIN_GLOBAL); if (err != -ENOSPC) { if (!err) { err = i915_vma_wait_for_bind(vma); if (err) i915_vma_unpin(vma); } return err; } /* Unlike i915_vma_pin, we don't take no for an answer! */ flush_idle_contexts(vm->gt); if (mutex_lock_interruptible(&vm->mutex) == 0) { i915_gem_evict_vm(vm); mutex_unlock(&vm->mutex); } } while (1); } static void __vma_close(struct i915_vma *vma, struct intel_gt *gt) { /* * We defer actually closing, unbinding and destroying the VMA until * the next idle point, or if the object is freed in the meantime. By * postponing the unbind, we allow for it to be resurrected by the * client, avoiding the work required to rebind the VMA. This is * advantageous for DRI, where the client/server pass objects * between themselves, temporarily opening a local VMA to the * object, and then closing it again. The same object is then reused * on the next frame (or two, depending on the depth of the swap queue) * causing us to rebind the VMA once more. This ends up being a lot * of wasted work for the steady state. */ GEM_BUG_ON(i915_vma_is_closed(vma)); list_add(&vma->closed_link, >->closed_vma); } void i915_vma_close(struct i915_vma *vma) { struct intel_gt *gt = vma->vm->gt; unsigned long flags; if (i915_vma_is_ggtt(vma)) return; GEM_BUG_ON(!atomic_read(&vma->open_count)); if (atomic_dec_and_lock_irqsave(&vma->open_count, >->closed_lock, flags)) { __vma_close(vma, gt); spin_unlock_irqrestore(>->closed_lock, flags); } } static void __i915_vma_remove_closed(struct i915_vma *vma) { struct intel_gt *gt = vma->vm->gt; spin_lock_irq(>->closed_lock); list_del_init(&vma->closed_link); spin_unlock_irq(>->closed_lock); } void i915_vma_reopen(struct i915_vma *vma) { if (i915_vma_is_closed(vma)) __i915_vma_remove_closed(vma); } void i915_vma_release(struct kref *ref) { struct i915_vma *vma = container_of(ref, typeof(*vma), ref); if (drm_mm_node_allocated(&vma->node)) { mutex_lock(&vma->vm->mutex); atomic_and(~I915_VMA_PIN_MASK, &vma->flags); WARN_ON(__i915_vma_unbind(vma)); mutex_unlock(&vma->vm->mutex); GEM_BUG_ON(drm_mm_node_allocated(&vma->node)); } GEM_BUG_ON(i915_vma_is_active(vma)); if (vma->obj) { struct drm_i915_gem_object *obj = vma->obj; spin_lock(&obj->vma.lock); list_del(&vma->obj_link); if (!RB_EMPTY_NODE(&vma->obj_node)) rb_erase(&vma->obj_node, &obj->vma.tree); spin_unlock(&obj->vma.lock); } __i915_vma_remove_closed(vma); i915_vm_put(vma->vm); i915_active_fini(&vma->active); i915_vma_free(vma); } void i915_vma_parked(struct intel_gt *gt) { struct i915_vma *vma, *next; LIST_HEAD(closed); spin_lock_irq(>->closed_lock); list_for_each_entry_safe(vma, next, >->closed_vma, closed_link) { struct drm_i915_gem_object *obj = vma->obj; struct i915_address_space *vm = vma->vm; /* XXX All to avoid keeping a reference on i915_vma itself */ if (!kref_get_unless_zero(&obj->base.refcount)) continue; if (!i915_vm_tryopen(vm)) { i915_gem_object_put(obj); continue; } list_move(&vma->closed_link, &closed); } spin_unlock_irq(>->closed_lock); /* As the GT is held idle, no vma can be reopened as we destroy them */ list_for_each_entry_safe(vma, next, &closed, closed_link) { struct drm_i915_gem_object *obj = vma->obj; struct i915_address_space *vm = vma->vm; INIT_LIST_HEAD(&vma->closed_link); __i915_vma_put(vma); i915_gem_object_put(obj); i915_vm_close(vm); } } static void __i915_vma_iounmap(struct i915_vma *vma) { GEM_BUG_ON(i915_vma_is_pinned(vma)); if (vma->iomap == NULL) return; io_mapping_unmap(vma->iomap); vma->iomap = NULL; } void i915_vma_revoke_mmap(struct i915_vma *vma) { struct drm_vma_offset_node *node; u64 vma_offset; if (!i915_vma_has_userfault(vma)) return; GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma)); GEM_BUG_ON(!vma->obj->userfault_count); node = &vma->mmo->vma_node; vma_offset = vma->ggtt_view.partial.offset << PAGE_SHIFT; unmap_mapping_range(vma->vm->i915->drm.anon_inode->i_mapping, drm_vma_node_offset_addr(node) + vma_offset, vma->size, 1); i915_vma_unset_userfault(vma); if (!--vma->obj->userfault_count) list_del(&vma->obj->userfault_link); } static int __i915_request_await_bind(struct i915_request *rq, struct i915_vma *vma) { return __i915_request_await_exclusive(rq, &vma->active); } int __i915_vma_move_to_active(struct i915_vma *vma, struct i915_request *rq) { int err; GEM_BUG_ON(!i915_vma_is_pinned(vma)); /* Wait for the vma to be bound before we start! */ err = __i915_request_await_bind(rq, vma); if (err) return err; return i915_active_add_request(&vma->active, rq); } int i915_vma_move_to_active(struct i915_vma *vma, struct i915_request *rq, unsigned int flags) { struct drm_i915_gem_object *obj = vma->obj; int err; assert_object_held(obj); err = __i915_vma_move_to_active(vma, rq); if (unlikely(err)) return err; if (flags & EXEC_OBJECT_WRITE) { struct intel_frontbuffer *front; front = __intel_frontbuffer_get(obj); if (unlikely(front)) { if (intel_frontbuffer_invalidate(front, ORIGIN_CS)) i915_active_add_request(&front->write, rq); intel_frontbuffer_put(front); } dma_resv_add_excl_fence(vma->resv, &rq->fence); obj->write_domain = I915_GEM_DOMAIN_RENDER; obj->read_domains = 0; } else { if (!(flags & __EXEC_OBJECT_NO_RESERVE)) { err = dma_resv_reserve_shared(vma->resv, 1); if (unlikely(err)) return err; } dma_resv_add_shared_fence(vma->resv, &rq->fence); obj->write_domain = 0; } if (flags & EXEC_OBJECT_NEEDS_FENCE && vma->fence) i915_active_add_request(&vma->fence->active, rq); obj->read_domains |= I915_GEM_GPU_DOMAINS; obj->mm.dirty = true; GEM_BUG_ON(!i915_vma_is_active(vma)); return 0; } void __i915_vma_evict(struct i915_vma *vma) { GEM_BUG_ON(i915_vma_is_pinned(vma)); if (i915_vma_is_map_and_fenceable(vma)) { /* Force a pagefault for domain tracking on next user access */ i915_vma_revoke_mmap(vma); /* * Check that we have flushed all writes through the GGTT * before the unbind, other due to non-strict nature of those * indirect writes they may end up referencing the GGTT PTE * after the unbind. * * Note that we may be concurrently poking at the GGTT_WRITE * bit from set-domain, as we mark all GGTT vma associated * with an object. We know this is for another vma, as we * are currently unbinding this one -- so if this vma will be * reused, it will be refaulted and have its dirty bit set * before the next write. */ i915_vma_flush_writes(vma); /* release the fence reg _after_ flushing */ i915_vma_revoke_fence(vma); __i915_vma_iounmap(vma); clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma)); } GEM_BUG_ON(vma->fence); GEM_BUG_ON(i915_vma_has_userfault(vma)); if (likely(atomic_read(&vma->vm->open))) { trace_i915_vma_unbind(vma); vma->ops->unbind_vma(vma->vm, vma); } atomic_and(~(I915_VMA_BIND_MASK | I915_VMA_ERROR | I915_VMA_GGTT_WRITE), &vma->flags); i915_vma_detach(vma); vma_unbind_pages(vma); } int __i915_vma_unbind(struct i915_vma *vma) { int ret; lockdep_assert_held(&vma->vm->mutex); if (!drm_mm_node_allocated(&vma->node)) return 0; if (i915_vma_is_pinned(vma)) { vma_print_allocator(vma, "is pinned"); return -EAGAIN; } /* * After confirming that no one else is pinning this vma, wait for * any laggards who may have crept in during the wait (through * a residual pin skipping the vm->mutex) to complete. */ ret = i915_vma_sync(vma); if (ret) return ret; GEM_BUG_ON(i915_vma_is_active(vma)); __i915_vma_evict(vma); drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */ return 0; } int i915_vma_unbind(struct i915_vma *vma) { struct i915_address_space *vm = vma->vm; intel_wakeref_t wakeref = 0; int err; /* Optimistic wait before taking the mutex */ err = i915_vma_sync(vma); if (err) return err; if (!drm_mm_node_allocated(&vma->node)) return 0; if (i915_vma_is_pinned(vma)) { vma_print_allocator(vma, "is pinned"); return -EAGAIN; } if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) /* XXX not always required: nop_clear_range */ wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm); err = mutex_lock_interruptible_nested(&vma->vm->mutex, !wakeref); if (err) goto out_rpm; err = __i915_vma_unbind(vma); mutex_unlock(&vm->mutex); out_rpm: if (wakeref) intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref); return err; } struct i915_vma *i915_vma_make_unshrinkable(struct i915_vma *vma) { i915_gem_object_make_unshrinkable(vma->obj); return vma; } void i915_vma_make_shrinkable(struct i915_vma *vma) { i915_gem_object_make_shrinkable(vma->obj); } void i915_vma_make_purgeable(struct i915_vma *vma) { i915_gem_object_make_purgeable(vma->obj); } #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) #include "selftests/i915_vma.c" #endif void i915_vma_module_exit(void) { kmem_cache_destroy(slab_vmas); } int __init i915_vma_module_init(void) { slab_vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN); if (!slab_vmas) return -ENOMEM; return 0; }