/* i915_drv.h -- Private header for the I915 driver -*- linux-c -*- */ /* * * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * */ #ifndef _I915_DRV_H_ #define _I915_DRV_H_ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "i915_params.h" #include "i915_reg.h" #include "i915_utils.h" #include "display/intel_bios.h" #include "display/intel_display.h" #include "display/intel_display_power.h" #include "display/intel_dmc.h" #include "display/intel_dpll_mgr.h" #include "display/intel_dsb.h" #include "display/intel_frontbuffer.h" #include "display/intel_global_state.h" #include "display/intel_gmbus.h" #include "display/intel_opregion.h" #include "gem/i915_gem_context_types.h" #include "gem/i915_gem_shrinker.h" #include "gem/i915_gem_stolen.h" #include "gem/i915_gem_lmem.h" #include "gt/intel_engine.h" #include "gt/intel_gt_types.h" #include "gt/intel_region_lmem.h" #include "gt/intel_workarounds.h" #include "gt/uc/intel_uc.h" #include "intel_device_info.h" #include "intel_memory_region.h" #include "intel_pch.h" #include "intel_runtime_pm.h" #include "intel_step.h" #include "intel_uncore.h" #include "intel_wakeref.h" #include "intel_wopcm.h" #include "i915_gem.h" #include "i915_gem_gtt.h" #include "i915_gpu_error.h" #include "i915_perf_types.h" #include "i915_request.h" #include "i915_scheduler.h" #include "gt/intel_timeline.h" #include "i915_vma.h" #include "i915_irq.h" /* General customization: */ #define DRIVER_NAME "i915" #define DRIVER_DESC "Intel Graphics" #define DRIVER_DATE "20201103" #define DRIVER_TIMESTAMP 1604406085 struct drm_i915_gem_object; enum hpd_pin { HPD_NONE = 0, HPD_TV = HPD_NONE, /* TV is known to be unreliable */ HPD_CRT, HPD_SDVO_B, HPD_SDVO_C, HPD_PORT_A, HPD_PORT_B, HPD_PORT_C, HPD_PORT_D, HPD_PORT_E, HPD_PORT_TC1, HPD_PORT_TC2, HPD_PORT_TC3, HPD_PORT_TC4, HPD_PORT_TC5, HPD_PORT_TC6, HPD_NUM_PINS }; #define for_each_hpd_pin(__pin) \ for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++) /* Threshold == 5 for long IRQs, 50 for short */ #define HPD_STORM_DEFAULT_THRESHOLD 50 struct i915_hotplug { struct delayed_work hotplug_work; const u32 *hpd, *pch_hpd; struct { unsigned long last_jiffies; int count; enum { HPD_ENABLED = 0, HPD_DISABLED = 1, HPD_MARK_DISABLED = 2 } state; } stats[HPD_NUM_PINS]; u32 event_bits; u32 retry_bits; struct delayed_work reenable_work; u32 long_port_mask; u32 short_port_mask; struct work_struct dig_port_work; struct work_struct poll_init_work; bool poll_enabled; unsigned int hpd_storm_threshold; /* Whether or not to count short HPD IRQs in HPD storms */ u8 hpd_short_storm_enabled; /* * if we get a HPD irq from DP and a HPD irq from non-DP * the non-DP HPD could block the workqueue on a mode config * mutex getting, that userspace may have taken. However * userspace is waiting on the DP workqueue to run which is * blocked behind the non-DP one. */ struct workqueue_struct *dp_wq; }; #define I915_GEM_GPU_DOMAINS \ (I915_GEM_DOMAIN_RENDER | \ I915_GEM_DOMAIN_SAMPLER | \ I915_GEM_DOMAIN_COMMAND | \ I915_GEM_DOMAIN_INSTRUCTION | \ I915_GEM_DOMAIN_VERTEX) struct drm_i915_private; struct i915_mm_struct; struct i915_mmu_object; struct drm_i915_file_private { struct drm_i915_private *dev_priv; union { struct drm_file *file; struct rcu_head rcu; }; /** @proto_context_lock: Guards all struct i915_gem_proto_context * operations * * This not only guards @proto_context_xa, but is always held * whenever we manipulate any struct i915_gem_proto_context, * including finalizing it on first actual use of the GEM context. * * See i915_gem_proto_context. */ struct mutex proto_context_lock; /** @proto_context_xa: xarray of struct i915_gem_proto_context * * Historically, the context uAPI allowed for two methods of * setting context parameters: SET_CONTEXT_PARAM and * CONTEXT_CREATE_EXT_SETPARAM. The former is allowed to be called * at any time while the later happens as part of * GEM_CONTEXT_CREATE. Everything settable via one was settable * via the other. While some params are fairly simple and setting * them on a live context is harmless such as the context priority, * others are far trickier such as the VM or the set of engines. * In order to swap out the VM, for instance, we have to delay * until all current in-flight work is complete, swap in the new * VM, and then continue. This leads to a plethora of potential * race conditions we'd really rather avoid. * * We have since disallowed setting these more complex parameters * on active contexts. This works by delaying the creation of the * actual context until after the client is done configuring it * with SET_CONTEXT_PARAM. From the perspective of the client, it * has the same u32 context ID the whole time. From the * perspective of i915, however, it's a struct i915_gem_proto_context * right up until the point where we attempt to do something which * the proto-context can't handle. Then the struct i915_gem_context * gets created. * * This is accomplished via a little xarray dance. When * GEM_CONTEXT_CREATE is called, we create a struct * i915_gem_proto_context, reserve a slot in @context_xa but leave * it NULL, and place the proto-context in the corresponding slot * in @proto_context_xa. Then, in i915_gem_context_lookup(), we * first check @context_xa. If it's there, we return the struct * i915_gem_context and we're done. If it's not, we look in * @proto_context_xa and, if we find it there, we create the actual * context and kill the proto-context. * * In order for this dance to work properly, everything which ever * touches a struct i915_gem_proto_context is guarded by * @proto_context_lock, including context creation. Yes, this * means context creation now takes a giant global lock but it * can't really be helped and that should never be on any driver's * fast-path anyway. */ struct xarray proto_context_xa; /** @context_xa: xarray of fully created i915_gem_context * * Write access to this xarray is guarded by @proto_context_lock. * Otherwise, writers may race with finalize_create_context_locked(). * * See @proto_context_xa. */ struct xarray context_xa; struct xarray vm_xa; unsigned int bsd_engine; /* * Every context ban increments per client ban score. Also * hangs in short succession increments ban score. If ban threshold * is reached, client is considered banned and submitting more work * will fail. This is a stop gap measure to limit the badly behaving * clients access to gpu. Note that unbannable contexts never increment * the client ban score. */ #define I915_CLIENT_SCORE_HANG_FAST 1 #define I915_CLIENT_FAST_HANG_JIFFIES (60 * HZ) #define I915_CLIENT_SCORE_CONTEXT_BAN 3 #define I915_CLIENT_SCORE_BANNED 9 /** ban_score: Accumulated score of all ctx bans and fast hangs. */ atomic_t ban_score; unsigned long hang_timestamp; }; /* Interface history: * * 1.1: Original. * 1.2: Add Power Management * 1.3: Add vblank support * 1.4: Fix cmdbuffer path, add heap destroy * 1.5: Add vblank pipe configuration * 1.6: - New ioctl for scheduling buffer swaps on vertical blank * - Support vertical blank on secondary display pipe */ #define DRIVER_MAJOR 1 #define DRIVER_MINOR 6 #define DRIVER_PATCHLEVEL 0 struct intel_overlay; struct intel_overlay_error_state; struct sdvo_device_mapping { u8 initialized; u8 dvo_port; u8 slave_addr; u8 dvo_wiring; u8 i2c_pin; u8 ddc_pin; }; struct intel_connector; struct intel_encoder; struct intel_atomic_state; struct intel_cdclk_config; struct intel_cdclk_state; struct intel_cdclk_vals; struct intel_initial_plane_config; struct intel_crtc; struct intel_limit; struct dpll; struct drm_i915_display_funcs { void (*get_cdclk)(struct drm_i915_private *dev_priv, struct intel_cdclk_config *cdclk_config); void (*set_cdclk)(struct drm_i915_private *dev_priv, const struct intel_cdclk_config *cdclk_config, enum pipe pipe); int (*bw_calc_min_cdclk)(struct intel_atomic_state *state); int (*get_fifo_size)(struct drm_i915_private *dev_priv, enum i9xx_plane_id i9xx_plane); int (*compute_pipe_wm)(struct intel_atomic_state *state, struct intel_crtc *crtc); int (*compute_intermediate_wm)(struct intel_atomic_state *state, struct intel_crtc *crtc); void (*initial_watermarks)(struct intel_atomic_state *state, struct intel_crtc *crtc); void (*atomic_update_watermarks)(struct intel_atomic_state *state, struct intel_crtc *crtc); void (*optimize_watermarks)(struct intel_atomic_state *state, struct intel_crtc *crtc); int (*compute_global_watermarks)(struct intel_atomic_state *state); void (*update_wm)(struct intel_crtc *crtc); int (*modeset_calc_cdclk)(struct intel_cdclk_state *state); u8 (*calc_voltage_level)(int cdclk); /* Returns the active state of the crtc, and if the crtc is active, * fills out the pipe-config with the hw state. */ bool (*get_pipe_config)(struct intel_crtc *, struct intel_crtc_state *); void (*get_initial_plane_config)(struct intel_crtc *, struct intel_initial_plane_config *); int (*crtc_compute_clock)(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state); void (*crtc_enable)(struct intel_atomic_state *state, struct intel_crtc *crtc); void (*crtc_disable)(struct intel_atomic_state *state, struct intel_crtc *crtc); void (*commit_modeset_enables)(struct intel_atomic_state *state); void (*commit_modeset_disables)(struct intel_atomic_state *state); void (*audio_codec_enable)(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state); void (*audio_codec_disable)(struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state); void (*fdi_link_train)(struct intel_crtc *crtc, const struct intel_crtc_state *crtc_state); void (*init_clock_gating)(struct drm_i915_private *dev_priv); void (*hpd_irq_setup)(struct drm_i915_private *dev_priv); /* clock updates for mode set */ /* cursor updates */ /* render clock increase/decrease */ /* display clock increase/decrease */ /* pll clock increase/decrease */ int (*color_check)(struct intel_crtc_state *crtc_state); /* * Program double buffered color management registers during * vblank evasion. The registers should then latch during the * next vblank start, alongside any other double buffered registers * involved with the same commit. */ void (*color_commit)(const struct intel_crtc_state *crtc_state); /* * Load LUTs (and other single buffered color management * registers). Will (hopefully) be called during the vblank * following the latching of any double buffered registers * involved with the same commit. */ void (*load_luts)(const struct intel_crtc_state *crtc_state); void (*read_luts)(struct intel_crtc_state *crtc_state); }; #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */ struct intel_fbc { /* This is always the inner lock when overlapping with struct_mutex and * it's the outer lock when overlapping with stolen_lock. */ struct mutex lock; unsigned int possible_framebuffer_bits; unsigned int busy_bits; struct intel_crtc *crtc; struct drm_mm_node compressed_fb; struct drm_mm_node compressed_llb; u8 limit; bool false_color; bool active; bool activated; bool flip_pending; bool underrun_detected; struct work_struct underrun_work; /* * Due to the atomic rules we can't access some structures without the * appropriate locking, so we cache information here in order to avoid * these problems. */ struct intel_fbc_state_cache { struct { unsigned int mode_flags; u32 hsw_bdw_pixel_rate; } crtc; struct { unsigned int rotation; int src_w; int src_h; bool visible; /* * Display surface base address adjustement for * pageflips. Note that on gen4+ this only adjusts up * to a tile, offsets within a tile are handled in * the hw itself (with the TILEOFF register). */ int adjusted_x; int adjusted_y; u16 pixel_blend_mode; } plane; struct { const struct drm_format_info *format; unsigned int stride; u64 modifier; } fb; unsigned int fence_y_offset; u16 gen9_wa_cfb_stride; u16 interval; s8 fence_id; bool psr2_active; } state_cache; /* * This structure contains everything that's relevant to program the * hardware registers. When we want to figure out if we need to disable * and re-enable FBC for a new configuration we just check if there's * something different in the struct. The genx_fbc_activate functions * are supposed to read from it in order to program the registers. */ struct intel_fbc_reg_params { struct { enum pipe pipe; enum i9xx_plane_id i9xx_plane; } crtc; struct { const struct drm_format_info *format; unsigned int stride; u64 modifier; } fb; int cfb_size; unsigned int fence_y_offset; u16 gen9_wa_cfb_stride; u16 interval; s8 fence_id; bool plane_visible; } params; const char *no_fbc_reason; }; /* * HIGH_RR is the highest eDP panel refresh rate read from EDID * LOW_RR is the lowest eDP panel refresh rate found from EDID * parsing for same resolution. */ enum drrs_refresh_rate_type { DRRS_HIGH_RR, DRRS_LOW_RR, DRRS_MAX_RR, /* RR count */ }; enum drrs_support_type { DRRS_NOT_SUPPORTED = 0, STATIC_DRRS_SUPPORT = 1, SEAMLESS_DRRS_SUPPORT = 2 }; struct intel_dp; struct i915_drrs { struct mutex mutex; struct delayed_work work; struct intel_dp *dp; unsigned busy_frontbuffer_bits; enum drrs_refresh_rate_type refresh_rate_type; enum drrs_support_type type; }; #define QUIRK_LVDS_SSC_DISABLE (1<<1) #define QUIRK_INVERT_BRIGHTNESS (1<<2) #define QUIRK_BACKLIGHT_PRESENT (1<<3) #define QUIRK_PIN_SWIZZLED_PAGES (1<<5) #define QUIRK_INCREASE_T12_DELAY (1<<6) #define QUIRK_INCREASE_DDI_DISABLED_TIME (1<<7) #define QUIRK_NO_PPS_BACKLIGHT_POWER_HOOK (1<<8) struct intel_fbdev; struct intel_fbc_work; struct intel_gmbus { struct i2c_adapter adapter; #define GMBUS_FORCE_BIT_RETRY (1U << 31) u32 force_bit; u32 reg0; i915_reg_t gpio_reg; struct i2c_algo_bit_data bit_algo; struct drm_i915_private *dev_priv; }; struct i915_suspend_saved_registers { u32 saveDSPARB; u32 saveSWF0[16]; u32 saveSWF1[16]; u32 saveSWF3[3]; u16 saveGCDGMBUS; }; struct vlv_s0ix_state; #define MAX_L3_SLICES 2 struct intel_l3_parity { u32 *remap_info[MAX_L3_SLICES]; struct work_struct error_work; int which_slice; }; struct i915_gem_mm { /* * Shortcut for the stolen region. This points to either * INTEL_REGION_STOLEN_SMEM for integrated platforms, or * INTEL_REGION_STOLEN_LMEM for discrete, or NULL if the device doesn't * support stolen. */ struct intel_memory_region *stolen_region; /** Memory allocator for GTT stolen memory */ struct drm_mm stolen; /** Protects the usage of the GTT stolen memory allocator. This is * always the inner lock when overlapping with struct_mutex. */ struct mutex stolen_lock; /* Protects bound_list/unbound_list and #drm_i915_gem_object.mm.link */ spinlock_t obj_lock; /** * List of objects which are purgeable. */ struct list_head purge_list; /** * List of objects which have allocated pages and are shrinkable. */ struct list_head shrink_list; /** * List of objects which are pending destruction. */ struct llist_head free_list; struct work_struct free_work; /** * Count of objects pending destructions. Used to skip needlessly * waiting on an RCU barrier if no objects are waiting to be freed. */ atomic_t free_count; /** * tmpfs instance used for shmem backed objects */ struct vfsmount *gemfs; struct intel_memory_region *regions[INTEL_REGION_UNKNOWN]; struct notifier_block oom_notifier; struct notifier_block vmap_notifier; struct shrinker shrinker; #ifdef CONFIG_MMU_NOTIFIER /** * notifier_lock for mmu notifiers, memory may not be allocated * while holding this lock. */ rwlock_t notifier_lock; #endif /* shrinker accounting, also useful for userland debugging */ u64 shrink_memory; u32 shrink_count; }; #define I915_IDLE_ENGINES_TIMEOUT (200) /* in ms */ unsigned long i915_fence_context_timeout(const struct drm_i915_private *i915, u64 context); static inline unsigned long i915_fence_timeout(const struct drm_i915_private *i915) { return i915_fence_context_timeout(i915, U64_MAX); } /* Amount of SAGV/QGV points, BSpec precisely defines this */ #define I915_NUM_QGV_POINTS 8 #define HAS_HW_SAGV_WM(i915) (DISPLAY_VER(i915) >= 13 && !IS_DGFX(i915)) /* Amount of PSF GV points, BSpec precisely defines this */ #define I915_NUM_PSF_GV_POINTS 3 struct ddi_vbt_port_info { /* Non-NULL if port present. */ struct intel_bios_encoder_data *devdata; int max_tmds_clock; /* This is an index in the HDMI/DVI DDI buffer translation table. */ u8 hdmi_level_shift; u8 hdmi_level_shift_set:1; u8 alternate_aux_channel; u8 alternate_ddc_pin; int dp_max_link_rate; /* 0 for not limited by VBT */ }; enum psr_lines_to_wait { PSR_0_LINES_TO_WAIT = 0, PSR_1_LINE_TO_WAIT, PSR_4_LINES_TO_WAIT, PSR_8_LINES_TO_WAIT }; struct intel_vbt_data { /* bdb version */ u16 version; struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */ struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */ /* Feature bits */ unsigned int int_tv_support:1; unsigned int lvds_dither:1; unsigned int int_crt_support:1; unsigned int lvds_use_ssc:1; unsigned int int_lvds_support:1; unsigned int display_clock_mode:1; unsigned int fdi_rx_polarity_inverted:1; unsigned int panel_type:4; int lvds_ssc_freq; unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */ enum drm_panel_orientation orientation; enum drrs_support_type drrs_type; struct { int rate; int lanes; int preemphasis; int vswing; bool low_vswing; bool initialized; int bpp; struct edp_power_seq pps; bool hobl; } edp; struct { bool enable; bool full_link; bool require_aux_wakeup; int idle_frames; enum psr_lines_to_wait lines_to_wait; int tp1_wakeup_time_us; int tp2_tp3_wakeup_time_us; int psr2_tp2_tp3_wakeup_time_us; } psr; struct { u16 pwm_freq_hz; bool present; bool active_low_pwm; u8 min_brightness; /* min_brightness/255 of max */ u8 controller; /* brightness controller number */ enum intel_backlight_type type; } backlight; /* MIPI DSI */ struct { u16 panel_id; struct mipi_config *config; struct mipi_pps_data *pps; u16 bl_ports; u16 cabc_ports; u8 seq_version; u32 size; u8 *data; const u8 *sequence[MIPI_SEQ_MAX]; u8 *deassert_seq; /* Used by fixup_mipi_sequences() */ enum drm_panel_orientation orientation; } dsi; int crt_ddc_pin; struct list_head display_devices; struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS]; struct sdvo_device_mapping sdvo_mappings[2]; }; enum intel_ddb_partitioning { INTEL_DDB_PART_1_2, INTEL_DDB_PART_5_6, /* IVB+ */ }; struct ilk_wm_values { u32 wm_pipe[3]; u32 wm_lp[3]; u32 wm_lp_spr[3]; bool enable_fbc_wm; enum intel_ddb_partitioning partitioning; }; struct g4x_pipe_wm { u16 plane[I915_MAX_PLANES]; u16 fbc; }; struct g4x_sr_wm { u16 plane; u16 cursor; u16 fbc; }; struct vlv_wm_ddl_values { u8 plane[I915_MAX_PLANES]; }; struct vlv_wm_values { struct g4x_pipe_wm pipe[3]; struct g4x_sr_wm sr; struct vlv_wm_ddl_values ddl[3]; u8 level; bool cxsr; }; struct g4x_wm_values { struct g4x_pipe_wm pipe[2]; struct g4x_sr_wm sr; struct g4x_sr_wm hpll; bool cxsr; bool hpll_en; bool fbc_en; }; struct skl_ddb_entry { u16 start, end; /* in number of blocks, 'end' is exclusive */ }; static inline u16 skl_ddb_entry_size(const struct skl_ddb_entry *entry) { return entry->end - entry->start; } static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1, const struct skl_ddb_entry *e2) { if (e1->start == e2->start && e1->end == e2->end) return true; return false; } struct i915_frontbuffer_tracking { spinlock_t lock; /* * Tracking bits for delayed frontbuffer flushing du to gpu activity or * scheduled flips. */ unsigned busy_bits; unsigned flip_bits; }; struct i915_virtual_gpu { struct mutex lock; /* serialises sending of g2v_notify command pkts */ bool active; u32 caps; }; struct intel_cdclk_config { unsigned int cdclk, vco, ref, bypass; u8 voltage_level; }; struct i915_selftest_stash { atomic_t counter; struct ida mock_region_instances; }; struct drm_i915_private { struct drm_device drm; /* FIXME: Device release actions should all be moved to drmm_ */ bool do_release; /* i915 device parameters */ struct i915_params params; const struct intel_device_info __info; /* Use INTEL_INFO() to access. */ struct intel_runtime_info __runtime; /* Use RUNTIME_INFO() to access. */ struct intel_driver_caps caps; /** * Data Stolen Memory - aka "i915 stolen memory" gives us the start and * end of stolen which we can optionally use to create GEM objects * backed by stolen memory. Note that stolen_usable_size tells us * exactly how much of this we are actually allowed to use, given that * some portion of it is in fact reserved for use by hardware functions. */ struct resource dsm; /** * Reseved portion of Data Stolen Memory */ struct resource dsm_reserved; /* * Stolen memory is segmented in hardware with different portions * offlimits to certain functions. * * The drm_mm is initialised to the total accessible range, as found * from the PCI config. On Broadwell+, this is further restricted to * avoid the first page! The upper end of stolen memory is reserved for * hardware functions and similarly removed from the accessible range. */ resource_size_t stolen_usable_size; /* Total size minus reserved ranges */ struct intel_uncore uncore; struct intel_uncore_mmio_debug mmio_debug; struct i915_virtual_gpu vgpu; struct intel_gvt *gvt; struct intel_wopcm wopcm; struct intel_dmc dmc; struct intel_gmbus gmbus[GMBUS_NUM_PINS]; /** gmbus_mutex protects against concurrent usage of the single hw gmbus * controller on different i2c buses. */ struct mutex gmbus_mutex; /** * Base address of where the gmbus and gpio blocks are located (either * on PCH or on SoC for platforms without PCH). */ u32 gpio_mmio_base; u32 hsw_psr_mmio_adjust; /* MMIO base address for MIPI regs */ u32 mipi_mmio_base; u32 pps_mmio_base; wait_queue_head_t gmbus_wait_queue; struct pci_dev *bridge_dev; struct rb_root uabi_engines; struct resource mch_res; /* protects the irq masks */ spinlock_t irq_lock; bool display_irqs_enabled; /* Sideband mailbox protection */ struct mutex sb_lock; struct pm_qos_request sb_qos; /** Cached value of IMR to avoid reads in updating the bitfield */ union { u32 irq_mask; u32 de_irq_mask[I915_MAX_PIPES]; }; u32 pipestat_irq_mask[I915_MAX_PIPES]; struct i915_hotplug hotplug; struct intel_fbc fbc; struct i915_drrs drrs; struct intel_opregion opregion; struct intel_vbt_data vbt; bool preserve_bios_swizzle; /* overlay */ struct intel_overlay *overlay; /* backlight registers and fields in struct intel_panel */ struct mutex backlight_lock; /* protects panel power sequencer state */ struct mutex pps_mutex; unsigned int fsb_freq, mem_freq, is_ddr3; unsigned int skl_preferred_vco_freq; unsigned int max_cdclk_freq; unsigned int max_dotclk_freq; unsigned int hpll_freq; unsigned int fdi_pll_freq; unsigned int czclk_freq; struct { /* The current hardware cdclk configuration */ struct intel_cdclk_config hw; /* cdclk, divider, and ratio table from bspec */ const struct intel_cdclk_vals *table; struct intel_global_obj obj; } cdclk; struct { /* The current hardware dbuf configuration */ u8 enabled_slices; struct intel_global_obj obj; } dbuf; /** * wq - Driver workqueue for GEM. * * NOTE: Work items scheduled here are not allowed to grab any modeset * locks, for otherwise the flushing done in the pageflip code will * result in deadlocks. */ struct workqueue_struct *wq; /* ordered wq for modesets */ struct workqueue_struct *modeset_wq; /* unbound hipri wq for page flips/plane updates */ struct workqueue_struct *flip_wq; /* Display functions */ struct drm_i915_display_funcs display; /* PCH chipset type */ enum intel_pch pch_type; unsigned short pch_id; unsigned long quirks; struct drm_atomic_state *modeset_restore_state; struct drm_modeset_acquire_ctx reset_ctx; struct i915_ggtt ggtt; /* VM representing the global address space */ struct i915_gem_mm mm; /* Kernel Modesetting */ struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES]; struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES]; /** * dpll and cdclk state is protected by connection_mutex * dpll.lock serializes intel_{prepare,enable,disable}_shared_dpll. * Must be global rather than per dpll, because on some platforms plls * share registers. */ struct { struct mutex lock; int num_shared_dpll; struct intel_shared_dpll shared_dplls[I915_NUM_PLLS]; const struct intel_dpll_mgr *mgr; struct { int nssc; int ssc; } ref_clks; } dpll; struct list_head global_obj_list; /* * For reading active_pipes holding any crtc lock is * sufficient, for writing must hold all of them. */ u8 active_pipes; struct i915_wa_list gt_wa_list; struct i915_frontbuffer_tracking fb_tracking; struct intel_atomic_helper { struct llist_head free_list; struct work_struct free_work; } atomic_helper; bool mchbar_need_disable; struct intel_l3_parity l3_parity; /* * HTI (aka HDPORT) state read during initial hw readout. Most * platforms don't have HTI, so this will just stay 0. Those that do * will use this later to figure out which PLLs and PHYs are unavailable * for driver usage. */ u32 hti_state; /* * edram size in MB. * Cannot be determined by PCIID. You must always read a register. */ u32 edram_size_mb; struct i915_power_domains power_domains; struct i915_gpu_error gpu_error; struct drm_i915_gem_object *vlv_pctx; /* list of fbdev register on this device */ struct intel_fbdev *fbdev; struct work_struct fbdev_suspend_work; struct drm_property *broadcast_rgb_property; struct drm_property *force_audio_property; /* hda/i915 audio component */ struct i915_audio_component *audio_component; bool audio_component_registered; /** * av_mutex - mutex for audio/video sync * */ struct mutex av_mutex; int audio_power_refcount; u32 audio_freq_cntrl; u32 fdi_rx_config; /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */ u32 chv_phy_control; /* * Shadows for CHV DPLL_MD regs to keep the state * checker somewhat working in the presence hardware * crappiness (can't read out DPLL_MD for pipes B & C). */ u32 chv_dpll_md[I915_MAX_PIPES]; u32 bxt_phy_grc; u32 suspend_count; bool power_domains_suspended; struct i915_suspend_saved_registers regfile; struct vlv_s0ix_state *vlv_s0ix_state; enum { I915_SAGV_UNKNOWN = 0, I915_SAGV_DISABLED, I915_SAGV_ENABLED, I915_SAGV_NOT_CONTROLLED } sagv_status; u32 sagv_block_time_us; struct { /* * Raw watermark latency values: * in 0.1us units for WM0, * in 0.5us units for WM1+. */ /* primary */ u16 pri_latency[5]; /* sprite */ u16 spr_latency[5]; /* cursor */ u16 cur_latency[5]; /* * Raw watermark memory latency values * for SKL for all 8 levels * in 1us units. */ u16 skl_latency[8]; /* current hardware state */ union { struct ilk_wm_values hw; struct vlv_wm_values vlv; struct g4x_wm_values g4x; }; u8 max_level; /* * Should be held around atomic WM register writing; also * protects * intel_crtc->wm.active and * crtc_state->wm.need_postvbl_update. */ struct mutex wm_mutex; } wm; struct dram_info { bool wm_lv_0_adjust_needed; u8 num_channels; bool symmetric_memory; enum intel_dram_type { INTEL_DRAM_UNKNOWN, INTEL_DRAM_DDR3, INTEL_DRAM_DDR4, INTEL_DRAM_LPDDR3, INTEL_DRAM_LPDDR4, INTEL_DRAM_DDR5, INTEL_DRAM_LPDDR5, } type; u8 num_qgv_points; u8 num_psf_gv_points; } dram_info; struct intel_bw_info { /* for each QGV point */ unsigned int deratedbw[I915_NUM_QGV_POINTS]; /* for each PSF GV point */ unsigned int psf_bw[I915_NUM_PSF_GV_POINTS]; u8 num_qgv_points; u8 num_psf_gv_points; u8 num_planes; } max_bw[6]; struct intel_global_obj bw_obj; struct intel_runtime_pm runtime_pm; struct i915_perf perf; /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */ struct intel_gt gt; struct { struct i915_gem_contexts { spinlock_t lock; /* locks list */ struct list_head list; } contexts; /* * We replace the local file with a global mappings as the * backing storage for the mmap is on the device and not * on the struct file, and we do not want to prolong the * lifetime of the local fd. To minimise the number of * anonymous inodes we create, we use a global singleton to * share the global mapping. */ struct file *mmap_singleton; } gem; u8 framestart_delay; /* Window2 specifies time required to program DSB (Window2) in number of scan lines */ u8 window2_delay; u8 pch_ssc_use; /* For i915gm/i945gm vblank irq workaround */ u8 vblank_enabled; bool irq_enabled; /* perform PHY state sanity checks? */ bool chv_phy_assert[2]; bool ipc_enabled; /* Used to save the pipe-to-encoder mapping for audio */ struct intel_encoder *av_enc_map[I915_MAX_PIPES]; /* necessary resource sharing with HDMI LPE audio driver. */ struct { struct platform_device *platdev; int irq; } lpe_audio; struct i915_pmu pmu; struct i915_hdcp_comp_master *hdcp_master; bool hdcp_comp_added; /* Mutex to protect the above hdcp component related values. */ struct mutex hdcp_comp_mutex; /* The TTM device structure. */ struct ttm_device bdev; I915_SELFTEST_DECLARE(struct i915_selftest_stash selftest;) /* * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch * will be rejected. Instead look for a better place. */ }; static inline struct drm_i915_private *to_i915(const struct drm_device *dev) { return container_of(dev, struct drm_i915_private, drm); } static inline struct drm_i915_private *kdev_to_i915(struct device *kdev) { return dev_get_drvdata(kdev); } static inline struct drm_i915_private *pdev_to_i915(struct pci_dev *pdev) { return pci_get_drvdata(pdev); } /* Simple iterator over all initialised engines */ #define for_each_engine(engine__, dev_priv__, id__) \ for ((id__) = 0; \ (id__) < I915_NUM_ENGINES; \ (id__)++) \ for_each_if ((engine__) = (dev_priv__)->engine[(id__)]) /* Iterator over subset of engines selected by mask */ #define for_each_engine_masked(engine__, gt__, mask__, tmp__) \ for ((tmp__) = (mask__) & (gt__)->info.engine_mask; \ (tmp__) ? \ ((engine__) = (gt__)->engine[__mask_next_bit(tmp__)]), 1 : \ 0;) #define rb_to_uabi_engine(rb) \ rb_entry_safe(rb, struct intel_engine_cs, uabi_node) #define for_each_uabi_engine(engine__, i915__) \ for ((engine__) = rb_to_uabi_engine(rb_first(&(i915__)->uabi_engines));\ (engine__); \ (engine__) = rb_to_uabi_engine(rb_next(&(engine__)->uabi_node))) #define for_each_uabi_class_engine(engine__, class__, i915__) \ for ((engine__) = intel_engine_lookup_user((i915__), (class__), 0); \ (engine__) && (engine__)->uabi_class == (class__); \ (engine__) = rb_to_uabi_engine(rb_next(&(engine__)->uabi_node))) #define I915_GTT_OFFSET_NONE ((u32)-1) /* * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is * considered to be the frontbuffer for the given plane interface-wise. This * doesn't mean that the hw necessarily already scans it out, but that any * rendering (by the cpu or gpu) will land in the frontbuffer eventually. * * We have one bit per pipe and per scanout plane type. */ #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8 #define INTEL_FRONTBUFFER(pipe, plane_id) ({ \ BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > 32); \ BUILD_BUG_ON(I915_MAX_PLANES > INTEL_FRONTBUFFER_BITS_PER_PIPE); \ BIT((plane_id) + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)); \ }) #define INTEL_FRONTBUFFER_OVERLAY(pipe) \ BIT(INTEL_FRONTBUFFER_BITS_PER_PIPE - 1 + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)) #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \ GENMASK(INTEL_FRONTBUFFER_BITS_PER_PIPE * ((pipe) + 1) - 1, \ INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)) #define INTEL_INFO(dev_priv) (&(dev_priv)->__info) #define RUNTIME_INFO(dev_priv) (&(dev_priv)->__runtime) #define DRIVER_CAPS(dev_priv) (&(dev_priv)->caps) #define INTEL_DEVID(dev_priv) (RUNTIME_INFO(dev_priv)->device_id) #define IP_VER(ver, rel) ((ver) << 8 | (rel)) #define GRAPHICS_VER(i915) (INTEL_INFO(i915)->graphics_ver) #define GRAPHICS_VER_FULL(i915) IP_VER(INTEL_INFO(i915)->graphics_ver, \ INTEL_INFO(i915)->graphics_rel) #define IS_GRAPHICS_VER(i915, from, until) \ (GRAPHICS_VER(i915) >= (from) && GRAPHICS_VER(i915) <= (until)) #define MEDIA_VER(i915) (INTEL_INFO(i915)->media_ver) #define MEDIA_VER_FULL(i915) IP_VER(INTEL_INFO(i915)->media_ver, \ INTEL_INFO(i915)->media_rel) #define IS_MEDIA_VER(i915, from, until) \ (MEDIA_VER(i915) >= (from) && MEDIA_VER(i915) <= (until)) #define DISPLAY_VER(i915) (INTEL_INFO(i915)->display.ver) #define IS_DISPLAY_VER(i915, from, until) \ (DISPLAY_VER(i915) >= (from) && DISPLAY_VER(i915) <= (until)) #define INTEL_REVID(dev_priv) (to_pci_dev((dev_priv)->drm.dev)->revision) #define HAS_DSB(dev_priv) (INTEL_INFO(dev_priv)->display.has_dsb) #define INTEL_DISPLAY_STEP(__i915) (RUNTIME_INFO(__i915)->step.display_step) #define INTEL_GT_STEP(__i915) (RUNTIME_INFO(__i915)->step.gt_step) #define IS_DISPLAY_STEP(__i915, since, until) \ (drm_WARN_ON(&(__i915)->drm, INTEL_DISPLAY_STEP(__i915) == STEP_NONE), \ INTEL_DISPLAY_STEP(__i915) >= (since) && INTEL_DISPLAY_STEP(__i915) < (until)) #define IS_GT_STEP(__i915, since, until) \ (drm_WARN_ON(&(__i915)->drm, INTEL_GT_STEP(__i915) == STEP_NONE), \ INTEL_GT_STEP(__i915) >= (since) && INTEL_GT_STEP(__i915) < (until)) static __always_inline unsigned int __platform_mask_index(const struct intel_runtime_info *info, enum intel_platform p) { const unsigned int pbits = BITS_PER_TYPE(info->platform_mask[0]) - INTEL_SUBPLATFORM_BITS; /* Expand the platform_mask array if this fails. */ BUILD_BUG_ON(INTEL_MAX_PLATFORMS > pbits * ARRAY_SIZE(info->platform_mask)); return p / pbits; } static __always_inline unsigned int __platform_mask_bit(const struct intel_runtime_info *info, enum intel_platform p) { const unsigned int pbits = BITS_PER_TYPE(info->platform_mask[0]) - INTEL_SUBPLATFORM_BITS; return p % pbits + INTEL_SUBPLATFORM_BITS; } static inline u32 intel_subplatform(const struct intel_runtime_info *info, enum intel_platform p) { const unsigned int pi = __platform_mask_index(info, p); return info->platform_mask[pi] & INTEL_SUBPLATFORM_MASK; } static __always_inline bool IS_PLATFORM(const struct drm_i915_private *i915, enum intel_platform p) { const struct intel_runtime_info *info = RUNTIME_INFO(i915); const unsigned int pi = __platform_mask_index(info, p); const unsigned int pb = __platform_mask_bit(info, p); BUILD_BUG_ON(!__builtin_constant_p(p)); return info->platform_mask[pi] & BIT(pb); } static __always_inline bool IS_SUBPLATFORM(const struct drm_i915_private *i915, enum intel_platform p, unsigned int s) { const struct intel_runtime_info *info = RUNTIME_INFO(i915); const unsigned int pi = __platform_mask_index(info, p); const unsigned int pb = __platform_mask_bit(info, p); const unsigned int msb = BITS_PER_TYPE(info->platform_mask[0]) - 1; const u32 mask = info->platform_mask[pi]; BUILD_BUG_ON(!__builtin_constant_p(p)); BUILD_BUG_ON(!__builtin_constant_p(s)); BUILD_BUG_ON((s) >= INTEL_SUBPLATFORM_BITS); /* Shift and test on the MSB position so sign flag can be used. */ return ((mask << (msb - pb)) & (mask << (msb - s))) & BIT(msb); } #define IS_MOBILE(dev_priv) (INTEL_INFO(dev_priv)->is_mobile) #define IS_DGFX(dev_priv) (INTEL_INFO(dev_priv)->is_dgfx) #define IS_I830(dev_priv) IS_PLATFORM(dev_priv, INTEL_I830) #define IS_I845G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I845G) #define IS_I85X(dev_priv) IS_PLATFORM(dev_priv, INTEL_I85X) #define IS_I865G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I865G) #define IS_I915G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I915G) #define IS_I915GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I915GM) #define IS_I945G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I945G) #define IS_I945GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I945GM) #define IS_I965G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I965G) #define IS_I965GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I965GM) #define IS_G45(dev_priv) IS_PLATFORM(dev_priv, INTEL_G45) #define IS_GM45(dev_priv) IS_PLATFORM(dev_priv, INTEL_GM45) #define IS_G4X(dev_priv) (IS_G45(dev_priv) || IS_GM45(dev_priv)) #define IS_PINEVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_PINEVIEW) #define IS_G33(dev_priv) IS_PLATFORM(dev_priv, INTEL_G33) #define IS_IRONLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_IRONLAKE) #define IS_IRONLAKE_M(dev_priv) \ (IS_PLATFORM(dev_priv, INTEL_IRONLAKE) && IS_MOBILE(dev_priv)) #define IS_SANDYBRIDGE(dev_priv) IS_PLATFORM(dev_priv, INTEL_SANDYBRIDGE) #define IS_IVYBRIDGE(dev_priv) IS_PLATFORM(dev_priv, INTEL_IVYBRIDGE) #define IS_IVB_GT1(dev_priv) (IS_IVYBRIDGE(dev_priv) && \ INTEL_INFO(dev_priv)->gt == 1) #define IS_VALLEYVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_VALLEYVIEW) #define IS_CHERRYVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_CHERRYVIEW) #define IS_HASWELL(dev_priv) IS_PLATFORM(dev_priv, INTEL_HASWELL) #define IS_BROADWELL(dev_priv) IS_PLATFORM(dev_priv, INTEL_BROADWELL) #define IS_SKYLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_SKYLAKE) #define IS_BROXTON(dev_priv) IS_PLATFORM(dev_priv, INTEL_BROXTON) #define IS_KABYLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_KABYLAKE) #define IS_GEMINILAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_GEMINILAKE) #define IS_COFFEELAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_COFFEELAKE) #define IS_COMETLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_COMETLAKE) #define IS_CANNONLAKE(dev_priv) 0 #define IS_ICELAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_ICELAKE) #define IS_JSL_EHL(dev_priv) (IS_PLATFORM(dev_priv, INTEL_JASPERLAKE) || \ IS_PLATFORM(dev_priv, INTEL_ELKHARTLAKE)) #define IS_TIGERLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_TIGERLAKE) #define IS_ROCKETLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_ROCKETLAKE) #define IS_DG1(dev_priv) IS_PLATFORM(dev_priv, INTEL_DG1) #define IS_ALDERLAKE_S(dev_priv) IS_PLATFORM(dev_priv, INTEL_ALDERLAKE_S) #define IS_ALDERLAKE_P(dev_priv) IS_PLATFORM(dev_priv, INTEL_ALDERLAKE_P) #define IS_XEHPSDV(dev_priv) IS_PLATFORM(dev_priv, INTEL_XEHPSDV) #define IS_DG2(dev_priv) IS_PLATFORM(dev_priv, INTEL_DG2) #define IS_DG2_G10(dev_priv) \ IS_SUBPLATFORM(dev_priv, INTEL_DG2, INTEL_SUBPLATFORM_G10) #define IS_DG2_G11(dev_priv) \ IS_SUBPLATFORM(dev_priv, INTEL_DG2, INTEL_SUBPLATFORM_G11) #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \ (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00) #define IS_BDW_ULT(dev_priv) \ IS_SUBPLATFORM(dev_priv, INTEL_BROADWELL, INTEL_SUBPLATFORM_ULT) #define IS_BDW_ULX(dev_priv) \ IS_SUBPLATFORM(dev_priv, INTEL_BROADWELL, INTEL_SUBPLATFORM_ULX) #define IS_BDW_GT3(dev_priv) (IS_BROADWELL(dev_priv) && \ INTEL_INFO(dev_priv)->gt == 3) #define IS_HSW_ULT(dev_priv) \ IS_SUBPLATFORM(dev_priv, INTEL_HASWELL, INTEL_SUBPLATFORM_ULT) #define IS_HSW_GT3(dev_priv) (IS_HASWELL(dev_priv) && \ INTEL_INFO(dev_priv)->gt == 3) #define IS_HSW_GT1(dev_priv) (IS_HASWELL(dev_priv) && \ INTEL_INFO(dev_priv)->gt == 1) /* ULX machines are also considered ULT. */ #define IS_HSW_ULX(dev_priv) \ IS_SUBPLATFORM(dev_priv, INTEL_HASWELL, INTEL_SUBPLATFORM_ULX) #define IS_SKL_ULT(dev_priv) \ IS_SUBPLATFORM(dev_priv, INTEL_SKYLAKE, INTEL_SUBPLATFORM_ULT) #define IS_SKL_ULX(dev_priv) \ IS_SUBPLATFORM(dev_priv, INTEL_SKYLAKE, INTEL_SUBPLATFORM_ULX) #define IS_KBL_ULT(dev_priv) \ IS_SUBPLATFORM(dev_priv, INTEL_KABYLAKE, INTEL_SUBPLATFORM_ULT) #define IS_KBL_ULX(dev_priv) \ IS_SUBPLATFORM(dev_priv, INTEL_KABYLAKE, INTEL_SUBPLATFORM_ULX) #define IS_SKL_GT2(dev_priv) (IS_SKYLAKE(dev_priv) && \ INTEL_INFO(dev_priv)->gt == 2) #define IS_SKL_GT3(dev_priv) (IS_SKYLAKE(dev_priv) && \ INTEL_INFO(dev_priv)->gt == 3) #define IS_SKL_GT4(dev_priv) (IS_SKYLAKE(dev_priv) && \ INTEL_INFO(dev_priv)->gt == 4) #define IS_KBL_GT2(dev_priv) (IS_KABYLAKE(dev_priv) && \ INTEL_INFO(dev_priv)->gt == 2) #define IS_KBL_GT3(dev_priv) (IS_KABYLAKE(dev_priv) && \ INTEL_INFO(dev_priv)->gt == 3) #define IS_CFL_ULT(dev_priv) \ IS_SUBPLATFORM(dev_priv, INTEL_COFFEELAKE, INTEL_SUBPLATFORM_ULT) #define IS_CFL_ULX(dev_priv) \ IS_SUBPLATFORM(dev_priv, INTEL_COFFEELAKE, INTEL_SUBPLATFORM_ULX) #define IS_CFL_GT2(dev_priv) (IS_COFFEELAKE(dev_priv) && \ INTEL_INFO(dev_priv)->gt == 2) #define IS_CFL_GT3(dev_priv) (IS_COFFEELAKE(dev_priv) && \ INTEL_INFO(dev_priv)->gt == 3) #define IS_CML_ULT(dev_priv) \ IS_SUBPLATFORM(dev_priv, INTEL_COMETLAKE, INTEL_SUBPLATFORM_ULT) #define IS_CML_ULX(dev_priv) \ IS_SUBPLATFORM(dev_priv, INTEL_COMETLAKE, INTEL_SUBPLATFORM_ULX) #define IS_CML_GT2(dev_priv) (IS_COMETLAKE(dev_priv) && \ INTEL_INFO(dev_priv)->gt == 2) #define IS_ICL_WITH_PORT_F(dev_priv) \ IS_SUBPLATFORM(dev_priv, INTEL_ICELAKE, INTEL_SUBPLATFORM_PORTF) #define IS_TGL_U(dev_priv) \ IS_SUBPLATFORM(dev_priv, INTEL_TIGERLAKE, INTEL_SUBPLATFORM_ULT) #define IS_TGL_Y(dev_priv) \ IS_SUBPLATFORM(dev_priv, INTEL_TIGERLAKE, INTEL_SUBPLATFORM_ULX) #define IS_SKL_GT_STEP(p, since, until) (IS_SKYLAKE(p) && IS_GT_STEP(p, since, until)) #define IS_KBL_GT_STEP(dev_priv, since, until) \ (IS_KABYLAKE(dev_priv) && IS_GT_STEP(dev_priv, since, until)) #define IS_KBL_DISPLAY_STEP(dev_priv, since, until) \ (IS_KABYLAKE(dev_priv) && IS_DISPLAY_STEP(dev_priv, since, until)) #define IS_JSL_EHL_GT_STEP(p, since, until) \ (IS_JSL_EHL(p) && IS_GT_STEP(p, since, until)) #define IS_JSL_EHL_DISPLAY_STEP(p, since, until) \ (IS_JSL_EHL(p) && IS_DISPLAY_STEP(p, since, until)) #define IS_TGL_DISPLAY_STEP(__i915, since, until) \ (IS_TIGERLAKE(__i915) && \ IS_DISPLAY_STEP(__i915, since, until)) #define IS_TGL_UY_GT_STEP(__i915, since, until) \ ((IS_TGL_U(__i915) || IS_TGL_Y(__i915)) && \ IS_GT_STEP(__i915, since, until)) #define IS_TGL_GT_STEP(__i915, since, until) \ (IS_TIGERLAKE(__i915) && !(IS_TGL_U(__i915) || IS_TGL_Y(__i915)) && \ IS_GT_STEP(__i915, since, until)) #define IS_RKL_DISPLAY_STEP(p, since, until) \ (IS_ROCKETLAKE(p) && IS_DISPLAY_STEP(p, since, until)) #define IS_DG1_GT_STEP(p, since, until) \ (IS_DG1(p) && IS_GT_STEP(p, since, until)) #define IS_DG1_DISPLAY_STEP(p, since, until) \ (IS_DG1(p) && IS_DISPLAY_STEP(p, since, until)) #define IS_ADLS_DISPLAY_STEP(__i915, since, until) \ (IS_ALDERLAKE_S(__i915) && \ IS_DISPLAY_STEP(__i915, since, until)) #define IS_ADLS_GT_STEP(__i915, since, until) \ (IS_ALDERLAKE_S(__i915) && \ IS_GT_STEP(__i915, since, until)) #define IS_ADLP_DISPLAY_STEP(__i915, since, until) \ (IS_ALDERLAKE_P(__i915) && \ IS_DISPLAY_STEP(__i915, since, until)) #define IS_ADLP_GT_STEP(__i915, since, until) \ (IS_ALDERLAKE_P(__i915) && \ IS_GT_STEP(__i915, since, until)) #define IS_XEHPSDV_GT_STEP(__i915, since, until) \ (IS_XEHPSDV(__i915) && IS_GT_STEP(__i915, since, until)) /* * DG2 hardware steppings are a bit unusual. The hardware design was forked * to create two variants (G10 and G11) which have distinct workaround sets. * The G11 fork of the DG2 design resets the GT stepping back to "A0" for its * first iteration, even though it's more similar to a G10 B0 stepping in terms * of functionality and workarounds. However the display stepping does not * reset in the same manner --- a specific stepping like "B0" has a consistent * meaning regardless of whether it belongs to a G10 or G11 DG2. * * TLDR: All GT workarounds and stepping-specific logic must be applied in * relation to a specific subplatform (G10 or G11), whereas display workarounds * and stepping-specific logic will be applied with a general DG2-wide stepping * number. */ #define IS_DG2_GT_STEP(__i915, variant, since, until) \ (IS_SUBPLATFORM(__i915, INTEL_DG2, INTEL_SUBPLATFORM_##variant) && \ IS_GT_STEP(__i915, since, until)) #define IS_DG2_DISP_STEP(__i915, since, until) \ (IS_DG2(__i915) && \ IS_DISPLAY_STEP(__i915, since, until)) #define IS_LP(dev_priv) (INTEL_INFO(dev_priv)->is_lp) #define IS_GEN9_LP(dev_priv) (GRAPHICS_VER(dev_priv) == 9 && IS_LP(dev_priv)) #define IS_GEN9_BC(dev_priv) (GRAPHICS_VER(dev_priv) == 9 && !IS_LP(dev_priv)) #define __HAS_ENGINE(engine_mask, id) ((engine_mask) & BIT(id)) #define HAS_ENGINE(gt, id) __HAS_ENGINE((gt)->info.engine_mask, id) #define ENGINE_INSTANCES_MASK(gt, first, count) ({ \ unsigned int first__ = (first); \ unsigned int count__ = (count); \ ((gt)->info.engine_mask & \ GENMASK(first__ + count__ - 1, first__)) >> first__; \ }) #define VDBOX_MASK(gt) \ ENGINE_INSTANCES_MASK(gt, VCS0, I915_MAX_VCS) #define VEBOX_MASK(gt) \ ENGINE_INSTANCES_MASK(gt, VECS0, I915_MAX_VECS) /* * The Gen7 cmdparser copies the scanned buffer to the ggtt for execution * All later gens can run the final buffer from the ppgtt */ #define CMDPARSER_USES_GGTT(dev_priv) (GRAPHICS_VER(dev_priv) == 7) #define HAS_LLC(dev_priv) (INTEL_INFO(dev_priv)->has_llc) #define HAS_SNOOP(dev_priv) (INTEL_INFO(dev_priv)->has_snoop) #define HAS_EDRAM(dev_priv) ((dev_priv)->edram_size_mb) #define HAS_SECURE_BATCHES(dev_priv) (GRAPHICS_VER(dev_priv) < 6) #define HAS_WT(dev_priv) HAS_EDRAM(dev_priv) #define HWS_NEEDS_PHYSICAL(dev_priv) (INTEL_INFO(dev_priv)->hws_needs_physical) #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \ (INTEL_INFO(dev_priv)->has_logical_ring_contexts) #define HAS_LOGICAL_RING_ELSQ(dev_priv) \ (INTEL_INFO(dev_priv)->has_logical_ring_elsq) #define HAS_EXECLISTS(dev_priv) HAS_LOGICAL_RING_CONTEXTS(dev_priv) #define INTEL_PPGTT(dev_priv) (INTEL_INFO(dev_priv)->ppgtt_type) #define HAS_PPGTT(dev_priv) \ (INTEL_PPGTT(dev_priv) != INTEL_PPGTT_NONE) #define HAS_FULL_PPGTT(dev_priv) \ (INTEL_PPGTT(dev_priv) >= INTEL_PPGTT_FULL) #define HAS_PAGE_SIZES(dev_priv, sizes) ({ \ GEM_BUG_ON((sizes) == 0); \ ((sizes) & ~INTEL_INFO(dev_priv)->page_sizes) == 0; \ }) #define HAS_OVERLAY(dev_priv) (INTEL_INFO(dev_priv)->display.has_overlay) #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \ (INTEL_INFO(dev_priv)->display.overlay_needs_physical) /* Early gen2 have a totally busted CS tlb and require pinned batches. */ #define HAS_BROKEN_CS_TLB(dev_priv) (IS_I830(dev_priv) || IS_I845G(dev_priv)) #define NEEDS_RC6_CTX_CORRUPTION_WA(dev_priv) \ (IS_BROADWELL(dev_priv) || GRAPHICS_VER(dev_priv) == 9) /* WaRsDisableCoarsePowerGating:skl,cnl */ #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \ (IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv)) #define HAS_GMBUS_IRQ(dev_priv) (GRAPHICS_VER(dev_priv) >= 4) #define HAS_GMBUS_BURST_READ(dev_priv) (GRAPHICS_VER(dev_priv) >= 11 || \ IS_GEMINILAKE(dev_priv) || \ IS_KABYLAKE(dev_priv)) /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte * rows, which changed the alignment requirements and fence programming. */ #define HAS_128_BYTE_Y_TILING(dev_priv) (GRAPHICS_VER(dev_priv) != 2 && \ !(IS_I915G(dev_priv) || IS_I915GM(dev_priv))) #define SUPPORTS_TV(dev_priv) (INTEL_INFO(dev_priv)->display.supports_tv) #define I915_HAS_HOTPLUG(dev_priv) (INTEL_INFO(dev_priv)->display.has_hotplug) #define HAS_FW_BLC(dev_priv) (GRAPHICS_VER(dev_priv) > 2) #define HAS_FBC(dev_priv) (INTEL_INFO(dev_priv)->display.has_fbc) #define HAS_CUR_FBC(dev_priv) (!HAS_GMCH(dev_priv) && GRAPHICS_VER(dev_priv) >= 7) #define HAS_IPS(dev_priv) (IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv)) #define HAS_DP_MST(dev_priv) (INTEL_INFO(dev_priv)->display.has_dp_mst) #define HAS_CDCLK_CRAWL(dev_priv) (INTEL_INFO(dev_priv)->display.has_cdclk_crawl) #define HAS_DDI(dev_priv) (INTEL_INFO(dev_priv)->display.has_ddi) #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) (INTEL_INFO(dev_priv)->display.has_fpga_dbg) #define HAS_PSR(dev_priv) (INTEL_INFO(dev_priv)->display.has_psr) #define HAS_PSR_HW_TRACKING(dev_priv) \ (INTEL_INFO(dev_priv)->display.has_psr_hw_tracking) #define HAS_PSR2_SEL_FETCH(dev_priv) (GRAPHICS_VER(dev_priv) >= 12) #define HAS_TRANSCODER(dev_priv, trans) ((INTEL_INFO(dev_priv)->cpu_transcoder_mask & BIT(trans)) != 0) #define HAS_RC6(dev_priv) (INTEL_INFO(dev_priv)->has_rc6) #define HAS_RC6p(dev_priv) (INTEL_INFO(dev_priv)->has_rc6p) #define HAS_RC6pp(dev_priv) (false) /* HW was never validated */ #define HAS_RPS(dev_priv) (INTEL_INFO(dev_priv)->has_rps) #define HAS_DMC(dev_priv) (INTEL_INFO(dev_priv)->display.has_dmc) #define HAS_MSO(i915) (GRAPHICS_VER(i915) >= 12) #define HAS_RUNTIME_PM(dev_priv) (INTEL_INFO(dev_priv)->has_runtime_pm) #define HAS_64BIT_RELOC(dev_priv) (INTEL_INFO(dev_priv)->has_64bit_reloc) #define HAS_MSLICES(dev_priv) \ (INTEL_INFO(dev_priv)->has_mslices) #define HAS_IPC(dev_priv) (INTEL_INFO(dev_priv)->display.has_ipc) #define HAS_REGION(i915, i) (INTEL_INFO(i915)->memory_regions & (i)) #define HAS_LMEM(i915) HAS_REGION(i915, REGION_LMEM) #define HAS_GT_UC(dev_priv) (INTEL_INFO(dev_priv)->has_gt_uc) #define HAS_POOLED_EU(dev_priv) (INTEL_INFO(dev_priv)->has_pooled_eu) #define HAS_GLOBAL_MOCS_REGISTERS(dev_priv) (INTEL_INFO(dev_priv)->has_global_mocs) #define HAS_GMCH(dev_priv) (INTEL_INFO(dev_priv)->display.has_gmch) #define HAS_LSPCON(dev_priv) (IS_GRAPHICS_VER(dev_priv, 9, 10)) /* DPF == dynamic parity feature */ #define HAS_L3_DPF(dev_priv) (INTEL_INFO(dev_priv)->has_l3_dpf) #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \ 2 : HAS_L3_DPF(dev_priv)) #define GT_FREQUENCY_MULTIPLIER 50 #define GEN9_FREQ_SCALER 3 #define INTEL_NUM_PIPES(dev_priv) (hweight8(INTEL_INFO(dev_priv)->pipe_mask)) #define HAS_DISPLAY(dev_priv) (INTEL_INFO(dev_priv)->pipe_mask != 0) #define HAS_VRR(i915) (GRAPHICS_VER(i915) >= 12) /* Only valid when HAS_DISPLAY() is true */ #define INTEL_DISPLAY_ENABLED(dev_priv) \ (drm_WARN_ON(&(dev_priv)->drm, !HAS_DISPLAY(dev_priv)), !(dev_priv)->params.disable_display) static inline bool run_as_guest(void) { return !hypervisor_is_type(X86_HYPER_NATIVE); } #define HAS_D12_PLANE_MINIMIZATION(dev_priv) (IS_ROCKETLAKE(dev_priv) || \ IS_ALDERLAKE_S(dev_priv)) static inline bool intel_vtd_active(void) { #ifdef CONFIG_INTEL_IOMMU if (intel_iommu_gfx_mapped) return true; #endif /* Running as a guest, we assume the host is enforcing VT'd */ return run_as_guest(); } static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv) { return GRAPHICS_VER(dev_priv) >= 6 && intel_vtd_active(); } static inline bool intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *i915) { return IS_BROXTON(i915) && intel_vtd_active(); } static inline bool intel_vm_no_concurrent_access_wa(struct drm_i915_private *i915) { return IS_CHERRYVIEW(i915) || intel_ggtt_update_needs_vtd_wa(i915); } /* i915_drv.c */ extern const struct dev_pm_ops i915_pm_ops; int i915_driver_probe(struct pci_dev *pdev, const struct pci_device_id *ent); void i915_driver_remove(struct drm_i915_private *i915); void i915_driver_shutdown(struct drm_i915_private *i915); int i915_resume_switcheroo(struct drm_i915_private *i915); int i915_suspend_switcheroo(struct drm_i915_private *i915, pm_message_t state); int i915_getparam_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv); /* i915_gem.c */ int i915_gem_init_userptr(struct drm_i915_private *dev_priv); void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv); void i915_gem_init_early(struct drm_i915_private *dev_priv); void i915_gem_cleanup_early(struct drm_i915_private *dev_priv); static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915) { /* * A single pass should suffice to release all the freed objects (along * most call paths) , but be a little more paranoid in that freeing * the objects does take a little amount of time, during which the rcu * callbacks could have added new objects into the freed list, and * armed the work again. */ while (atomic_read(&i915->mm.free_count)) { flush_work(&i915->mm.free_work); rcu_barrier(); } } static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915) { /* * Similar to objects above (see i915_gem_drain_freed-objects), in * general we have workers that are armed by RCU and then rearm * themselves in their callbacks. To be paranoid, we need to * drain the workqueue a second time after waiting for the RCU * grace period so that we catch work queued via RCU from the first * pass. As neither drain_workqueue() nor flush_workqueue() report * a result, we make an assumption that we only don't require more * than 3 passes to catch all _recursive_ RCU delayed work. * */ int pass = 3; do { flush_workqueue(i915->wq); rcu_barrier(); i915_gem_drain_freed_objects(i915); } while (--pass); drain_workqueue(i915->wq); } struct i915_vma * __must_check i915_gem_object_ggtt_pin_ww(struct drm_i915_gem_object *obj, struct i915_gem_ww_ctx *ww, const struct i915_ggtt_view *view, u64 size, u64 alignment, u64 flags); static inline struct i915_vma * __must_check i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj, const struct i915_ggtt_view *view, u64 size, u64 alignment, u64 flags) { return i915_gem_object_ggtt_pin_ww(obj, NULL, view, size, alignment, flags); } int i915_gem_object_unbind(struct drm_i915_gem_object *obj, unsigned long flags); #define I915_GEM_OBJECT_UNBIND_ACTIVE BIT(0) #define I915_GEM_OBJECT_UNBIND_BARRIER BIT(1) #define I915_GEM_OBJECT_UNBIND_TEST BIT(2) #define I915_GEM_OBJECT_UNBIND_VM_TRYLOCK BIT(3) void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv); int i915_gem_dumb_create(struct drm_file *file_priv, struct drm_device *dev, struct drm_mode_create_dumb *args); int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno); static inline u32 i915_reset_count(struct i915_gpu_error *error) { return atomic_read(&error->reset_count); } static inline u32 i915_reset_engine_count(struct i915_gpu_error *error, const struct intel_engine_cs *engine) { return atomic_read(&error->reset_engine_count[engine->uabi_class]); } int __must_check i915_gem_init(struct drm_i915_private *dev_priv); void i915_gem_driver_register(struct drm_i915_private *i915); void i915_gem_driver_unregister(struct drm_i915_private *i915); void i915_gem_driver_remove(struct drm_i915_private *dev_priv); void i915_gem_driver_release(struct drm_i915_private *dev_priv); void i915_gem_suspend(struct drm_i915_private *dev_priv); void i915_gem_suspend_late(struct drm_i915_private *dev_priv); void i915_gem_resume(struct drm_i915_private *dev_priv); int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file); int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj, enum i915_cache_level cache_level); struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev, struct dma_buf *dma_buf); struct dma_buf *i915_gem_prime_export(struct drm_gem_object *gem_obj, int flags); static inline struct i915_address_space * i915_gem_vm_lookup(struct drm_i915_file_private *file_priv, u32 id) { struct i915_address_space *vm; rcu_read_lock(); vm = xa_load(&file_priv->vm_xa, id); if (vm && !kref_get_unless_zero(&vm->ref)) vm = NULL; rcu_read_unlock(); return vm; } /* i915_gem_evict.c */ int __must_check i915_gem_evict_something(struct i915_address_space *vm, u64 min_size, u64 alignment, unsigned long color, u64 start, u64 end, unsigned flags); int __must_check i915_gem_evict_for_node(struct i915_address_space *vm, struct drm_mm_node *node, unsigned int flags); int i915_gem_evict_vm(struct i915_address_space *vm); /* i915_gem_internal.c */ struct drm_i915_gem_object * i915_gem_object_create_internal(struct drm_i915_private *dev_priv, phys_addr_t size); struct drm_i915_gem_object * __i915_gem_object_create_internal(struct drm_i915_private *dev_priv, const struct drm_i915_gem_object_ops *ops, phys_addr_t size); /* i915_gem_tiling.c */ static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj) { struct drm_i915_private *i915 = to_i915(obj->base.dev); return i915->ggtt.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 && i915_gem_object_is_tiled(obj); } u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size, unsigned int tiling, unsigned int stride); u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size, unsigned int tiling, unsigned int stride); const char *i915_cache_level_str(struct drm_i915_private *i915, int type); /* i915_cmd_parser.c */ int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv); int intel_engine_init_cmd_parser(struct intel_engine_cs *engine); void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine); int intel_engine_cmd_parser(struct intel_engine_cs *engine, struct i915_vma *batch, unsigned long batch_offset, unsigned long batch_length, struct i915_vma *shadow, bool trampoline); #define I915_CMD_PARSER_TRAMPOLINE_SIZE 8 /* intel_device_info.c */ static inline struct intel_device_info * mkwrite_device_info(struct drm_i915_private *dev_priv) { return (struct intel_device_info *)INTEL_INFO(dev_priv); } int i915_reg_read_ioctl(struct drm_device *dev, void *data, struct drm_file *file); /* i915_mm.c */ int remap_io_mapping(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn, unsigned long size, struct io_mapping *iomap); int remap_io_sg(struct vm_area_struct *vma, unsigned long addr, unsigned long size, struct scatterlist *sgl, resource_size_t iobase); static inline int intel_hws_csb_write_index(struct drm_i915_private *i915) { if (GRAPHICS_VER(i915) >= 11) return ICL_HWS_CSB_WRITE_INDEX; else return I915_HWS_CSB_WRITE_INDEX; } static inline enum i915_map_type i915_coherent_map_type(struct drm_i915_private *i915, struct drm_i915_gem_object *obj, bool always_coherent) { if (i915_gem_object_is_lmem(obj)) return I915_MAP_WC; if (HAS_LLC(i915) || always_coherent) return I915_MAP_WB; else return I915_MAP_WC; } #endif