/* * SPDX-License-Identifier: MIT * * Copyright © 2008 Intel Corporation */ #include #include #include "i915_drv.h" #include "i915_gem.h" #include "i915_gem_ioctls.h" #include "i915_gem_mman.h" #include "i915_gem_object.h" /** * DOC: buffer object tiling * * i915_gem_set_tiling_ioctl() and i915_gem_get_tiling_ioctl() is the userspace * interface to declare fence register requirements. * * In principle GEM doesn't care at all about the internal data layout of an * object, and hence it also doesn't care about tiling or swizzling. There's two * exceptions: * * - For X and Y tiling the hardware provides detilers for CPU access, so called * fences. Since there's only a limited amount of them the kernel must manage * these, and therefore userspace must tell the kernel the object tiling if it * wants to use fences for detiling. * - On gen3 and gen4 platforms have a swizzling pattern for tiled objects which * depends upon the physical page frame number. When swapping such objects the * page frame number might change and the kernel must be able to fix this up * and hence now the tiling. Note that on a subset of platforms with * asymmetric memory channel population the swizzling pattern changes in an * unknown way, and for those the kernel simply forbids swapping completely. * * Since neither of this applies for new tiling layouts on modern platforms like * W, Ys and Yf tiling GEM only allows object tiling to be set to X or Y tiled. * Anything else can be handled in userspace entirely without the kernel's * invovlement. */ /** * i915_gem_fence_size - required global GTT size for a fence * @i915: i915 device * @size: object size * @tiling: tiling mode * @stride: tiling stride * * Return the required global GTT size for a fence (view of a tiled object), * taking into account potential fence register mapping. */ u32 i915_gem_fence_size(struct drm_i915_private *i915, u32 size, unsigned int tiling, unsigned int stride) { u32 ggtt_size; GEM_BUG_ON(!size); if (tiling == I915_TILING_NONE) return size; GEM_BUG_ON(!stride); if (GRAPHICS_VER(i915) >= 4) { stride *= i915_gem_tile_height(tiling); GEM_BUG_ON(!IS_ALIGNED(stride, I965_FENCE_PAGE)); return roundup(size, stride); } /* Previous chips need a power-of-two fence region when tiling */ if (GRAPHICS_VER(i915) == 3) ggtt_size = 1024*1024; else ggtt_size = 512*1024; while (ggtt_size < size) ggtt_size <<= 1; return ggtt_size; } /** * i915_gem_fence_alignment - required global GTT alignment for a fence * @i915: i915 device * @size: object size * @tiling: tiling mode * @stride: tiling stride * * Return the required global GTT alignment for a fence (a view of a tiled * object), taking into account potential fence register mapping. */ u32 i915_gem_fence_alignment(struct drm_i915_private *i915, u32 size, unsigned int tiling, unsigned int stride) { GEM_BUG_ON(!size); /* * Minimum alignment is 4k (GTT page size), but might be greater * if a fence register is needed for the object. */ if (tiling == I915_TILING_NONE) return I915_GTT_MIN_ALIGNMENT; if (GRAPHICS_VER(i915) >= 4) return I965_FENCE_PAGE; /* * Previous chips need to be aligned to the size of the smallest * fence register that can contain the object. */ return i915_gem_fence_size(i915, size, tiling, stride); } /* Check pitch constriants for all chips & tiling formats */ static bool i915_tiling_ok(struct drm_i915_gem_object *obj, unsigned int tiling, unsigned int stride) { struct drm_i915_private *i915 = to_i915(obj->base.dev); unsigned int tile_width; /* Linear is always fine */ if (tiling == I915_TILING_NONE) return true; if (tiling > I915_TILING_LAST) return false; /* check maximum stride & object size */ /* i965+ stores the end address of the gtt mapping in the fence * reg, so dont bother to check the size */ if (GRAPHICS_VER(i915) >= 7) { if (stride / 128 > GEN7_FENCE_MAX_PITCH_VAL) return false; } else if (GRAPHICS_VER(i915) >= 4) { if (stride / 128 > I965_FENCE_MAX_PITCH_VAL) return false; } else { if (stride > 8192) return false; if (!is_power_of_2(stride)) return false; } if (GRAPHICS_VER(i915) == 2 || (tiling == I915_TILING_Y && HAS_128_BYTE_Y_TILING(i915))) tile_width = 128; else tile_width = 512; if (!stride || !IS_ALIGNED(stride, tile_width)) return false; return true; } static bool i915_vma_fence_prepare(struct i915_vma *vma, int tiling_mode, unsigned int stride) { struct drm_i915_private *i915 = vma->vm->i915; u32 size, alignment; if (!i915_vma_is_map_and_fenceable(vma)) return true; size = i915_gem_fence_size(i915, vma->size, tiling_mode, stride); if (vma->node.size < size) return false; alignment = i915_gem_fence_alignment(i915, vma->size, tiling_mode, stride); if (!IS_ALIGNED(vma->node.start, alignment)) return false; return true; } /* Make the current GTT allocation valid for the change in tiling. */ static int i915_gem_object_fence_prepare(struct drm_i915_gem_object *obj, int tiling_mode, unsigned int stride) { struct i915_ggtt *ggtt = &to_i915(obj->base.dev)->ggtt; struct i915_vma *vma, *vn; LIST_HEAD(unbind); int ret = 0; if (tiling_mode == I915_TILING_NONE) return 0; mutex_lock(&ggtt->vm.mutex); spin_lock(&obj->vma.lock); for_each_ggtt_vma(vma, obj) { GEM_BUG_ON(vma->vm != &ggtt->vm); if (i915_vma_fence_prepare(vma, tiling_mode, stride)) continue; list_move(&vma->vm_link, &unbind); } spin_unlock(&obj->vma.lock); list_for_each_entry_safe(vma, vn, &unbind, vm_link) { ret = __i915_vma_unbind(vma); if (ret) { /* Restore the remaining vma on an error */ list_splice(&unbind, &ggtt->vm.bound_list); break; } } mutex_unlock(&ggtt->vm.mutex); return ret; } int i915_gem_object_set_tiling(struct drm_i915_gem_object *obj, unsigned int tiling, unsigned int stride) { struct drm_i915_private *i915 = to_i915(obj->base.dev); struct i915_vma *vma; int err; /* Make sure we don't cross-contaminate obj->tiling_and_stride */ BUILD_BUG_ON(I915_TILING_LAST & STRIDE_MASK); GEM_BUG_ON(!i915_tiling_ok(obj, tiling, stride)); GEM_BUG_ON(!stride ^ (tiling == I915_TILING_NONE)); if ((tiling | stride) == obj->tiling_and_stride) return 0; if (i915_gem_object_is_framebuffer(obj)) return -EBUSY; /* We need to rebind the object if its current allocation * no longer meets the alignment restrictions for its new * tiling mode. Otherwise we can just leave it alone, but * need to ensure that any fence register is updated before * the next fenced (either through the GTT or by the BLT unit * on older GPUs) access. * * After updating the tiling parameters, we then flag whether * we need to update an associated fence register. Note this * has to also include the unfenced register the GPU uses * whilst executing a fenced command for an untiled object. */ i915_gem_object_lock(obj, NULL); if (i915_gem_object_is_framebuffer(obj)) { i915_gem_object_unlock(obj); return -EBUSY; } err = i915_gem_object_fence_prepare(obj, tiling, stride); if (err) { i915_gem_object_unlock(obj); return err; } /* If the memory has unknown (i.e. varying) swizzling, we pin the * pages to prevent them being swapped out and causing corruption * due to the change in swizzling. */ if (i915_gem_object_has_pages(obj) && obj->mm.madv == I915_MADV_WILLNEED && i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) { if (tiling == I915_TILING_NONE) { GEM_BUG_ON(!i915_gem_object_has_tiling_quirk(obj)); i915_gem_object_clear_tiling_quirk(obj); i915_gem_object_make_shrinkable(obj); } if (!i915_gem_object_is_tiled(obj)) { GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj)); i915_gem_object_make_unshrinkable(obj); i915_gem_object_set_tiling_quirk(obj); } } spin_lock(&obj->vma.lock); for_each_ggtt_vma(vma, obj) { vma->fence_size = i915_gem_fence_size(i915, vma->size, tiling, stride); vma->fence_alignment = i915_gem_fence_alignment(i915, vma->size, tiling, stride); if (vma->fence) vma->fence->dirty = true; } spin_unlock(&obj->vma.lock); obj->tiling_and_stride = tiling | stride; /* Try to preallocate memory required to save swizzling on put-pages */ if (i915_gem_object_needs_bit17_swizzle(obj)) { if (!obj->bit_17) { obj->bit_17 = bitmap_zalloc(obj->base.size >> PAGE_SHIFT, GFP_KERNEL); } } else { bitmap_free(obj->bit_17); obj->bit_17 = NULL; } i915_gem_object_unlock(obj); /* Force the fence to be reacquired for GTT access */ i915_gem_object_release_mmap_gtt(obj); return 0; } /** * i915_gem_set_tiling_ioctl - IOCTL handler to set tiling mode * @dev: DRM device * @data: data pointer for the ioctl * @file: DRM file for the ioctl call * * Sets the tiling mode of an object, returning the required swizzling of * bit 6 of addresses in the object. * * Called by the user via ioctl. * * Returns: * Zero on success, negative errno on failure. */ int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_private *dev_priv = to_i915(dev); struct drm_i915_gem_set_tiling *args = data; struct drm_i915_gem_object *obj; int err; if (!dev_priv->ggtt.num_fences) return -EOPNOTSUPP; obj = i915_gem_object_lookup(file, args->handle); if (!obj) return -ENOENT; /* * The tiling mode of proxy objects is handled by its generator, and * not allowed to be changed by userspace. */ if (i915_gem_object_is_proxy(obj)) { err = -ENXIO; goto err; } if (!i915_tiling_ok(obj, args->tiling_mode, args->stride)) { err = -EINVAL; goto err; } if (args->tiling_mode == I915_TILING_NONE) { args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE; args->stride = 0; } else { if (args->tiling_mode == I915_TILING_X) args->swizzle_mode = to_i915(dev)->ggtt.bit_6_swizzle_x; else args->swizzle_mode = to_i915(dev)->ggtt.bit_6_swizzle_y; /* Hide bit 17 swizzling from the user. This prevents old Mesa * from aborting the application on sw fallbacks to bit 17, * and we use the pread/pwrite bit17 paths to swizzle for it. * If there was a user that was relying on the swizzle * information for drm_intel_bo_map()ed reads/writes this would * break it, but we don't have any of those. */ if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17) args->swizzle_mode = I915_BIT_6_SWIZZLE_9; if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17) args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10; /* If we can't handle the swizzling, make it untiled. */ if (args->swizzle_mode == I915_BIT_6_SWIZZLE_UNKNOWN) { args->tiling_mode = I915_TILING_NONE; args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE; args->stride = 0; } } err = i915_gem_object_set_tiling(obj, args->tiling_mode, args->stride); /* We have to maintain this existing ABI... */ args->stride = i915_gem_object_get_stride(obj); args->tiling_mode = i915_gem_object_get_tiling(obj); err: i915_gem_object_put(obj); return err; } /** * i915_gem_get_tiling_ioctl - IOCTL handler to get tiling mode * @dev: DRM device * @data: data pointer for the ioctl * @file: DRM file for the ioctl call * * Returns the current tiling mode and required bit 6 swizzling for the object. * * Called by the user via ioctl. * * Returns: * Zero on success, negative errno on failure. */ int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_gem_get_tiling *args = data; struct drm_i915_private *dev_priv = to_i915(dev); struct drm_i915_gem_object *obj; int err = -ENOENT; if (!dev_priv->ggtt.num_fences) return -EOPNOTSUPP; rcu_read_lock(); obj = i915_gem_object_lookup_rcu(file, args->handle); if (obj) { args->tiling_mode = READ_ONCE(obj->tiling_and_stride) & TILING_MASK; err = 0; } rcu_read_unlock(); if (unlikely(err)) return err; switch (args->tiling_mode) { case I915_TILING_X: args->swizzle_mode = dev_priv->ggtt.bit_6_swizzle_x; break; case I915_TILING_Y: args->swizzle_mode = dev_priv->ggtt.bit_6_swizzle_y; break; default: case I915_TILING_NONE: args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE; break; } /* Hide bit 17 from the user -- see comment in i915_gem_set_tiling */ if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) args->phys_swizzle_mode = I915_BIT_6_SWIZZLE_UNKNOWN; else args->phys_swizzle_mode = args->swizzle_mode; if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17) args->swizzle_mode = I915_BIT_6_SWIZZLE_9; if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17) args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10; return 0; }