// SPDX-License-Identifier: GPL-2.0-or-later /* Algorithms supported by virtio crypto device * * Authors: Gonglei * * Copyright 2016 HUAWEI TECHNOLOGIES CO., LTD. */ #include #include #include #include #include #include #include #include "virtio_crypto_common.h" struct virtio_crypto_skcipher_ctx { struct crypto_engine_ctx enginectx; struct virtio_crypto *vcrypto; struct crypto_skcipher *tfm; struct virtio_crypto_sym_session_info enc_sess_info; struct virtio_crypto_sym_session_info dec_sess_info; }; struct virtio_crypto_sym_request { struct virtio_crypto_request base; /* Cipher or aead */ uint32_t type; struct virtio_crypto_skcipher_ctx *skcipher_ctx; struct skcipher_request *skcipher_req; uint8_t *iv; /* Encryption? */ bool encrypt; }; struct virtio_crypto_algo { uint32_t algonum; uint32_t service; unsigned int active_devs; struct skcipher_alg algo; }; /* * The algs_lock protects the below global virtio_crypto_active_devs * and crypto algorithms registion. */ static DEFINE_MUTEX(algs_lock); static void virtio_crypto_skcipher_finalize_req( struct virtio_crypto_sym_request *vc_sym_req, struct skcipher_request *req, int err); static void virtio_crypto_dataq_sym_callback (struct virtio_crypto_request *vc_req, int len) { struct virtio_crypto_sym_request *vc_sym_req = container_of(vc_req, struct virtio_crypto_sym_request, base); struct skcipher_request *ablk_req; int error; /* Finish the encrypt or decrypt process */ if (vc_sym_req->type == VIRTIO_CRYPTO_SYM_OP_CIPHER) { switch (vc_req->status) { case VIRTIO_CRYPTO_OK: error = 0; break; case VIRTIO_CRYPTO_INVSESS: case VIRTIO_CRYPTO_ERR: error = -EINVAL; break; case VIRTIO_CRYPTO_BADMSG: error = -EBADMSG; break; default: error = -EIO; break; } ablk_req = vc_sym_req->skcipher_req; virtio_crypto_skcipher_finalize_req(vc_sym_req, ablk_req, error); } } static u64 virtio_crypto_alg_sg_nents_length(struct scatterlist *sg) { u64 total = 0; for (total = 0; sg; sg = sg_next(sg)) total += sg->length; return total; } static int virtio_crypto_alg_validate_key(int key_len, uint32_t *alg) { switch (key_len) { case AES_KEYSIZE_128: case AES_KEYSIZE_192: case AES_KEYSIZE_256: *alg = VIRTIO_CRYPTO_CIPHER_AES_CBC; break; default: return -EINVAL; } return 0; } static int virtio_crypto_alg_skcipher_init_session( struct virtio_crypto_skcipher_ctx *ctx, uint32_t alg, const uint8_t *key, unsigned int keylen, int encrypt) { struct scatterlist outhdr, key_sg, inhdr, *sgs[3]; unsigned int tmp; struct virtio_crypto *vcrypto = ctx->vcrypto; int op = encrypt ? VIRTIO_CRYPTO_OP_ENCRYPT : VIRTIO_CRYPTO_OP_DECRYPT; int err; unsigned int num_out = 0, num_in = 0; /* * Avoid to do DMA from the stack, switch to using * dynamically-allocated for the key */ uint8_t *cipher_key = kmemdup(key, keylen, GFP_ATOMIC); if (!cipher_key) return -ENOMEM; spin_lock(&vcrypto->ctrl_lock); /* Pad ctrl header */ vcrypto->ctrl.header.opcode = cpu_to_le32(VIRTIO_CRYPTO_CIPHER_CREATE_SESSION); vcrypto->ctrl.header.algo = cpu_to_le32(alg); /* Set the default dataqueue id to 0 */ vcrypto->ctrl.header.queue_id = 0; vcrypto->input.status = cpu_to_le32(VIRTIO_CRYPTO_ERR); /* Pad cipher's parameters */ vcrypto->ctrl.u.sym_create_session.op_type = cpu_to_le32(VIRTIO_CRYPTO_SYM_OP_CIPHER); vcrypto->ctrl.u.sym_create_session.u.cipher.para.algo = vcrypto->ctrl.header.algo; vcrypto->ctrl.u.sym_create_session.u.cipher.para.keylen = cpu_to_le32(keylen); vcrypto->ctrl.u.sym_create_session.u.cipher.para.op = cpu_to_le32(op); sg_init_one(&outhdr, &vcrypto->ctrl, sizeof(vcrypto->ctrl)); sgs[num_out++] = &outhdr; /* Set key */ sg_init_one(&key_sg, cipher_key, keylen); sgs[num_out++] = &key_sg; /* Return status and session id back */ sg_init_one(&inhdr, &vcrypto->input, sizeof(vcrypto->input)); sgs[num_out + num_in++] = &inhdr; err = virtqueue_add_sgs(vcrypto->ctrl_vq, sgs, num_out, num_in, vcrypto, GFP_ATOMIC); if (err < 0) { spin_unlock(&vcrypto->ctrl_lock); kfree_sensitive(cipher_key); return err; } virtqueue_kick(vcrypto->ctrl_vq); /* * Trapping into the hypervisor, so the request should be * handled immediately. */ while (!virtqueue_get_buf(vcrypto->ctrl_vq, &tmp) && !virtqueue_is_broken(vcrypto->ctrl_vq)) cpu_relax(); if (le32_to_cpu(vcrypto->input.status) != VIRTIO_CRYPTO_OK) { spin_unlock(&vcrypto->ctrl_lock); pr_err("virtio_crypto: Create session failed status: %u\n", le32_to_cpu(vcrypto->input.status)); kfree_sensitive(cipher_key); return -EINVAL; } if (encrypt) ctx->enc_sess_info.session_id = le64_to_cpu(vcrypto->input.session_id); else ctx->dec_sess_info.session_id = le64_to_cpu(vcrypto->input.session_id); spin_unlock(&vcrypto->ctrl_lock); kfree_sensitive(cipher_key); return 0; } static int virtio_crypto_alg_skcipher_close_session( struct virtio_crypto_skcipher_ctx *ctx, int encrypt) { struct scatterlist outhdr, status_sg, *sgs[2]; unsigned int tmp; struct virtio_crypto_destroy_session_req *destroy_session; struct virtio_crypto *vcrypto = ctx->vcrypto; int err; unsigned int num_out = 0, num_in = 0; spin_lock(&vcrypto->ctrl_lock); vcrypto->ctrl_status.status = VIRTIO_CRYPTO_ERR; /* Pad ctrl header */ vcrypto->ctrl.header.opcode = cpu_to_le32(VIRTIO_CRYPTO_CIPHER_DESTROY_SESSION); /* Set the default virtqueue id to 0 */ vcrypto->ctrl.header.queue_id = 0; destroy_session = &vcrypto->ctrl.u.destroy_session; if (encrypt) destroy_session->session_id = cpu_to_le64(ctx->enc_sess_info.session_id); else destroy_session->session_id = cpu_to_le64(ctx->dec_sess_info.session_id); sg_init_one(&outhdr, &vcrypto->ctrl, sizeof(vcrypto->ctrl)); sgs[num_out++] = &outhdr; /* Return status and session id back */ sg_init_one(&status_sg, &vcrypto->ctrl_status.status, sizeof(vcrypto->ctrl_status.status)); sgs[num_out + num_in++] = &status_sg; err = virtqueue_add_sgs(vcrypto->ctrl_vq, sgs, num_out, num_in, vcrypto, GFP_ATOMIC); if (err < 0) { spin_unlock(&vcrypto->ctrl_lock); return err; } virtqueue_kick(vcrypto->ctrl_vq); while (!virtqueue_get_buf(vcrypto->ctrl_vq, &tmp) && !virtqueue_is_broken(vcrypto->ctrl_vq)) cpu_relax(); if (vcrypto->ctrl_status.status != VIRTIO_CRYPTO_OK) { spin_unlock(&vcrypto->ctrl_lock); pr_err("virtio_crypto: Close session failed status: %u, session_id: 0x%llx\n", vcrypto->ctrl_status.status, destroy_session->session_id); err = -EINVAL; } spin_unlock(&vcrypto->ctrl_lock); return 0; } static int virtio_crypto_alg_skcipher_init_sessions( struct virtio_crypto_skcipher_ctx *ctx, const uint8_t *key, unsigned int keylen) { uint32_t alg; int ret; struct virtio_crypto *vcrypto = ctx->vcrypto; if (keylen > vcrypto->max_cipher_key_len) { pr_err("virtio_crypto: the key is too long\n"); return -EINVAL; } if (virtio_crypto_alg_validate_key(keylen, &alg)) return -EINVAL; /* Create encryption session */ ret = virtio_crypto_alg_skcipher_init_session(ctx, alg, key, keylen, 1); if (ret) return ret; /* Create decryption session */ ret = virtio_crypto_alg_skcipher_init_session(ctx, alg, key, keylen, 0); if (ret) { virtio_crypto_alg_skcipher_close_session(ctx, 1); return ret; } return 0; } /* Note: kernel crypto API realization */ static int virtio_crypto_skcipher_setkey(struct crypto_skcipher *tfm, const uint8_t *key, unsigned int keylen) { struct virtio_crypto_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm); uint32_t alg; int ret; ret = virtio_crypto_alg_validate_key(keylen, &alg); if (ret) return ret; if (!ctx->vcrypto) { /* New key */ int node = virtio_crypto_get_current_node(); struct virtio_crypto *vcrypto = virtcrypto_get_dev_node(node, VIRTIO_CRYPTO_SERVICE_CIPHER, alg); if (!vcrypto) { pr_err("virtio_crypto: Could not find a virtio device in the system or unsupported algo\n"); return -ENODEV; } ctx->vcrypto = vcrypto; } else { /* Rekeying, we should close the created sessions previously */ virtio_crypto_alg_skcipher_close_session(ctx, 1); virtio_crypto_alg_skcipher_close_session(ctx, 0); } ret = virtio_crypto_alg_skcipher_init_sessions(ctx, key, keylen); if (ret) { virtcrypto_dev_put(ctx->vcrypto); ctx->vcrypto = NULL; return ret; } return 0; } static int __virtio_crypto_skcipher_do_req(struct virtio_crypto_sym_request *vc_sym_req, struct skcipher_request *req, struct data_queue *data_vq) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct virtio_crypto_skcipher_ctx *ctx = vc_sym_req->skcipher_ctx; struct virtio_crypto_request *vc_req = &vc_sym_req->base; unsigned int ivsize = crypto_skcipher_ivsize(tfm); struct virtio_crypto *vcrypto = ctx->vcrypto; struct virtio_crypto_op_data_req *req_data; int src_nents, dst_nents; int err; unsigned long flags; struct scatterlist outhdr, iv_sg, status_sg, **sgs; u64 dst_len; unsigned int num_out = 0, num_in = 0; int sg_total; uint8_t *iv; struct scatterlist *sg; src_nents = sg_nents_for_len(req->src, req->cryptlen); if (src_nents < 0) { pr_err("Invalid number of src SG.\n"); return src_nents; } dst_nents = sg_nents(req->dst); pr_debug("virtio_crypto: Number of sgs (src_nents: %d, dst_nents: %d)\n", src_nents, dst_nents); /* Why 3? outhdr + iv + inhdr */ sg_total = src_nents + dst_nents + 3; sgs = kcalloc_node(sg_total, sizeof(*sgs), GFP_KERNEL, dev_to_node(&vcrypto->vdev->dev)); if (!sgs) return -ENOMEM; req_data = kzalloc_node(sizeof(*req_data), GFP_KERNEL, dev_to_node(&vcrypto->vdev->dev)); if (!req_data) { kfree(sgs); return -ENOMEM; } vc_req->req_data = req_data; vc_sym_req->type = VIRTIO_CRYPTO_SYM_OP_CIPHER; /* Head of operation */ if (vc_sym_req->encrypt) { req_data->header.session_id = cpu_to_le64(ctx->enc_sess_info.session_id); req_data->header.opcode = cpu_to_le32(VIRTIO_CRYPTO_CIPHER_ENCRYPT); } else { req_data->header.session_id = cpu_to_le64(ctx->dec_sess_info.session_id); req_data->header.opcode = cpu_to_le32(VIRTIO_CRYPTO_CIPHER_DECRYPT); } req_data->u.sym_req.op_type = cpu_to_le32(VIRTIO_CRYPTO_SYM_OP_CIPHER); req_data->u.sym_req.u.cipher.para.iv_len = cpu_to_le32(ivsize); req_data->u.sym_req.u.cipher.para.src_data_len = cpu_to_le32(req->cryptlen); dst_len = virtio_crypto_alg_sg_nents_length(req->dst); if (unlikely(dst_len > U32_MAX)) { pr_err("virtio_crypto: The dst_len is beyond U32_MAX\n"); err = -EINVAL; goto free; } dst_len = min_t(unsigned int, req->cryptlen, dst_len); pr_debug("virtio_crypto: src_len: %u, dst_len: %llu\n", req->cryptlen, dst_len); if (unlikely(req->cryptlen + dst_len + ivsize + sizeof(vc_req->status) > vcrypto->max_size)) { pr_err("virtio_crypto: The length is too big\n"); err = -EINVAL; goto free; } req_data->u.sym_req.u.cipher.para.dst_data_len = cpu_to_le32((uint32_t)dst_len); /* Outhdr */ sg_init_one(&outhdr, req_data, sizeof(*req_data)); sgs[num_out++] = &outhdr; /* IV */ /* * Avoid to do DMA from the stack, switch to using * dynamically-allocated for the IV */ iv = kzalloc_node(ivsize, GFP_ATOMIC, dev_to_node(&vcrypto->vdev->dev)); if (!iv) { err = -ENOMEM; goto free; } memcpy(iv, req->iv, ivsize); if (!vc_sym_req->encrypt) scatterwalk_map_and_copy(req->iv, req->src, req->cryptlen - AES_BLOCK_SIZE, AES_BLOCK_SIZE, 0); sg_init_one(&iv_sg, iv, ivsize); sgs[num_out++] = &iv_sg; vc_sym_req->iv = iv; /* Source data */ for (sg = req->src; src_nents; sg = sg_next(sg), src_nents--) sgs[num_out++] = sg; /* Destination data */ for (sg = req->dst; sg; sg = sg_next(sg)) sgs[num_out + num_in++] = sg; /* Status */ sg_init_one(&status_sg, &vc_req->status, sizeof(vc_req->status)); sgs[num_out + num_in++] = &status_sg; vc_req->sgs = sgs; spin_lock_irqsave(&data_vq->lock, flags); err = virtqueue_add_sgs(data_vq->vq, sgs, num_out, num_in, vc_req, GFP_ATOMIC); virtqueue_kick(data_vq->vq); spin_unlock_irqrestore(&data_vq->lock, flags); if (unlikely(err < 0)) goto free_iv; return 0; free_iv: kfree_sensitive(iv); free: kfree_sensitive(req_data); kfree(sgs); return err; } static int virtio_crypto_skcipher_encrypt(struct skcipher_request *req) { struct crypto_skcipher *atfm = crypto_skcipher_reqtfm(req); struct virtio_crypto_skcipher_ctx *ctx = crypto_skcipher_ctx(atfm); struct virtio_crypto_sym_request *vc_sym_req = skcipher_request_ctx(req); struct virtio_crypto_request *vc_req = &vc_sym_req->base; struct virtio_crypto *vcrypto = ctx->vcrypto; /* Use the first data virtqueue as default */ struct data_queue *data_vq = &vcrypto->data_vq[0]; if (!req->cryptlen) return 0; if (req->cryptlen % AES_BLOCK_SIZE) return -EINVAL; vc_req->dataq = data_vq; vc_req->alg_cb = virtio_crypto_dataq_sym_callback; vc_sym_req->skcipher_ctx = ctx; vc_sym_req->skcipher_req = req; vc_sym_req->encrypt = true; return crypto_transfer_skcipher_request_to_engine(data_vq->engine, req); } static int virtio_crypto_skcipher_decrypt(struct skcipher_request *req) { struct crypto_skcipher *atfm = crypto_skcipher_reqtfm(req); struct virtio_crypto_skcipher_ctx *ctx = crypto_skcipher_ctx(atfm); struct virtio_crypto_sym_request *vc_sym_req = skcipher_request_ctx(req); struct virtio_crypto_request *vc_req = &vc_sym_req->base; struct virtio_crypto *vcrypto = ctx->vcrypto; /* Use the first data virtqueue as default */ struct data_queue *data_vq = &vcrypto->data_vq[0]; if (!req->cryptlen) return 0; if (req->cryptlen % AES_BLOCK_SIZE) return -EINVAL; vc_req->dataq = data_vq; vc_req->alg_cb = virtio_crypto_dataq_sym_callback; vc_sym_req->skcipher_ctx = ctx; vc_sym_req->skcipher_req = req; vc_sym_req->encrypt = false; return crypto_transfer_skcipher_request_to_engine(data_vq->engine, req); } static int virtio_crypto_skcipher_init(struct crypto_skcipher *tfm) { struct virtio_crypto_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm); crypto_skcipher_set_reqsize(tfm, sizeof(struct virtio_crypto_sym_request)); ctx->tfm = tfm; ctx->enginectx.op.do_one_request = virtio_crypto_skcipher_crypt_req; ctx->enginectx.op.prepare_request = NULL; ctx->enginectx.op.unprepare_request = NULL; return 0; } static void virtio_crypto_skcipher_exit(struct crypto_skcipher *tfm) { struct virtio_crypto_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm); if (!ctx->vcrypto) return; virtio_crypto_alg_skcipher_close_session(ctx, 1); virtio_crypto_alg_skcipher_close_session(ctx, 0); virtcrypto_dev_put(ctx->vcrypto); ctx->vcrypto = NULL; } int virtio_crypto_skcipher_crypt_req( struct crypto_engine *engine, void *vreq) { struct skcipher_request *req = container_of(vreq, struct skcipher_request, base); struct virtio_crypto_sym_request *vc_sym_req = skcipher_request_ctx(req); struct virtio_crypto_request *vc_req = &vc_sym_req->base; struct data_queue *data_vq = vc_req->dataq; int ret; ret = __virtio_crypto_skcipher_do_req(vc_sym_req, req, data_vq); if (ret < 0) return ret; virtqueue_kick(data_vq->vq); return 0; } static void virtio_crypto_skcipher_finalize_req( struct virtio_crypto_sym_request *vc_sym_req, struct skcipher_request *req, int err) { if (vc_sym_req->encrypt) scatterwalk_map_and_copy(req->iv, req->dst, req->cryptlen - AES_BLOCK_SIZE, AES_BLOCK_SIZE, 0); kfree_sensitive(vc_sym_req->iv); virtcrypto_clear_request(&vc_sym_req->base); crypto_finalize_skcipher_request(vc_sym_req->base.dataq->engine, req, err); } static struct virtio_crypto_algo virtio_crypto_algs[] = { { .algonum = VIRTIO_CRYPTO_CIPHER_AES_CBC, .service = VIRTIO_CRYPTO_SERVICE_CIPHER, .algo = { .base.cra_name = "cbc(aes)", .base.cra_driver_name = "virtio_crypto_aes_cbc", .base.cra_priority = 150, .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct virtio_crypto_skcipher_ctx), .base.cra_module = THIS_MODULE, .init = virtio_crypto_skcipher_init, .exit = virtio_crypto_skcipher_exit, .setkey = virtio_crypto_skcipher_setkey, .decrypt = virtio_crypto_skcipher_decrypt, .encrypt = virtio_crypto_skcipher_encrypt, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, }, } }; int virtio_crypto_algs_register(struct virtio_crypto *vcrypto) { int ret = 0; int i = 0; mutex_lock(&algs_lock); for (i = 0; i < ARRAY_SIZE(virtio_crypto_algs); i++) { uint32_t service = virtio_crypto_algs[i].service; uint32_t algonum = virtio_crypto_algs[i].algonum; if (!virtcrypto_algo_is_supported(vcrypto, service, algonum)) continue; if (virtio_crypto_algs[i].active_devs == 0) { ret = crypto_register_skcipher(&virtio_crypto_algs[i].algo); if (ret) goto unlock; } virtio_crypto_algs[i].active_devs++; dev_info(&vcrypto->vdev->dev, "Registered algo %s\n", virtio_crypto_algs[i].algo.base.cra_name); } unlock: mutex_unlock(&algs_lock); return ret; } void virtio_crypto_algs_unregister(struct virtio_crypto *vcrypto) { int i = 0; mutex_lock(&algs_lock); for (i = 0; i < ARRAY_SIZE(virtio_crypto_algs); i++) { uint32_t service = virtio_crypto_algs[i].service; uint32_t algonum = virtio_crypto_algs[i].algonum; if (virtio_crypto_algs[i].active_devs == 0 || !virtcrypto_algo_is_supported(vcrypto, service, algonum)) continue; if (virtio_crypto_algs[i].active_devs == 1) crypto_unregister_skcipher(&virtio_crypto_algs[i].algo); virtio_crypto_algs[i].active_devs--; } mutex_unlock(&algs_lock); }