/* * Copyright (C) 2014 Broadcom Corporation * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation version 2. * * This program is distributed "as is" WITHOUT ANY WARRANTY of any * kind, whether express or implied; without even the implied warranty * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include "clk-iproc.h" #define PLL_VCO_HIGH_SHIFT 19 #define PLL_VCO_LOW_SHIFT 30 /* * PLL MACRO_SELECT modes 0 to 5 choose pre-calculated PLL output frequencies * from a look-up table. Mode 7 allows user to manipulate PLL clock dividers */ #define PLL_USER_MODE 7 /* number of delay loops waiting for PLL to lock */ #define LOCK_DELAY 100 /* number of VCO frequency bands */ #define NUM_FREQ_BANDS 8 #define NUM_KP_BANDS 3 enum kp_band { KP_BAND_MID = 0, KP_BAND_HIGH, KP_BAND_HIGH_HIGH }; static const unsigned int kp_table[NUM_KP_BANDS][NUM_FREQ_BANDS] = { { 5, 6, 6, 7, 7, 8, 9, 10 }, { 4, 4, 5, 5, 6, 7, 8, 9 }, { 4, 5, 5, 6, 7, 8, 9, 10 }, }; static const unsigned long ref_freq_table[NUM_FREQ_BANDS][2] = { { 10000000, 12500000 }, { 12500000, 15000000 }, { 15000000, 20000000 }, { 20000000, 25000000 }, { 25000000, 50000000 }, { 50000000, 75000000 }, { 75000000, 100000000 }, { 100000000, 125000000 }, }; enum vco_freq_range { VCO_LOW = 700000000U, VCO_MID = 1200000000U, VCO_HIGH = 2200000000U, VCO_HIGH_HIGH = 3100000000U, VCO_MAX = 4000000000U, }; struct iproc_pll { void __iomem *status_base; void __iomem *control_base; void __iomem *pwr_base; void __iomem *asiu_base; const struct iproc_pll_ctrl *ctrl; const struct iproc_pll_vco_param *vco_param; unsigned int num_vco_entries; }; struct iproc_clk { struct clk_hw hw; struct iproc_pll *pll; const struct iproc_clk_ctrl *ctrl; }; #define to_iproc_clk(hw) container_of(hw, struct iproc_clk, hw) static int pll_calc_param(unsigned long target_rate, unsigned long parent_rate, struct iproc_pll_vco_param *vco_out) { u64 ndiv_int, ndiv_frac, residual; ndiv_int = target_rate / parent_rate; if (!ndiv_int || (ndiv_int > 255)) return -EINVAL; residual = target_rate - (ndiv_int * parent_rate); residual <<= 20; /* * Add half of the divisor so the result will be rounded to closest * instead of rounded down. */ residual += (parent_rate / 2); ndiv_frac = div64_u64((u64)residual, (u64)parent_rate); vco_out->ndiv_int = ndiv_int; vco_out->ndiv_frac = ndiv_frac; vco_out->pdiv = 1; vco_out->rate = vco_out->ndiv_int * parent_rate; residual = (u64)vco_out->ndiv_frac * (u64)parent_rate; residual >>= 20; vco_out->rate += residual; return 0; } /* * Based on the target frequency, find a match from the VCO frequency parameter * table and return its index */ static int pll_get_rate_index(struct iproc_pll *pll, unsigned int target_rate) { int i; for (i = 0; i < pll->num_vco_entries; i++) if (target_rate == pll->vco_param[i].rate) break; if (i >= pll->num_vco_entries) return -EINVAL; return i; } static int get_kp(unsigned long ref_freq, enum kp_band kp_index) { int i; if (ref_freq < ref_freq_table[0][0]) return -EINVAL; for (i = 0; i < NUM_FREQ_BANDS; i++) { if (ref_freq >= ref_freq_table[i][0] && ref_freq < ref_freq_table[i][1]) return kp_table[kp_index][i]; } return -EINVAL; } static int pll_wait_for_lock(struct iproc_pll *pll) { int i; const struct iproc_pll_ctrl *ctrl = pll->ctrl; for (i = 0; i < LOCK_DELAY; i++) { u32 val = readl(pll->status_base + ctrl->status.offset); if (val & (1 << ctrl->status.shift)) return 0; udelay(10); } return -EIO; } static void iproc_pll_write(const struct iproc_pll *pll, void __iomem *base, const u32 offset, u32 val) { const struct iproc_pll_ctrl *ctrl = pll->ctrl; writel(val, base + offset); if (unlikely(ctrl->flags & IPROC_CLK_NEEDS_READ_BACK && (base == pll->status_base || base == pll->control_base))) val = readl(base + offset); } static void __pll_disable(struct iproc_pll *pll) { const struct iproc_pll_ctrl *ctrl = pll->ctrl; u32 val; if (ctrl->flags & IPROC_CLK_PLL_ASIU) { val = readl(pll->asiu_base + ctrl->asiu.offset); val &= ~(1 << ctrl->asiu.en_shift); iproc_pll_write(pll, pll->asiu_base, ctrl->asiu.offset, val); } if (ctrl->flags & IPROC_CLK_EMBED_PWRCTRL) { val = readl(pll->control_base + ctrl->aon.offset); val |= bit_mask(ctrl->aon.pwr_width) << ctrl->aon.pwr_shift; iproc_pll_write(pll, pll->control_base, ctrl->aon.offset, val); } if (pll->pwr_base) { /* latch input value so core power can be shut down */ val = readl(pll->pwr_base + ctrl->aon.offset); val |= 1 << ctrl->aon.iso_shift; iproc_pll_write(pll, pll->pwr_base, ctrl->aon.offset, val); /* power down the core */ val &= ~(bit_mask(ctrl->aon.pwr_width) << ctrl->aon.pwr_shift); iproc_pll_write(pll, pll->pwr_base, ctrl->aon.offset, val); } } static int __pll_enable(struct iproc_pll *pll) { const struct iproc_pll_ctrl *ctrl = pll->ctrl; u32 val; if (ctrl->flags & IPROC_CLK_EMBED_PWRCTRL) { val = readl(pll->control_base + ctrl->aon.offset); val &= ~(bit_mask(ctrl->aon.pwr_width) << ctrl->aon.pwr_shift); iproc_pll_write(pll, pll->control_base, ctrl->aon.offset, val); } if (pll->pwr_base) { /* power up the PLL and make sure it's not latched */ val = readl(pll->pwr_base + ctrl->aon.offset); val |= bit_mask(ctrl->aon.pwr_width) << ctrl->aon.pwr_shift; val &= ~(1 << ctrl->aon.iso_shift); iproc_pll_write(pll, pll->pwr_base, ctrl->aon.offset, val); } /* certain PLLs also need to be ungated from the ASIU top level */ if (ctrl->flags & IPROC_CLK_PLL_ASIU) { val = readl(pll->asiu_base + ctrl->asiu.offset); val |= (1 << ctrl->asiu.en_shift); iproc_pll_write(pll, pll->asiu_base, ctrl->asiu.offset, val); } return 0; } static void __pll_put_in_reset(struct iproc_pll *pll) { u32 val; const struct iproc_pll_ctrl *ctrl = pll->ctrl; const struct iproc_pll_reset_ctrl *reset = &ctrl->reset; val = readl(pll->control_base + reset->offset); if (ctrl->flags & IPROC_CLK_PLL_RESET_ACTIVE_LOW) val |= BIT(reset->reset_shift) | BIT(reset->p_reset_shift); else val &= ~(BIT(reset->reset_shift) | BIT(reset->p_reset_shift)); iproc_pll_write(pll, pll->control_base, reset->offset, val); } static void __pll_bring_out_reset(struct iproc_pll *pll, unsigned int kp, unsigned int ka, unsigned int ki) { u32 val; const struct iproc_pll_ctrl *ctrl = pll->ctrl; const struct iproc_pll_reset_ctrl *reset = &ctrl->reset; const struct iproc_pll_dig_filter_ctrl *dig_filter = &ctrl->dig_filter; val = readl(pll->control_base + dig_filter->offset); val &= ~(bit_mask(dig_filter->ki_width) << dig_filter->ki_shift | bit_mask(dig_filter->kp_width) << dig_filter->kp_shift | bit_mask(dig_filter->ka_width) << dig_filter->ka_shift); val |= ki << dig_filter->ki_shift | kp << dig_filter->kp_shift | ka << dig_filter->ka_shift; iproc_pll_write(pll, pll->control_base, dig_filter->offset, val); val = readl(pll->control_base + reset->offset); if (ctrl->flags & IPROC_CLK_PLL_RESET_ACTIVE_LOW) val &= ~(BIT(reset->reset_shift) | BIT(reset->p_reset_shift)); else val |= BIT(reset->reset_shift) | BIT(reset->p_reset_shift); iproc_pll_write(pll, pll->control_base, reset->offset, val); } /* * Determines if the change to be applied to the PLL is minor (just an update * or the fractional divider). If so, then we can avoid going through a * disruptive reset and lock sequence. */ static bool pll_fractional_change_only(struct iproc_pll *pll, struct iproc_pll_vco_param *vco) { const struct iproc_pll_ctrl *ctrl = pll->ctrl; u32 val; u32 ndiv_int; unsigned int pdiv; /* PLL needs to be locked */ val = readl(pll->status_base + ctrl->status.offset); if ((val & (1 << ctrl->status.shift)) == 0) return false; val = readl(pll->control_base + ctrl->ndiv_int.offset); ndiv_int = (val >> ctrl->ndiv_int.shift) & bit_mask(ctrl->ndiv_int.width); if (ndiv_int != vco->ndiv_int) return false; val = readl(pll->control_base + ctrl->pdiv.offset); pdiv = (val >> ctrl->pdiv.shift) & bit_mask(ctrl->pdiv.width); if (pdiv != vco->pdiv) return false; return true; } static int pll_set_rate(struct iproc_clk *clk, struct iproc_pll_vco_param *vco, unsigned long parent_rate) { struct iproc_pll *pll = clk->pll; const struct iproc_pll_ctrl *ctrl = pll->ctrl; int ka = 0, ki, kp, ret; unsigned long rate = vco->rate; u32 val; enum kp_band kp_index; unsigned long ref_freq; const char *clk_name = clk_hw_get_name(&clk->hw); /* * reference frequency = parent frequency / PDIV * If PDIV = 0, then it becomes a multiplier (x2) */ if (vco->pdiv == 0) ref_freq = parent_rate * 2; else ref_freq = parent_rate / vco->pdiv; /* determine Ki and Kp index based on target VCO frequency */ if (rate >= VCO_LOW && rate < VCO_HIGH) { ki = 4; kp_index = KP_BAND_MID; } else if (rate >= VCO_HIGH && rate < VCO_HIGH_HIGH) { ki = 3; kp_index = KP_BAND_HIGH; } else if (rate >= VCO_HIGH_HIGH && rate < VCO_MAX) { ki = 3; kp_index = KP_BAND_HIGH_HIGH; } else { pr_err("%s: pll: %s has invalid rate: %lu\n", __func__, clk_name, rate); return -EINVAL; } kp = get_kp(ref_freq, kp_index); if (kp < 0) { pr_err("%s: pll: %s has invalid kp\n", __func__, clk_name); return kp; } ret = __pll_enable(pll); if (ret) { pr_err("%s: pll: %s fails to enable\n", __func__, clk_name); return ret; } if (pll_fractional_change_only(clk->pll, vco)) { /* program fractional part of NDIV */ if (ctrl->flags & IPROC_CLK_PLL_HAS_NDIV_FRAC) { val = readl(pll->control_base + ctrl->ndiv_frac.offset); val &= ~(bit_mask(ctrl->ndiv_frac.width) << ctrl->ndiv_frac.shift); val |= vco->ndiv_frac << ctrl->ndiv_frac.shift; iproc_pll_write(pll, pll->control_base, ctrl->ndiv_frac.offset, val); return 0; } } /* put PLL in reset */ __pll_put_in_reset(pll); /* set PLL in user mode before modifying PLL controls */ if (ctrl->flags & IPROC_CLK_PLL_USER_MODE_ON) { val = readl(pll->control_base + ctrl->macro_mode.offset); val &= ~(bit_mask(ctrl->macro_mode.width) << ctrl->macro_mode.shift); val |= PLL_USER_MODE << ctrl->macro_mode.shift; iproc_pll_write(pll, pll->control_base, ctrl->macro_mode.offset, val); } iproc_pll_write(pll, pll->control_base, ctrl->vco_ctrl.u_offset, 0); val = readl(pll->control_base + ctrl->vco_ctrl.l_offset); if (rate >= VCO_LOW && rate < VCO_MID) val |= (1 << PLL_VCO_LOW_SHIFT); if (rate < VCO_HIGH) val &= ~(1 << PLL_VCO_HIGH_SHIFT); else val |= (1 << PLL_VCO_HIGH_SHIFT); iproc_pll_write(pll, pll->control_base, ctrl->vco_ctrl.l_offset, val); /* program integer part of NDIV */ val = readl(pll->control_base + ctrl->ndiv_int.offset); val &= ~(bit_mask(ctrl->ndiv_int.width) << ctrl->ndiv_int.shift); val |= vco->ndiv_int << ctrl->ndiv_int.shift; iproc_pll_write(pll, pll->control_base, ctrl->ndiv_int.offset, val); /* program fractional part of NDIV */ if (ctrl->flags & IPROC_CLK_PLL_HAS_NDIV_FRAC) { val = readl(pll->control_base + ctrl->ndiv_frac.offset); val &= ~(bit_mask(ctrl->ndiv_frac.width) << ctrl->ndiv_frac.shift); val |= vco->ndiv_frac << ctrl->ndiv_frac.shift; iproc_pll_write(pll, pll->control_base, ctrl->ndiv_frac.offset, val); } /* program PDIV */ val = readl(pll->control_base + ctrl->pdiv.offset); val &= ~(bit_mask(ctrl->pdiv.width) << ctrl->pdiv.shift); val |= vco->pdiv << ctrl->pdiv.shift; iproc_pll_write(pll, pll->control_base, ctrl->pdiv.offset, val); __pll_bring_out_reset(pll, kp, ka, ki); ret = pll_wait_for_lock(pll); if (ret < 0) { pr_err("%s: pll: %s failed to lock\n", __func__, clk_name); return ret; } return 0; } static int iproc_pll_enable(struct clk_hw *hw) { struct iproc_clk *clk = to_iproc_clk(hw); struct iproc_pll *pll = clk->pll; return __pll_enable(pll); } static void iproc_pll_disable(struct clk_hw *hw) { struct iproc_clk *clk = to_iproc_clk(hw); struct iproc_pll *pll = clk->pll; const struct iproc_pll_ctrl *ctrl = pll->ctrl; if (ctrl->flags & IPROC_CLK_AON) return; __pll_disable(pll); } static unsigned long iproc_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct iproc_clk *clk = to_iproc_clk(hw); struct iproc_pll *pll = clk->pll; const struct iproc_pll_ctrl *ctrl = pll->ctrl; u32 val; u64 ndiv, ndiv_int, ndiv_frac; unsigned int pdiv; unsigned long rate; if (parent_rate == 0) return 0; /* PLL needs to be locked */ val = readl(pll->status_base + ctrl->status.offset); if ((val & (1 << ctrl->status.shift)) == 0) return 0; /* * PLL output frequency = * * ((ndiv_int + ndiv_frac / 2^20) * (parent clock rate / pdiv) */ val = readl(pll->control_base + ctrl->ndiv_int.offset); ndiv_int = (val >> ctrl->ndiv_int.shift) & bit_mask(ctrl->ndiv_int.width); ndiv = ndiv_int << 20; if (ctrl->flags & IPROC_CLK_PLL_HAS_NDIV_FRAC) { val = readl(pll->control_base + ctrl->ndiv_frac.offset); ndiv_frac = (val >> ctrl->ndiv_frac.shift) & bit_mask(ctrl->ndiv_frac.width); ndiv += ndiv_frac; } val = readl(pll->control_base + ctrl->pdiv.offset); pdiv = (val >> ctrl->pdiv.shift) & bit_mask(ctrl->pdiv.width); rate = (ndiv * parent_rate) >> 20; if (pdiv == 0) rate *= 2; else rate /= pdiv; return rate; } static int iproc_pll_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { unsigned int i; struct iproc_clk *clk = to_iproc_clk(hw); struct iproc_pll *pll = clk->pll; const struct iproc_pll_ctrl *ctrl = pll->ctrl; unsigned long diff, best_diff; unsigned int best_idx = 0; int ret; if (req->rate == 0 || req->best_parent_rate == 0) return -EINVAL; if (ctrl->flags & IPROC_CLK_PLL_CALC_PARAM) { struct iproc_pll_vco_param vco_param; ret = pll_calc_param(req->rate, req->best_parent_rate, &vco_param); if (ret) return ret; req->rate = vco_param.rate; return 0; } if (!pll->vco_param) return -EINVAL; best_diff = ULONG_MAX; for (i = 0; i < pll->num_vco_entries; i++) { diff = abs(req->rate - pll->vco_param[i].rate); if (diff <= best_diff) { best_diff = diff; best_idx = i; } /* break now if perfect match */ if (diff == 0) break; } req->rate = pll->vco_param[best_idx].rate; return 0; } static int iproc_pll_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct iproc_clk *clk = to_iproc_clk(hw); struct iproc_pll *pll = clk->pll; const struct iproc_pll_ctrl *ctrl = pll->ctrl; struct iproc_pll_vco_param vco_param; int rate_index, ret; if (ctrl->flags & IPROC_CLK_PLL_CALC_PARAM) { ret = pll_calc_param(rate, parent_rate, &vco_param); if (ret) return ret; } else { rate_index = pll_get_rate_index(pll, rate); if (rate_index < 0) return rate_index; vco_param = pll->vco_param[rate_index]; } ret = pll_set_rate(clk, &vco_param, parent_rate); return ret; } static const struct clk_ops iproc_pll_ops = { .enable = iproc_pll_enable, .disable = iproc_pll_disable, .recalc_rate = iproc_pll_recalc_rate, .determine_rate = iproc_pll_determine_rate, .set_rate = iproc_pll_set_rate, }; static int iproc_clk_enable(struct clk_hw *hw) { struct iproc_clk *clk = to_iproc_clk(hw); const struct iproc_clk_ctrl *ctrl = clk->ctrl; struct iproc_pll *pll = clk->pll; u32 val; /* channel enable is active low */ val = readl(pll->control_base + ctrl->enable.offset); val &= ~(1 << ctrl->enable.enable_shift); iproc_pll_write(pll, pll->control_base, ctrl->enable.offset, val); /* also make sure channel is not held */ val = readl(pll->control_base + ctrl->enable.offset); val &= ~(1 << ctrl->enable.hold_shift); iproc_pll_write(pll, pll->control_base, ctrl->enable.offset, val); return 0; } static void iproc_clk_disable(struct clk_hw *hw) { struct iproc_clk *clk = to_iproc_clk(hw); const struct iproc_clk_ctrl *ctrl = clk->ctrl; struct iproc_pll *pll = clk->pll; u32 val; if (ctrl->flags & IPROC_CLK_AON) return; val = readl(pll->control_base + ctrl->enable.offset); val |= 1 << ctrl->enable.enable_shift; iproc_pll_write(pll, pll->control_base, ctrl->enable.offset, val); } static unsigned long iproc_clk_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct iproc_clk *clk = to_iproc_clk(hw); const struct iproc_clk_ctrl *ctrl = clk->ctrl; struct iproc_pll *pll = clk->pll; u32 val; unsigned int mdiv; unsigned long rate; if (parent_rate == 0) return 0; val = readl(pll->control_base + ctrl->mdiv.offset); mdiv = (val >> ctrl->mdiv.shift) & bit_mask(ctrl->mdiv.width); if (mdiv == 0) mdiv = 256; if (ctrl->flags & IPROC_CLK_MCLK_DIV_BY_2) rate = parent_rate / (mdiv * 2); else rate = parent_rate / mdiv; return rate; } static int iproc_clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { unsigned int bestdiv; if (req->rate == 0) return -EINVAL; if (req->rate == req->best_parent_rate) return 0; bestdiv = DIV_ROUND_CLOSEST(req->best_parent_rate, req->rate); if (bestdiv < 2) req->rate = req->best_parent_rate; if (bestdiv > 256) bestdiv = 256; req->rate = req->best_parent_rate / bestdiv; return 0; } static int iproc_clk_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct iproc_clk *clk = to_iproc_clk(hw); const struct iproc_clk_ctrl *ctrl = clk->ctrl; struct iproc_pll *pll = clk->pll; u32 val; unsigned int div; if (rate == 0 || parent_rate == 0) return -EINVAL; div = DIV_ROUND_CLOSEST(parent_rate, rate); if (ctrl->flags & IPROC_CLK_MCLK_DIV_BY_2) div /= 2; if (div > 256) return -EINVAL; val = readl(pll->control_base + ctrl->mdiv.offset); if (div == 256) { val &= ~(bit_mask(ctrl->mdiv.width) << ctrl->mdiv.shift); } else { val &= ~(bit_mask(ctrl->mdiv.width) << ctrl->mdiv.shift); val |= div << ctrl->mdiv.shift; } iproc_pll_write(pll, pll->control_base, ctrl->mdiv.offset, val); return 0; } static const struct clk_ops iproc_clk_ops = { .enable = iproc_clk_enable, .disable = iproc_clk_disable, .recalc_rate = iproc_clk_recalc_rate, .determine_rate = iproc_clk_determine_rate, .set_rate = iproc_clk_set_rate, }; /* * Some PLLs require the PLL SW override bit to be set before changes can be * applied to the PLL */ static void iproc_pll_sw_cfg(struct iproc_pll *pll) { const struct iproc_pll_ctrl *ctrl = pll->ctrl; if (ctrl->flags & IPROC_CLK_PLL_NEEDS_SW_CFG) { u32 val; val = readl(pll->control_base + ctrl->sw_ctrl.offset); val |= BIT(ctrl->sw_ctrl.shift); iproc_pll_write(pll, pll->control_base, ctrl->sw_ctrl.offset, val); } } void iproc_pll_clk_setup(struct device_node *node, const struct iproc_pll_ctrl *pll_ctrl, const struct iproc_pll_vco_param *vco, unsigned int num_vco_entries, const struct iproc_clk_ctrl *clk_ctrl, unsigned int num_clks) { int i, ret; struct iproc_pll *pll; struct iproc_clk *iclk; struct clk_init_data init; const char *parent_name; struct iproc_clk *iclk_array; struct clk_hw_onecell_data *clk_data; const char *clk_name; if (WARN_ON(!pll_ctrl) || WARN_ON(!clk_ctrl)) return; pll = kzalloc(sizeof(*pll), GFP_KERNEL); if (WARN_ON(!pll)) return; clk_data = kzalloc(struct_size(clk_data, hws, num_clks), GFP_KERNEL); if (WARN_ON(!clk_data)) goto err_clk_data; clk_data->num = num_clks; iclk_array = kcalloc(num_clks, sizeof(struct iproc_clk), GFP_KERNEL); if (WARN_ON(!iclk_array)) goto err_clks; pll->control_base = of_iomap(node, 0); if (WARN_ON(!pll->control_base)) goto err_pll_iomap; /* Some SoCs do not require the pwr_base, thus failing is not fatal */ pll->pwr_base = of_iomap(node, 1); /* some PLLs require gating control at the top ASIU level */ if (pll_ctrl->flags & IPROC_CLK_PLL_ASIU) { pll->asiu_base = of_iomap(node, 2); if (WARN_ON(!pll->asiu_base)) goto err_asiu_iomap; } if (pll_ctrl->flags & IPROC_CLK_PLL_SPLIT_STAT_CTRL) { /* Some SoCs have a split status/control. If this does not * exist, assume they are unified. */ pll->status_base = of_iomap(node, 2); if (!pll->status_base) goto err_status_iomap; } else pll->status_base = pll->control_base; /* initialize and register the PLL itself */ pll->ctrl = pll_ctrl; iclk = &iclk_array[0]; iclk->pll = pll; ret = of_property_read_string_index(node, "clock-output-names", 0, &clk_name); if (WARN_ON(ret)) goto err_pll_register; init.name = clk_name; init.ops = &iproc_pll_ops; init.flags = 0; parent_name = of_clk_get_parent_name(node, 0); init.parent_names = (parent_name ? &parent_name : NULL); init.num_parents = (parent_name ? 1 : 0); iclk->hw.init = &init; if (vco) { pll->num_vco_entries = num_vco_entries; pll->vco_param = vco; } iproc_pll_sw_cfg(pll); ret = clk_hw_register(NULL, &iclk->hw); if (WARN_ON(ret)) goto err_pll_register; clk_data->hws[0] = &iclk->hw; parent_name = clk_name; /* now initialize and register all leaf clocks */ for (i = 1; i < num_clks; i++) { memset(&init, 0, sizeof(init)); ret = of_property_read_string_index(node, "clock-output-names", i, &clk_name); if (WARN_ON(ret)) goto err_clk_register; iclk = &iclk_array[i]; iclk->pll = pll; iclk->ctrl = &clk_ctrl[i]; init.name = clk_name; init.ops = &iproc_clk_ops; init.flags = 0; init.parent_names = (parent_name ? &parent_name : NULL); init.num_parents = (parent_name ? 1 : 0); iclk->hw.init = &init; ret = clk_hw_register(NULL, &iclk->hw); if (WARN_ON(ret)) goto err_clk_register; clk_data->hws[i] = &iclk->hw; } ret = of_clk_add_hw_provider(node, of_clk_hw_onecell_get, clk_data); if (WARN_ON(ret)) goto err_clk_register; return; err_clk_register: while (--i >= 0) clk_hw_unregister(clk_data->hws[i]); err_pll_register: if (pll->status_base != pll->control_base) iounmap(pll->status_base); err_status_iomap: if (pll->asiu_base) iounmap(pll->asiu_base); err_asiu_iomap: if (pll->pwr_base) iounmap(pll->pwr_base); iounmap(pll->control_base); err_pll_iomap: kfree(iclk_array); err_clks: kfree(clk_data); err_clk_data: kfree(pll); }