// SPDX-License-Identifier: GPL-2.0-only #include #include #include #include #include #include #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING static void __accumulate_time(struct kvm_vcpu *vcpu, struct kvmhv_tb_accumulator *next) { struct kvmppc_vcore *vc = vcpu->arch.vcore; struct kvmhv_tb_accumulator *curr; u64 tb = mftb() - vc->tb_offset_applied; u64 prev_tb; u64 delta; u64 seq; curr = vcpu->arch.cur_activity; vcpu->arch.cur_activity = next; prev_tb = vcpu->arch.cur_tb_start; vcpu->arch.cur_tb_start = tb; if (!curr) return; delta = tb - prev_tb; seq = curr->seqcount; curr->seqcount = seq + 1; smp_wmb(); curr->tb_total += delta; if (seq == 0 || delta < curr->tb_min) curr->tb_min = delta; if (delta > curr->tb_max) curr->tb_max = delta; smp_wmb(); curr->seqcount = seq + 2; } #define start_timing(vcpu, next) __accumulate_time(vcpu, next) #define end_timing(vcpu) __accumulate_time(vcpu, NULL) #define accumulate_time(vcpu, next) __accumulate_time(vcpu, next) #else #define start_timing(vcpu, next) do {} while (0) #define end_timing(vcpu) do {} while (0) #define accumulate_time(vcpu, next) do {} while (0) #endif static inline void mfslb(unsigned int idx, u64 *slbee, u64 *slbev) { asm volatile("slbmfev %0,%1" : "=r" (*slbev) : "r" (idx)); asm volatile("slbmfee %0,%1" : "=r" (*slbee) : "r" (idx)); } static inline void mtslb(u64 slbee, u64 slbev) { asm volatile("slbmte %0,%1" :: "r" (slbev), "r" (slbee)); } static inline void clear_slb_entry(unsigned int idx) { mtslb(idx, 0); } static inline void slb_clear_invalidate_partition(void) { clear_slb_entry(0); asm volatile(PPC_SLBIA(6)); } /* * Malicious or buggy radix guests may have inserted SLB entries * (only 0..3 because radix always runs with UPRT=1), so these must * be cleared here to avoid side-channels. slbmte is used rather * than slbia, as it won't clear cached translations. */ static void radix_clear_slb(void) { int i; for (i = 0; i < 4; i++) clear_slb_entry(i); } static void switch_mmu_to_guest_radix(struct kvm *kvm, struct kvm_vcpu *vcpu, u64 lpcr) { struct kvm_nested_guest *nested = vcpu->arch.nested; u32 lpid; lpid = nested ? nested->shadow_lpid : kvm->arch.lpid; /* * All the isync()s are overkill but trivially follow the ISA * requirements. Some can likely be replaced with justification * comment for why they are not needed. */ isync(); mtspr(SPRN_LPID, lpid); isync(); mtspr(SPRN_LPCR, lpcr); isync(); mtspr(SPRN_PID, vcpu->arch.pid); isync(); } static void switch_mmu_to_guest_hpt(struct kvm *kvm, struct kvm_vcpu *vcpu, u64 lpcr) { u32 lpid; int i; lpid = kvm->arch.lpid; mtspr(SPRN_LPID, lpid); mtspr(SPRN_LPCR, lpcr); mtspr(SPRN_PID, vcpu->arch.pid); for (i = 0; i < vcpu->arch.slb_max; i++) mtslb(vcpu->arch.slb[i].orige, vcpu->arch.slb[i].origv); isync(); } static void switch_mmu_to_host(struct kvm *kvm, u32 pid) { isync(); mtspr(SPRN_PID, pid); isync(); mtspr(SPRN_LPID, kvm->arch.host_lpid); isync(); mtspr(SPRN_LPCR, kvm->arch.host_lpcr); isync(); if (!radix_enabled()) slb_restore_bolted_realmode(); } static void save_clear_host_mmu(struct kvm *kvm) { if (!radix_enabled()) { /* * Hash host could save and restore host SLB entries to * reduce SLB fault overheads of VM exits, but for now the * existing code clears all entries and restores just the * bolted ones when switching back to host. */ slb_clear_invalidate_partition(); } } static void save_clear_guest_mmu(struct kvm *kvm, struct kvm_vcpu *vcpu) { if (kvm_is_radix(kvm)) { radix_clear_slb(); } else { int i; int nr = 0; /* * This must run before switching to host (radix host can't * access all SLBs). */ for (i = 0; i < vcpu->arch.slb_nr; i++) { u64 slbee, slbev; mfslb(i, &slbee, &slbev); if (slbee & SLB_ESID_V) { vcpu->arch.slb[nr].orige = slbee | i; vcpu->arch.slb[nr].origv = slbev; nr++; } } vcpu->arch.slb_max = nr; slb_clear_invalidate_partition(); } } int kvmhv_vcpu_entry_p9(struct kvm_vcpu *vcpu, u64 time_limit, unsigned long lpcr) { struct kvm *kvm = vcpu->kvm; struct kvm_nested_guest *nested = vcpu->arch.nested; struct kvmppc_vcore *vc = vcpu->arch.vcore; s64 hdec; u64 tb, purr, spurr; u64 *exsave; bool ri_set; int trap; unsigned long msr; unsigned long host_hfscr; unsigned long host_ciabr; unsigned long host_dawr0; unsigned long host_dawrx0; unsigned long host_psscr; unsigned long host_pidr; unsigned long host_dawr1; unsigned long host_dawrx1; hdec = time_limit - mftb(); if (hdec < 0) return BOOK3S_INTERRUPT_HV_DECREMENTER; WARN_ON_ONCE(vcpu->arch.shregs.msr & MSR_HV); WARN_ON_ONCE(!(vcpu->arch.shregs.msr & MSR_ME)); start_timing(vcpu, &vcpu->arch.rm_entry); vcpu->arch.ceded = 0; if (vc->tb_offset) { u64 new_tb = mftb() + vc->tb_offset; mtspr(SPRN_TBU40, new_tb); tb = mftb(); if ((tb & 0xffffff) < (new_tb & 0xffffff)) mtspr(SPRN_TBU40, new_tb + 0x1000000); vc->tb_offset_applied = vc->tb_offset; } msr = mfmsr(); host_hfscr = mfspr(SPRN_HFSCR); host_ciabr = mfspr(SPRN_CIABR); host_dawr0 = mfspr(SPRN_DAWR0); host_dawrx0 = mfspr(SPRN_DAWRX0); host_psscr = mfspr(SPRN_PSSCR); host_pidr = mfspr(SPRN_PID); if (cpu_has_feature(CPU_FTR_DAWR1)) { host_dawr1 = mfspr(SPRN_DAWR1); host_dawrx1 = mfspr(SPRN_DAWRX1); } if (vc->pcr) mtspr(SPRN_PCR, vc->pcr | PCR_MASK); mtspr(SPRN_DPDES, vc->dpdes); mtspr(SPRN_VTB, vc->vtb); local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR); local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR); mtspr(SPRN_PURR, vcpu->arch.purr); mtspr(SPRN_SPURR, vcpu->arch.spurr); if (dawr_enabled()) { mtspr(SPRN_DAWR0, vcpu->arch.dawr0); mtspr(SPRN_DAWRX0, vcpu->arch.dawrx0); if (cpu_has_feature(CPU_FTR_DAWR1)) { mtspr(SPRN_DAWR1, vcpu->arch.dawr1); mtspr(SPRN_DAWRX1, vcpu->arch.dawrx1); } } mtspr(SPRN_CIABR, vcpu->arch.ciabr); mtspr(SPRN_IC, vcpu->arch.ic); mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC | (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG)); mtspr(SPRN_HFSCR, vcpu->arch.hfscr); mtspr(SPRN_HSRR0, vcpu->arch.regs.nip); mtspr(SPRN_HSRR1, (vcpu->arch.shregs.msr & ~MSR_HV) | MSR_ME); /* * On POWER9 DD2.1 and below, sometimes on a Hypervisor Data Storage * Interrupt (HDSI) the HDSISR is not be updated at all. * * To work around this we put a canary value into the HDSISR before * returning to a guest and then check for this canary when we take a * HDSI. If we find the canary on a HDSI, we know the hardware didn't * update the HDSISR. In this case we return to the guest to retake the * HDSI which should correctly update the HDSISR the second time HDSI * entry. * * Just do this on all p9 processors for now. */ mtspr(SPRN_HDSISR, HDSISR_CANARY); mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0); mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1); mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2); mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3); mtspr(SPRN_AMOR, ~0UL); local_paca->kvm_hstate.in_guest = KVM_GUEST_MODE_HV_P9; /* * Hash host, hash guest, or radix guest with prefetch bug, all have * to disable the MMU before switching to guest MMU state. */ if (!radix_enabled() || !kvm_is_radix(kvm) || cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) __mtmsrd(msr & ~(MSR_IR|MSR_DR|MSR_RI), 0); save_clear_host_mmu(kvm); if (kvm_is_radix(kvm)) { switch_mmu_to_guest_radix(kvm, vcpu, lpcr); if (!cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) __mtmsrd(0, 1); /* clear RI */ } else { switch_mmu_to_guest_hpt(kvm, vcpu, lpcr); } /* TLBIEL uses LPID=LPIDR, so run this after setting guest LPID */ kvmppc_check_need_tlb_flush(kvm, vc->pcpu, nested); /* * P9 suppresses the HDEC exception when LPCR[HDICE] = 0, * so set guest LPCR (with HDICE) before writing HDEC. */ mtspr(SPRN_HDEC, hdec); #ifdef CONFIG_PPC_TRANSACTIONAL_MEM tm_return_to_guest: #endif mtspr(SPRN_DAR, vcpu->arch.shregs.dar); mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr); mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0); mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1); accumulate_time(vcpu, &vcpu->arch.guest_time); kvmppc_p9_enter_guest(vcpu); accumulate_time(vcpu, &vcpu->arch.rm_intr); /* XXX: Could get these from r11/12 and paca exsave instead */ vcpu->arch.shregs.srr0 = mfspr(SPRN_SRR0); vcpu->arch.shregs.srr1 = mfspr(SPRN_SRR1); vcpu->arch.shregs.dar = mfspr(SPRN_DAR); vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR); /* 0x2 bit for HSRR is only used by PR and P7/8 HV paths, clear it */ trap = local_paca->kvm_hstate.scratch0 & ~0x2; /* HSRR interrupts leave MSR[RI] unchanged, SRR interrupts clear it. */ ri_set = false; if (likely(trap > BOOK3S_INTERRUPT_MACHINE_CHECK)) { if (trap != BOOK3S_INTERRUPT_SYSCALL && (vcpu->arch.shregs.msr & MSR_RI)) ri_set = true; exsave = local_paca->exgen; } else if (trap == BOOK3S_INTERRUPT_SYSTEM_RESET) { exsave = local_paca->exnmi; } else { /* trap == 0x200 */ exsave = local_paca->exmc; } vcpu->arch.regs.gpr[1] = local_paca->kvm_hstate.scratch1; vcpu->arch.regs.gpr[3] = local_paca->kvm_hstate.scratch2; /* * Only set RI after reading machine check regs (DAR, DSISR, SRR0/1) * and hstate scratch (which we need to move into exsave to make * re-entrant vs SRESET/MCE) */ if (ri_set) { if (unlikely(!(mfmsr() & MSR_RI))) { __mtmsrd(MSR_RI, 1); WARN_ON_ONCE(1); } } else { WARN_ON_ONCE(mfmsr() & MSR_RI); __mtmsrd(MSR_RI, 1); } vcpu->arch.regs.gpr[9] = exsave[EX_R9/sizeof(u64)]; vcpu->arch.regs.gpr[10] = exsave[EX_R10/sizeof(u64)]; vcpu->arch.regs.gpr[11] = exsave[EX_R11/sizeof(u64)]; vcpu->arch.regs.gpr[12] = exsave[EX_R12/sizeof(u64)]; vcpu->arch.regs.gpr[13] = exsave[EX_R13/sizeof(u64)]; vcpu->arch.ppr = exsave[EX_PPR/sizeof(u64)]; vcpu->arch.cfar = exsave[EX_CFAR/sizeof(u64)]; vcpu->arch.regs.ctr = exsave[EX_CTR/sizeof(u64)]; vcpu->arch.last_inst = KVM_INST_FETCH_FAILED; if (unlikely(trap == BOOK3S_INTERRUPT_MACHINE_CHECK)) { vcpu->arch.fault_dar = exsave[EX_DAR/sizeof(u64)]; vcpu->arch.fault_dsisr = exsave[EX_DSISR/sizeof(u64)]; kvmppc_realmode_machine_check(vcpu); } else if (unlikely(trap == BOOK3S_INTERRUPT_HMI)) { kvmppc_realmode_hmi_handler(); } else if (trap == BOOK3S_INTERRUPT_H_EMUL_ASSIST) { vcpu->arch.emul_inst = mfspr(SPRN_HEIR); } else if (trap == BOOK3S_INTERRUPT_H_DATA_STORAGE) { vcpu->arch.fault_dar = exsave[EX_DAR/sizeof(u64)]; vcpu->arch.fault_dsisr = exsave[EX_DSISR/sizeof(u64)]; vcpu->arch.fault_gpa = mfspr(SPRN_ASDR); } else if (trap == BOOK3S_INTERRUPT_H_INST_STORAGE) { vcpu->arch.fault_gpa = mfspr(SPRN_ASDR); } else if (trap == BOOK3S_INTERRUPT_H_FAC_UNAVAIL) { vcpu->arch.hfscr = mfspr(SPRN_HFSCR); #ifdef CONFIG_PPC_TRANSACTIONAL_MEM /* * Softpatch interrupt for transactional memory emulation cases * on POWER9 DD2.2. This is early in the guest exit path - we * haven't saved registers or done a treclaim yet. */ } else if (trap == BOOK3S_INTERRUPT_HV_SOFTPATCH) { vcpu->arch.emul_inst = mfspr(SPRN_HEIR); /* * The cases we want to handle here are those where the guest * is in real suspend mode and is trying to transition to * transactional mode. */ if (!local_paca->kvm_hstate.fake_suspend && (vcpu->arch.shregs.msr & MSR_TS_S)) { if (kvmhv_p9_tm_emulation_early(vcpu)) { /* * Go straight back into the guest with the * new NIP/MSR as set by TM emulation. */ mtspr(SPRN_HSRR0, vcpu->arch.regs.nip); mtspr(SPRN_HSRR1, vcpu->arch.shregs.msr); /* * tm_return_to_guest re-loads SRR0/1, DAR, * DSISR after RI is cleared, in case they had * been clobbered by a MCE. */ __mtmsrd(0, 1); /* clear RI */ goto tm_return_to_guest; } } #endif } accumulate_time(vcpu, &vcpu->arch.rm_exit); /* Advance host PURR/SPURR by the amount used by guest */ purr = mfspr(SPRN_PURR); spurr = mfspr(SPRN_SPURR); mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr + purr - vcpu->arch.purr); mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr + spurr - vcpu->arch.spurr); vcpu->arch.purr = purr; vcpu->arch.spurr = spurr; vcpu->arch.ic = mfspr(SPRN_IC); vcpu->arch.pid = mfspr(SPRN_PID); vcpu->arch.psscr = mfspr(SPRN_PSSCR) & PSSCR_GUEST_VIS; vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0); vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1); vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2); vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3); /* Preserve PSSCR[FAKE_SUSPEND] until we've called kvmppc_save_tm_hv */ mtspr(SPRN_PSSCR, host_psscr | (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG)); mtspr(SPRN_HFSCR, host_hfscr); mtspr(SPRN_CIABR, host_ciabr); mtspr(SPRN_DAWR0, host_dawr0); mtspr(SPRN_DAWRX0, host_dawrx0); if (cpu_has_feature(CPU_FTR_DAWR1)) { mtspr(SPRN_DAWR1, host_dawr1); mtspr(SPRN_DAWRX1, host_dawrx1); } if (kvm_is_radix(kvm)) { /* * Since this is radix, do a eieio; tlbsync; ptesync sequence * in case we interrupted the guest between a tlbie and a * ptesync. */ asm volatile("eieio; tlbsync; ptesync"); } /* * cp_abort is required if the processor supports local copy-paste * to clear the copy buffer that was under control of the guest. */ if (cpu_has_feature(CPU_FTR_ARCH_31)) asm volatile(PPC_CP_ABORT); vc->dpdes = mfspr(SPRN_DPDES); vc->vtb = mfspr(SPRN_VTB); mtspr(SPRN_DPDES, 0); if (vc->pcr) mtspr(SPRN_PCR, PCR_MASK); if (vc->tb_offset_applied) { u64 new_tb = mftb() - vc->tb_offset_applied; mtspr(SPRN_TBU40, new_tb); tb = mftb(); if ((tb & 0xffffff) < (new_tb & 0xffffff)) mtspr(SPRN_TBU40, new_tb + 0x1000000); vc->tb_offset_applied = 0; } mtspr(SPRN_HDEC, 0x7fffffff); save_clear_guest_mmu(kvm, vcpu); switch_mmu_to_host(kvm, host_pidr); local_paca->kvm_hstate.in_guest = KVM_GUEST_MODE_NONE; /* * If we are in real mode, only switch MMU on after the MMU is * switched to host, to avoid the P9_RADIX_PREFETCH_BUG. */ if (IS_ENABLED(CONFIG_PPC_TRANSACTIONAL_MEM) && vcpu->arch.shregs.msr & MSR_TS_MASK) msr |= MSR_TS_S; __mtmsrd(msr, 0); end_timing(vcpu); return trap; } EXPORT_SYMBOL_GPL(kvmhv_vcpu_entry_p9);