// SPDX-License-Identifier: GPL-2.0-only /* * Stand-alone page-table allocator for hyp stage-1 and guest stage-2. * No bombay mix was harmed in the writing of this file. * * Copyright (C) 2020 Google LLC * Author: Will Deacon */ #include #include #include #define KVM_PTE_TYPE BIT(1) #define KVM_PTE_TYPE_BLOCK 0 #define KVM_PTE_TYPE_PAGE 1 #define KVM_PTE_TYPE_TABLE 1 #define KVM_PTE_LEAF_ATTR_LO GENMASK(11, 2) #define KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX GENMASK(4, 2) #define KVM_PTE_LEAF_ATTR_LO_S1_AP GENMASK(7, 6) #define KVM_PTE_LEAF_ATTR_LO_S1_AP_RO 3 #define KVM_PTE_LEAF_ATTR_LO_S1_AP_RW 1 #define KVM_PTE_LEAF_ATTR_LO_S1_SH GENMASK(9, 8) #define KVM_PTE_LEAF_ATTR_LO_S1_SH_IS 3 #define KVM_PTE_LEAF_ATTR_LO_S1_AF BIT(10) #define KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR GENMASK(5, 2) #define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R BIT(6) #define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W BIT(7) #define KVM_PTE_LEAF_ATTR_LO_S2_SH GENMASK(9, 8) #define KVM_PTE_LEAF_ATTR_LO_S2_SH_IS 3 #define KVM_PTE_LEAF_ATTR_LO_S2_AF BIT(10) #define KVM_PTE_LEAF_ATTR_HI GENMASK(63, 51) #define KVM_PTE_LEAF_ATTR_HI_SW GENMASK(58, 55) #define KVM_PTE_LEAF_ATTR_HI_S1_XN BIT(54) #define KVM_PTE_LEAF_ATTR_HI_S2_XN BIT(54) #define KVM_PTE_LEAF_ATTR_S2_PERMS (KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R | \ KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W | \ KVM_PTE_LEAF_ATTR_HI_S2_XN) #define KVM_INVALID_PTE_OWNER_MASK GENMASK(9, 2) #define KVM_MAX_OWNER_ID 1 struct kvm_pgtable_walk_data { struct kvm_pgtable *pgt; struct kvm_pgtable_walker *walker; u64 addr; u64 end; }; #define KVM_PHYS_INVALID (-1ULL) static bool kvm_phys_is_valid(u64 phys) { return phys < BIT(id_aa64mmfr0_parange_to_phys_shift(ID_AA64MMFR0_PARANGE_MAX)); } static bool kvm_block_mapping_supported(u64 addr, u64 end, u64 phys, u32 level) { u64 granule = kvm_granule_size(level); if (!kvm_level_supports_block_mapping(level)) return false; if (granule > (end - addr)) return false; if (kvm_phys_is_valid(phys) && !IS_ALIGNED(phys, granule)) return false; return IS_ALIGNED(addr, granule); } static u32 kvm_pgtable_idx(struct kvm_pgtable_walk_data *data, u32 level) { u64 shift = kvm_granule_shift(level); u64 mask = BIT(PAGE_SHIFT - 3) - 1; return (data->addr >> shift) & mask; } static u32 __kvm_pgd_page_idx(struct kvm_pgtable *pgt, u64 addr) { u64 shift = kvm_granule_shift(pgt->start_level - 1); /* May underflow */ u64 mask = BIT(pgt->ia_bits) - 1; return (addr & mask) >> shift; } static u32 kvm_pgd_page_idx(struct kvm_pgtable_walk_data *data) { return __kvm_pgd_page_idx(data->pgt, data->addr); } static u32 kvm_pgd_pages(u32 ia_bits, u32 start_level) { struct kvm_pgtable pgt = { .ia_bits = ia_bits, .start_level = start_level, }; return __kvm_pgd_page_idx(&pgt, -1ULL) + 1; } static bool kvm_pte_table(kvm_pte_t pte, u32 level) { if (level == KVM_PGTABLE_MAX_LEVELS - 1) return false; if (!kvm_pte_valid(pte)) return false; return FIELD_GET(KVM_PTE_TYPE, pte) == KVM_PTE_TYPE_TABLE; } static kvm_pte_t kvm_phys_to_pte(u64 pa) { kvm_pte_t pte = pa & KVM_PTE_ADDR_MASK; if (PAGE_SHIFT == 16) pte |= FIELD_PREP(KVM_PTE_ADDR_51_48, pa >> 48); return pte; } static kvm_pte_t *kvm_pte_follow(kvm_pte_t pte, struct kvm_pgtable_mm_ops *mm_ops) { return mm_ops->phys_to_virt(kvm_pte_to_phys(pte)); } static void kvm_clear_pte(kvm_pte_t *ptep) { WRITE_ONCE(*ptep, 0); } static void kvm_set_table_pte(kvm_pte_t *ptep, kvm_pte_t *childp, struct kvm_pgtable_mm_ops *mm_ops) { kvm_pte_t old = *ptep, pte = kvm_phys_to_pte(mm_ops->virt_to_phys(childp)); pte |= FIELD_PREP(KVM_PTE_TYPE, KVM_PTE_TYPE_TABLE); pte |= KVM_PTE_VALID; WARN_ON(kvm_pte_valid(old)); smp_store_release(ptep, pte); } static kvm_pte_t kvm_init_valid_leaf_pte(u64 pa, kvm_pte_t attr, u32 level) { kvm_pte_t pte = kvm_phys_to_pte(pa); u64 type = (level == KVM_PGTABLE_MAX_LEVELS - 1) ? KVM_PTE_TYPE_PAGE : KVM_PTE_TYPE_BLOCK; pte |= attr & (KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI); pte |= FIELD_PREP(KVM_PTE_TYPE, type); pte |= KVM_PTE_VALID; return pte; } static kvm_pte_t kvm_init_invalid_leaf_owner(u8 owner_id) { return FIELD_PREP(KVM_INVALID_PTE_OWNER_MASK, owner_id); } static int kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data *data, u64 addr, u32 level, kvm_pte_t *ptep, enum kvm_pgtable_walk_flags flag) { struct kvm_pgtable_walker *walker = data->walker; return walker->cb(addr, data->end, level, ptep, flag, walker->arg); } static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data, kvm_pte_t *pgtable, u32 level); static inline int __kvm_pgtable_visit(struct kvm_pgtable_walk_data *data, kvm_pte_t *ptep, u32 level) { int ret = 0; u64 addr = data->addr; kvm_pte_t *childp, pte = *ptep; bool table = kvm_pte_table(pte, level); enum kvm_pgtable_walk_flags flags = data->walker->flags; if (table && (flags & KVM_PGTABLE_WALK_TABLE_PRE)) { ret = kvm_pgtable_visitor_cb(data, addr, level, ptep, KVM_PGTABLE_WALK_TABLE_PRE); } if (!table && (flags & KVM_PGTABLE_WALK_LEAF)) { ret = kvm_pgtable_visitor_cb(data, addr, level, ptep, KVM_PGTABLE_WALK_LEAF); pte = *ptep; table = kvm_pte_table(pte, level); } if (ret) goto out; if (!table) { data->addr = ALIGN_DOWN(data->addr, kvm_granule_size(level)); data->addr += kvm_granule_size(level); goto out; } childp = kvm_pte_follow(pte, data->pgt->mm_ops); ret = __kvm_pgtable_walk(data, childp, level + 1); if (ret) goto out; if (flags & KVM_PGTABLE_WALK_TABLE_POST) { ret = kvm_pgtable_visitor_cb(data, addr, level, ptep, KVM_PGTABLE_WALK_TABLE_POST); } out: return ret; } static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data, kvm_pte_t *pgtable, u32 level) { u32 idx; int ret = 0; if (WARN_ON_ONCE(level >= KVM_PGTABLE_MAX_LEVELS)) return -EINVAL; for (idx = kvm_pgtable_idx(data, level); idx < PTRS_PER_PTE; ++idx) { kvm_pte_t *ptep = &pgtable[idx]; if (data->addr >= data->end) break; ret = __kvm_pgtable_visit(data, ptep, level); if (ret) break; } return ret; } static int _kvm_pgtable_walk(struct kvm_pgtable_walk_data *data) { u32 idx; int ret = 0; struct kvm_pgtable *pgt = data->pgt; u64 limit = BIT(pgt->ia_bits); if (data->addr > limit || data->end > limit) return -ERANGE; if (!pgt->pgd) return -EINVAL; for (idx = kvm_pgd_page_idx(data); data->addr < data->end; ++idx) { kvm_pte_t *ptep = &pgt->pgd[idx * PTRS_PER_PTE]; ret = __kvm_pgtable_walk(data, ptep, pgt->start_level); if (ret) break; } return ret; } int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size, struct kvm_pgtable_walker *walker) { struct kvm_pgtable_walk_data walk_data = { .pgt = pgt, .addr = ALIGN_DOWN(addr, PAGE_SIZE), .end = PAGE_ALIGN(walk_data.addr + size), .walker = walker, }; return _kvm_pgtable_walk(&walk_data); } struct leaf_walk_data { kvm_pte_t pte; u32 level; }; static int leaf_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, enum kvm_pgtable_walk_flags flag, void * const arg) { struct leaf_walk_data *data = arg; data->pte = *ptep; data->level = level; return 0; } int kvm_pgtable_get_leaf(struct kvm_pgtable *pgt, u64 addr, kvm_pte_t *ptep, u32 *level) { struct leaf_walk_data data; struct kvm_pgtable_walker walker = { .cb = leaf_walker, .flags = KVM_PGTABLE_WALK_LEAF, .arg = &data, }; int ret; ret = kvm_pgtable_walk(pgt, ALIGN_DOWN(addr, PAGE_SIZE), PAGE_SIZE, &walker); if (!ret) { if (ptep) *ptep = data.pte; if (level) *level = data.level; } return ret; } struct hyp_map_data { u64 phys; kvm_pte_t attr; struct kvm_pgtable_mm_ops *mm_ops; }; static int hyp_set_prot_attr(enum kvm_pgtable_prot prot, kvm_pte_t *ptep) { bool device = prot & KVM_PGTABLE_PROT_DEVICE; u32 mtype = device ? MT_DEVICE_nGnRE : MT_NORMAL; kvm_pte_t attr = FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX, mtype); u32 sh = KVM_PTE_LEAF_ATTR_LO_S1_SH_IS; u32 ap = (prot & KVM_PGTABLE_PROT_W) ? KVM_PTE_LEAF_ATTR_LO_S1_AP_RW : KVM_PTE_LEAF_ATTR_LO_S1_AP_RO; if (!(prot & KVM_PGTABLE_PROT_R)) return -EINVAL; if (prot & KVM_PGTABLE_PROT_X) { if (prot & KVM_PGTABLE_PROT_W) return -EINVAL; if (device) return -EINVAL; } else { attr |= KVM_PTE_LEAF_ATTR_HI_S1_XN; } attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_AP, ap); attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_SH, sh); attr |= KVM_PTE_LEAF_ATTR_LO_S1_AF; attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW; *ptep = attr; return 0; } enum kvm_pgtable_prot kvm_pgtable_hyp_pte_prot(kvm_pte_t pte) { enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW; u32 ap; if (!kvm_pte_valid(pte)) return prot; if (!(pte & KVM_PTE_LEAF_ATTR_HI_S1_XN)) prot |= KVM_PGTABLE_PROT_X; ap = FIELD_GET(KVM_PTE_LEAF_ATTR_LO_S1_AP, pte); if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RO) prot |= KVM_PGTABLE_PROT_R; else if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RW) prot |= KVM_PGTABLE_PROT_RW; return prot; } static bool hyp_pte_needs_update(kvm_pte_t old, kvm_pte_t new) { /* * Tolerate KVM recreating the exact same mapping, or changing software * bits if the existing mapping was valid. */ if (old == new) return false; if (!kvm_pte_valid(old)) return true; return !WARN_ON((old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW); } static bool hyp_map_walker_try_leaf(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, struct hyp_map_data *data) { kvm_pte_t new, old = *ptep; u64 granule = kvm_granule_size(level), phys = data->phys; if (!kvm_block_mapping_supported(addr, end, phys, level)) return false; new = kvm_init_valid_leaf_pte(phys, data->attr, level); if (hyp_pte_needs_update(old, new)) smp_store_release(ptep, new); data->phys += granule; return true; } static int hyp_map_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, enum kvm_pgtable_walk_flags flag, void * const arg) { kvm_pte_t *childp; struct hyp_map_data *data = arg; struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops; if (hyp_map_walker_try_leaf(addr, end, level, ptep, arg)) return 0; if (WARN_ON(level == KVM_PGTABLE_MAX_LEVELS - 1)) return -EINVAL; childp = (kvm_pte_t *)mm_ops->zalloc_page(NULL); if (!childp) return -ENOMEM; kvm_set_table_pte(ptep, childp, mm_ops); return 0; } int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys, enum kvm_pgtable_prot prot) { int ret; struct hyp_map_data map_data = { .phys = ALIGN_DOWN(phys, PAGE_SIZE), .mm_ops = pgt->mm_ops, }; struct kvm_pgtable_walker walker = { .cb = hyp_map_walker, .flags = KVM_PGTABLE_WALK_LEAF, .arg = &map_data, }; ret = hyp_set_prot_attr(prot, &map_data.attr); if (ret) return ret; ret = kvm_pgtable_walk(pgt, addr, size, &walker); dsb(ishst); isb(); return ret; } int kvm_pgtable_hyp_init(struct kvm_pgtable *pgt, u32 va_bits, struct kvm_pgtable_mm_ops *mm_ops) { u64 levels = ARM64_HW_PGTABLE_LEVELS(va_bits); pgt->pgd = (kvm_pte_t *)mm_ops->zalloc_page(NULL); if (!pgt->pgd) return -ENOMEM; pgt->ia_bits = va_bits; pgt->start_level = KVM_PGTABLE_MAX_LEVELS - levels; pgt->mm_ops = mm_ops; pgt->mmu = NULL; pgt->force_pte_cb = NULL; return 0; } static int hyp_free_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, enum kvm_pgtable_walk_flags flag, void * const arg) { struct kvm_pgtable_mm_ops *mm_ops = arg; mm_ops->put_page((void *)kvm_pte_follow(*ptep, mm_ops)); return 0; } void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt) { struct kvm_pgtable_walker walker = { .cb = hyp_free_walker, .flags = KVM_PGTABLE_WALK_TABLE_POST, .arg = pgt->mm_ops, }; WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker)); pgt->mm_ops->put_page(pgt->pgd); pgt->pgd = NULL; } struct stage2_map_data { u64 phys; kvm_pte_t attr; u8 owner_id; kvm_pte_t *anchor; kvm_pte_t *childp; struct kvm_s2_mmu *mmu; void *memcache; struct kvm_pgtable_mm_ops *mm_ops; /* Force mappings to page granularity */ bool force_pte; }; u64 kvm_get_vtcr(u64 mmfr0, u64 mmfr1, u32 phys_shift) { u64 vtcr = VTCR_EL2_FLAGS; u8 lvls; vtcr |= kvm_get_parange(mmfr0) << VTCR_EL2_PS_SHIFT; vtcr |= VTCR_EL2_T0SZ(phys_shift); /* * Use a minimum 2 level page table to prevent splitting * host PMD huge pages at stage2. */ lvls = stage2_pgtable_levels(phys_shift); if (lvls < 2) lvls = 2; vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls); /* * Enable the Hardware Access Flag management, unconditionally * on all CPUs. The features is RES0 on CPUs without the support * and must be ignored by the CPUs. */ vtcr |= VTCR_EL2_HA; /* Set the vmid bits */ vtcr |= (get_vmid_bits(mmfr1) == 16) ? VTCR_EL2_VS_16BIT : VTCR_EL2_VS_8BIT; return vtcr; } static bool stage2_has_fwb(struct kvm_pgtable *pgt) { if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) return false; return !(pgt->flags & KVM_PGTABLE_S2_NOFWB); } #define KVM_S2_MEMATTR(pgt, attr) PAGE_S2_MEMATTR(attr, stage2_has_fwb(pgt)) static int stage2_set_prot_attr(struct kvm_pgtable *pgt, enum kvm_pgtable_prot prot, kvm_pte_t *ptep) { bool device = prot & KVM_PGTABLE_PROT_DEVICE; kvm_pte_t attr = device ? KVM_S2_MEMATTR(pgt, DEVICE_nGnRE) : KVM_S2_MEMATTR(pgt, NORMAL); u32 sh = KVM_PTE_LEAF_ATTR_LO_S2_SH_IS; if (!(prot & KVM_PGTABLE_PROT_X)) attr |= KVM_PTE_LEAF_ATTR_HI_S2_XN; else if (device) return -EINVAL; if (prot & KVM_PGTABLE_PROT_R) attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R; if (prot & KVM_PGTABLE_PROT_W) attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W; attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S2_SH, sh); attr |= KVM_PTE_LEAF_ATTR_LO_S2_AF; attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW; *ptep = attr; return 0; } enum kvm_pgtable_prot kvm_pgtable_stage2_pte_prot(kvm_pte_t pte) { enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW; if (!kvm_pte_valid(pte)) return prot; if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R) prot |= KVM_PGTABLE_PROT_R; if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W) prot |= KVM_PGTABLE_PROT_W; if (!(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN)) prot |= KVM_PGTABLE_PROT_X; return prot; } static bool stage2_pte_needs_update(kvm_pte_t old, kvm_pte_t new) { if (!kvm_pte_valid(old) || !kvm_pte_valid(new)) return true; return ((old ^ new) & (~KVM_PTE_LEAF_ATTR_S2_PERMS)); } static bool stage2_pte_is_counted(kvm_pte_t pte) { /* * The refcount tracks valid entries as well as invalid entries if they * encode ownership of a page to another entity than the page-table * owner, whose id is 0. */ return !!pte; } static void stage2_put_pte(kvm_pte_t *ptep, struct kvm_s2_mmu *mmu, u64 addr, u32 level, struct kvm_pgtable_mm_ops *mm_ops) { /* * Clear the existing PTE, and perform break-before-make with * TLB maintenance if it was valid. */ if (kvm_pte_valid(*ptep)) { kvm_clear_pte(ptep); kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, addr, level); } mm_ops->put_page(ptep); } static bool stage2_pte_cacheable(struct kvm_pgtable *pgt, kvm_pte_t pte) { u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR; return memattr == KVM_S2_MEMATTR(pgt, NORMAL); } static bool stage2_pte_executable(kvm_pte_t pte) { return !(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN); } static bool stage2_leaf_mapping_allowed(u64 addr, u64 end, u32 level, struct stage2_map_data *data) { if (data->force_pte && (level < (KVM_PGTABLE_MAX_LEVELS - 1))) return false; return kvm_block_mapping_supported(addr, end, data->phys, level); } static int stage2_map_walker_try_leaf(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, struct stage2_map_data *data) { kvm_pte_t new, old = *ptep; u64 granule = kvm_granule_size(level), phys = data->phys; struct kvm_pgtable *pgt = data->mmu->pgt; struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops; if (!stage2_leaf_mapping_allowed(addr, end, level, data)) return -E2BIG; if (kvm_phys_is_valid(phys)) new = kvm_init_valid_leaf_pte(phys, data->attr, level); else new = kvm_init_invalid_leaf_owner(data->owner_id); if (stage2_pte_is_counted(old)) { /* * Skip updating the PTE if we are trying to recreate the exact * same mapping or only change the access permissions. Instead, * the vCPU will exit one more time from guest if still needed * and then go through the path of relaxing permissions. */ if (!stage2_pte_needs_update(old, new)) return -EAGAIN; stage2_put_pte(ptep, data->mmu, addr, level, mm_ops); } /* Perform CMOs before installation of the guest stage-2 PTE */ if (mm_ops->dcache_clean_inval_poc && stage2_pte_cacheable(pgt, new)) mm_ops->dcache_clean_inval_poc(kvm_pte_follow(new, mm_ops), granule); if (mm_ops->icache_inval_pou && stage2_pte_executable(new)) mm_ops->icache_inval_pou(kvm_pte_follow(new, mm_ops), granule); smp_store_release(ptep, new); if (stage2_pte_is_counted(new)) mm_ops->get_page(ptep); if (kvm_phys_is_valid(phys)) data->phys += granule; return 0; } static int stage2_map_walk_table_pre(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, struct stage2_map_data *data) { if (data->anchor) return 0; if (!stage2_leaf_mapping_allowed(addr, end, level, data)) return 0; data->childp = kvm_pte_follow(*ptep, data->mm_ops); kvm_clear_pte(ptep); /* * Invalidate the whole stage-2, as we may have numerous leaf * entries below us which would otherwise need invalidating * individually. */ kvm_call_hyp(__kvm_tlb_flush_vmid, data->mmu); data->anchor = ptep; return 0; } static int stage2_map_walk_leaf(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, struct stage2_map_data *data) { struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops; kvm_pte_t *childp, pte = *ptep; int ret; if (data->anchor) { if (stage2_pte_is_counted(pte)) mm_ops->put_page(ptep); return 0; } ret = stage2_map_walker_try_leaf(addr, end, level, ptep, data); if (ret != -E2BIG) return ret; if (WARN_ON(level == KVM_PGTABLE_MAX_LEVELS - 1)) return -EINVAL; if (!data->memcache) return -ENOMEM; childp = mm_ops->zalloc_page(data->memcache); if (!childp) return -ENOMEM; /* * If we've run into an existing block mapping then replace it with * a table. Accesses beyond 'end' that fall within the new table * will be mapped lazily. */ if (stage2_pte_is_counted(pte)) stage2_put_pte(ptep, data->mmu, addr, level, mm_ops); kvm_set_table_pte(ptep, childp, mm_ops); mm_ops->get_page(ptep); return 0; } static int stage2_map_walk_table_post(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, struct stage2_map_data *data) { struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops; kvm_pte_t *childp; int ret = 0; if (!data->anchor) return 0; if (data->anchor == ptep) { childp = data->childp; data->anchor = NULL; data->childp = NULL; ret = stage2_map_walk_leaf(addr, end, level, ptep, data); } else { childp = kvm_pte_follow(*ptep, mm_ops); } mm_ops->put_page(childp); mm_ops->put_page(ptep); return ret; } /* * This is a little fiddly, as we use all three of the walk flags. The idea * is that the TABLE_PRE callback runs for table entries on the way down, * looking for table entries which we could conceivably replace with a * block entry for this mapping. If it finds one, then it sets the 'anchor' * field in 'struct stage2_map_data' to point at the table entry, before * clearing the entry to zero and descending into the now detached table. * * The behaviour of the LEAF callback then depends on whether or not the * anchor has been set. If not, then we're not using a block mapping higher * up the table and we perform the mapping at the existing leaves instead. * If, on the other hand, the anchor _is_ set, then we drop references to * all valid leaves so that the pages beneath the anchor can be freed. * * Finally, the TABLE_POST callback does nothing if the anchor has not * been set, but otherwise frees the page-table pages while walking back up * the page-table, installing the block entry when it revisits the anchor * pointer and clearing the anchor to NULL. */ static int stage2_map_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, enum kvm_pgtable_walk_flags flag, void * const arg) { struct stage2_map_data *data = arg; switch (flag) { case KVM_PGTABLE_WALK_TABLE_PRE: return stage2_map_walk_table_pre(addr, end, level, ptep, data); case KVM_PGTABLE_WALK_LEAF: return stage2_map_walk_leaf(addr, end, level, ptep, data); case KVM_PGTABLE_WALK_TABLE_POST: return stage2_map_walk_table_post(addr, end, level, ptep, data); } return -EINVAL; } int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys, enum kvm_pgtable_prot prot, void *mc) { int ret; struct stage2_map_data map_data = { .phys = ALIGN_DOWN(phys, PAGE_SIZE), .mmu = pgt->mmu, .memcache = mc, .mm_ops = pgt->mm_ops, .force_pte = pgt->force_pte_cb && pgt->force_pte_cb(addr, addr + size, prot), }; struct kvm_pgtable_walker walker = { .cb = stage2_map_walker, .flags = KVM_PGTABLE_WALK_TABLE_PRE | KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST, .arg = &map_data, }; if (WARN_ON((pgt->flags & KVM_PGTABLE_S2_IDMAP) && (addr != phys))) return -EINVAL; ret = stage2_set_prot_attr(pgt, prot, &map_data.attr); if (ret) return ret; ret = kvm_pgtable_walk(pgt, addr, size, &walker); dsb(ishst); return ret; } int kvm_pgtable_stage2_set_owner(struct kvm_pgtable *pgt, u64 addr, u64 size, void *mc, u8 owner_id) { int ret; struct stage2_map_data map_data = { .phys = KVM_PHYS_INVALID, .mmu = pgt->mmu, .memcache = mc, .mm_ops = pgt->mm_ops, .owner_id = owner_id, .force_pte = true, }; struct kvm_pgtable_walker walker = { .cb = stage2_map_walker, .flags = KVM_PGTABLE_WALK_TABLE_PRE | KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST, .arg = &map_data, }; if (owner_id > KVM_MAX_OWNER_ID) return -EINVAL; ret = kvm_pgtable_walk(pgt, addr, size, &walker); return ret; } static int stage2_unmap_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, enum kvm_pgtable_walk_flags flag, void * const arg) { struct kvm_pgtable *pgt = arg; struct kvm_s2_mmu *mmu = pgt->mmu; struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops; kvm_pte_t pte = *ptep, *childp = NULL; bool need_flush = false; if (!kvm_pte_valid(pte)) { if (stage2_pte_is_counted(pte)) { kvm_clear_pte(ptep); mm_ops->put_page(ptep); } return 0; } if (kvm_pte_table(pte, level)) { childp = kvm_pte_follow(pte, mm_ops); if (mm_ops->page_count(childp) != 1) return 0; } else if (stage2_pte_cacheable(pgt, pte)) { need_flush = !stage2_has_fwb(pgt); } /* * This is similar to the map() path in that we unmap the entire * block entry and rely on the remaining portions being faulted * back lazily. */ stage2_put_pte(ptep, mmu, addr, level, mm_ops); if (need_flush && mm_ops->dcache_clean_inval_poc) mm_ops->dcache_clean_inval_poc(kvm_pte_follow(pte, mm_ops), kvm_granule_size(level)); if (childp) mm_ops->put_page(childp); return 0; } int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size) { struct kvm_pgtable_walker walker = { .cb = stage2_unmap_walker, .arg = pgt, .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST, }; return kvm_pgtable_walk(pgt, addr, size, &walker); } struct stage2_attr_data { kvm_pte_t attr_set; kvm_pte_t attr_clr; kvm_pte_t pte; u32 level; struct kvm_pgtable_mm_ops *mm_ops; }; static int stage2_attr_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, enum kvm_pgtable_walk_flags flag, void * const arg) { kvm_pte_t pte = *ptep; struct stage2_attr_data *data = arg; struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops; if (!kvm_pte_valid(pte)) return 0; data->level = level; data->pte = pte; pte &= ~data->attr_clr; pte |= data->attr_set; /* * We may race with the CPU trying to set the access flag here, * but worst-case the access flag update gets lost and will be * set on the next access instead. */ if (data->pte != pte) { /* * Invalidate instruction cache before updating the guest * stage-2 PTE if we are going to add executable permission. */ if (mm_ops->icache_inval_pou && stage2_pte_executable(pte) && !stage2_pte_executable(*ptep)) mm_ops->icache_inval_pou(kvm_pte_follow(pte, mm_ops), kvm_granule_size(level)); WRITE_ONCE(*ptep, pte); } return 0; } static int stage2_update_leaf_attrs(struct kvm_pgtable *pgt, u64 addr, u64 size, kvm_pte_t attr_set, kvm_pte_t attr_clr, kvm_pte_t *orig_pte, u32 *level) { int ret; kvm_pte_t attr_mask = KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI; struct stage2_attr_data data = { .attr_set = attr_set & attr_mask, .attr_clr = attr_clr & attr_mask, .mm_ops = pgt->mm_ops, }; struct kvm_pgtable_walker walker = { .cb = stage2_attr_walker, .arg = &data, .flags = KVM_PGTABLE_WALK_LEAF, }; ret = kvm_pgtable_walk(pgt, addr, size, &walker); if (ret) return ret; if (orig_pte) *orig_pte = data.pte; if (level) *level = data.level; return 0; } int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size) { return stage2_update_leaf_attrs(pgt, addr, size, 0, KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W, NULL, NULL); } kvm_pte_t kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr) { kvm_pte_t pte = 0; stage2_update_leaf_attrs(pgt, addr, 1, KVM_PTE_LEAF_ATTR_LO_S2_AF, 0, &pte, NULL); dsb(ishst); return pte; } kvm_pte_t kvm_pgtable_stage2_mkold(struct kvm_pgtable *pgt, u64 addr) { kvm_pte_t pte = 0; stage2_update_leaf_attrs(pgt, addr, 1, 0, KVM_PTE_LEAF_ATTR_LO_S2_AF, &pte, NULL); /* * "But where's the TLBI?!", you scream. * "Over in the core code", I sigh. * * See the '->clear_flush_young()' callback on the KVM mmu notifier. */ return pte; } bool kvm_pgtable_stage2_is_young(struct kvm_pgtable *pgt, u64 addr) { kvm_pte_t pte = 0; stage2_update_leaf_attrs(pgt, addr, 1, 0, 0, &pte, NULL); return pte & KVM_PTE_LEAF_ATTR_LO_S2_AF; } int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr, enum kvm_pgtable_prot prot) { int ret; u32 level; kvm_pte_t set = 0, clr = 0; if (prot & KVM_PTE_LEAF_ATTR_HI_SW) return -EINVAL; if (prot & KVM_PGTABLE_PROT_R) set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R; if (prot & KVM_PGTABLE_PROT_W) set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W; if (prot & KVM_PGTABLE_PROT_X) clr |= KVM_PTE_LEAF_ATTR_HI_S2_XN; ret = stage2_update_leaf_attrs(pgt, addr, 1, set, clr, NULL, &level); if (!ret) kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, pgt->mmu, addr, level); return ret; } static int stage2_flush_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, enum kvm_pgtable_walk_flags flag, void * const arg) { struct kvm_pgtable *pgt = arg; struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops; kvm_pte_t pte = *ptep; if (!kvm_pte_valid(pte) || !stage2_pte_cacheable(pgt, pte)) return 0; if (mm_ops->dcache_clean_inval_poc) mm_ops->dcache_clean_inval_poc(kvm_pte_follow(pte, mm_ops), kvm_granule_size(level)); return 0; } int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size) { struct kvm_pgtable_walker walker = { .cb = stage2_flush_walker, .flags = KVM_PGTABLE_WALK_LEAF, .arg = pgt, }; if (stage2_has_fwb(pgt)) return 0; return kvm_pgtable_walk(pgt, addr, size, &walker); } int __kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_arch *arch, struct kvm_pgtable_mm_ops *mm_ops, enum kvm_pgtable_stage2_flags flags, kvm_pgtable_force_pte_cb_t force_pte_cb) { size_t pgd_sz; u64 vtcr = arch->vtcr; u32 ia_bits = VTCR_EL2_IPA(vtcr); u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr); u32 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0; pgd_sz = kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE; pgt->pgd = mm_ops->zalloc_pages_exact(pgd_sz); if (!pgt->pgd) return -ENOMEM; pgt->ia_bits = ia_bits; pgt->start_level = start_level; pgt->mm_ops = mm_ops; pgt->mmu = &arch->mmu; pgt->flags = flags; pgt->force_pte_cb = force_pte_cb; /* Ensure zeroed PGD pages are visible to the hardware walker */ dsb(ishst); return 0; } static int stage2_free_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, enum kvm_pgtable_walk_flags flag, void * const arg) { struct kvm_pgtable_mm_ops *mm_ops = arg; kvm_pte_t pte = *ptep; if (!stage2_pte_is_counted(pte)) return 0; mm_ops->put_page(ptep); if (kvm_pte_table(pte, level)) mm_ops->put_page(kvm_pte_follow(pte, mm_ops)); return 0; } void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt) { size_t pgd_sz; struct kvm_pgtable_walker walker = { .cb = stage2_free_walker, .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST, .arg = pgt->mm_ops, }; WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker)); pgd_sz = kvm_pgd_pages(pgt->ia_bits, pgt->start_level) * PAGE_SIZE; pgt->mm_ops->free_pages_exact(pgt->pgd, pgd_sz); pgt->pgd = NULL; }