// SPDX-License-Identifier: GPL-2.0 #include #include #include #include #include #include "ctree.h" #include "volumes.h" #include "zoned.h" #include "rcu-string.h" #include "disk-io.h" #include "block-group.h" #include "transaction.h" #include "dev-replace.h" #include "space-info.h" /* Maximum number of zones to report per blkdev_report_zones() call */ #define BTRFS_REPORT_NR_ZONES 4096 /* Invalid allocation pointer value for missing devices */ #define WP_MISSING_DEV ((u64)-1) /* Pseudo write pointer value for conventional zone */ #define WP_CONVENTIONAL ((u64)-2) /* * Location of the first zone of superblock logging zone pairs. * * - primary superblock: 0B (zone 0) * - first copy: 512G (zone starting at that offset) * - second copy: 4T (zone starting at that offset) */ #define BTRFS_SB_LOG_PRIMARY_OFFSET (0ULL) #define BTRFS_SB_LOG_FIRST_OFFSET (512ULL * SZ_1G) #define BTRFS_SB_LOG_SECOND_OFFSET (4096ULL * SZ_1G) #define BTRFS_SB_LOG_FIRST_SHIFT const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET) #define BTRFS_SB_LOG_SECOND_SHIFT const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET) /* Number of superblock log zones */ #define BTRFS_NR_SB_LOG_ZONES 2 /* * Maximum supported zone size. Currently, SMR disks have a zone size of * 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range. We do not * expect the zone size to become larger than 8GiB in the near future. */ #define BTRFS_MAX_ZONE_SIZE SZ_8G static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data) { struct blk_zone *zones = data; memcpy(&zones[idx], zone, sizeof(*zone)); return 0; } static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones, u64 *wp_ret) { bool empty[BTRFS_NR_SB_LOG_ZONES]; bool full[BTRFS_NR_SB_LOG_ZONES]; sector_t sector; ASSERT(zones[0].type != BLK_ZONE_TYPE_CONVENTIONAL && zones[1].type != BLK_ZONE_TYPE_CONVENTIONAL); empty[0] = (zones[0].cond == BLK_ZONE_COND_EMPTY); empty[1] = (zones[1].cond == BLK_ZONE_COND_EMPTY); full[0] = (zones[0].cond == BLK_ZONE_COND_FULL); full[1] = (zones[1].cond == BLK_ZONE_COND_FULL); /* * Possible states of log buffer zones * * Empty[0] In use[0] Full[0] * Empty[1] * x 0 * In use[1] 0 x 0 * Full[1] 1 1 C * * Log position: * *: Special case, no superblock is written * 0: Use write pointer of zones[0] * 1: Use write pointer of zones[1] * C: Compare super blocks from zones[0] and zones[1], use the latest * one determined by generation * x: Invalid state */ if (empty[0] && empty[1]) { /* Special case to distinguish no superblock to read */ *wp_ret = zones[0].start << SECTOR_SHIFT; return -ENOENT; } else if (full[0] && full[1]) { /* Compare two super blocks */ struct address_space *mapping = bdev->bd_inode->i_mapping; struct page *page[BTRFS_NR_SB_LOG_ZONES]; struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES]; int i; for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { u64 bytenr; bytenr = ((zones[i].start + zones[i].len) << SECTOR_SHIFT) - BTRFS_SUPER_INFO_SIZE; page[i] = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); if (IS_ERR(page[i])) { if (i == 1) btrfs_release_disk_super(super[0]); return PTR_ERR(page[i]); } super[i] = page_address(page[i]); } if (btrfs_super_generation(super[0]) > btrfs_super_generation(super[1])) sector = zones[1].start; else sector = zones[0].start; for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) btrfs_release_disk_super(super[i]); } else if (!full[0] && (empty[1] || full[1])) { sector = zones[0].wp; } else if (full[0]) { sector = zones[1].wp; } else { return -EUCLEAN; } *wp_ret = sector << SECTOR_SHIFT; return 0; } /* * Get the first zone number of the superblock mirror */ static inline u32 sb_zone_number(int shift, int mirror) { u64 zone; ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX); switch (mirror) { case 0: zone = 0; break; case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break; case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break; } ASSERT(zone <= U32_MAX); return (u32)zone; } static inline sector_t zone_start_sector(u32 zone_number, struct block_device *bdev) { return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev)); } static inline u64 zone_start_physical(u32 zone_number, struct btrfs_zoned_device_info *zone_info) { return (u64)zone_number << zone_info->zone_size_shift; } /* * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block * device into static sized chunks and fake a conventional zone on each of * them. */ static int emulate_report_zones(struct btrfs_device *device, u64 pos, struct blk_zone *zones, unsigned int nr_zones) { const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT; sector_t bdev_size = bdev_nr_sectors(device->bdev); unsigned int i; pos >>= SECTOR_SHIFT; for (i = 0; i < nr_zones; i++) { zones[i].start = i * zone_sectors + pos; zones[i].len = zone_sectors; zones[i].capacity = zone_sectors; zones[i].wp = zones[i].start + zone_sectors; zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL; zones[i].cond = BLK_ZONE_COND_NOT_WP; if (zones[i].wp >= bdev_size) { i++; break; } } return i; } static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos, struct blk_zone *zones, unsigned int *nr_zones) { struct btrfs_zoned_device_info *zinfo = device->zone_info; u32 zno; int ret; if (!*nr_zones) return 0; if (!bdev_is_zoned(device->bdev)) { ret = emulate_report_zones(device, pos, zones, *nr_zones); *nr_zones = ret; return 0; } /* Check cache */ if (zinfo->zone_cache) { unsigned int i; ASSERT(IS_ALIGNED(pos, zinfo->zone_size)); zno = pos >> zinfo->zone_size_shift; /* * We cannot report zones beyond the zone end. So, it is OK to * cap *nr_zones to at the end. */ *nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno); for (i = 0; i < *nr_zones; i++) { struct blk_zone *zone_info; zone_info = &zinfo->zone_cache[zno + i]; if (!zone_info->len) break; } if (i == *nr_zones) { /* Cache hit on all the zones */ memcpy(zones, zinfo->zone_cache + zno, sizeof(*zinfo->zone_cache) * *nr_zones); return 0; } } ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones, copy_zone_info_cb, zones); if (ret < 0) { btrfs_err_in_rcu(device->fs_info, "zoned: failed to read zone %llu on %s (devid %llu)", pos, rcu_str_deref(device->name), device->devid); return ret; } *nr_zones = ret; if (!ret) return -EIO; /* Populate cache */ if (zinfo->zone_cache) memcpy(zinfo->zone_cache + zno, zones, sizeof(*zinfo->zone_cache) * *nr_zones); return 0; } /* The emulated zone size is determined from the size of device extent */ static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info) { struct btrfs_path *path; struct btrfs_root *root = fs_info->dev_root; struct btrfs_key key; struct extent_buffer *leaf; struct btrfs_dev_extent *dext; int ret = 0; key.objectid = 1; key.type = BTRFS_DEV_EXTENT_KEY; key.offset = 0; path = btrfs_alloc_path(); if (!path) return -ENOMEM; ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret < 0) goto out; if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { ret = btrfs_next_leaf(root, path); if (ret < 0) goto out; /* No dev extents at all? Not good */ if (ret > 0) { ret = -EUCLEAN; goto out; } } leaf = path->nodes[0]; dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); fs_info->zone_size = btrfs_dev_extent_length(leaf, dext); ret = 0; out: btrfs_free_path(path); return ret; } int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info) { struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; struct btrfs_device *device; int ret = 0; /* fs_info->zone_size might not set yet. Use the incomapt flag here. */ if (!btrfs_fs_incompat(fs_info, ZONED)) return 0; mutex_lock(&fs_devices->device_list_mutex); list_for_each_entry(device, &fs_devices->devices, dev_list) { /* We can skip reading of zone info for missing devices */ if (!device->bdev) continue; ret = btrfs_get_dev_zone_info(device, true); if (ret) break; } mutex_unlock(&fs_devices->device_list_mutex); return ret; } int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache) { struct btrfs_fs_info *fs_info = device->fs_info; struct btrfs_zoned_device_info *zone_info = NULL; struct block_device *bdev = device->bdev; sector_t nr_sectors; sector_t sector = 0; struct blk_zone *zones = NULL; unsigned int i, nreported = 0, nr_zones; sector_t zone_sectors; char *model, *emulated; int ret; /* * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not * yet be set. */ if (!btrfs_fs_incompat(fs_info, ZONED)) return 0; if (device->zone_info) return 0; zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL); if (!zone_info) return -ENOMEM; device->zone_info = zone_info; if (!bdev_is_zoned(bdev)) { if (!fs_info->zone_size) { ret = calculate_emulated_zone_size(fs_info); if (ret) goto out; } ASSERT(fs_info->zone_size); zone_sectors = fs_info->zone_size >> SECTOR_SHIFT; } else { zone_sectors = bdev_zone_sectors(bdev); } /* Check if it's power of 2 (see is_power_of_2) */ ASSERT(zone_sectors != 0 && (zone_sectors & (zone_sectors - 1)) == 0); zone_info->zone_size = zone_sectors << SECTOR_SHIFT; /* We reject devices with a zone size larger than 8GB */ if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) { btrfs_err_in_rcu(fs_info, "zoned: %s: zone size %llu larger than supported maximum %llu", rcu_str_deref(device->name), zone_info->zone_size, BTRFS_MAX_ZONE_SIZE); ret = -EINVAL; goto out; } nr_sectors = bdev_nr_sectors(bdev); zone_info->zone_size_shift = ilog2(zone_info->zone_size); zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors); /* * We limit max_zone_append_size also by max_segments * * PAGE_SIZE. Technically, we can have multiple pages per segment. But, * since btrfs adds the pages one by one to a bio, and btrfs cannot * increase the metadata reservation even if it increases the number of * extents, it is safe to stick with the limit. * * With the zoned emulation, we can have non-zoned device on the zoned * mode. In this case, we don't have a valid max zone append size. So, * use max_segments * PAGE_SIZE as the pseudo max_zone_append_size. */ if (bdev_is_zoned(bdev)) { zone_info->max_zone_append_size = min_t(u64, (u64)bdev_max_zone_append_sectors(bdev) << SECTOR_SHIFT, (u64)bdev_max_segments(bdev) << PAGE_SHIFT); } else { zone_info->max_zone_append_size = (u64)bdev_max_segments(bdev) << PAGE_SHIFT; } if (!IS_ALIGNED(nr_sectors, zone_sectors)) zone_info->nr_zones++; zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); if (!zone_info->seq_zones) { ret = -ENOMEM; goto out; } zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); if (!zone_info->empty_zones) { ret = -ENOMEM; goto out; } zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL); if (!zones) { ret = -ENOMEM; goto out; } /* * Enable zone cache only for a zoned device. On a non-zoned device, we * fill the zone info with emulated CONVENTIONAL zones, so no need to * use the cache. */ if (populate_cache && bdev_is_zoned(device->bdev)) { zone_info->zone_cache = vzalloc(sizeof(struct blk_zone) * zone_info->nr_zones); if (!zone_info->zone_cache) { btrfs_err_in_rcu(device->fs_info, "zoned: failed to allocate zone cache for %s", rcu_str_deref(device->name)); ret = -ENOMEM; goto out; } } /* Get zones type */ while (sector < nr_sectors) { nr_zones = BTRFS_REPORT_NR_ZONES; ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones, &nr_zones); if (ret) goto out; for (i = 0; i < nr_zones; i++) { if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ) __set_bit(nreported, zone_info->seq_zones); if (zones[i].cond == BLK_ZONE_COND_EMPTY) __set_bit(nreported, zone_info->empty_zones); nreported++; } sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len; } if (nreported != zone_info->nr_zones) { btrfs_err_in_rcu(device->fs_info, "inconsistent number of zones on %s (%u/%u)", rcu_str_deref(device->name), nreported, zone_info->nr_zones); ret = -EIO; goto out; } /* Validate superblock log */ nr_zones = BTRFS_NR_SB_LOG_ZONES; for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { u32 sb_zone; u64 sb_wp; int sb_pos = BTRFS_NR_SB_LOG_ZONES * i; sb_zone = sb_zone_number(zone_info->zone_size_shift, i); if (sb_zone + 1 >= zone_info->nr_zones) continue; ret = btrfs_get_dev_zones(device, zone_start_physical(sb_zone, zone_info), &zone_info->sb_zones[sb_pos], &nr_zones); if (ret) goto out; if (nr_zones != BTRFS_NR_SB_LOG_ZONES) { btrfs_err_in_rcu(device->fs_info, "zoned: failed to read super block log zone info at devid %llu zone %u", device->devid, sb_zone); ret = -EUCLEAN; goto out; } /* * If zones[0] is conventional, always use the beginning of the * zone to record superblock. No need to validate in that case. */ if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type == BLK_ZONE_TYPE_CONVENTIONAL) continue; ret = sb_write_pointer(device->bdev, &zone_info->sb_zones[sb_pos], &sb_wp); if (ret != -ENOENT && ret) { btrfs_err_in_rcu(device->fs_info, "zoned: super block log zone corrupted devid %llu zone %u", device->devid, sb_zone); ret = -EUCLEAN; goto out; } } kvfree(zones); switch (bdev_zoned_model(bdev)) { case BLK_ZONED_HM: model = "host-managed zoned"; emulated = ""; break; case BLK_ZONED_HA: model = "host-aware zoned"; emulated = ""; break; case BLK_ZONED_NONE: model = "regular"; emulated = "emulated "; break; default: /* Just in case */ btrfs_err_in_rcu(fs_info, "zoned: unsupported model %d on %s", bdev_zoned_model(bdev), rcu_str_deref(device->name)); ret = -EOPNOTSUPP; goto out_free_zone_info; } btrfs_info_in_rcu(fs_info, "%s block device %s, %u %szones of %llu bytes", model, rcu_str_deref(device->name), zone_info->nr_zones, emulated, zone_info->zone_size); return 0; out: kvfree(zones); out_free_zone_info: btrfs_destroy_dev_zone_info(device); return ret; } void btrfs_destroy_dev_zone_info(struct btrfs_device *device) { struct btrfs_zoned_device_info *zone_info = device->zone_info; if (!zone_info) return; bitmap_free(zone_info->seq_zones); bitmap_free(zone_info->empty_zones); vfree(zone_info->zone_cache); kfree(zone_info); device->zone_info = NULL; } int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos, struct blk_zone *zone) { unsigned int nr_zones = 1; int ret; ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones); if (ret != 0 || !nr_zones) return ret ? ret : -EIO; return 0; } int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info) { struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; struct btrfs_device *device; u64 zoned_devices = 0; u64 nr_devices = 0; u64 zone_size = 0; u64 max_zone_append_size = 0; const bool incompat_zoned = btrfs_fs_incompat(fs_info, ZONED); int ret = 0; /* Count zoned devices */ list_for_each_entry(device, &fs_devices->devices, dev_list) { enum blk_zoned_model model; if (!device->bdev) continue; model = bdev_zoned_model(device->bdev); /* * A Host-Managed zoned device must be used as a zoned device. * A Host-Aware zoned device and a non-zoned devices can be * treated as a zoned device, if ZONED flag is enabled in the * superblock. */ if (model == BLK_ZONED_HM || (model == BLK_ZONED_HA && incompat_zoned) || (model == BLK_ZONED_NONE && incompat_zoned)) { struct btrfs_zoned_device_info *zone_info = device->zone_info; zone_info = device->zone_info; zoned_devices++; if (!zone_size) { zone_size = zone_info->zone_size; } else if (zone_info->zone_size != zone_size) { btrfs_err(fs_info, "zoned: unequal block device zone sizes: have %llu found %llu", device->zone_info->zone_size, zone_size); ret = -EINVAL; goto out; } if (!max_zone_append_size || (zone_info->max_zone_append_size && zone_info->max_zone_append_size < max_zone_append_size)) max_zone_append_size = zone_info->max_zone_append_size; } nr_devices++; } if (!zoned_devices && !incompat_zoned) goto out; if (!zoned_devices && incompat_zoned) { /* No zoned block device found on ZONED filesystem */ btrfs_err(fs_info, "zoned: no zoned devices found on a zoned filesystem"); ret = -EINVAL; goto out; } if (zoned_devices && !incompat_zoned) { btrfs_err(fs_info, "zoned: mode not enabled but zoned device found"); ret = -EINVAL; goto out; } if (zoned_devices != nr_devices) { btrfs_err(fs_info, "zoned: cannot mix zoned and regular devices"); ret = -EINVAL; goto out; } /* * stripe_size is always aligned to BTRFS_STRIPE_LEN in * btrfs_create_chunk(). Since we want stripe_len == zone_size, * check the alignment here. */ if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) { btrfs_err(fs_info, "zoned: zone size %llu not aligned to stripe %u", zone_size, BTRFS_STRIPE_LEN); ret = -EINVAL; goto out; } if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { btrfs_err(fs_info, "zoned: mixed block groups not supported"); ret = -EINVAL; goto out; } fs_info->zone_size = zone_size; fs_info->max_zone_append_size = ALIGN_DOWN(max_zone_append_size, fs_info->sectorsize); fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED; if (fs_info->max_zone_append_size < fs_info->max_extent_size) fs_info->max_extent_size = fs_info->max_zone_append_size; /* * Check mount options here, because we might change fs_info->zoned * from fs_info->zone_size. */ ret = btrfs_check_mountopts_zoned(fs_info); if (ret) goto out; btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size); out: return ret; } int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info) { if (!btrfs_is_zoned(info)) return 0; /* * Space cache writing is not COWed. Disable that to avoid write errors * in sequential zones. */ if (btrfs_test_opt(info, SPACE_CACHE)) { btrfs_err(info, "zoned: space cache v1 is not supported"); return -EINVAL; } if (btrfs_test_opt(info, NODATACOW)) { btrfs_err(info, "zoned: NODATACOW not supported"); return -EINVAL; } return 0; } static int sb_log_location(struct block_device *bdev, struct blk_zone *zones, int rw, u64 *bytenr_ret) { u64 wp; int ret; if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) { *bytenr_ret = zones[0].start << SECTOR_SHIFT; return 0; } ret = sb_write_pointer(bdev, zones, &wp); if (ret != -ENOENT && ret < 0) return ret; if (rw == WRITE) { struct blk_zone *reset = NULL; if (wp == zones[0].start << SECTOR_SHIFT) reset = &zones[0]; else if (wp == zones[1].start << SECTOR_SHIFT) reset = &zones[1]; if (reset && reset->cond != BLK_ZONE_COND_EMPTY) { ASSERT(reset->cond == BLK_ZONE_COND_FULL); ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, reset->start, reset->len, GFP_NOFS); if (ret) return ret; reset->cond = BLK_ZONE_COND_EMPTY; reset->wp = reset->start; } } else if (ret != -ENOENT) { /* For READ, we want the precious one */ if (wp == zones[0].start << SECTOR_SHIFT) wp = (zones[1].start + zones[1].len) << SECTOR_SHIFT; wp -= BTRFS_SUPER_INFO_SIZE; } *bytenr_ret = wp; return 0; } int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw, u64 *bytenr_ret) { struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES]; sector_t zone_sectors; u32 sb_zone; int ret; u8 zone_sectors_shift; sector_t nr_sectors; u32 nr_zones; if (!bdev_is_zoned(bdev)) { *bytenr_ret = btrfs_sb_offset(mirror); return 0; } ASSERT(rw == READ || rw == WRITE); zone_sectors = bdev_zone_sectors(bdev); if (!is_power_of_2(zone_sectors)) return -EINVAL; zone_sectors_shift = ilog2(zone_sectors); nr_sectors = bdev_nr_sectors(bdev); nr_zones = nr_sectors >> zone_sectors_shift; sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror); if (sb_zone + 1 >= nr_zones) return -ENOENT; ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev), BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb, zones); if (ret < 0) return ret; if (ret != BTRFS_NR_SB_LOG_ZONES) return -EIO; return sb_log_location(bdev, zones, rw, bytenr_ret); } int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw, u64 *bytenr_ret) { struct btrfs_zoned_device_info *zinfo = device->zone_info; u32 zone_num; /* * For a zoned filesystem on a non-zoned block device, use the same * super block locations as regular filesystem. Doing so, the super * block can always be retrieved and the zoned flag of the volume * detected from the super block information. */ if (!bdev_is_zoned(device->bdev)) { *bytenr_ret = btrfs_sb_offset(mirror); return 0; } zone_num = sb_zone_number(zinfo->zone_size_shift, mirror); if (zone_num + 1 >= zinfo->nr_zones) return -ENOENT; return sb_log_location(device->bdev, &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror], rw, bytenr_ret); } static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo, int mirror) { u32 zone_num; if (!zinfo) return false; zone_num = sb_zone_number(zinfo->zone_size_shift, mirror); if (zone_num + 1 >= zinfo->nr_zones) return false; if (!test_bit(zone_num, zinfo->seq_zones)) return false; return true; } void btrfs_advance_sb_log(struct btrfs_device *device, int mirror) { struct btrfs_zoned_device_info *zinfo = device->zone_info; struct blk_zone *zone; if (!is_sb_log_zone(zinfo, mirror)) return; zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror]; if (zone->cond != BLK_ZONE_COND_FULL) { if (zone->cond == BLK_ZONE_COND_EMPTY) zone->cond = BLK_ZONE_COND_IMP_OPEN; zone->wp += (BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT); if (zone->wp == zone->start + zone->len) zone->cond = BLK_ZONE_COND_FULL; return; } zone++; ASSERT(zone->cond != BLK_ZONE_COND_FULL); if (zone->cond == BLK_ZONE_COND_EMPTY) zone->cond = BLK_ZONE_COND_IMP_OPEN; zone->wp += (BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT); if (zone->wp == zone->start + zone->len) zone->cond = BLK_ZONE_COND_FULL; } int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror) { sector_t zone_sectors; sector_t nr_sectors; u8 zone_sectors_shift; u32 sb_zone; u32 nr_zones; zone_sectors = bdev_zone_sectors(bdev); zone_sectors_shift = ilog2(zone_sectors); nr_sectors = bdev_nr_sectors(bdev); nr_zones = nr_sectors >> zone_sectors_shift; sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror); if (sb_zone + 1 >= nr_zones) return -ENOENT; return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, zone_start_sector(sb_zone, bdev), zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS); } /** * btrfs_find_allocatable_zones - find allocatable zones within a given region * * @device: the device to allocate a region on * @hole_start: the position of the hole to allocate the region * @num_bytes: size of wanted region * @hole_end: the end of the hole * @return: position of allocatable zones * * Allocatable region should not contain any superblock locations. */ u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start, u64 hole_end, u64 num_bytes) { struct btrfs_zoned_device_info *zinfo = device->zone_info; const u8 shift = zinfo->zone_size_shift; u64 nzones = num_bytes >> shift; u64 pos = hole_start; u64 begin, end; bool have_sb; int i; ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size)); ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size)); while (pos < hole_end) { begin = pos >> shift; end = begin + nzones; if (end > zinfo->nr_zones) return hole_end; /* Check if zones in the region are all empty */ if (btrfs_dev_is_sequential(device, pos) && find_next_zero_bit(zinfo->empty_zones, end, begin) != end) { pos += zinfo->zone_size; continue; } have_sb = false; for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { u32 sb_zone; u64 sb_pos; sb_zone = sb_zone_number(shift, i); if (!(end <= sb_zone || sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) { have_sb = true; pos = zone_start_physical( sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo); break; } /* We also need to exclude regular superblock positions */ sb_pos = btrfs_sb_offset(i); if (!(pos + num_bytes <= sb_pos || sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) { have_sb = true; pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE, zinfo->zone_size); break; } } if (!have_sb) break; } return pos; } int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical, u64 length, u64 *bytes) { int ret; *bytes = 0; ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET, physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT, GFP_NOFS); if (ret) return ret; *bytes = length; while (length) { btrfs_dev_set_zone_empty(device, physical); physical += device->zone_info->zone_size; length -= device->zone_info->zone_size; } return 0; } int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size) { struct btrfs_zoned_device_info *zinfo = device->zone_info; const u8 shift = zinfo->zone_size_shift; unsigned long begin = start >> shift; unsigned long end = (start + size) >> shift; u64 pos; int ret; ASSERT(IS_ALIGNED(start, zinfo->zone_size)); ASSERT(IS_ALIGNED(size, zinfo->zone_size)); if (end > zinfo->nr_zones) return -ERANGE; /* All the zones are conventional */ if (find_next_bit(zinfo->seq_zones, end, begin) == end) return 0; /* All the zones are sequential and empty */ if (find_next_zero_bit(zinfo->seq_zones, end, begin) == end && find_next_zero_bit(zinfo->empty_zones, end, begin) == end) return 0; for (pos = start; pos < start + size; pos += zinfo->zone_size) { u64 reset_bytes; if (!btrfs_dev_is_sequential(device, pos) || btrfs_dev_is_empty_zone(device, pos)) continue; /* Free regions should be empty */ btrfs_warn_in_rcu( device->fs_info, "zoned: resetting device %s (devid %llu) zone %llu for allocation", rcu_str_deref(device->name), device->devid, pos >> shift); WARN_ON_ONCE(1); ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size, &reset_bytes); if (ret) return ret; } return 0; } /* * Calculate an allocation pointer from the extent allocation information * for a block group consist of conventional zones. It is pointed to the * end of the highest addressed extent in the block group as an allocation * offset. */ static int calculate_alloc_pointer(struct btrfs_block_group *cache, u64 *offset_ret) { struct btrfs_fs_info *fs_info = cache->fs_info; struct btrfs_root *root = fs_info->extent_root; struct btrfs_path *path; struct btrfs_key key; struct btrfs_key found_key; int ret; u64 length; path = btrfs_alloc_path(); if (!path) return -ENOMEM; key.objectid = cache->start + cache->length; key.type = 0; key.offset = 0; ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); /* We should not find the exact match */ if (!ret) ret = -EUCLEAN; if (ret < 0) goto out; ret = btrfs_previous_extent_item(root, path, cache->start); if (ret) { if (ret == 1) { ret = 0; *offset_ret = 0; } goto out; } btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); if (found_key.type == BTRFS_EXTENT_ITEM_KEY) length = found_key.offset; else length = fs_info->nodesize; if (!(found_key.objectid >= cache->start && found_key.objectid + length <= cache->start + cache->length)) { ret = -EUCLEAN; goto out; } *offset_ret = found_key.objectid + length - cache->start; ret = 0; out: btrfs_free_path(path); return ret; } int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new) { struct btrfs_fs_info *fs_info = cache->fs_info; struct extent_map_tree *em_tree = &fs_info->mapping_tree; struct extent_map *em; struct map_lookup *map; struct btrfs_device *device; u64 logical = cache->start; u64 length = cache->length; u64 physical = 0; int ret; int i; unsigned int nofs_flag; u64 *alloc_offsets = NULL; u64 last_alloc = 0; u32 num_sequential = 0, num_conventional = 0; if (!btrfs_is_zoned(fs_info)) return 0; /* Sanity check */ if (!IS_ALIGNED(length, fs_info->zone_size)) { btrfs_err(fs_info, "zoned: block group %llu len %llu unaligned to zone size %llu", logical, length, fs_info->zone_size); return -EIO; } /* Get the chunk mapping */ read_lock(&em_tree->lock); em = lookup_extent_mapping(em_tree, logical, length); read_unlock(&em_tree->lock); if (!em) return -EINVAL; map = em->map_lookup; alloc_offsets = kcalloc(map->num_stripes, sizeof(*alloc_offsets), GFP_NOFS); if (!alloc_offsets) { free_extent_map(em); return -ENOMEM; } for (i = 0; i < map->num_stripes; i++) { bool is_sequential; struct blk_zone zone; struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; int dev_replace_is_ongoing = 0; device = map->stripes[i].dev; physical = map->stripes[i].physical; if (device->bdev == NULL) { alloc_offsets[i] = WP_MISSING_DEV; continue; } is_sequential = btrfs_dev_is_sequential(device, physical); if (is_sequential) num_sequential++; else num_conventional++; if (!is_sequential) { alloc_offsets[i] = WP_CONVENTIONAL; continue; } /* * This zone will be used for allocation, so mark this zone * non-empty. */ btrfs_dev_clear_zone_empty(device, physical); down_read(&dev_replace->rwsem); dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) btrfs_dev_clear_zone_empty(dev_replace->tgtdev, physical); up_read(&dev_replace->rwsem); /* * The group is mapped to a sequential zone. Get the zone write * pointer to determine the allocation offset within the zone. */ WARN_ON(!IS_ALIGNED(physical, fs_info->zone_size)); nofs_flag = memalloc_nofs_save(); ret = btrfs_get_dev_zone(device, physical, &zone); memalloc_nofs_restore(nofs_flag); if (ret == -EIO || ret == -EOPNOTSUPP) { ret = 0; alloc_offsets[i] = WP_MISSING_DEV; continue; } else if (ret) { goto out; } if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) { btrfs_err_in_rcu(fs_info, "zoned: unexpected conventional zone %llu on device %s (devid %llu)", zone.start << SECTOR_SHIFT, rcu_str_deref(device->name), device->devid); ret = -EIO; goto out; } switch (zone.cond) { case BLK_ZONE_COND_OFFLINE: case BLK_ZONE_COND_READONLY: btrfs_err(fs_info, "zoned: offline/readonly zone %llu on device %s (devid %llu)", physical >> device->zone_info->zone_size_shift, rcu_str_deref(device->name), device->devid); alloc_offsets[i] = WP_MISSING_DEV; break; case BLK_ZONE_COND_EMPTY: alloc_offsets[i] = 0; break; case BLK_ZONE_COND_FULL: alloc_offsets[i] = fs_info->zone_size; break; default: /* Partially used zone */ alloc_offsets[i] = ((zone.wp - zone.start) << SECTOR_SHIFT); break; } } if (num_sequential > 0) cache->seq_zone = true; if (num_conventional > 0) { /* * Avoid calling calculate_alloc_pointer() for new BG. It * is no use for new BG. It must be always 0. * * Also, we have a lock chain of extent buffer lock -> * chunk mutex. For new BG, this function is called from * btrfs_make_block_group() which is already taking the * chunk mutex. Thus, we cannot call * calculate_alloc_pointer() which takes extent buffer * locks to avoid deadlock. */ if (new) { cache->alloc_offset = 0; goto out; } ret = calculate_alloc_pointer(cache, &last_alloc); if (ret || map->num_stripes == num_conventional) { if (!ret) cache->alloc_offset = last_alloc; else btrfs_err(fs_info, "zoned: failed to determine allocation offset of bg %llu", cache->start); goto out; } } switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { case 0: /* single */ if (alloc_offsets[0] == WP_MISSING_DEV) { btrfs_err(fs_info, "zoned: cannot recover write pointer for zone %llu", physical); ret = -EIO; goto out; } cache->alloc_offset = alloc_offsets[0]; break; case BTRFS_BLOCK_GROUP_DUP: case BTRFS_BLOCK_GROUP_RAID1: case BTRFS_BLOCK_GROUP_RAID0: case BTRFS_BLOCK_GROUP_RAID10: case BTRFS_BLOCK_GROUP_RAID5: case BTRFS_BLOCK_GROUP_RAID6: /* non-single profiles are not supported yet */ default: btrfs_err(fs_info, "zoned: profile %s not yet supported", btrfs_bg_type_to_raid_name(map->type)); ret = -EINVAL; goto out; } out: if (cache->alloc_offset > fs_info->zone_size) { btrfs_err(fs_info, "zoned: invalid write pointer %llu in block group %llu", cache->alloc_offset, cache->start); ret = -EIO; } /* An extent is allocated after the write pointer */ if (!ret && num_conventional && last_alloc > cache->alloc_offset) { btrfs_err(fs_info, "zoned: got wrong write pointer in BG %llu: %llu > %llu", logical, last_alloc, cache->alloc_offset); ret = -EIO; } if (!ret) cache->meta_write_pointer = cache->alloc_offset + cache->start; kfree(alloc_offsets); free_extent_map(em); return ret; } void btrfs_calc_zone_unusable(struct btrfs_block_group *cache) { u64 unusable, free; if (!btrfs_is_zoned(cache->fs_info)) return; WARN_ON(cache->bytes_super != 0); unusable = cache->alloc_offset - cache->used; free = cache->length - cache->alloc_offset; /* We only need ->free_space in ALLOC_SEQ block groups */ cache->last_byte_to_unpin = (u64)-1; cache->cached = BTRFS_CACHE_FINISHED; cache->free_space_ctl->free_space = free; cache->zone_unusable = unusable; /* Should not have any excluded extents. Just in case, though */ btrfs_free_excluded_extents(cache); } void btrfs_redirty_list_add(struct btrfs_transaction *trans, struct extent_buffer *eb) { struct btrfs_fs_info *fs_info = eb->fs_info; if (!btrfs_is_zoned(fs_info) || btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN) || !list_empty(&eb->release_list)) return; memzero_extent_buffer(eb, 0, eb->len); set_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags); set_extent_buffer_dirty(eb); set_extent_bits_nowait(&trans->dirty_pages, eb->start, eb->start + eb->len - 1, EXTENT_DIRTY); spin_lock(&trans->releasing_ebs_lock); list_add_tail(&eb->release_list, &trans->releasing_ebs); spin_unlock(&trans->releasing_ebs_lock); atomic_inc(&eb->refs); } void btrfs_free_redirty_list(struct btrfs_transaction *trans) { spin_lock(&trans->releasing_ebs_lock); while (!list_empty(&trans->releasing_ebs)) { struct extent_buffer *eb; eb = list_first_entry(&trans->releasing_ebs, struct extent_buffer, release_list); list_del_init(&eb->release_list); free_extent_buffer(eb); } spin_unlock(&trans->releasing_ebs_lock); } bool btrfs_use_zone_append(struct btrfs_inode *inode, u64 start) { struct btrfs_fs_info *fs_info = inode->root->fs_info; struct btrfs_block_group *cache; bool ret = false; if (!btrfs_is_zoned(fs_info)) return false; if (!is_data_inode(&inode->vfs_inode)) return false; /* * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the * extent layout the relocation code has. * Furthermore we have set aside own block-group from which only the * relocation "process" can allocate and make sure only one process at a * time can add pages to an extent that gets relocated, so it's safe to * use regular REQ_OP_WRITE for this special case. */ if (btrfs_is_data_reloc_root(inode->root)) return false; cache = btrfs_lookup_block_group(fs_info, start); ASSERT(cache); if (!cache) return false; ret = cache->seq_zone; btrfs_put_block_group(cache); return ret; } void btrfs_record_physical_zoned(struct inode *inode, u64 file_offset, struct bio *bio) { struct btrfs_ordered_extent *ordered; const u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT; if (bio_op(bio) != REQ_OP_ZONE_APPEND) return; ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), file_offset); if (WARN_ON(!ordered)) return; ordered->physical = physical; ordered->bdev = bio->bi_bdev; btrfs_put_ordered_extent(ordered); } void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered) { struct btrfs_inode *inode = BTRFS_I(ordered->inode); struct btrfs_fs_info *fs_info = inode->root->fs_info; struct extent_map_tree *em_tree; struct extent_map *em; struct btrfs_ordered_sum *sum; u64 orig_logical = ordered->disk_bytenr; u64 *logical = NULL; int nr, stripe_len; /* Zoned devices should not have partitions. So, we can assume it is 0 */ ASSERT(!bdev_is_partition(ordered->bdev)); if (WARN_ON(!ordered->bdev)) return; if (WARN_ON(btrfs_rmap_block(fs_info, orig_logical, ordered->bdev, ordered->physical, &logical, &nr, &stripe_len))) goto out; WARN_ON(nr != 1); if (orig_logical == *logical) goto out; ordered->disk_bytenr = *logical; em_tree = &inode->extent_tree; write_lock(&em_tree->lock); em = search_extent_mapping(em_tree, ordered->file_offset, ordered->num_bytes); em->block_start = *logical; free_extent_map(em); write_unlock(&em_tree->lock); list_for_each_entry(sum, &ordered->list, list) { if (*logical < orig_logical) sum->bytenr -= orig_logical - *logical; else sum->bytenr += *logical - orig_logical; } out: kfree(logical); } bool btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, struct btrfs_block_group **cache_ret) { struct btrfs_block_group *cache; bool ret = true; if (!btrfs_is_zoned(fs_info)) return true; cache = *cache_ret; if (cache && (eb->start < cache->start || cache->start + cache->length <= eb->start)) { btrfs_put_block_group(cache); cache = NULL; *cache_ret = NULL; } if (!cache) cache = btrfs_lookup_block_group(fs_info, eb->start); if (cache) { if (cache->meta_write_pointer != eb->start) { btrfs_put_block_group(cache); cache = NULL; ret = false; } else { cache->meta_write_pointer = eb->start + eb->len; } *cache_ret = cache; } return ret; } void btrfs_revert_meta_write_pointer(struct btrfs_block_group *cache, struct extent_buffer *eb) { if (!btrfs_is_zoned(eb->fs_info) || !cache) return; ASSERT(cache->meta_write_pointer == eb->start + eb->len); cache->meta_write_pointer = eb->start; } int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length) { if (!btrfs_dev_is_sequential(device, physical)) return -EOPNOTSUPP; return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT, GFP_NOFS, 0); } static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical, struct blk_zone *zone) { struct btrfs_io_context *bioc = NULL; u64 mapped_length = PAGE_SIZE; unsigned int nofs_flag; int nmirrors; int i, ret; ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical, &mapped_length, &bioc); if (ret || !bioc || mapped_length < PAGE_SIZE) { ret = -EIO; goto out_put_bioc; } if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { ret = -EINVAL; goto out_put_bioc; } nofs_flag = memalloc_nofs_save(); nmirrors = (int)bioc->num_stripes; for (i = 0; i < nmirrors; i++) { u64 physical = bioc->stripes[i].physical; struct btrfs_device *dev = bioc->stripes[i].dev; /* Missing device */ if (!dev->bdev) continue; ret = btrfs_get_dev_zone(dev, physical, zone); /* Failing device */ if (ret == -EIO || ret == -EOPNOTSUPP) continue; break; } memalloc_nofs_restore(nofs_flag); out_put_bioc: btrfs_put_bioc(bioc); return ret; } /* * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by * filling zeros between @physical_pos to a write pointer of dev-replace * source device. */ int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical, u64 physical_start, u64 physical_pos) { struct btrfs_fs_info *fs_info = tgt_dev->fs_info; struct blk_zone zone; u64 length; u64 wp; int ret; if (!btrfs_dev_is_sequential(tgt_dev, physical_pos)) return 0; ret = read_zone_info(fs_info, logical, &zone); if (ret) return ret; wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT); if (physical_pos == wp) return 0; if (physical_pos > wp) return -EUCLEAN; length = wp - physical_pos; return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length); } struct btrfs_device *btrfs_zoned_get_device(struct btrfs_fs_info *fs_info, u64 logical, u64 length) { struct btrfs_device *device; struct extent_map *em; struct map_lookup *map; em = btrfs_get_chunk_map(fs_info, logical, length); if (IS_ERR(em)) return ERR_CAST(em); map = em->map_lookup; /* We only support single profile for now */ ASSERT(map->num_stripes == 1); device = map->stripes[0].dev; free_extent_map(em); return device; } void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg) { struct btrfs_fs_info *fs_info = bg->fs_info; spin_lock(&fs_info->relocation_bg_lock); if (fs_info->data_reloc_bg == bg->start) fs_info->data_reloc_bg = 0; spin_unlock(&fs_info->relocation_bg_lock); } void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info) { struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; struct btrfs_device *device; if (!btrfs_is_zoned(fs_info)) return; mutex_lock(&fs_devices->device_list_mutex); list_for_each_entry(device, &fs_devices->devices, dev_list) { if (device->zone_info) { vfree(device->zone_info->zone_cache); device->zone_info->zone_cache = NULL; } } mutex_unlock(&fs_devices->device_list_mutex); } void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical, u64 length) { struct btrfs_block_group *block_group; if (!btrfs_is_zoned(fs_info)) return; block_group = btrfs_lookup_block_group(fs_info, logical); /* It should be called on a previous data relocation block group. */ ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)); spin_lock(&block_group->lock); if (!block_group->zoned_data_reloc_ongoing) goto out; /* All relocation extents are written. */ if (block_group->start + block_group->alloc_offset == logical + length) { /* Now, release this block group for further allocations. */ block_group->zoned_data_reloc_ongoing = 0; } out: spin_unlock(&block_group->lock); btrfs_put_block_group(block_group); }