/******************************************************************* * This file is part of the Emulex Linux Device Driver for * * Fibre Channel Host Bus Adapters. * * Copyright (C) 2017-2021 Broadcom. All Rights Reserved. The term * * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * * Copyright (C) 2004-2016 Emulex. All rights reserved. * * EMULEX and SLI are trademarks of Emulex. * * www.broadcom.com * * Portions Copyright (C) 2004-2005 Christoph Hellwig * * * * This program is free software; you can redistribute it and/or * * modify it under the terms of version 2 of the GNU General * * Public License as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful. * * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * * TO BE LEGALLY INVALID. See the GNU General Public License for * * more details, a copy of which can be found in the file COPYING * * included with this package. * *******************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_X86 #include #endif #include "lpfc_hw4.h" #include "lpfc_hw.h" #include "lpfc_sli.h" #include "lpfc_sli4.h" #include "lpfc_nl.h" #include "lpfc_disc.h" #include "lpfc.h" #include "lpfc_scsi.h" #include "lpfc_nvme.h" #include "lpfc_crtn.h" #include "lpfc_logmsg.h" #include "lpfc_compat.h" #include "lpfc_debugfs.h" #include "lpfc_vport.h" #include "lpfc_version.h" /* There are only four IOCB completion types. */ typedef enum _lpfc_iocb_type { LPFC_UNKNOWN_IOCB, LPFC_UNSOL_IOCB, LPFC_SOL_IOCB, LPFC_ABORT_IOCB } lpfc_iocb_type; /* Provide function prototypes local to this module. */ static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *, uint32_t); static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *, uint8_t *, uint32_t *); static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *, struct lpfc_iocbq *); static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *, struct hbq_dmabuf *); static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf); static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, struct lpfc_cqe *cqe); static int lpfc_sli4_post_sgl_list(struct lpfc_hba *, struct list_head *, int); static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, struct lpfc_eqe *eqe); static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba); static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba); static struct lpfc_cqe *lpfc_sli4_cq_get(struct lpfc_queue *q); static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, struct lpfc_cqe *cqe); union lpfc_wqe128 lpfc_iread_cmd_template; union lpfc_wqe128 lpfc_iwrite_cmd_template; union lpfc_wqe128 lpfc_icmnd_cmd_template; static IOCB_t * lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq) { return &iocbq->iocb; } /* Setup WQE templates for IOs */ void lpfc_wqe_cmd_template(void) { union lpfc_wqe128 *wqe; /* IREAD template */ wqe = &lpfc_iread_cmd_template; memset(wqe, 0, sizeof(union lpfc_wqe128)); /* Word 0, 1, 2 - BDE is variable */ /* Word 3 - cmd_buff_len, payload_offset_len is zero */ /* Word 4 - total_xfer_len is variable */ /* Word 5 - is zero */ /* Word 6 - ctxt_tag, xri_tag is variable */ /* Word 7 */ bf_set(wqe_cmnd, &wqe->fcp_iread.wqe_com, CMD_FCP_IREAD64_WQE); bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, PARM_READ_CHECK); bf_set(wqe_class, &wqe->fcp_iread.wqe_com, CLASS3); bf_set(wqe_ct, &wqe->fcp_iread.wqe_com, SLI4_CT_RPI); /* Word 8 - abort_tag is variable */ /* Word 9 - reqtag is variable */ /* Word 10 - dbde, wqes is variable */ bf_set(wqe_qosd, &wqe->fcp_iread.wqe_com, 0); bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, LPFC_WQE_LENLOC_WORD4); bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); /* Word 11 - pbde is variable */ bf_set(wqe_cmd_type, &wqe->fcp_iread.wqe_com, COMMAND_DATA_IN); bf_set(wqe_cqid, &wqe->fcp_iread.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); /* Word 12 - is zero */ /* Word 13, 14, 15 - PBDE is variable */ /* IWRITE template */ wqe = &lpfc_iwrite_cmd_template; memset(wqe, 0, sizeof(union lpfc_wqe128)); /* Word 0, 1, 2 - BDE is variable */ /* Word 3 - cmd_buff_len, payload_offset_len is zero */ /* Word 4 - total_xfer_len is variable */ /* Word 5 - initial_xfer_len is variable */ /* Word 6 - ctxt_tag, xri_tag is variable */ /* Word 7 */ bf_set(wqe_cmnd, &wqe->fcp_iwrite.wqe_com, CMD_FCP_IWRITE64_WQE); bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, PARM_READ_CHECK); bf_set(wqe_class, &wqe->fcp_iwrite.wqe_com, CLASS3); bf_set(wqe_ct, &wqe->fcp_iwrite.wqe_com, SLI4_CT_RPI); /* Word 8 - abort_tag is variable */ /* Word 9 - reqtag is variable */ /* Word 10 - dbde, wqes is variable */ bf_set(wqe_qosd, &wqe->fcp_iwrite.wqe_com, 0); bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_LENLOC_WORD4); bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); /* Word 11 - pbde is variable */ bf_set(wqe_cmd_type, &wqe->fcp_iwrite.wqe_com, COMMAND_DATA_OUT); bf_set(wqe_cqid, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); /* Word 12 - is zero */ /* Word 13, 14, 15 - PBDE is variable */ /* ICMND template */ wqe = &lpfc_icmnd_cmd_template; memset(wqe, 0, sizeof(union lpfc_wqe128)); /* Word 0, 1, 2 - BDE is variable */ /* Word 3 - payload_offset_len is variable */ /* Word 4, 5 - is zero */ /* Word 6 - ctxt_tag, xri_tag is variable */ /* Word 7 */ bf_set(wqe_cmnd, &wqe->fcp_icmd.wqe_com, CMD_FCP_ICMND64_WQE); bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); bf_set(wqe_class, &wqe->fcp_icmd.wqe_com, CLASS3); bf_set(wqe_ct, &wqe->fcp_icmd.wqe_com, SLI4_CT_RPI); /* Word 8 - abort_tag is variable */ /* Word 9 - reqtag is variable */ /* Word 10 - dbde, wqes is variable */ bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_NONE); bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, LPFC_WQE_LENLOC_NONE); bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); /* Word 11 */ bf_set(wqe_cmd_type, &wqe->fcp_icmd.wqe_com, COMMAND_DATA_IN); bf_set(wqe_cqid, &wqe->fcp_icmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); bf_set(wqe_pbde, &wqe->fcp_icmd.wqe_com, 0); /* Word 12, 13, 14, 15 - is zero */ } #if defined(CONFIG_64BIT) && defined(__LITTLE_ENDIAN) /** * lpfc_sli4_pcimem_bcopy - SLI4 memory copy function * @srcp: Source memory pointer. * @destp: Destination memory pointer. * @cnt: Number of words required to be copied. * Must be a multiple of sizeof(uint64_t) * * This function is used for copying data between driver memory * and the SLI WQ. This function also changes the endianness * of each word if native endianness is different from SLI * endianness. This function can be called with or without * lock. **/ static void lpfc_sli4_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) { uint64_t *src = srcp; uint64_t *dest = destp; int i; for (i = 0; i < (int)cnt; i += sizeof(uint64_t)) *dest++ = *src++; } #else #define lpfc_sli4_pcimem_bcopy(a, b, c) lpfc_sli_pcimem_bcopy(a, b, c) #endif /** * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue * @q: The Work Queue to operate on. * @wqe: The work Queue Entry to put on the Work queue. * * This routine will copy the contents of @wqe to the next available entry on * the @q. This function will then ring the Work Queue Doorbell to signal the * HBA to start processing the Work Queue Entry. This function returns 0 if * successful. If no entries are available on @q then this function will return * -ENOMEM. * The caller is expected to hold the hbalock when calling this routine. **/ static int lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe128 *wqe) { union lpfc_wqe *temp_wqe; struct lpfc_register doorbell; uint32_t host_index; uint32_t idx; uint32_t i = 0; uint8_t *tmp; u32 if_type; /* sanity check on queue memory */ if (unlikely(!q)) return -ENOMEM; temp_wqe = lpfc_sli4_qe(q, q->host_index); /* If the host has not yet processed the next entry then we are done */ idx = ((q->host_index + 1) % q->entry_count); if (idx == q->hba_index) { q->WQ_overflow++; return -EBUSY; } q->WQ_posted++; /* set consumption flag every once in a while */ if (!((q->host_index + 1) % q->notify_interval)) bf_set(wqe_wqec, &wqe->generic.wqe_com, 1); else bf_set(wqe_wqec, &wqe->generic.wqe_com, 0); if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED) bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id); lpfc_sli4_pcimem_bcopy(wqe, temp_wqe, q->entry_size); if (q->dpp_enable && q->phba->cfg_enable_dpp) { /* write to DPP aperture taking advatage of Combined Writes */ tmp = (uint8_t *)temp_wqe; #ifdef __raw_writeq for (i = 0; i < q->entry_size; i += sizeof(uint64_t)) __raw_writeq(*((uint64_t *)(tmp + i)), q->dpp_regaddr + i); #else for (i = 0; i < q->entry_size; i += sizeof(uint32_t)) __raw_writel(*((uint32_t *)(tmp + i)), q->dpp_regaddr + i); #endif } /* ensure WQE bcopy and DPP flushed before doorbell write */ wmb(); /* Update the host index before invoking device */ host_index = q->host_index; q->host_index = idx; /* Ring Doorbell */ doorbell.word0 = 0; if (q->db_format == LPFC_DB_LIST_FORMAT) { if (q->dpp_enable && q->phba->cfg_enable_dpp) { bf_set(lpfc_if6_wq_db_list_fm_num_posted, &doorbell, 1); bf_set(lpfc_if6_wq_db_list_fm_dpp, &doorbell, 1); bf_set(lpfc_if6_wq_db_list_fm_dpp_id, &doorbell, q->dpp_id); bf_set(lpfc_if6_wq_db_list_fm_id, &doorbell, q->queue_id); } else { bf_set(lpfc_wq_db_list_fm_num_posted, &doorbell, 1); bf_set(lpfc_wq_db_list_fm_id, &doorbell, q->queue_id); /* Leave bits <23:16> clear for if_type 6 dpp */ if_type = bf_get(lpfc_sli_intf_if_type, &q->phba->sli4_hba.sli_intf); if (if_type != LPFC_SLI_INTF_IF_TYPE_6) bf_set(lpfc_wq_db_list_fm_index, &doorbell, host_index); } } else if (q->db_format == LPFC_DB_RING_FORMAT) { bf_set(lpfc_wq_db_ring_fm_num_posted, &doorbell, 1); bf_set(lpfc_wq_db_ring_fm_id, &doorbell, q->queue_id); } else { return -EINVAL; } writel(doorbell.word0, q->db_regaddr); return 0; } /** * lpfc_sli4_wq_release - Updates internal hba index for WQ * @q: The Work Queue to operate on. * @index: The index to advance the hba index to. * * This routine will update the HBA index of a queue to reflect consumption of * Work Queue Entries by the HBA. When the HBA indicates that it has consumed * an entry the host calls this function to update the queue's internal * pointers. **/ static void lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index) { /* sanity check on queue memory */ if (unlikely(!q)) return; q->hba_index = index; } /** * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue * @q: The Mailbox Queue to operate on. * @mqe: The Mailbox Queue Entry to put on the Work queue. * * This routine will copy the contents of @mqe to the next available entry on * the @q. This function will then ring the Work Queue Doorbell to signal the * HBA to start processing the Work Queue Entry. This function returns 0 if * successful. If no entries are available on @q then this function will return * -ENOMEM. * The caller is expected to hold the hbalock when calling this routine. **/ static uint32_t lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe) { struct lpfc_mqe *temp_mqe; struct lpfc_register doorbell; /* sanity check on queue memory */ if (unlikely(!q)) return -ENOMEM; temp_mqe = lpfc_sli4_qe(q, q->host_index); /* If the host has not yet processed the next entry then we are done */ if (((q->host_index + 1) % q->entry_count) == q->hba_index) return -ENOMEM; lpfc_sli4_pcimem_bcopy(mqe, temp_mqe, q->entry_size); /* Save off the mailbox pointer for completion */ q->phba->mbox = (MAILBOX_t *)temp_mqe; /* Update the host index before invoking device */ q->host_index = ((q->host_index + 1) % q->entry_count); /* Ring Doorbell */ doorbell.word0 = 0; bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1); bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id); writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr); return 0; } /** * lpfc_sli4_mq_release - Updates internal hba index for MQ * @q: The Mailbox Queue to operate on. * * This routine will update the HBA index of a queue to reflect consumption of * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed * an entry the host calls this function to update the queue's internal * pointers. This routine returns the number of entries that were consumed by * the HBA. **/ static uint32_t lpfc_sli4_mq_release(struct lpfc_queue *q) { /* sanity check on queue memory */ if (unlikely(!q)) return 0; /* Clear the mailbox pointer for completion */ q->phba->mbox = NULL; q->hba_index = ((q->hba_index + 1) % q->entry_count); return 1; } /** * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ * @q: The Event Queue to get the first valid EQE from * * This routine will get the first valid Event Queue Entry from @q, update * the queue's internal hba index, and return the EQE. If no valid EQEs are in * the Queue (no more work to do), or the Queue is full of EQEs that have been * processed, but not popped back to the HBA then this routine will return NULL. **/ static struct lpfc_eqe * lpfc_sli4_eq_get(struct lpfc_queue *q) { struct lpfc_eqe *eqe; /* sanity check on queue memory */ if (unlikely(!q)) return NULL; eqe = lpfc_sli4_qe(q, q->host_index); /* If the next EQE is not valid then we are done */ if (bf_get_le32(lpfc_eqe_valid, eqe) != q->qe_valid) return NULL; /* * insert barrier for instruction interlock : data from the hardware * must have the valid bit checked before it can be copied and acted * upon. Speculative instructions were allowing a bcopy at the start * of lpfc_sli4_fp_handle_wcqe(), which is called immediately * after our return, to copy data before the valid bit check above * was done. As such, some of the copied data was stale. The barrier * ensures the check is before any data is copied. */ mb(); return eqe; } /** * lpfc_sli4_eq_clr_intr - Turn off interrupts from this EQ * @q: The Event Queue to disable interrupts * **/ void lpfc_sli4_eq_clr_intr(struct lpfc_queue *q) { struct lpfc_register doorbell; doorbell.word0 = 0; bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); } /** * lpfc_sli4_if6_eq_clr_intr - Turn off interrupts from this EQ * @q: The Event Queue to disable interrupts * **/ void lpfc_sli4_if6_eq_clr_intr(struct lpfc_queue *q) { struct lpfc_register doorbell; doorbell.word0 = 0; bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); } /** * lpfc_sli4_write_eq_db - write EQ DB for eqe's consumed or arm state * @phba: adapter with EQ * @q: The Event Queue that the host has completed processing for. * @count: Number of elements that have been consumed * @arm: Indicates whether the host wants to arms this CQ. * * This routine will notify the HBA, by ringing the doorbell, that count * number of EQEs have been processed. The @arm parameter indicates whether * the queue should be rearmed when ringing the doorbell. **/ void lpfc_sli4_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, uint32_t count, bool arm) { struct lpfc_register doorbell; /* sanity check on queue memory */ if (unlikely(!q || (count == 0 && !arm))) return; /* ring doorbell for number popped */ doorbell.word0 = 0; if (arm) { bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1); } bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT); bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell, (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT)); bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id); writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); /* PCI read to flush PCI pipeline on re-arming for INTx mode */ if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) readl(q->phba->sli4_hba.EQDBregaddr); } /** * lpfc_sli4_if6_write_eq_db - write EQ DB for eqe's consumed or arm state * @phba: adapter with EQ * @q: The Event Queue that the host has completed processing for. * @count: Number of elements that have been consumed * @arm: Indicates whether the host wants to arms this CQ. * * This routine will notify the HBA, by ringing the doorbell, that count * number of EQEs have been processed. The @arm parameter indicates whether * the queue should be rearmed when ringing the doorbell. **/ void lpfc_sli4_if6_write_eq_db(struct lpfc_hba *phba, struct lpfc_queue *q, uint32_t count, bool arm) { struct lpfc_register doorbell; /* sanity check on queue memory */ if (unlikely(!q || (count == 0 && !arm))) return; /* ring doorbell for number popped */ doorbell.word0 = 0; if (arm) bf_set(lpfc_if6_eq_doorbell_arm, &doorbell, 1); bf_set(lpfc_if6_eq_doorbell_num_released, &doorbell, count); bf_set(lpfc_if6_eq_doorbell_eqid, &doorbell, q->queue_id); writel(doorbell.word0, q->phba->sli4_hba.EQDBregaddr); /* PCI read to flush PCI pipeline on re-arming for INTx mode */ if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM)) readl(q->phba->sli4_hba.EQDBregaddr); } static void __lpfc_sli4_consume_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, struct lpfc_eqe *eqe) { if (!phba->sli4_hba.pc_sli4_params.eqav) bf_set_le32(lpfc_eqe_valid, eqe, 0); eq->host_index = ((eq->host_index + 1) % eq->entry_count); /* if the index wrapped around, toggle the valid bit */ if (phba->sli4_hba.pc_sli4_params.eqav && !eq->host_index) eq->qe_valid = (eq->qe_valid) ? 0 : 1; } static void lpfc_sli4_eqcq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq) { struct lpfc_eqe *eqe = NULL; u32 eq_count = 0, cq_count = 0; struct lpfc_cqe *cqe = NULL; struct lpfc_queue *cq = NULL, *childq = NULL; int cqid = 0; /* walk all the EQ entries and drop on the floor */ eqe = lpfc_sli4_eq_get(eq); while (eqe) { /* Get the reference to the corresponding CQ */ cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); cq = NULL; list_for_each_entry(childq, &eq->child_list, list) { if (childq->queue_id == cqid) { cq = childq; break; } } /* If CQ is valid, iterate through it and drop all the CQEs */ if (cq) { cqe = lpfc_sli4_cq_get(cq); while (cqe) { __lpfc_sli4_consume_cqe(phba, cq, cqe); cq_count++; cqe = lpfc_sli4_cq_get(cq); } /* Clear and re-arm the CQ */ phba->sli4_hba.sli4_write_cq_db(phba, cq, cq_count, LPFC_QUEUE_REARM); cq_count = 0; } __lpfc_sli4_consume_eqe(phba, eq, eqe); eq_count++; eqe = lpfc_sli4_eq_get(eq); } /* Clear and re-arm the EQ */ phba->sli4_hba.sli4_write_eq_db(phba, eq, eq_count, LPFC_QUEUE_REARM); } static int lpfc_sli4_process_eq(struct lpfc_hba *phba, struct lpfc_queue *eq, uint8_t rearm) { struct lpfc_eqe *eqe; int count = 0, consumed = 0; if (cmpxchg(&eq->queue_claimed, 0, 1) != 0) goto rearm_and_exit; eqe = lpfc_sli4_eq_get(eq); while (eqe) { lpfc_sli4_hba_handle_eqe(phba, eq, eqe); __lpfc_sli4_consume_eqe(phba, eq, eqe); consumed++; if (!(++count % eq->max_proc_limit)) break; if (!(count % eq->notify_interval)) { phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, LPFC_QUEUE_NOARM); consumed = 0; } eqe = lpfc_sli4_eq_get(eq); } eq->EQ_processed += count; /* Track the max number of EQEs processed in 1 intr */ if (count > eq->EQ_max_eqe) eq->EQ_max_eqe = count; xchg(&eq->queue_claimed, 0); rearm_and_exit: /* Always clear the EQ. */ phba->sli4_hba.sli4_write_eq_db(phba, eq, consumed, rearm); return count; } /** * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ * @q: The Completion Queue to get the first valid CQE from * * This routine will get the first valid Completion Queue Entry from @q, update * the queue's internal hba index, and return the CQE. If no valid CQEs are in * the Queue (no more work to do), or the Queue is full of CQEs that have been * processed, but not popped back to the HBA then this routine will return NULL. **/ static struct lpfc_cqe * lpfc_sli4_cq_get(struct lpfc_queue *q) { struct lpfc_cqe *cqe; /* sanity check on queue memory */ if (unlikely(!q)) return NULL; cqe = lpfc_sli4_qe(q, q->host_index); /* If the next CQE is not valid then we are done */ if (bf_get_le32(lpfc_cqe_valid, cqe) != q->qe_valid) return NULL; /* * insert barrier for instruction interlock : data from the hardware * must have the valid bit checked before it can be copied and acted * upon. Given what was seen in lpfc_sli4_cq_get() of speculative * instructions allowing action on content before valid bit checked, * add barrier here as well. May not be needed as "content" is a * single 32-bit entity here (vs multi word structure for cq's). */ mb(); return cqe; } static void __lpfc_sli4_consume_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, struct lpfc_cqe *cqe) { if (!phba->sli4_hba.pc_sli4_params.cqav) bf_set_le32(lpfc_cqe_valid, cqe, 0); cq->host_index = ((cq->host_index + 1) % cq->entry_count); /* if the index wrapped around, toggle the valid bit */ if (phba->sli4_hba.pc_sli4_params.cqav && !cq->host_index) cq->qe_valid = (cq->qe_valid) ? 0 : 1; } /** * lpfc_sli4_write_cq_db - write cq DB for entries consumed or arm state. * @phba: the adapter with the CQ * @q: The Completion Queue that the host has completed processing for. * @count: the number of elements that were consumed * @arm: Indicates whether the host wants to arms this CQ. * * This routine will notify the HBA, by ringing the doorbell, that the * CQEs have been processed. The @arm parameter specifies whether the * queue should be rearmed when ringing the doorbell. **/ void lpfc_sli4_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, uint32_t count, bool arm) { struct lpfc_register doorbell; /* sanity check on queue memory */ if (unlikely(!q || (count == 0 && !arm))) return; /* ring doorbell for number popped */ doorbell.word0 = 0; if (arm) bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1); bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, count); bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION); bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell, (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT)); bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id); writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); } /** * lpfc_sli4_if6_write_cq_db - write cq DB for entries consumed or arm state. * @phba: the adapter with the CQ * @q: The Completion Queue that the host has completed processing for. * @count: the number of elements that were consumed * @arm: Indicates whether the host wants to arms this CQ. * * This routine will notify the HBA, by ringing the doorbell, that the * CQEs have been processed. The @arm parameter specifies whether the * queue should be rearmed when ringing the doorbell. **/ void lpfc_sli4_if6_write_cq_db(struct lpfc_hba *phba, struct lpfc_queue *q, uint32_t count, bool arm) { struct lpfc_register doorbell; /* sanity check on queue memory */ if (unlikely(!q || (count == 0 && !arm))) return; /* ring doorbell for number popped */ doorbell.word0 = 0; if (arm) bf_set(lpfc_if6_cq_doorbell_arm, &doorbell, 1); bf_set(lpfc_if6_cq_doorbell_num_released, &doorbell, count); bf_set(lpfc_if6_cq_doorbell_cqid, &doorbell, q->queue_id); writel(doorbell.word0, q->phba->sli4_hba.CQDBregaddr); } /* * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue * * This routine will copy the contents of @wqe to the next available entry on * the @q. This function will then ring the Receive Queue Doorbell to signal the * HBA to start processing the Receive Queue Entry. This function returns the * index that the rqe was copied to if successful. If no entries are available * on @q then this function will return -ENOMEM. * The caller is expected to hold the hbalock when calling this routine. **/ int lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq, struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe) { struct lpfc_rqe *temp_hrqe; struct lpfc_rqe *temp_drqe; struct lpfc_register doorbell; int hq_put_index; int dq_put_index; /* sanity check on queue memory */ if (unlikely(!hq) || unlikely(!dq)) return -ENOMEM; hq_put_index = hq->host_index; dq_put_index = dq->host_index; temp_hrqe = lpfc_sli4_qe(hq, hq_put_index); temp_drqe = lpfc_sli4_qe(dq, dq_put_index); if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ) return -EINVAL; if (hq_put_index != dq_put_index) return -EINVAL; /* If the host has not yet processed the next entry then we are done */ if (((hq_put_index + 1) % hq->entry_count) == hq->hba_index) return -EBUSY; lpfc_sli4_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size); lpfc_sli4_pcimem_bcopy(drqe, temp_drqe, dq->entry_size); /* Update the host index to point to the next slot */ hq->host_index = ((hq_put_index + 1) % hq->entry_count); dq->host_index = ((dq_put_index + 1) % dq->entry_count); hq->RQ_buf_posted++; /* Ring The Header Receive Queue Doorbell */ if (!(hq->host_index % hq->notify_interval)) { doorbell.word0 = 0; if (hq->db_format == LPFC_DB_RING_FORMAT) { bf_set(lpfc_rq_db_ring_fm_num_posted, &doorbell, hq->notify_interval); bf_set(lpfc_rq_db_ring_fm_id, &doorbell, hq->queue_id); } else if (hq->db_format == LPFC_DB_LIST_FORMAT) { bf_set(lpfc_rq_db_list_fm_num_posted, &doorbell, hq->notify_interval); bf_set(lpfc_rq_db_list_fm_index, &doorbell, hq->host_index); bf_set(lpfc_rq_db_list_fm_id, &doorbell, hq->queue_id); } else { return -EINVAL; } writel(doorbell.word0, hq->db_regaddr); } return hq_put_index; } /* * lpfc_sli4_rq_release - Updates internal hba index for RQ * * This routine will update the HBA index of a queue to reflect consumption of * one Receive Queue Entry by the HBA. When the HBA indicates that it has * consumed an entry the host calls this function to update the queue's * internal pointers. This routine returns the number of entries that were * consumed by the HBA. **/ static uint32_t lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq) { /* sanity check on queue memory */ if (unlikely(!hq) || unlikely(!dq)) return 0; if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ)) return 0; hq->hba_index = ((hq->hba_index + 1) % hq->entry_count); dq->hba_index = ((dq->hba_index + 1) % dq->entry_count); return 1; } /** * lpfc_cmd_iocb - Get next command iocb entry in the ring * @phba: Pointer to HBA context object. * @pring: Pointer to driver SLI ring object. * * This function returns pointer to next command iocb entry * in the command ring. The caller must hold hbalock to prevent * other threads consume the next command iocb. * SLI-2/SLI-3 provide different sized iocbs. **/ static inline IOCB_t * lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) { return (IOCB_t *) (((char *) pring->sli.sli3.cmdringaddr) + pring->sli.sli3.cmdidx * phba->iocb_cmd_size); } /** * lpfc_resp_iocb - Get next response iocb entry in the ring * @phba: Pointer to HBA context object. * @pring: Pointer to driver SLI ring object. * * This function returns pointer to next response iocb entry * in the response ring. The caller must hold hbalock to make sure * that no other thread consume the next response iocb. * SLI-2/SLI-3 provide different sized iocbs. **/ static inline IOCB_t * lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) { return (IOCB_t *) (((char *) pring->sli.sli3.rspringaddr) + pring->sli.sli3.rspidx * phba->iocb_rsp_size); } /** * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool * @phba: Pointer to HBA context object. * * This function is called with hbalock held. This function * allocates a new driver iocb object from the iocb pool. If the * allocation is successful, it returns pointer to the newly * allocated iocb object else it returns NULL. **/ struct lpfc_iocbq * __lpfc_sli_get_iocbq(struct lpfc_hba *phba) { struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list; struct lpfc_iocbq * iocbq = NULL; lockdep_assert_held(&phba->hbalock); list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list); if (iocbq) phba->iocb_cnt++; if (phba->iocb_cnt > phba->iocb_max) phba->iocb_max = phba->iocb_cnt; return iocbq; } /** * __lpfc_clear_active_sglq - Remove the active sglq for this XRI. * @phba: Pointer to HBA context object. * @xritag: XRI value. * * This function clears the sglq pointer from the array of active * sglq's. The xritag that is passed in is used to index into the * array. Before the xritag can be used it needs to be adjusted * by subtracting the xribase. * * Returns sglq ponter = success, NULL = Failure. **/ struct lpfc_sglq * __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag) { struct lpfc_sglq *sglq; sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL; return sglq; } /** * __lpfc_get_active_sglq - Get the active sglq for this XRI. * @phba: Pointer to HBA context object. * @xritag: XRI value. * * This function returns the sglq pointer from the array of active * sglq's. The xritag that is passed in is used to index into the * array. Before the xritag can be used it needs to be adjusted * by subtracting the xribase. * * Returns sglq ponter = success, NULL = Failure. **/ struct lpfc_sglq * __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag) { struct lpfc_sglq *sglq; sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag]; return sglq; } /** * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap. * @phba: Pointer to HBA context object. * @xritag: xri used in this exchange. * @rrq: The RRQ to be cleared. * **/ void lpfc_clr_rrq_active(struct lpfc_hba *phba, uint16_t xritag, struct lpfc_node_rrq *rrq) { struct lpfc_nodelist *ndlp = NULL; /* Lookup did to verify if did is still active on this vport */ if (rrq->vport) ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID); if (!ndlp) goto out; if (test_and_clear_bit(xritag, ndlp->active_rrqs_xri_bitmap)) { rrq->send_rrq = 0; rrq->xritag = 0; rrq->rrq_stop_time = 0; } out: mempool_free(rrq, phba->rrq_pool); } /** * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV. * @phba: Pointer to HBA context object. * * This function is called with hbalock held. This function * Checks if stop_time (ratov from setting rrq active) has * been reached, if it has and the send_rrq flag is set then * it will call lpfc_send_rrq. If the send_rrq flag is not set * then it will just call the routine to clear the rrq and * free the rrq resource. * The timer is set to the next rrq that is going to expire before * leaving the routine. * **/ void lpfc_handle_rrq_active(struct lpfc_hba *phba) { struct lpfc_node_rrq *rrq; struct lpfc_node_rrq *nextrrq; unsigned long next_time; unsigned long iflags; LIST_HEAD(send_rrq); spin_lock_irqsave(&phba->hbalock, iflags); phba->hba_flag &= ~HBA_RRQ_ACTIVE; next_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { if (time_after(jiffies, rrq->rrq_stop_time)) list_move(&rrq->list, &send_rrq); else if (time_before(rrq->rrq_stop_time, next_time)) next_time = rrq->rrq_stop_time; } spin_unlock_irqrestore(&phba->hbalock, iflags); if ((!list_empty(&phba->active_rrq_list)) && (!(phba->pport->load_flag & FC_UNLOADING))) mod_timer(&phba->rrq_tmr, next_time); list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) { list_del(&rrq->list); if (!rrq->send_rrq) { /* this call will free the rrq */ lpfc_clr_rrq_active(phba, rrq->xritag, rrq); } else if (lpfc_send_rrq(phba, rrq)) { /* if we send the rrq then the completion handler * will clear the bit in the xribitmap. */ lpfc_clr_rrq_active(phba, rrq->xritag, rrq); } } } /** * lpfc_get_active_rrq - Get the active RRQ for this exchange. * @vport: Pointer to vport context object. * @xri: The xri used in the exchange. * @did: The targets DID for this exchange. * * returns NULL = rrq not found in the phba->active_rrq_list. * rrq = rrq for this xri and target. **/ struct lpfc_node_rrq * lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did) { struct lpfc_hba *phba = vport->phba; struct lpfc_node_rrq *rrq; struct lpfc_node_rrq *nextrrq; unsigned long iflags; if (phba->sli_rev != LPFC_SLI_REV4) return NULL; spin_lock_irqsave(&phba->hbalock, iflags); list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { if (rrq->vport == vport && rrq->xritag == xri && rrq->nlp_DID == did){ list_del(&rrq->list); spin_unlock_irqrestore(&phba->hbalock, iflags); return rrq; } } spin_unlock_irqrestore(&phba->hbalock, iflags); return NULL; } /** * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport. * @vport: Pointer to vport context object. * @ndlp: Pointer to the lpfc_node_list structure. * If ndlp is NULL Remove all active RRQs for this vport from the * phba->active_rrq_list and clear the rrq. * If ndlp is not NULL then only remove rrqs for this vport & this ndlp. **/ void lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) { struct lpfc_hba *phba = vport->phba; struct lpfc_node_rrq *rrq; struct lpfc_node_rrq *nextrrq; unsigned long iflags; LIST_HEAD(rrq_list); if (phba->sli_rev != LPFC_SLI_REV4) return; if (!ndlp) { lpfc_sli4_vport_delete_els_xri_aborted(vport); lpfc_sli4_vport_delete_fcp_xri_aborted(vport); } spin_lock_irqsave(&phba->hbalock, iflags); list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) { if (rrq->vport != vport) continue; if (!ndlp || ndlp == lpfc_findnode_did(vport, rrq->nlp_DID)) list_move(&rrq->list, &rrq_list); } spin_unlock_irqrestore(&phba->hbalock, iflags); list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) { list_del(&rrq->list); lpfc_clr_rrq_active(phba, rrq->xritag, rrq); } } /** * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap. * @phba: Pointer to HBA context object. * @ndlp: Targets nodelist pointer for this exchange. * @xritag: the xri in the bitmap to test. * * This function returns: * 0 = rrq not active for this xri * 1 = rrq is valid for this xri. **/ int lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, uint16_t xritag) { if (!ndlp) return 0; if (!ndlp->active_rrqs_xri_bitmap) return 0; if (test_bit(xritag, ndlp->active_rrqs_xri_bitmap)) return 1; else return 0; } /** * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap. * @phba: Pointer to HBA context object. * @ndlp: nodelist pointer for this target. * @xritag: xri used in this exchange. * @rxid: Remote Exchange ID. * @send_rrq: Flag used to determine if we should send rrq els cmd. * * This function takes the hbalock. * The active bit is always set in the active rrq xri_bitmap even * if there is no slot avaiable for the other rrq information. * * returns 0 rrq actived for this xri * < 0 No memory or invalid ndlp. **/ int lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, uint16_t xritag, uint16_t rxid, uint16_t send_rrq) { unsigned long iflags; struct lpfc_node_rrq *rrq; int empty; if (!ndlp) return -EINVAL; if (!phba->cfg_enable_rrq) return -EINVAL; spin_lock_irqsave(&phba->hbalock, iflags); if (phba->pport->load_flag & FC_UNLOADING) { phba->hba_flag &= ~HBA_RRQ_ACTIVE; goto out; } if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING)) goto out; if (!ndlp->active_rrqs_xri_bitmap) goto out; if (test_and_set_bit(xritag, ndlp->active_rrqs_xri_bitmap)) goto out; spin_unlock_irqrestore(&phba->hbalock, iflags); rrq = mempool_alloc(phba->rrq_pool, GFP_ATOMIC); if (!rrq) { lpfc_printf_log(phba, KERN_INFO, LOG_SLI, "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x" " DID:0x%x Send:%d\n", xritag, rxid, ndlp->nlp_DID, send_rrq); return -EINVAL; } if (phba->cfg_enable_rrq == 1) rrq->send_rrq = send_rrq; else rrq->send_rrq = 0; rrq->xritag = xritag; rrq->rrq_stop_time = jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov + 1)); rrq->nlp_DID = ndlp->nlp_DID; rrq->vport = ndlp->vport; rrq->rxid = rxid; spin_lock_irqsave(&phba->hbalock, iflags); empty = list_empty(&phba->active_rrq_list); list_add_tail(&rrq->list, &phba->active_rrq_list); phba->hba_flag |= HBA_RRQ_ACTIVE; if (empty) lpfc_worker_wake_up(phba); spin_unlock_irqrestore(&phba->hbalock, iflags); return 0; out: spin_unlock_irqrestore(&phba->hbalock, iflags); lpfc_printf_log(phba, KERN_INFO, LOG_SLI, "2921 Can't set rrq active xri:0x%x rxid:0x%x" " DID:0x%x Send:%d\n", xritag, rxid, ndlp->nlp_DID, send_rrq); return -EINVAL; } /** * __lpfc_sli_get_els_sglq - Allocates an iocb object from sgl pool * @phba: Pointer to HBA context object. * @piocbq: Pointer to the iocbq. * * The driver calls this function with either the nvme ls ring lock * or the fc els ring lock held depending on the iocb usage. This function * gets a new driver sglq object from the sglq list. If the list is not empty * then it is successful, it returns pointer to the newly allocated sglq * object else it returns NULL. **/ static struct lpfc_sglq * __lpfc_sli_get_els_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) { struct list_head *lpfc_els_sgl_list = &phba->sli4_hba.lpfc_els_sgl_list; struct lpfc_sglq *sglq = NULL; struct lpfc_sglq *start_sglq = NULL; struct lpfc_io_buf *lpfc_cmd; struct lpfc_nodelist *ndlp; struct lpfc_sli_ring *pring = NULL; int found = 0; if (piocbq->iocb_flag & LPFC_IO_NVME_LS) pring = phba->sli4_hba.nvmels_wq->pring; else pring = lpfc_phba_elsring(phba); lockdep_assert_held(&pring->ring_lock); if (piocbq->iocb_flag & LPFC_IO_FCP) { lpfc_cmd = (struct lpfc_io_buf *) piocbq->context1; ndlp = lpfc_cmd->rdata->pnode; } else if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) && !(piocbq->iocb_flag & LPFC_IO_LIBDFC)) { ndlp = piocbq->context_un.ndlp; } else if (piocbq->iocb_flag & LPFC_IO_LIBDFC) { if (piocbq->iocb_flag & LPFC_IO_LOOPBACK) ndlp = NULL; else ndlp = piocbq->context_un.ndlp; } else { ndlp = piocbq->context1; } spin_lock(&phba->sli4_hba.sgl_list_lock); list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); start_sglq = sglq; while (!found) { if (!sglq) break; if (ndlp && ndlp->active_rrqs_xri_bitmap && test_bit(sglq->sli4_lxritag, ndlp->active_rrqs_xri_bitmap)) { /* This xri has an rrq outstanding for this DID. * put it back in the list and get another xri. */ list_add_tail(&sglq->list, lpfc_els_sgl_list); sglq = NULL; list_remove_head(lpfc_els_sgl_list, sglq, struct lpfc_sglq, list); if (sglq == start_sglq) { list_add_tail(&sglq->list, lpfc_els_sgl_list); sglq = NULL; break; } else continue; } sglq->ndlp = ndlp; found = 1; phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; sglq->state = SGL_ALLOCATED; } spin_unlock(&phba->sli4_hba.sgl_list_lock); return sglq; } /** * __lpfc_sli_get_nvmet_sglq - Allocates an iocb object from sgl pool * @phba: Pointer to HBA context object. * @piocbq: Pointer to the iocbq. * * This function is called with the sgl_list lock held. This function * gets a new driver sglq object from the sglq list. If the * list is not empty then it is successful, it returns pointer to the newly * allocated sglq object else it returns NULL. **/ struct lpfc_sglq * __lpfc_sli_get_nvmet_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq) { struct list_head *lpfc_nvmet_sgl_list; struct lpfc_sglq *sglq = NULL; lpfc_nvmet_sgl_list = &phba->sli4_hba.lpfc_nvmet_sgl_list; lockdep_assert_held(&phba->sli4_hba.sgl_list_lock); list_remove_head(lpfc_nvmet_sgl_list, sglq, struct lpfc_sglq, list); if (!sglq) return NULL; phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq; sglq->state = SGL_ALLOCATED; return sglq; } /** * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool * @phba: Pointer to HBA context object. * * This function is called with no lock held. This function * allocates a new driver iocb object from the iocb pool. If the * allocation is successful, it returns pointer to the newly * allocated iocb object else it returns NULL. **/ struct lpfc_iocbq * lpfc_sli_get_iocbq(struct lpfc_hba *phba) { struct lpfc_iocbq * iocbq = NULL; unsigned long iflags; spin_lock_irqsave(&phba->hbalock, iflags); iocbq = __lpfc_sli_get_iocbq(phba); spin_unlock_irqrestore(&phba->hbalock, iflags); return iocbq; } /** * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool * @phba: Pointer to HBA context object. * @iocbq: Pointer to driver iocb object. * * This function is called to release the driver iocb object * to the iocb pool. The iotag in the iocb object * does not change for each use of the iocb object. This function * clears all other fields of the iocb object when it is freed. * The sqlq structure that holds the xritag and phys and virtual * mappings for the scatter gather list is retrieved from the * active array of sglq. The get of the sglq pointer also clears * the entry in the array. If the status of the IO indiactes that * this IO was aborted then the sglq entry it put on the * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the * IO has good status or fails for any other reason then the sglq * entry is added to the free list (lpfc_els_sgl_list). The hbalock is * asserted held in the code path calling this routine. **/ static void __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) { struct lpfc_sglq *sglq; size_t start_clean = offsetof(struct lpfc_iocbq, iocb); unsigned long iflag = 0; struct lpfc_sli_ring *pring; if (iocbq->sli4_xritag == NO_XRI) sglq = NULL; else sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag); if (sglq) { if (iocbq->iocb_flag & LPFC_IO_NVMET) { spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, iflag); sglq->state = SGL_FREED; sglq->ndlp = NULL; list_add_tail(&sglq->list, &phba->sli4_hba.lpfc_nvmet_sgl_list); spin_unlock_irqrestore( &phba->sli4_hba.sgl_list_lock, iflag); goto out; } if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) && (!(unlikely(pci_channel_offline(phba->pcidev)))) && sglq->state != SGL_XRI_ABORTED) { spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, iflag); /* Check if we can get a reference on ndlp */ if (sglq->ndlp && !lpfc_nlp_get(sglq->ndlp)) sglq->ndlp = NULL; list_add(&sglq->list, &phba->sli4_hba.lpfc_abts_els_sgl_list); spin_unlock_irqrestore( &phba->sli4_hba.sgl_list_lock, iflag); } else { spin_lock_irqsave(&phba->sli4_hba.sgl_list_lock, iflag); sglq->state = SGL_FREED; sglq->ndlp = NULL; list_add_tail(&sglq->list, &phba->sli4_hba.lpfc_els_sgl_list); spin_unlock_irqrestore( &phba->sli4_hba.sgl_list_lock, iflag); pring = lpfc_phba_elsring(phba); /* Check if TXQ queue needs to be serviced */ if (pring && (!list_empty(&pring->txq))) lpfc_worker_wake_up(phba); } } out: /* * Clean all volatile data fields, preserve iotag and node struct. */ memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); iocbq->sli4_lxritag = NO_XRI; iocbq->sli4_xritag = NO_XRI; iocbq->iocb_flag &= ~(LPFC_IO_NVME | LPFC_IO_NVMET | LPFC_IO_CMF | LPFC_IO_NVME_LS); list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); } /** * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool * @phba: Pointer to HBA context object. * @iocbq: Pointer to driver iocb object. * * This function is called to release the driver iocb object to the * iocb pool. The iotag in the iocb object does not change for each * use of the iocb object. This function clears all other fields of * the iocb object when it is freed. The hbalock is asserted held in * the code path calling this routine. **/ static void __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) { size_t start_clean = offsetof(struct lpfc_iocbq, iocb); /* * Clean all volatile data fields, preserve iotag and node struct. */ memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean); iocbq->sli4_xritag = NO_XRI; list_add_tail(&iocbq->list, &phba->lpfc_iocb_list); } /** * __lpfc_sli_release_iocbq - Release iocb to the iocb pool * @phba: Pointer to HBA context object. * @iocbq: Pointer to driver iocb object. * * This function is called with hbalock held to release driver * iocb object to the iocb pool. The iotag in the iocb object * does not change for each use of the iocb object. This function * clears all other fields of the iocb object when it is freed. **/ static void __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) { lockdep_assert_held(&phba->hbalock); phba->__lpfc_sli_release_iocbq(phba, iocbq); phba->iocb_cnt--; } /** * lpfc_sli_release_iocbq - Release iocb to the iocb pool * @phba: Pointer to HBA context object. * @iocbq: Pointer to driver iocb object. * * This function is called with no lock held to release the iocb to * iocb pool. **/ void lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) { unsigned long iflags; /* * Clean all volatile data fields, preserve iotag and node struct. */ spin_lock_irqsave(&phba->hbalock, iflags); __lpfc_sli_release_iocbq(phba, iocbq); spin_unlock_irqrestore(&phba->hbalock, iflags); } /** * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list. * @phba: Pointer to HBA context object. * @iocblist: List of IOCBs. * @ulpstatus: ULP status in IOCB command field. * @ulpWord4: ULP word-4 in IOCB command field. * * This function is called with a list of IOCBs to cancel. It cancels the IOCB * on the list by invoking the complete callback function associated with the * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond * fields. **/ void lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist, uint32_t ulpstatus, uint32_t ulpWord4) { struct lpfc_iocbq *piocb; while (!list_empty(iocblist)) { list_remove_head(iocblist, piocb, struct lpfc_iocbq, list); if (piocb->wqe_cmpl) { if (piocb->iocb_flag & LPFC_IO_NVME) lpfc_nvme_cancel_iocb(phba, piocb, ulpstatus, ulpWord4); else lpfc_sli_release_iocbq(phba, piocb); } else if (piocb->iocb_cmpl) { piocb->iocb.ulpStatus = ulpstatus; piocb->iocb.un.ulpWord[4] = ulpWord4; (piocb->iocb_cmpl) (phba, piocb, piocb); } else { lpfc_sli_release_iocbq(phba, piocb); } } return; } /** * lpfc_sli_iocb_cmd_type - Get the iocb type * @iocb_cmnd: iocb command code. * * This function is called by ring event handler function to get the iocb type. * This function translates the iocb command to an iocb command type used to * decide the final disposition of each completed IOCB. * The function returns * LPFC_UNKNOWN_IOCB if it is an unsupported iocb * LPFC_SOL_IOCB if it is a solicited iocb completion * LPFC_ABORT_IOCB if it is an abort iocb * LPFC_UNSOL_IOCB if it is an unsolicited iocb * * The caller is not required to hold any lock. **/ static lpfc_iocb_type lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd) { lpfc_iocb_type type = LPFC_UNKNOWN_IOCB; if (iocb_cmnd > CMD_MAX_IOCB_CMD) return 0; switch (iocb_cmnd) { case CMD_XMIT_SEQUENCE_CR: case CMD_XMIT_SEQUENCE_CX: case CMD_XMIT_BCAST_CN: case CMD_XMIT_BCAST_CX: case CMD_ELS_REQUEST_CR: case CMD_ELS_REQUEST_CX: case CMD_CREATE_XRI_CR: case CMD_CREATE_XRI_CX: case CMD_GET_RPI_CN: case CMD_XMIT_ELS_RSP_CX: case CMD_GET_RPI_CR: case CMD_FCP_IWRITE_CR: case CMD_FCP_IWRITE_CX: case CMD_FCP_IREAD_CR: case CMD_FCP_IREAD_CX: case CMD_FCP_ICMND_CR: case CMD_FCP_ICMND_CX: case CMD_FCP_TSEND_CX: case CMD_FCP_TRSP_CX: case CMD_FCP_TRECEIVE_CX: case CMD_FCP_AUTO_TRSP_CX: case CMD_ADAPTER_MSG: case CMD_ADAPTER_DUMP: case CMD_XMIT_SEQUENCE64_CR: case CMD_XMIT_SEQUENCE64_CX: case CMD_XMIT_BCAST64_CN: case CMD_XMIT_BCAST64_CX: case CMD_ELS_REQUEST64_CR: case CMD_ELS_REQUEST64_CX: case CMD_FCP_IWRITE64_CR: case CMD_FCP_IWRITE64_CX: case CMD_FCP_IREAD64_CR: case CMD_FCP_IREAD64_CX: case CMD_FCP_ICMND64_CR: case CMD_FCP_ICMND64_CX: case CMD_FCP_TSEND64_CX: case CMD_FCP_TRSP64_CX: case CMD_FCP_TRECEIVE64_CX: case CMD_GEN_REQUEST64_CR: case CMD_GEN_REQUEST64_CX: case CMD_XMIT_ELS_RSP64_CX: case DSSCMD_IWRITE64_CR: case DSSCMD_IWRITE64_CX: case DSSCMD_IREAD64_CR: case DSSCMD_IREAD64_CX: case CMD_SEND_FRAME: type = LPFC_SOL_IOCB; break; case CMD_ABORT_XRI_CN: case CMD_ABORT_XRI_CX: case CMD_CLOSE_XRI_CN: case CMD_CLOSE_XRI_CX: case CMD_XRI_ABORTED_CX: case CMD_ABORT_MXRI64_CN: case CMD_XMIT_BLS_RSP64_CX: type = LPFC_ABORT_IOCB; break; case CMD_RCV_SEQUENCE_CX: case CMD_RCV_ELS_REQ_CX: case CMD_RCV_SEQUENCE64_CX: case CMD_RCV_ELS_REQ64_CX: case CMD_ASYNC_STATUS: case CMD_IOCB_RCV_SEQ64_CX: case CMD_IOCB_RCV_ELS64_CX: case CMD_IOCB_RCV_CONT64_CX: case CMD_IOCB_RET_XRI64_CX: type = LPFC_UNSOL_IOCB; break; case CMD_IOCB_XMIT_MSEQ64_CR: case CMD_IOCB_XMIT_MSEQ64_CX: case CMD_IOCB_RCV_SEQ_LIST64_CX: case CMD_IOCB_RCV_ELS_LIST64_CX: case CMD_IOCB_CLOSE_EXTENDED_CN: case CMD_IOCB_ABORT_EXTENDED_CN: case CMD_IOCB_RET_HBQE64_CN: case CMD_IOCB_FCP_IBIDIR64_CR: case CMD_IOCB_FCP_IBIDIR64_CX: case CMD_IOCB_FCP_ITASKMGT64_CX: case CMD_IOCB_LOGENTRY_CN: case CMD_IOCB_LOGENTRY_ASYNC_CN: printk("%s - Unhandled SLI-3 Command x%x\n", __func__, iocb_cmnd); type = LPFC_UNKNOWN_IOCB; break; default: type = LPFC_UNKNOWN_IOCB; break; } return type; } /** * lpfc_sli_ring_map - Issue config_ring mbox for all rings * @phba: Pointer to HBA context object. * * This function is called from SLI initialization code * to configure every ring of the HBA's SLI interface. The * caller is not required to hold any lock. This function issues * a config_ring mailbox command for each ring. * This function returns zero if successful else returns a negative * error code. **/ static int lpfc_sli_ring_map(struct lpfc_hba *phba) { struct lpfc_sli *psli = &phba->sli; LPFC_MBOXQ_t *pmb; MAILBOX_t *pmbox; int i, rc, ret = 0; pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!pmb) return -ENOMEM; pmbox = &pmb->u.mb; phba->link_state = LPFC_INIT_MBX_CMDS; for (i = 0; i < psli->num_rings; i++) { lpfc_config_ring(phba, i, pmb); rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); if (rc != MBX_SUCCESS) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0446 Adapter failed to init (%d), " "mbxCmd x%x CFG_RING, mbxStatus x%x, " "ring %d\n", rc, pmbox->mbxCommand, pmbox->mbxStatus, i); phba->link_state = LPFC_HBA_ERROR; ret = -ENXIO; break; } } mempool_free(pmb, phba->mbox_mem_pool); return ret; } /** * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq * @phba: Pointer to HBA context object. * @pring: Pointer to driver SLI ring object. * @piocb: Pointer to the driver iocb object. * * The driver calls this function with the hbalock held for SLI3 ports or * the ring lock held for SLI4 ports. The function adds the * new iocb to txcmplq of the given ring. This function always returns * 0. If this function is called for ELS ring, this function checks if * there is a vport associated with the ELS command. This function also * starts els_tmofunc timer if this is an ELS command. **/ static int lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, struct lpfc_iocbq *piocb) { if (phba->sli_rev == LPFC_SLI_REV4) lockdep_assert_held(&pring->ring_lock); else lockdep_assert_held(&phba->hbalock); BUG_ON(!piocb); list_add_tail(&piocb->list, &pring->txcmplq); piocb->iocb_flag |= LPFC_IO_ON_TXCMPLQ; pring->txcmplq_cnt++; if ((unlikely(pring->ringno == LPFC_ELS_RING)) && (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { BUG_ON(!piocb->vport); if (!(piocb->vport->load_flag & FC_UNLOADING)) mod_timer(&piocb->vport->els_tmofunc, jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov << 1))); } return 0; } /** * lpfc_sli_ringtx_get - Get first element of the txq * @phba: Pointer to HBA context object. * @pring: Pointer to driver SLI ring object. * * This function is called with hbalock held to get next * iocb in txq of the given ring. If there is any iocb in * the txq, the function returns first iocb in the list after * removing the iocb from the list, else it returns NULL. **/ struct lpfc_iocbq * lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) { struct lpfc_iocbq *cmd_iocb; lockdep_assert_held(&phba->hbalock); list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list); return cmd_iocb; } /** * lpfc_cmf_sync_cmpl - Process a CMF_SYNC_WQE cmpl * @phba: Pointer to HBA context object. * @cmdiocb: Pointer to driver command iocb object. * @cmf_cmpl: Pointer to completed WCQE. * * This routine will inform the driver of any BW adjustments we need * to make. These changes will be picked up during the next CMF * timer interrupt. In addition, any BW changes will be logged * with LOG_CGN_MGMT. **/ static void lpfc_cmf_sync_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, struct lpfc_wcqe_complete *cmf_cmpl) { union lpfc_wqe128 *wqe; uint32_t status, info; uint64_t bw, bwdif, slop; uint64_t pcent, bwpcent; int asig, afpin, sigcnt, fpincnt; int wsigmax, wfpinmax, cg, tdp; char *s; /* First check for error */ status = bf_get(lpfc_wcqe_c_status, cmf_cmpl); if (status) { lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, "6211 CMF_SYNC_WQE Error " "req_tag x%x status x%x hwstatus x%x " "tdatap x%x parm x%x\n", bf_get(lpfc_wcqe_c_request_tag, cmf_cmpl), bf_get(lpfc_wcqe_c_status, cmf_cmpl), bf_get(lpfc_wcqe_c_hw_status, cmf_cmpl), cmf_cmpl->total_data_placed, cmf_cmpl->parameter); goto out; } /* Gather congestion information on a successful cmpl */ info = cmf_cmpl->parameter; phba->cmf_active_info = info; /* See if firmware info count is valid or has changed */ if (info > LPFC_MAX_CMF_INFO || phba->cmf_info_per_interval == info) info = 0; else phba->cmf_info_per_interval = info; tdp = bf_get(lpfc_wcqe_c_cmf_bw, cmf_cmpl); cg = bf_get(lpfc_wcqe_c_cmf_cg, cmf_cmpl); /* Get BW requirement from firmware */ bw = (uint64_t)tdp * LPFC_CMF_BLK_SIZE; if (!bw) { lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, "6212 CMF_SYNC_WQE x%x: NULL bw\n", bf_get(lpfc_wcqe_c_request_tag, cmf_cmpl)); goto out; } /* Gather information needed for logging if a BW change is required */ wqe = &cmdiocb->wqe; asig = bf_get(cmf_sync_asig, &wqe->cmf_sync); afpin = bf_get(cmf_sync_afpin, &wqe->cmf_sync); fpincnt = bf_get(cmf_sync_wfpincnt, &wqe->cmf_sync); sigcnt = bf_get(cmf_sync_wsigcnt, &wqe->cmf_sync); if (phba->cmf_max_bytes_per_interval != bw || (asig || afpin || sigcnt || fpincnt)) { /* Are we increasing or decreasing BW */ if (phba->cmf_max_bytes_per_interval < bw) { bwdif = bw - phba->cmf_max_bytes_per_interval; s = "Increase"; } else { bwdif = phba->cmf_max_bytes_per_interval - bw; s = "Decrease"; } /* What is the change percentage */ slop = div_u64(phba->cmf_link_byte_count, 200); /*For rounding*/ pcent = div64_u64(bwdif * 100 + slop, phba->cmf_link_byte_count); bwpcent = div64_u64(bw * 100 + slop, phba->cmf_link_byte_count); if (asig) { lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, "6237 BW Threshold %lld%% (%lld): " "%lld%% %s: Signal Alarm: cg:%d " "Info:%u\n", bwpcent, bw, pcent, s, cg, phba->cmf_active_info); } else if (afpin) { lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, "6238 BW Threshold %lld%% (%lld): " "%lld%% %s: FPIN Alarm: cg:%d " "Info:%u\n", bwpcent, bw, pcent, s, cg, phba->cmf_active_info); } else if (sigcnt) { wsigmax = bf_get(cmf_sync_wsigmax, &wqe->cmf_sync); lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, "6239 BW Threshold %lld%% (%lld): " "%lld%% %s: Signal Warning: " "Cnt %d Max %d: cg:%d Info:%u\n", bwpcent, bw, pcent, s, sigcnt, wsigmax, cg, phba->cmf_active_info); } else if (fpincnt) { wfpinmax = bf_get(cmf_sync_wfpinmax, &wqe->cmf_sync); lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, "6240 BW Threshold %lld%% (%lld): " "%lld%% %s: FPIN Warning: " "Cnt %d Max %d: cg:%d Info:%u\n", bwpcent, bw, pcent, s, fpincnt, wfpinmax, cg, phba->cmf_active_info); } else { lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, "6241 BW Threshold %lld%% (%lld): " "CMF %lld%% %s: cg:%d Info:%u\n", bwpcent, bw, pcent, s, cg, phba->cmf_active_info); } } else if (info) { lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, "6246 Info Threshold %u\n", info); } /* Save BW change to be picked up during next timer interrupt */ phba->cmf_last_sync_bw = bw; out: lpfc_sli_release_iocbq(phba, cmdiocb); } /** * lpfc_issue_cmf_sync_wqe - Issue a CMF_SYNC_WQE * @phba: Pointer to HBA context object. * @ms: ms to set in WQE interval, 0 means use init op * @total: Total rcv bytes for this interval * * This routine is called every CMF timer interrupt. Its purpose is * to issue a CMF_SYNC_WQE to the firmware to inform it of any events * that may indicate we have congestion (FPINs or Signals). Upon * completion, the firmware will indicate any BW restrictions the * driver may need to take. **/ int lpfc_issue_cmf_sync_wqe(struct lpfc_hba *phba, u32 ms, u64 total) { union lpfc_wqe128 *wqe; struct lpfc_iocbq *sync_buf; unsigned long iflags; u32 ret_val; u32 atot, wtot, max; /* First address any alarm / warning activity */ atot = atomic_xchg(&phba->cgn_sync_alarm_cnt, 0); wtot = atomic_xchg(&phba->cgn_sync_warn_cnt, 0); /* ONLY Managed mode will send the CMF_SYNC_WQE to the HBA */ if (phba->cmf_active_mode != LPFC_CFG_MANAGED || phba->link_state == LPFC_LINK_DOWN) return 0; spin_lock_irqsave(&phba->hbalock, iflags); sync_buf = __lpfc_sli_get_iocbq(phba); if (!sync_buf) { lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT, "6213 No available WQEs for CMF_SYNC_WQE\n"); ret_val = ENOMEM; goto out_unlock; } wqe = &sync_buf->wqe; /* WQEs are reused. Clear stale data and set key fields to zero */ memset(wqe, 0, sizeof(*wqe)); /* If this is the very first CMF_SYNC_WQE, issue an init operation */ if (!ms) { lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, "6441 CMF Init %d - CMF_SYNC_WQE\n", phba->fc_eventTag); bf_set(cmf_sync_op, &wqe->cmf_sync, 1); /* 1=init */ bf_set(cmf_sync_interval, &wqe->cmf_sync, LPFC_CMF_INTERVAL); goto initpath; } bf_set(cmf_sync_op, &wqe->cmf_sync, 0); /* 0=recalc */ bf_set(cmf_sync_interval, &wqe->cmf_sync, ms); /* Check for alarms / warnings */ if (atot) { if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { /* We hit an Signal alarm condition */ bf_set(cmf_sync_asig, &wqe->cmf_sync, 1); } else { /* We hit a FPIN alarm condition */ bf_set(cmf_sync_afpin, &wqe->cmf_sync, 1); } } else if (wtot) { if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY || phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { /* We hit an Signal warning condition */ max = LPFC_SEC_TO_MSEC / lpfc_fabric_cgn_frequency * lpfc_acqe_cgn_frequency; bf_set(cmf_sync_wsigmax, &wqe->cmf_sync, max); bf_set(cmf_sync_wsigcnt, &wqe->cmf_sync, wtot); } else { /* We hit a FPIN warning condition */ bf_set(cmf_sync_wfpinmax, &wqe->cmf_sync, 1); bf_set(cmf_sync_wfpincnt, &wqe->cmf_sync, 1); } } /* Update total read blocks during previous timer interval */ wqe->cmf_sync.read_bytes = (u32)(total / LPFC_CMF_BLK_SIZE); initpath: bf_set(cmf_sync_ver, &wqe->cmf_sync, LPFC_CMF_SYNC_VER); wqe->cmf_sync.event_tag = phba->fc_eventTag; bf_set(cmf_sync_cmnd, &wqe->cmf_sync, CMD_CMF_SYNC_WQE); /* Setup reqtag to match the wqe completion. */ bf_set(cmf_sync_reqtag, &wqe->cmf_sync, sync_buf->iotag); bf_set(cmf_sync_qosd, &wqe->cmf_sync, 1); bf_set(cmf_sync_cmd_type, &wqe->cmf_sync, CMF_SYNC_COMMAND); bf_set(cmf_sync_wqec, &wqe->cmf_sync, 1); bf_set(cmf_sync_cqid, &wqe->cmf_sync, LPFC_WQE_CQ_ID_DEFAULT); sync_buf->vport = phba->pport; sync_buf->wqe_cmpl = lpfc_cmf_sync_cmpl; sync_buf->iocb_cmpl = NULL; sync_buf->context1 = NULL; sync_buf->context2 = NULL; sync_buf->context3 = NULL; sync_buf->sli4_xritag = NO_XRI; sync_buf->iocb_flag |= LPFC_IO_CMF; ret_val = lpfc_sli4_issue_wqe(phba, &phba->sli4_hba.hdwq[0], sync_buf); if (ret_val) { lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, "6214 Cannot issue CMF_SYNC_WQE: x%x\n", ret_val); __lpfc_sli_release_iocbq(phba, sync_buf); } out_unlock: spin_unlock_irqrestore(&phba->hbalock, iflags); return ret_val; } /** * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring * @phba: Pointer to HBA context object. * @pring: Pointer to driver SLI ring object. * * This function is called with hbalock held and the caller must post the * iocb without releasing the lock. If the caller releases the lock, * iocb slot returned by the function is not guaranteed to be available. * The function returns pointer to the next available iocb slot if there * is available slot in the ring, else it returns NULL. * If the get index of the ring is ahead of the put index, the function * will post an error attention event to the worker thread to take the * HBA to offline state. **/ static IOCB_t * lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring) { struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; uint32_t max_cmd_idx = pring->sli.sli3.numCiocb; lockdep_assert_held(&phba->hbalock); if ((pring->sli.sli3.next_cmdidx == pring->sli.sli3.cmdidx) && (++pring->sli.sli3.next_cmdidx >= max_cmd_idx)) pring->sli.sli3.next_cmdidx = 0; if (unlikely(pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx)) { pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); if (unlikely(pring->sli.sli3.local_getidx >= max_cmd_idx)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0315 Ring %d issue: portCmdGet %d " "is bigger than cmd ring %d\n", pring->ringno, pring->sli.sli3.local_getidx, max_cmd_idx); phba->link_state = LPFC_HBA_ERROR; /* * All error attention handlers are posted to * worker thread */ phba->work_ha |= HA_ERATT; phba->work_hs = HS_FFER3; lpfc_worker_wake_up(phba); return NULL; } if (pring->sli.sli3.local_getidx == pring->sli.sli3.next_cmdidx) return NULL; } return lpfc_cmd_iocb(phba, pring); } /** * lpfc_sli_next_iotag - Get an iotag for the iocb * @phba: Pointer to HBA context object. * @iocbq: Pointer to driver iocb object. * * This function gets an iotag for the iocb. If there is no unused iotag and * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup * array and assigns a new iotag. * The function returns the allocated iotag if successful, else returns zero. * Zero is not a valid iotag. * The caller is not required to hold any lock. **/ uint16_t lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) { struct lpfc_iocbq **new_arr; struct lpfc_iocbq **old_arr; size_t new_len; struct lpfc_sli *psli = &phba->sli; uint16_t iotag; spin_lock_irq(&phba->hbalock); iotag = psli->last_iotag; if(++iotag < psli->iocbq_lookup_len) { psli->last_iotag = iotag; psli->iocbq_lookup[iotag] = iocbq; spin_unlock_irq(&phba->hbalock); iocbq->iotag = iotag; return iotag; } else if (psli->iocbq_lookup_len < (0xffff - LPFC_IOCBQ_LOOKUP_INCREMENT)) { new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT; spin_unlock_irq(&phba->hbalock); new_arr = kcalloc(new_len, sizeof(struct lpfc_iocbq *), GFP_KERNEL); if (new_arr) { spin_lock_irq(&phba->hbalock); old_arr = psli->iocbq_lookup; if (new_len <= psli->iocbq_lookup_len) { /* highly unprobable case */ kfree(new_arr); iotag = psli->last_iotag; if(++iotag < psli->iocbq_lookup_len) { psli->last_iotag = iotag; psli->iocbq_lookup[iotag] = iocbq; spin_unlock_irq(&phba->hbalock); iocbq->iotag = iotag; return iotag; } spin_unlock_irq(&phba->hbalock); return 0; } if (psli->iocbq_lookup) memcpy(new_arr, old_arr, ((psli->last_iotag + 1) * sizeof (struct lpfc_iocbq *))); psli->iocbq_lookup = new_arr; psli->iocbq_lookup_len = new_len; psli->last_iotag = iotag; psli->iocbq_lookup[iotag] = iocbq; spin_unlock_irq(&phba->hbalock); iocbq->iotag = iotag; kfree(old_arr); return iotag; } } else spin_unlock_irq(&phba->hbalock); lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, "0318 Failed to allocate IOTAG.last IOTAG is %d\n", psli->last_iotag); return 0; } /** * lpfc_sli_submit_iocb - Submit an iocb to the firmware * @phba: Pointer to HBA context object. * @pring: Pointer to driver SLI ring object. * @iocb: Pointer to iocb slot in the ring. * @nextiocb: Pointer to driver iocb object which need to be * posted to firmware. * * This function is called to post a new iocb to the firmware. This * function copies the new iocb to ring iocb slot and updates the * ring pointers. It adds the new iocb to txcmplq if there is * a completion call back for this iocb else the function will free the * iocb object. The hbalock is asserted held in the code path calling * this routine. **/ static void lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, IOCB_t *iocb, struct lpfc_iocbq *nextiocb) { /* * Set up an iotag */ nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0; if (pring->ringno == LPFC_ELS_RING) { lpfc_debugfs_slow_ring_trc(phba, "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x", *(((uint32_t *) &nextiocb->iocb) + 4), *(((uint32_t *) &nextiocb->iocb) + 6), *(((uint32_t *) &nextiocb->iocb) + 7)); } /* * Issue iocb command to adapter */ lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size); wmb(); pring->stats.iocb_cmd++; /* * If there is no completion routine to call, we can release the * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF, * that have no rsp ring completion, iocb_cmpl MUST be NULL. */ if (nextiocb->iocb_cmpl) lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb); else __lpfc_sli_release_iocbq(phba, nextiocb); /* * Let the HBA know what IOCB slot will be the next one the * driver will put a command into. */ pring->sli.sli3.cmdidx = pring->sli.sli3.next_cmdidx; writel(pring->sli.sli3.cmdidx, &phba->host_gp[pring->ringno].cmdPutInx); } /** * lpfc_sli_update_full_ring - Update the chip attention register * @phba: Pointer to HBA context object. * @pring: Pointer to driver SLI ring object. * * The caller is not required to hold any lock for calling this function. * This function updates the chip attention bits for the ring to inform firmware * that there are pending work to be done for this ring and requests an * interrupt when there is space available in the ring. This function is * called when the driver is unable to post more iocbs to the ring due * to unavailability of space in the ring. **/ static void lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) { int ringno = pring->ringno; pring->flag |= LPFC_CALL_RING_AVAILABLE; wmb(); /* * Set ring 'ringno' to SET R0CE_REQ in Chip Att register. * The HBA will tell us when an IOCB entry is available. */ writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr); readl(phba->CAregaddr); /* flush */ pring->stats.iocb_cmd_full++; } /** * lpfc_sli_update_ring - Update chip attention register * @phba: Pointer to HBA context object. * @pring: Pointer to driver SLI ring object. * * This function updates the chip attention register bit for the * given ring to inform HBA that there is more work to be done * in this ring. The caller is not required to hold any lock. **/ static void lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) { int ringno = pring->ringno; /* * Tell the HBA that there is work to do in this ring. */ if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) { wmb(); writel(CA_R0ATT << (ringno * 4), phba->CAregaddr); readl(phba->CAregaddr); /* flush */ } } /** * lpfc_sli_resume_iocb - Process iocbs in the txq * @phba: Pointer to HBA context object. * @pring: Pointer to driver SLI ring object. * * This function is called with hbalock held to post pending iocbs * in the txq to the firmware. This function is called when driver * detects space available in the ring. **/ static void lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) { IOCB_t *iocb; struct lpfc_iocbq *nextiocb; lockdep_assert_held(&phba->hbalock); /* * Check to see if: * (a) there is anything on the txq to send * (b) link is up * (c) link attention events can be processed (fcp ring only) * (d) IOCB processing is not blocked by the outstanding mbox command. */ if (lpfc_is_link_up(phba) && (!list_empty(&pring->txq)) && (pring->ringno != LPFC_FCP_RING || phba->sli.sli_flag & LPFC_PROCESS_LA)) { while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && (nextiocb = lpfc_sli_ringtx_get(phba, pring))) lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); if (iocb) lpfc_sli_update_ring(phba, pring); else lpfc_sli_update_full_ring(phba, pring); } return; } /** * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ * @phba: Pointer to HBA context object. * @hbqno: HBQ number. * * This function is called with hbalock held to get the next * available slot for the given HBQ. If there is free slot * available for the HBQ it will return pointer to the next available * HBQ entry else it will return NULL. **/ static struct lpfc_hbq_entry * lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno) { struct hbq_s *hbqp = &phba->hbqs[hbqno]; lockdep_assert_held(&phba->hbalock); if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx && ++hbqp->next_hbqPutIdx >= hbqp->entry_count) hbqp->next_hbqPutIdx = 0; if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) { uint32_t raw_index = phba->hbq_get[hbqno]; uint32_t getidx = le32_to_cpu(raw_index); hbqp->local_hbqGetIdx = getidx; if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "1802 HBQ %d: local_hbqGetIdx " "%u is > than hbqp->entry_count %u\n", hbqno, hbqp->local_hbqGetIdx, hbqp->entry_count); phba->link_state = LPFC_HBA_ERROR; return NULL; } if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx) return NULL; } return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt + hbqp->hbqPutIdx; } /** * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers * @phba: Pointer to HBA context object. * * This function is called with no lock held to free all the * hbq buffers while uninitializing the SLI interface. It also * frees the HBQ buffers returned by the firmware but not yet * processed by the upper layers. **/ void lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba) { struct lpfc_dmabuf *dmabuf, *next_dmabuf; struct hbq_dmabuf *hbq_buf; unsigned long flags; int i, hbq_count; hbq_count = lpfc_sli_hbq_count(); /* Return all memory used by all HBQs */ spin_lock_irqsave(&phba->hbalock, flags); for (i = 0; i < hbq_count; ++i) { list_for_each_entry_safe(dmabuf, next_dmabuf, &phba->hbqs[i].hbq_buffer_list, list) { hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf); list_del(&hbq_buf->dbuf.list); (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf); } phba->hbqs[i].buffer_count = 0; } /* Mark the HBQs not in use */ phba->hbq_in_use = 0; spin_unlock_irqrestore(&phba->hbalock, flags); } /** * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware * @phba: Pointer to HBA context object. * @hbqno: HBQ number. * @hbq_buf: Pointer to HBQ buffer. * * This function is called with the hbalock held to post a * hbq buffer to the firmware. If the function finds an empty * slot in the HBQ, it will post the buffer. The function will return * pointer to the hbq entry if it successfully post the buffer * else it will return NULL. **/ static int lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno, struct hbq_dmabuf *hbq_buf) { lockdep_assert_held(&phba->hbalock); return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf); } /** * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware * @phba: Pointer to HBA context object. * @hbqno: HBQ number. * @hbq_buf: Pointer to HBQ buffer. * * This function is called with the hbalock held to post a hbq buffer to the * firmware. If the function finds an empty slot in the HBQ, it will post the * buffer and place it on the hbq_buffer_list. The function will return zero if * it successfully post the buffer else it will return an error. **/ static int lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno, struct hbq_dmabuf *hbq_buf) { struct lpfc_hbq_entry *hbqe; dma_addr_t physaddr = hbq_buf->dbuf.phys; lockdep_assert_held(&phba->hbalock); /* Get next HBQ entry slot to use */ hbqe = lpfc_sli_next_hbq_slot(phba, hbqno); if (hbqe) { struct hbq_s *hbqp = &phba->hbqs[hbqno]; hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr)); hbqe->bde.tus.f.bdeSize = hbq_buf->total_size; hbqe->bde.tus.f.bdeFlags = 0; hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w); hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag); /* Sync SLIM */ hbqp->hbqPutIdx = hbqp->next_hbqPutIdx; writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno); /* flush */ readl(phba->hbq_put + hbqno); list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list); return 0; } else return -ENOMEM; } /** * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware * @phba: Pointer to HBA context object. * @hbqno: HBQ number. * @hbq_buf: Pointer to HBQ buffer. * * This function is called with the hbalock held to post an RQE to the SLI4 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to * the hbq_buffer_list and return zero, otherwise it will return an error. **/ static int lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno, struct hbq_dmabuf *hbq_buf) { int rc; struct lpfc_rqe hrqe; struct lpfc_rqe drqe; struct lpfc_queue *hrq; struct lpfc_queue *drq; if (hbqno != LPFC_ELS_HBQ) return 1; hrq = phba->sli4_hba.hdr_rq; drq = phba->sli4_hba.dat_rq; lockdep_assert_held(&phba->hbalock); hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys); hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys); drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys); drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys); rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); if (rc < 0) return rc; hbq_buf->tag = (rc | (hbqno << 16)); list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list); return 0; } /* HBQ for ELS and CT traffic. */ static struct lpfc_hbq_init lpfc_els_hbq = { .rn = 1, .entry_count = 256, .mask_count = 0, .profile = 0, .ring_mask = (1 << LPFC_ELS_RING), .buffer_count = 0, .init_count = 40, .add_count = 40, }; /* Array of HBQs */ struct lpfc_hbq_init *lpfc_hbq_defs[] = { &lpfc_els_hbq, }; /** * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ * @phba: Pointer to HBA context object. * @hbqno: HBQ number. * @count: Number of HBQ buffers to be posted. * * This function is called with no lock held to post more hbq buffers to the * given HBQ. The function returns the number of HBQ buffers successfully * posted. **/ static int lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count) { uint32_t i, posted = 0; unsigned long flags; struct hbq_dmabuf *hbq_buffer; LIST_HEAD(hbq_buf_list); if (!phba->hbqs[hbqno].hbq_alloc_buffer) return 0; if ((phba->hbqs[hbqno].buffer_count + count) > lpfc_hbq_defs[hbqno]->entry_count) count = lpfc_hbq_defs[hbqno]->entry_count - phba->hbqs[hbqno].buffer_count; if (!count) return 0; /* Allocate HBQ entries */ for (i = 0; i < count; i++) { hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba); if (!hbq_buffer) break; list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list); } /* Check whether HBQ is still in use */ spin_lock_irqsave(&phba->hbalock, flags); if (!phba->hbq_in_use) goto err; while (!list_empty(&hbq_buf_list)) { list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, dbuf.list); hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count | (hbqno << 16)); if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) { phba->hbqs[hbqno].buffer_count++; posted++; } else (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); } spin_unlock_irqrestore(&phba->hbalock, flags); return posted; err: spin_unlock_irqrestore(&phba->hbalock, flags); while (!list_empty(&hbq_buf_list)) { list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf, dbuf.list); (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); } return 0; } /** * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware * @phba: Pointer to HBA context object. * @qno: HBQ number. * * This function posts more buffers to the HBQ. This function * is called with no lock held. The function returns the number of HBQ entries * successfully allocated. **/ int lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno) { if (phba->sli_rev == LPFC_SLI_REV4) return 0; else return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, lpfc_hbq_defs[qno]->add_count); } /** * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ * @phba: Pointer to HBA context object. * @qno: HBQ queue number. * * This function is called from SLI initialization code path with * no lock held to post initial HBQ buffers to firmware. The * function returns the number of HBQ entries successfully allocated. **/ static int lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno) { if (phba->sli_rev == LPFC_SLI_REV4) return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, lpfc_hbq_defs[qno]->entry_count); else return lpfc_sli_hbqbuf_fill_hbqs(phba, qno, lpfc_hbq_defs[qno]->init_count); } /* * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list * * This function removes the first hbq buffer on an hbq list and returns a * pointer to that buffer. If it finds no buffers on the list it returns NULL. **/ static struct hbq_dmabuf * lpfc_sli_hbqbuf_get(struct list_head *rb_list) { struct lpfc_dmabuf *d_buf; list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list); if (!d_buf) return NULL; return container_of(d_buf, struct hbq_dmabuf, dbuf); } /** * lpfc_sli_rqbuf_get - Remove the first dma buffer off of an RQ list * @phba: Pointer to HBA context object. * @hrq: HBQ number. * * This function removes the first RQ buffer on an RQ buffer list and returns a * pointer to that buffer. If it finds no buffers on the list it returns NULL. **/ static struct rqb_dmabuf * lpfc_sli_rqbuf_get(struct lpfc_hba *phba, struct lpfc_queue *hrq) { struct lpfc_dmabuf *h_buf; struct lpfc_rqb *rqbp; rqbp = hrq->rqbp; list_remove_head(&rqbp->rqb_buffer_list, h_buf, struct lpfc_dmabuf, list); if (!h_buf) return NULL; rqbp->buffer_count--; return container_of(h_buf, struct rqb_dmabuf, hbuf); } /** * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag * @phba: Pointer to HBA context object. * @tag: Tag of the hbq buffer. * * This function searches for the hbq buffer associated with the given tag in * the hbq buffer list. If it finds the hbq buffer, it returns the hbq_buffer * otherwise it returns NULL. **/ static struct hbq_dmabuf * lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag) { struct lpfc_dmabuf *d_buf; struct hbq_dmabuf *hbq_buf; uint32_t hbqno; hbqno = tag >> 16; if (hbqno >= LPFC_MAX_HBQS) return NULL; spin_lock_irq(&phba->hbalock); list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) { hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); if (hbq_buf->tag == tag) { spin_unlock_irq(&phba->hbalock); return hbq_buf; } } spin_unlock_irq(&phba->hbalock); lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "1803 Bad hbq tag. Data: x%x x%x\n", tag, phba->hbqs[tag >> 16].buffer_count); return NULL; } /** * lpfc_sli_free_hbq - Give back the hbq buffer to firmware * @phba: Pointer to HBA context object. * @hbq_buffer: Pointer to HBQ buffer. * * This function is called with hbalock. This function gives back * the hbq buffer to firmware. If the HBQ does not have space to * post the buffer, it will free the buffer. **/ void lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer) { uint32_t hbqno; if (hbq_buffer) { hbqno = hbq_buffer->tag >> 16; if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer); } } /** * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox * @mbxCommand: mailbox command code. * * This function is called by the mailbox event handler function to verify * that the completed mailbox command is a legitimate mailbox command. If the * completed mailbox is not known to the function, it will return MBX_SHUTDOWN * and the mailbox event handler will take the HBA offline. **/ static int lpfc_sli_chk_mbx_command(uint8_t mbxCommand) { uint8_t ret; switch (mbxCommand) { case MBX_LOAD_SM: case MBX_READ_NV: case MBX_WRITE_NV: case MBX_WRITE_VPARMS: case MBX_RUN_BIU_DIAG: case MBX_INIT_LINK: case MBX_DOWN_LINK: case MBX_CONFIG_LINK: case MBX_CONFIG_RING: case MBX_RESET_RING: case MBX_READ_CONFIG: case MBX_READ_RCONFIG: case MBX_READ_SPARM: case MBX_READ_STATUS: case MBX_READ_RPI: case MBX_READ_XRI: case MBX_READ_REV: case MBX_READ_LNK_STAT: case MBX_REG_LOGIN: case MBX_UNREG_LOGIN: case MBX_CLEAR_LA: case MBX_DUMP_MEMORY: case MBX_DUMP_CONTEXT: case MBX_RUN_DIAGS: case MBX_RESTART: case MBX_UPDATE_CFG: case MBX_DOWN_LOAD: case MBX_DEL_LD_ENTRY: case MBX_RUN_PROGRAM: case MBX_SET_MASK: case MBX_SET_VARIABLE: case MBX_UNREG_D_ID: case MBX_KILL_BOARD: case MBX_CONFIG_FARP: case MBX_BEACON: case MBX_LOAD_AREA: case MBX_RUN_BIU_DIAG64: case MBX_CONFIG_PORT: case MBX_READ_SPARM64: case MBX_READ_RPI64: case MBX_REG_LOGIN64: case MBX_READ_TOPOLOGY: case MBX_WRITE_WWN: case MBX_SET_DEBUG: case MBX_LOAD_EXP_ROM: case MBX_ASYNCEVT_ENABLE: case MBX_REG_VPI: case MBX_UNREG_VPI: case MBX_HEARTBEAT: case MBX_PORT_CAPABILITIES: case MBX_PORT_IOV_CONTROL: case MBX_SLI4_CONFIG: case MBX_SLI4_REQ_FTRS: case MBX_REG_FCFI: case MBX_UNREG_FCFI: case MBX_REG_VFI: case MBX_UNREG_VFI: case MBX_INIT_VPI: case MBX_INIT_VFI: case MBX_RESUME_RPI: case MBX_READ_EVENT_LOG_STATUS: case MBX_READ_EVENT_LOG: case MBX_SECURITY_MGMT: case MBX_AUTH_PORT: case MBX_ACCESS_VDATA: ret = mbxCommand; break; default: ret = MBX_SHUTDOWN; break; } return ret; } /** * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler * @phba: Pointer to HBA context object. * @pmboxq: Pointer to mailbox command. * * This is completion handler function for mailbox commands issued from * lpfc_sli_issue_mbox_wait function. This function is called by the * mailbox event handler function with no lock held. This function * will wake up thread waiting on the wait queue pointed by context1 * of the mailbox. **/ void lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) { unsigned long drvr_flag; struct completion *pmbox_done; /* * If pmbox_done is empty, the driver thread gave up waiting and * continued running. */ pmboxq->mbox_flag |= LPFC_MBX_WAKE; spin_lock_irqsave(&phba->hbalock, drvr_flag); pmbox_done = (struct completion *)pmboxq->context3; if (pmbox_done) complete(pmbox_done); spin_unlock_irqrestore(&phba->hbalock, drvr_flag); return; } static void __lpfc_sli_rpi_release(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) { unsigned long iflags; if (ndlp->nlp_flag & NLP_RELEASE_RPI) { lpfc_sli4_free_rpi(vport->phba, ndlp->nlp_rpi); spin_lock_irqsave(&ndlp->lock, iflags); ndlp->nlp_flag &= ~NLP_RELEASE_RPI; ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; spin_unlock_irqrestore(&ndlp->lock, iflags); } ndlp->nlp_flag &= ~NLP_UNREG_INP; } /** * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler * @phba: Pointer to HBA context object. * @pmb: Pointer to mailbox object. * * This function is the default mailbox completion handler. It * frees the memory resources associated with the completed mailbox * command. If the completed command is a REG_LOGIN mailbox command, * this function will issue a UREG_LOGIN to re-claim the RPI. **/ void lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) { struct lpfc_vport *vport = pmb->vport; struct lpfc_dmabuf *mp; struct lpfc_nodelist *ndlp; struct Scsi_Host *shost; uint16_t rpi, vpi; int rc; mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); if (mp) { lpfc_mbuf_free(phba, mp->virt, mp->phys); kfree(mp); } /* * If a REG_LOGIN succeeded after node is destroyed or node * is in re-discovery driver need to cleanup the RPI. */ if (!(phba->pport->load_flag & FC_UNLOADING) && pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 && !pmb->u.mb.mbxStatus) { rpi = pmb->u.mb.un.varWords[0]; vpi = pmb->u.mb.un.varRegLogin.vpi; if (phba->sli_rev == LPFC_SLI_REV4) vpi -= phba->sli4_hba.max_cfg_param.vpi_base; lpfc_unreg_login(phba, vpi, rpi, pmb); pmb->vport = vport; pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); if (rc != MBX_NOT_FINISHED) return; } if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) && !(phba->pport->load_flag & FC_UNLOADING) && !pmb->u.mb.mbxStatus) { shost = lpfc_shost_from_vport(vport); spin_lock_irq(shost->host_lock); vport->vpi_state |= LPFC_VPI_REGISTERED; vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI; spin_unlock_irq(shost->host_lock); } if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) { ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; lpfc_nlp_put(ndlp); pmb->ctx_buf = NULL; pmb->ctx_ndlp = NULL; } if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; /* Check to see if there are any deferred events to process */ if (ndlp) { lpfc_printf_vlog( vport, KERN_INFO, LOG_MBOX | LOG_DISCOVERY, "1438 UNREG cmpl deferred mbox x%x " "on NPort x%x Data: x%x x%x x%px x%x x%x\n", ndlp->nlp_rpi, ndlp->nlp_DID, ndlp->nlp_flag, ndlp->nlp_defer_did, ndlp, vport->load_flag, kref_read(&ndlp->kref)); if ((ndlp->nlp_flag & NLP_UNREG_INP) && (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) { ndlp->nlp_flag &= ~NLP_UNREG_INP; ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING; lpfc_issue_els_plogi(vport, ndlp->nlp_DID, 0); } else { __lpfc_sli_rpi_release(vport, ndlp); } /* The unreg_login mailbox is complete and had a * reference that has to be released. The PLOGI * got its own ref. */ lpfc_nlp_put(ndlp); pmb->ctx_ndlp = NULL; } } /* This nlp_put pairs with lpfc_sli4_resume_rpi */ if (pmb->u.mb.mbxCommand == MBX_RESUME_RPI) { ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; lpfc_nlp_put(ndlp); } /* Check security permission status on INIT_LINK mailbox command */ if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) && (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION)) lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2860 SLI authentication is required " "for INIT_LINK but has not done yet\n"); if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG) lpfc_sli4_mbox_cmd_free(phba, pmb); else mempool_free(pmb, phba->mbox_mem_pool); } /** * lpfc_sli4_unreg_rpi_cmpl_clr - mailbox completion handler * @phba: Pointer to HBA context object. * @pmb: Pointer to mailbox object. * * This function is the unreg rpi mailbox completion handler. It * frees the memory resources associated with the completed mailbox * command. An additional reference is put on the ndlp to prevent * lpfc_nlp_release from freeing the rpi bit in the bitmask before * the unreg mailbox command completes, this routine puts the * reference back. * **/ void lpfc_sli4_unreg_rpi_cmpl_clr(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) { struct lpfc_vport *vport = pmb->vport; struct lpfc_nodelist *ndlp; ndlp = pmb->ctx_ndlp; if (pmb->u.mb.mbxCommand == MBX_UNREG_LOGIN) { if (phba->sli_rev == LPFC_SLI_REV4 && (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >= LPFC_SLI_INTF_IF_TYPE_2)) { if (ndlp) { lpfc_printf_vlog( vport, KERN_INFO, LOG_MBOX | LOG_SLI, "0010 UNREG_LOGIN vpi:%x " "rpi:%x DID:%x defer x%x flg x%x " "x%px\n", vport->vpi, ndlp->nlp_rpi, ndlp->nlp_DID, ndlp->nlp_defer_did, ndlp->nlp_flag, ndlp); ndlp->nlp_flag &= ~NLP_LOGO_ACC; /* Check to see if there are any deferred * events to process */ if ((ndlp->nlp_flag & NLP_UNREG_INP) && (ndlp->nlp_defer_did != NLP_EVT_NOTHING_PENDING)) { lpfc_printf_vlog( vport, KERN_INFO, LOG_DISCOVERY, "4111 UNREG cmpl deferred " "clr x%x on " "NPort x%x Data: x%x x%px\n", ndlp->nlp_rpi, ndlp->nlp_DID, ndlp->nlp_defer_did, ndlp); ndlp->nlp_flag &= ~NLP_UNREG_INP; ndlp->nlp_defer_did = NLP_EVT_NOTHING_PENDING; lpfc_issue_els_plogi( vport, ndlp->nlp_DID, 0); } else { __lpfc_sli_rpi_release(vport, ndlp); } lpfc_nlp_put(ndlp); } } } mempool_free(pmb, phba->mbox_mem_pool); } /** * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware * @phba: Pointer to HBA context object. * * This function is called with no lock held. This function processes all * the completed mailbox commands and gives it to upper layers. The interrupt * service routine processes mailbox completion interrupt and adds completed * mailbox commands to the mboxq_cmpl queue and signals the worker thread. * Worker thread call lpfc_sli_handle_mb_event, which will return the * completed mailbox commands in mboxq_cmpl queue to the upper layers. This * function returns the mailbox commands to the upper layer by calling the * completion handler function of each mailbox. **/ int lpfc_sli_handle_mb_event(struct lpfc_hba *phba) { MAILBOX_t *pmbox; LPFC_MBOXQ_t *pmb; int rc; LIST_HEAD(cmplq); phba->sli.slistat.mbox_event++; /* Get all completed mailboxe buffers into the cmplq */ spin_lock_irq(&phba->hbalock); list_splice_init(&phba->sli.mboxq_cmpl, &cmplq); spin_unlock_irq(&phba->hbalock); /* Get a Mailbox buffer to setup mailbox commands for callback */ do { list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list); if (pmb == NULL) break; pmbox = &pmb->u.mb; if (pmbox->mbxCommand != MBX_HEARTBEAT) { if (pmb->vport) { lpfc_debugfs_disc_trc(pmb->vport, LPFC_DISC_TRC_MBOX_VPORT, "MBOX cmpl vport: cmd:x%x mb:x%x x%x", (uint32_t)pmbox->mbxCommand, pmbox->un.varWords[0], pmbox->un.varWords[1]); } else { lpfc_debugfs_disc_trc(phba->pport, LPFC_DISC_TRC_MBOX, "MBOX cmpl: cmd:x%x mb:x%x x%x", (uint32_t)pmbox->mbxCommand, pmbox->un.varWords[0], pmbox->un.varWords[1]); } } /* * It is a fatal error if unknown mbox command completion. */ if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) == MBX_SHUTDOWN) { /* Unknown mailbox command compl */ lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "(%d):0323 Unknown Mailbox command " "x%x (x%x/x%x) Cmpl\n", pmb->vport ? pmb->vport->vpi : LPFC_VPORT_UNKNOWN, pmbox->mbxCommand, lpfc_sli_config_mbox_subsys_get(phba, pmb), lpfc_sli_config_mbox_opcode_get(phba, pmb)); phba->link_state = LPFC_HBA_ERROR; phba->work_hs = HS_FFER3; lpfc_handle_eratt(phba); continue; } if (pmbox->mbxStatus) { phba->sli.slistat.mbox_stat_err++; if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) { /* Mbox cmd cmpl error - RETRYing */ lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, "(%d):0305 Mbox cmd cmpl " "error - RETRYing Data: x%x " "(x%x/x%x) x%x x%x x%x\n", pmb->vport ? pmb->vport->vpi : LPFC_VPORT_UNKNOWN, pmbox->mbxCommand, lpfc_sli_config_mbox_subsys_get(phba, pmb), lpfc_sli_config_mbox_opcode_get(phba, pmb), pmbox->mbxStatus, pmbox->un.varWords[0], pmb->vport ? pmb->vport->port_state : LPFC_VPORT_UNKNOWN); pmbox->mbxStatus = 0; pmbox->mbxOwner = OWN_HOST; rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); if (rc != MBX_NOT_FINISHED) continue; } } /* Mailbox cmd Cmpl */ lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl %ps " "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " "x%x x%x x%x\n", pmb->vport ? pmb->vport->vpi : 0, pmbox->mbxCommand, lpfc_sli_config_mbox_subsys_get(phba, pmb), lpfc_sli_config_mbox_opcode_get(phba, pmb), pmb->mbox_cmpl, *((uint32_t *) pmbox), pmbox->un.varWords[0], pmbox->un.varWords[1], pmbox->un.varWords[2], pmbox->un.varWords[3], pmbox->un.varWords[4], pmbox->un.varWords[5], pmbox->un.varWords[6], pmbox->un.varWords[7], pmbox->un.varWords[8], pmbox->un.varWords[9], pmbox->un.varWords[10]); if (pmb->mbox_cmpl) pmb->mbox_cmpl(phba,pmb); } while (1); return 0; } /** * lpfc_sli_get_buff - Get the buffer associated with the buffer tag * @phba: Pointer to HBA context object. * @pring: Pointer to driver SLI ring object. * @tag: buffer tag. * * This function is called with no lock held. When QUE_BUFTAG_BIT bit * is set in the tag the buffer is posted for a particular exchange, * the function will return the buffer without replacing the buffer. * If the buffer is for unsolicited ELS or CT traffic, this function * returns the buffer and also posts another buffer to the firmware. **/ static struct lpfc_dmabuf * lpfc_sli_get_buff(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, uint32_t tag) { struct hbq_dmabuf *hbq_entry; if (tag & QUE_BUFTAG_BIT) return lpfc_sli_ring_taggedbuf_get(phba, pring, tag); hbq_entry = lpfc_sli_hbqbuf_find(phba, tag); if (!hbq_entry) return NULL; return &hbq_entry->dbuf; } /** * lpfc_nvme_unsol_ls_handler - Process an unsolicited event data buffer * containing a NVME LS request. * @phba: pointer to lpfc hba data structure. * @piocb: pointer to the iocbq struct representing the sequence starting * frame. * * This routine initially validates the NVME LS, validates there is a login * with the port that sent the LS, and then calls the appropriate nvme host * or target LS request handler. **/ static void lpfc_nvme_unsol_ls_handler(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) { struct lpfc_nodelist *ndlp; struct lpfc_dmabuf *d_buf; struct hbq_dmabuf *nvmebuf; struct fc_frame_header *fc_hdr; struct lpfc_async_xchg_ctx *axchg = NULL; char *failwhy = NULL; uint32_t oxid, sid, did, fctl, size; int ret = 1; d_buf = piocb->context2; nvmebuf = container_of(d_buf, struct hbq_dmabuf, dbuf); fc_hdr = nvmebuf->hbuf.virt; oxid = be16_to_cpu(fc_hdr->fh_ox_id); sid = sli4_sid_from_fc_hdr(fc_hdr); did = sli4_did_from_fc_hdr(fc_hdr); fctl = (fc_hdr->fh_f_ctl[0] << 16 | fc_hdr->fh_f_ctl[1] << 8 | fc_hdr->fh_f_ctl[2]); size = bf_get(lpfc_rcqe_length, &nvmebuf->cq_event.cqe.rcqe_cmpl); lpfc_nvmeio_data(phba, "NVME LS RCV: xri x%x sz %d from %06x\n", oxid, size, sid); if (phba->pport->load_flag & FC_UNLOADING) { failwhy = "Driver Unloading"; } else if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) { failwhy = "NVME FC4 Disabled"; } else if (!phba->nvmet_support && !phba->pport->localport) { failwhy = "No Localport"; } else if (phba->nvmet_support && !phba->targetport) { failwhy = "No Targetport"; } else if (unlikely(fc_hdr->fh_r_ctl != FC_RCTL_ELS4_REQ)) { failwhy = "Bad NVME LS R_CTL"; } else if (unlikely((fctl & 0x00FF0000) != (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT))) { failwhy = "Bad NVME LS F_CTL"; } else { axchg = kzalloc(sizeof(*axchg), GFP_ATOMIC); if (!axchg) failwhy = "No CTX memory"; } if (unlikely(failwhy)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "6154 Drop NVME LS: SID %06X OXID x%X: %s\n", sid, oxid, failwhy); goto out_fail; } /* validate the source of the LS is logged in */ ndlp = lpfc_findnode_did(phba->pport, sid); if (!ndlp || ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { lpfc_printf_log(phba, KERN_ERR, LOG_NVME_DISC, "6216 NVME Unsol rcv: No ndlp: " "NPort_ID x%x oxid x%x\n", sid, oxid); goto out_fail; } axchg->phba = phba; axchg->ndlp = ndlp; axchg->size = size; axchg->oxid = oxid; axchg->sid = sid; axchg->wqeq = NULL; axchg->state = LPFC_NVME_STE_LS_RCV; axchg->entry_cnt = 1; axchg->rqb_buffer = (void *)nvmebuf; axchg->hdwq = &phba->sli4_hba.hdwq[0]; axchg->payload = nvmebuf->dbuf.virt; INIT_LIST_HEAD(&axchg->list); if (phba->nvmet_support) { ret = lpfc_nvmet_handle_lsreq(phba, axchg); spin_lock_irq(&ndlp->lock); if (!ret && !(ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH)) { ndlp->fc4_xpt_flags |= NLP_XPT_HAS_HH; spin_unlock_irq(&ndlp->lock); /* This reference is a single occurrence to hold the * node valid until the nvmet transport calls * host_release. */ if (!lpfc_nlp_get(ndlp)) goto out_fail; lpfc_printf_log(phba, KERN_ERR, LOG_NODE, "6206 NVMET unsol ls_req ndlp x%px " "DID x%x xflags x%x refcnt %d\n", ndlp, ndlp->nlp_DID, ndlp->fc4_xpt_flags, kref_read(&ndlp->kref)); } else { spin_unlock_irq(&ndlp->lock); } } else { ret = lpfc_nvme_handle_lsreq(phba, axchg); } /* if zero, LS was successfully handled. If non-zero, LS not handled */ if (!ret) return; out_fail: lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "6155 Drop NVME LS from DID %06X: SID %06X OXID x%X " "NVMe%s handler failed %d\n", did, sid, oxid, (phba->nvmet_support) ? "T" : "I", ret); /* recycle receive buffer */ lpfc_in_buf_free(phba, &nvmebuf->dbuf); /* If start of new exchange, abort it */ if (axchg && (fctl & FC_FC_FIRST_SEQ && !(fctl & FC_FC_EX_CTX))) ret = lpfc_nvme_unsol_ls_issue_abort(phba, axchg, sid, oxid); if (ret) kfree(axchg); } /** * lpfc_complete_unsol_iocb - Complete an unsolicited sequence * @phba: Pointer to HBA context object. * @pring: Pointer to driver SLI ring object. * @saveq: Pointer to the iocbq struct representing the sequence starting frame. * @fch_r_ctl: the r_ctl for the first frame of the sequence. * @fch_type: the type for the first frame of the sequence. * * This function is called with no lock held. This function uses the r_ctl and * type of the received sequence to find the correct callback function to call * to process the sequence. **/ static int lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, struct lpfc_iocbq *saveq, uint32_t fch_r_ctl, uint32_t fch_type) { int i; switch (fch_type) { case FC_TYPE_NVME: lpfc_nvme_unsol_ls_handler(phba, saveq); return 1; default: break; } /* unSolicited Responses */ if (pring->prt[0].profile) { if (pring->prt[0].lpfc_sli_rcv_unsol_event) (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring, saveq); return 1; } /* We must search, based on rctl / type for the right routine */ for (i = 0; i < pring->num_mask; i++) { if ((pring->prt[i].rctl == fch_r_ctl) && (pring->prt[i].type == fch_type)) { if (pring->prt[i].lpfc_sli_rcv_unsol_event) (pring->prt[i].lpfc_sli_rcv_unsol_event) (phba, pring, saveq); return 1; } } return 0; } /** * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler * @phba: Pointer to HBA context object. * @pring: Pointer to driver SLI ring object. * @saveq: Pointer to the unsolicited iocb. * * This function is called with no lock held by the ring event handler * when there is an unsolicited iocb posted to the response ring by the * firmware. This function gets the buffer associated with the iocbs * and calls the event handler for the ring. This function handles both * qring buffers and hbq buffers. * When the function returns 1 the caller can free the iocb object otherwise * upper layer functions will free the iocb objects. **/ static int lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, struct lpfc_iocbq *saveq) { IOCB_t * irsp; WORD5 * w5p; uint32_t Rctl, Type; struct lpfc_iocbq *iocbq; struct lpfc_dmabuf *dmzbuf; irsp = &(saveq->iocb); if (irsp->ulpCommand == CMD_ASYNC_STATUS) { if (pring->lpfc_sli_rcv_async_status) pring->lpfc_sli_rcv_async_status(phba, pring, saveq); else lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, "0316 Ring %d handler: unexpected " "ASYNC_STATUS iocb received evt_code " "0x%x\n", pring->ringno, irsp->un.asyncstat.evt_code); return 1; } if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) && (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) { if (irsp->ulpBdeCount > 0) { dmzbuf = lpfc_sli_get_buff(phba, pring, irsp->un.ulpWord[3]); lpfc_in_buf_free(phba, dmzbuf); } if (irsp->ulpBdeCount > 1) { dmzbuf = lpfc_sli_get_buff(phba, pring, irsp->unsli3.sli3Words[3]); lpfc_in_buf_free(phba, dmzbuf); } if (irsp->ulpBdeCount > 2) { dmzbuf = lpfc_sli_get_buff(phba, pring, irsp->unsli3.sli3Words[7]); lpfc_in_buf_free(phba, dmzbuf); } return 1; } if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { if (irsp->ulpBdeCount != 0) { saveq->context2 = lpfc_sli_get_buff(phba, pring, irsp->un.ulpWord[3]); if (!saveq->context2) lpfc_printf_log(phba, KERN_ERR, LOG_SLI, "0341 Ring %d Cannot find buffer for " "an unsolicited iocb. tag 0x%x\n", pring->ringno, irsp->un.ulpWord[3]); } if (irsp->ulpBdeCount == 2) { saveq->context3 = lpfc_sli_get_buff(phba, pring, irsp->unsli3.sli3Words[7]); if (!saveq->context3) lpfc_printf_log(phba, KERN_ERR, LOG_SLI, "0342 Ring %d Cannot find buffer for an" " unsolicited iocb. tag 0x%x\n", pring->ringno, irsp->unsli3.sli3Words[7]); } list_for_each_entry(iocbq, &saveq->list, list) { irsp = &(iocbq->iocb); if (irsp->ulpBdeCount != 0) { iocbq->context2 = lpfc_sli_get_buff(phba, pring, irsp->un.ulpWord[3]); if (!iocbq->context2) lpfc_printf_log(phba, KERN_ERR, LOG_SLI, "0343 Ring %d Cannot find " "buffer for an unsolicited iocb" ". tag 0x%x\n", pring->ringno, irsp->un.ulpWord[3]); } if (irsp->ulpBdeCount == 2) { iocbq->context3 = lpfc_sli_get_buff(phba, pring, irsp->unsli3.sli3Words[7]); if (!iocbq->context3) lpfc_printf_log(phba, KERN_ERR, LOG_SLI, "0344 Ring %d Cannot find " "buffer for an unsolicited " "iocb. tag 0x%x\n", pring->ringno, irsp->unsli3.sli3Words[7]); } } } if (irsp->ulpBdeCount != 0 && (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX || irsp->ulpStatus == IOSTAT_INTERMED_RSP)) { int found = 0; /* search continue save q for same XRI */ list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) { if (iocbq->iocb.unsli3.rcvsli3.ox_id == saveq->iocb.unsli3.rcvsli3.ox_id) { list_add_tail(&saveq->list, &iocbq->list); found = 1; break; } } if (!found) list_add_tail(&saveq->clist, &pring->iocb_continue_saveq); if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) { list_del_init(&iocbq->clist); saveq = iocbq; irsp = &(saveq->iocb); } else return 0; } if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) || (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) || (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) { Rctl = FC_RCTL_ELS_REQ; Type = FC_TYPE_ELS; } else { w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]); Rctl = w5p->hcsw.Rctl; Type = w5p->hcsw.Type; /* Firmware Workaround */ if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) && (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX || irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) { Rctl = FC_RCTL_ELS_REQ; Type = FC_TYPE_ELS; w5p->hcsw.Rctl = Rctl; w5p->hcsw.Type = Type; } } if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type)) lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, "0313 Ring %d handler: unexpected Rctl x%x " "Type x%x received\n", pring->ringno, Rctl, Type); return 1; } /** * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb * @phba: Pointer to HBA context object. * @pring: Pointer to driver SLI ring object. * @prspiocb: Pointer to response iocb object. * * This function looks up the iocb_lookup table to get the command iocb * corresponding to the given response iocb using the iotag of the * response iocb. The driver calls this function with the hbalock held * for SLI3 ports or the ring lock held for SLI4 ports. * This function returns the command iocb object if it finds the command * iocb else returns NULL. **/ static struct lpfc_iocbq * lpfc_sli_iocbq_lookup(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, struct lpfc_iocbq *prspiocb) { struct lpfc_iocbq *cmd_iocb = NULL; uint16_t iotag; spinlock_t *temp_lock = NULL; unsigned long iflag = 0; if (phba->sli_rev == LPFC_SLI_REV4) temp_lock = &pring->ring_lock; else temp_lock = &phba->hbalock; spin_lock_irqsave(temp_lock, iflag); iotag = prspiocb->iocb.ulpIoTag; if (iotag != 0 && iotag <= phba->sli.last_iotag) { cmd_iocb = phba->sli.iocbq_lookup[iotag]; if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { /* remove from txcmpl queue list */ list_del_init(&cmd_iocb->list); cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; pring->txcmplq_cnt--; spin_unlock_irqrestore(temp_lock, iflag); return cmd_iocb; } } spin_unlock_irqrestore(temp_lock, iflag); lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0317 iotag x%x is out of " "range: max iotag x%x wd0 x%x\n", iotag, phba->sli.last_iotag, *(((uint32_t *) &prspiocb->iocb) + 7)); return NULL; } /** * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag * @phba: Pointer to HBA context object. * @pring: Pointer to driver SLI ring object. * @iotag: IOCB tag. * * This function looks up the iocb_lookup table to get the command iocb * corresponding to the given iotag. The driver calls this function with * the ring lock held because this function is an SLI4 port only helper. * This function returns the command iocb object if it finds the command * iocb else returns NULL. **/ static struct lpfc_iocbq * lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, uint16_t iotag) { struct lpfc_iocbq *cmd_iocb = NULL; spinlock_t *temp_lock = NULL; unsigned long iflag = 0; if (phba->sli_rev == LPFC_SLI_REV4) temp_lock = &pring->ring_lock; else temp_lock = &phba->hbalock; spin_lock_irqsave(temp_lock, iflag); if (iotag != 0 && iotag <= phba->sli.last_iotag) { cmd_iocb = phba->sli.iocbq_lookup[iotag]; if (cmd_iocb->iocb_flag & LPFC_IO_ON_TXCMPLQ) { /* remove from txcmpl queue list */ list_del_init(&cmd_iocb->list); cmd_iocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; pring->txcmplq_cnt--; spin_unlock_irqrestore(temp_lock, iflag); return cmd_iocb; } } spin_unlock_irqrestore(temp_lock, iflag); lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0372 iotag x%x lookup error: max iotag (x%x) " "iocb_flag x%x\n", iotag, phba->sli.last_iotag, cmd_iocb ? cmd_iocb->iocb_flag : 0xffff); return NULL; } /** * lpfc_sli_process_sol_iocb - process solicited iocb completion * @phba: Pointer to HBA context object. * @pring: Pointer to driver SLI ring object. * @saveq: Pointer to the response iocb to be processed. * * This function is called by the ring event handler for non-fcp * rings when there is a new response iocb in the response ring. * The caller is not required to hold any locks. This function * gets the command iocb associated with the response iocb and * calls the completion handler for the command iocb. If there * is no completion handler, the function will free the resources * associated with command iocb. If the response iocb is for * an already aborted command iocb, the status of the completion * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED. * This function always returns 1. **/ static int lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, struct lpfc_iocbq *saveq) { struct lpfc_iocbq *cmdiocbp; int rc = 1; unsigned long iflag; cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); if (cmdiocbp) { if (cmdiocbp->iocb_cmpl) { /* * If an ELS command failed send an event to mgmt * application. */ if (saveq->iocb.ulpStatus && (pring->ringno == LPFC_ELS_RING) && (cmdiocbp->iocb.ulpCommand == CMD_ELS_REQUEST64_CR)) lpfc_send_els_failure_event(phba, cmdiocbp, saveq); /* * Post all ELS completions to the worker thread. * All other are passed to the completion callback. */ if (pring->ringno == LPFC_ELS_RING) { if ((phba->sli_rev < LPFC_SLI_REV4) && (cmdiocbp->iocb_flag & LPFC_DRIVER_ABORTED)) { spin_lock_irqsave(&phba->hbalock, iflag); cmdiocbp->iocb_flag &= ~LPFC_DRIVER_ABORTED; spin_unlock_irqrestore(&phba->hbalock, iflag); saveq->iocb.ulpStatus = IOSTAT_LOCAL_REJECT; saveq->iocb.un.ulpWord[4] = IOERR_SLI_ABORTED; /* Firmware could still be in progress * of DMAing payload, so don't free data * buffer till after a hbeat. */ spin_lock_irqsave(&phba->hbalock, iflag); saveq->iocb_flag |= LPFC_DELAY_MEM_FREE; spin_unlock_irqrestore(&phba->hbalock, iflag); } if (phba->sli_rev == LPFC_SLI_REV4) { if (saveq->iocb_flag & LPFC_EXCHANGE_BUSY) { /* Set cmdiocb flag for the * exchange busy so sgl (xri) * will not be released until * the abort xri is received * from hba. */ spin_lock_irqsave( &phba->hbalock, iflag); cmdiocbp->iocb_flag |= LPFC_EXCHANGE_BUSY; spin_unlock_irqrestore( &phba->hbalock, iflag); } if (cmdiocbp->iocb_flag & LPFC_DRIVER_ABORTED) { /* * Clear LPFC_DRIVER_ABORTED * bit in case it was driver * initiated abort. */ spin_lock_irqsave( &phba->hbalock, iflag); cmdiocbp->iocb_flag &= ~LPFC_DRIVER_ABORTED; spin_unlock_irqrestore( &phba->hbalock, iflag); cmdiocbp->iocb.ulpStatus = IOSTAT_LOCAL_REJECT; cmdiocbp->iocb.un.ulpWord[4] = IOERR_ABORT_REQUESTED; /* * For SLI4, irsiocb contains * NO_XRI in sli_xritag, it * shall not affect releasing * sgl (xri) process. */ saveq->iocb.ulpStatus = IOSTAT_LOCAL_REJECT; saveq->iocb.un.ulpWord[4] = IOERR_SLI_ABORTED; spin_lock_irqsave( &phba->hbalock, iflag); saveq->iocb_flag |= LPFC_DELAY_MEM_FREE; spin_unlock_irqrestore( &phba->hbalock, iflag); } } } (cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq); } else lpfc_sli_release_iocbq(phba, cmdiocbp); } else { /* * Unknown initiating command based on the response iotag. * This could be the case on the ELS ring because of * lpfc_els_abort(). */ if (pring->ringno != LPFC_ELS_RING) { /* * Ring handler: unexpected completion IoTag * */ lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, "0322 Ring %d handler: " "unexpected completion IoTag x%x " "Data: x%x x%x x%x x%x\n", pring->ringno, saveq->iocb.ulpIoTag, saveq->iocb.ulpStatus, saveq->iocb.un.ulpWord[4], saveq->iocb.ulpCommand, saveq->iocb.ulpContext); } } return rc; } /** * lpfc_sli_rsp_pointers_error - Response ring pointer error handler * @phba: Pointer to HBA context object. * @pring: Pointer to driver SLI ring object. * * This function is called from the iocb ring event handlers when * put pointer is ahead of the get pointer for a ring. This function signal * an error attention condition to the worker thread and the worker * thread will transition the HBA to offline state. **/ static void lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) { struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; /* * Ring handler: portRspPut is bigger than * rsp ring */ lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0312 Ring %d handler: portRspPut %d " "is bigger than rsp ring %d\n", pring->ringno, le32_to_cpu(pgp->rspPutInx), pring->sli.sli3.numRiocb); phba->link_state = LPFC_HBA_ERROR; /* * All error attention handlers are posted to * worker thread */ phba->work_ha |= HA_ERATT; phba->work_hs = HS_FFER3; lpfc_worker_wake_up(phba); return; } /** * lpfc_poll_eratt - Error attention polling timer timeout handler * @t: Context to fetch pointer to address of HBA context object from. * * This function is invoked by the Error Attention polling timer when the * timer times out. It will check the SLI Error Attention register for * possible attention events. If so, it will post an Error Attention event * and wake up worker thread to process it. Otherwise, it will set up the * Error Attention polling timer for the next poll. **/ void lpfc_poll_eratt(struct timer_list *t) { struct lpfc_hba *phba; uint32_t eratt = 0; uint64_t sli_intr, cnt; phba = from_timer(phba, t, eratt_poll); /* Here we will also keep track of interrupts per sec of the hba */ sli_intr = phba->sli.slistat.sli_intr; if (phba->sli.slistat.sli_prev_intr > sli_intr) cnt = (((uint64_t)(-1) - phba->sli.slistat.sli_prev_intr) + sli_intr); else cnt = (sli_intr - phba->sli.slistat.sli_prev_intr); /* 64-bit integer division not supported on 32-bit x86 - use do_div */ do_div(cnt, phba->eratt_poll_interval); phba->sli.slistat.sli_ips = cnt; phba->sli.slistat.sli_prev_intr = sli_intr; /* Check chip HA register for error event */ eratt = lpfc_sli_check_eratt(phba); if (eratt) /* Tell the worker thread there is work to do */ lpfc_worker_wake_up(phba); else /* Restart the timer for next eratt poll */ mod_timer(&phba->eratt_poll, jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); return; } /** * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring * @phba: Pointer to HBA context object. * @pring: Pointer to driver SLI ring object. * @mask: Host attention register mask for this ring. * * This function is called from the interrupt context when there is a ring * event for the fcp ring. The caller does not hold any lock. * The function processes each response iocb in the response ring until it * finds an iocb with LE bit set and chains all the iocbs up to the iocb with * LE bit set. The function will call the completion handler of the command iocb * if the response iocb indicates a completion for a command iocb or it is * an abort completion. The function will call lpfc_sli_process_unsol_iocb * function if this is an unsolicited iocb. * This routine presumes LPFC_FCP_RING handling and doesn't bother * to check it explicitly. */ int lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, uint32_t mask) { struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno]; IOCB_t *irsp = NULL; IOCB_t *entry = NULL; struct lpfc_iocbq *cmdiocbq = NULL; struct lpfc_iocbq rspiocbq; uint32_t status; uint32_t portRspPut, portRspMax; int rc = 1; lpfc_iocb_type type; unsigned long iflag; uint32_t rsp_cmpl = 0; spin_lock_irqsave(&phba->hbalock, iflag); pring->stats.iocb_event++; /* * The next available response entry should never exceed the maximum * entries. If it does, treat it as an adapter hardware error. */ portRspMax = pring->sli.sli3.numRiocb; portRspPut = le32_to_cpu(pgp->rspPutInx); if (unlikely(portRspPut >= portRspMax)) { lpfc_sli_rsp_pointers_error(phba, pring); spin_unlock_irqrestore(&phba->hbalock, iflag); return 1; } if (phba->fcp_ring_in_use) { spin_unlock_irqrestore(&phba->hbalock, iflag); return 1; } else phba->fcp_ring_in_use = 1; rmb(); while (pring->sli.sli3.rspidx != portRspPut) { /* * Fetch an entry off the ring and copy it into a local data * structure. The copy involves a byte-swap since the * network byte order and pci byte orders are different. */ entry = lpfc_resp_iocb(phba, pring); phba->last_completion_time = jiffies; if (++pring->sli.sli3.rspidx >= portRspMax) pring->sli.sli3.rspidx = 0; lpfc_sli_pcimem_bcopy((uint32_t *) entry, (uint32_t *) &rspiocbq.iocb, phba->iocb_rsp_size); INIT_LIST_HEAD(&(rspiocbq.list)); irsp = &rspiocbq.iocb; type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK); pring->stats.iocb_rsp++; rsp_cmpl++; if (unlikely(irsp->ulpStatus)) { /* * If resource errors reported from HBA, reduce * queuedepths of the SCSI device. */ if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == IOERR_NO_RESOURCES)) { spin_unlock_irqrestore(&phba->hbalock, iflag); phba->lpfc_rampdown_queue_depth(phba); spin_lock_irqsave(&phba->hbalock, iflag); } /* Rsp ring error: IOCB */ lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, "0336 Rsp Ring %d error: IOCB Data: " "x%x x%x x%x x%x x%x x%x x%x x%x\n", pring->ringno, irsp->un.ulpWord[0], irsp->un.ulpWord[1], irsp->un.ulpWord[2], irsp->un.ulpWord[3], irsp->un.ulpWord[4], irsp->un.ulpWord[5], *(uint32_t *)&irsp->un1, *((uint32_t *)&irsp->un1 + 1)); } switch (type) { case LPFC_ABORT_IOCB: case LPFC_SOL_IOCB: /* * Idle exchange closed via ABTS from port. No iocb * resources need to be recovered. */ if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) { lpfc_printf_log(phba, KERN_INFO, LOG_SLI, "0333 IOCB cmd 0x%x" " processed. Skipping" " completion\n", irsp->ulpCommand); break; } spin_unlock_irqrestore(&phba->hbalock, iflag); cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring, &rspiocbq); spin_lock_irqsave(&phba->hbalock, iflag); if (unlikely(!cmdiocbq)) break; if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; if (cmdiocbq->iocb_cmpl) { spin_unlock_irqrestore(&phba->hbalock, iflag); (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &rspiocbq); spin_lock_irqsave(&phba->hbalock, iflag); } break; case LPFC_UNSOL_IOCB: spin_unlock_irqrestore(&phba->hbalock, iflag); lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq); spin_lock_irqsave(&phba->hbalock, iflag); break; default: if (irsp->ulpCommand == CMD_ADAPTER_MSG) { char adaptermsg[LPFC_MAX_ADPTMSG]; memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); memcpy(&adaptermsg[0], (uint8_t *) irsp, MAX_MSG_DATA); dev_warn(&((phba->pcidev)->dev), "lpfc%d: %s\n", phba->brd_no, adaptermsg); } else { /* Unknown IOCB command */ lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0334 Unknown IOCB command " "Data: x%x, x%x x%x x%x x%x\n", type, irsp->ulpCommand, irsp->ulpStatus, irsp->ulpIoTag, irsp->ulpContext); } break; } /* * The response IOCB has been processed. Update the ring * pointer in SLIM. If the port response put pointer has not * been updated, sync the pgp->rspPutInx and fetch the new port * response put pointer. */ writel(pring->sli.sli3.rspidx, &phba->host_gp[pring->ringno].rspGetInx); if (pring->sli.sli3.rspidx == portRspPut) portRspPut = le32_to_cpu(pgp->rspPutInx); } if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) { pring->stats.iocb_rsp_full++; status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); writel(status, phba->CAregaddr); readl(phba->CAregaddr); } if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { pring->flag &= ~LPFC_CALL_RING_AVAILABLE; pring->stats.iocb_cmd_empty++; /* Force update of the local copy of cmdGetInx */ pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); lpfc_sli_resume_iocb(phba, pring); if ((pring->lpfc_sli_cmd_available)) (pring->lpfc_sli_cmd_available) (phba, pring); } phba->fcp_ring_in_use = 0; spin_unlock_irqrestore(&phba->hbalock, iflag); return rc; } /** * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb * @phba: Pointer to HBA context object. * @pring: Pointer to driver SLI ring object. * @rspiocbp: Pointer to driver response IOCB object. * * This function is called from the worker thread when there is a slow-path * response IOCB to process. This function chains all the response iocbs until * seeing the iocb with the LE bit set. The function will call * lpfc_sli_process_sol_iocb function if the response iocb indicates a * completion of a command iocb. The function will call the * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb. * The function frees the resources or calls the completion handler if this * iocb is an abort completion. The function returns NULL when the response * iocb has the LE bit set and all the chained iocbs are processed, otherwise * this function shall chain the iocb on to the iocb_continueq and return the * response iocb passed in. **/ static struct lpfc_iocbq * lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, struct lpfc_iocbq *rspiocbp) { struct lpfc_iocbq *saveq; struct lpfc_iocbq *cmdiocbp; struct lpfc_iocbq *next_iocb; IOCB_t *irsp = NULL; uint32_t free_saveq; uint8_t iocb_cmd_type; lpfc_iocb_type type; unsigned long iflag; int rc; spin_lock_irqsave(&phba->hbalock, iflag); /* First add the response iocb to the countinueq list */ list_add_tail(&rspiocbp->list, &(pring->iocb_continueq)); pring->iocb_continueq_cnt++; /* Now, determine whether the list is completed for processing */ irsp = &rspiocbp->iocb; if (irsp->ulpLe) { /* * By default, the driver expects to free all resources * associated with this iocb completion. */ free_saveq = 1; saveq = list_get_first(&pring->iocb_continueq, struct lpfc_iocbq, list); irsp = &(saveq->iocb); list_del_init(&pring->iocb_continueq); pring->iocb_continueq_cnt = 0; pring->stats.iocb_rsp++; /* * If resource errors reported from HBA, reduce * queuedepths of the SCSI device. */ if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) && ((irsp->un.ulpWord[4] & IOERR_PARAM_MASK) == IOERR_NO_RESOURCES)) { spin_unlock_irqrestore(&phba->hbalock, iflag); phba->lpfc_rampdown_queue_depth(phba); spin_lock_irqsave(&phba->hbalock, iflag); } if (irsp->ulpStatus) { /* Rsp ring error: IOCB */ lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, "0328 Rsp Ring %d error: " "IOCB Data: " "x%x x%x x%x x%x " "x%x x%x x%x x%x " "x%x x%x x%x x%x " "x%x x%x x%x x%x\n", pring->ringno, irsp->un.ulpWord[0], irsp->un.ulpWord[1], irsp->un.ulpWord[2], irsp->un.ulpWord[3], irsp->un.ulpWord[4], irsp->un.ulpWord[5], *(((uint32_t *) irsp) + 6), *(((uint32_t *) irsp) + 7), *(((uint32_t *) irsp) + 8), *(((uint32_t *) irsp) + 9), *(((uint32_t *) irsp) + 10), *(((uint32_t *) irsp) + 11), *(((uint32_t *) irsp) + 12), *(((uint32_t *) irsp) + 13), *(((uint32_t *) irsp) + 14), *(((uint32_t *) irsp) + 15)); } /* * Fetch the IOCB command type and call the correct completion * routine. Solicited and Unsolicited IOCBs on the ELS ring * get freed back to the lpfc_iocb_list by the discovery * kernel thread. */ iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK; type = lpfc_sli_iocb_cmd_type(iocb_cmd_type); switch (type) { case LPFC_SOL_IOCB: spin_unlock_irqrestore(&phba->hbalock, iflag); rc = lpfc_sli_process_sol_iocb(phba, pring, saveq); spin_lock_irqsave(&phba->hbalock, iflag); break; case LPFC_UNSOL_IOCB: spin_unlock_irqrestore(&phba->hbalock, iflag); rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq); spin_lock_irqsave(&phba->hbalock, iflag); if (!rc) free_saveq = 0; break; case LPFC_ABORT_IOCB: cmdiocbp = NULL; if (irsp->ulpCommand != CMD_XRI_ABORTED_CX) { spin_unlock_irqrestore(&phba->hbalock, iflag); cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq); spin_lock_irqsave(&phba->hbalock, iflag); } if (cmdiocbp) { /* Call the specified completion routine */ if (cmdiocbp->iocb_cmpl) { spin_unlock_irqrestore(&phba->hbalock, iflag); (cmdiocbp->iocb_cmpl)(phba, cmdiocbp, saveq); spin_lock_irqsave(&phba->hbalock, iflag); } else __lpfc_sli_release_iocbq(phba, cmdiocbp); } break; case LPFC_UNKNOWN_IOCB: if (irsp->ulpCommand == CMD_ADAPTER_MSG) { char adaptermsg[LPFC_MAX_ADPTMSG]; memset(adaptermsg, 0, LPFC_MAX_ADPTMSG); memcpy(&adaptermsg[0], (uint8_t *)irsp, MAX_MSG_DATA); dev_warn(&((phba->pcidev)->dev), "lpfc%d: %s\n", phba->brd_no, adaptermsg); } else { /* Unknown IOCB command */ lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0335 Unknown IOCB " "command Data: x%x " "x%x x%x x%x\n", irsp->ulpCommand, irsp->ulpStatus, irsp->ulpIoTag, irsp->ulpContext); } break; } if (free_saveq) { list_for_each_entry_safe(rspiocbp, next_iocb, &saveq->list, list) { list_del_init(&rspiocbp->list); __lpfc_sli_release_iocbq(phba, rspiocbp); } __lpfc_sli_release_iocbq(phba, saveq); } rspiocbp = NULL; } spin_unlock_irqrestore(&phba->hbalock, iflag); return rspiocbp; } /** * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs * @phba: Pointer to HBA context object. * @pring: Pointer to driver SLI ring object. * @mask: Host attention register mask for this ring. * * This routine wraps the actual slow_ring event process routine from the * API jump table function pointer from the lpfc_hba struct. **/ void lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, uint32_t mask) { phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask); } /** * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings * @phba: Pointer to HBA context object. * @pring: Pointer to driver SLI ring object. * @mask: Host attention register mask for this ring. * * This function is called from the worker thread when there is a ring event * for non-fcp rings. The caller does not hold any lock. The function will * remove each response iocb in the response ring and calls the handle * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. **/ static void lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, uint32_t mask) { struct lpfc_pgp *pgp; IOCB_t *entry; IOCB_t *irsp = NULL; struct lpfc_iocbq *rspiocbp = NULL; uint32_t portRspPut, portRspMax; unsigned long iflag; uint32_t status; pgp = &phba->port_gp[pring->ringno]; spin_lock_irqsave(&phba->hbalock, iflag); pring->stats.iocb_event++; /* * The next available response entry should never exceed the maximum * entries. If it does, treat it as an adapter hardware error. */ portRspMax = pring->sli.sli3.numRiocb; portRspPut = le32_to_cpu(pgp->rspPutInx); if (portRspPut >= portRspMax) { /* * Ring handler: portRspPut is bigger than * rsp ring */ lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0303 Ring %d handler: portRspPut %d " "is bigger than rsp ring %d\n", pring->ringno, portRspPut, portRspMax); phba->link_state = LPFC_HBA_ERROR; spin_unlock_irqrestore(&phba->hbalock, iflag); phba->work_hs = HS_FFER3; lpfc_handle_eratt(phba); return; } rmb(); while (pring->sli.sli3.rspidx != portRspPut) { /* * Build a completion list and call the appropriate handler. * The process is to get the next available response iocb, get * a free iocb from the list, copy the response data into the * free iocb, insert to the continuation list, and update the * next response index to slim. This process makes response * iocb's in the ring available to DMA as fast as possible but * pays a penalty for a copy operation. Since the iocb is * only 32 bytes, this penalty is considered small relative to * the PCI reads for register values and a slim write. When * the ulpLe field is set, the entire Command has been * received. */ entry = lpfc_resp_iocb(phba, pring); phba->last_completion_time = jiffies; rspiocbp = __lpfc_sli_get_iocbq(phba); if (rspiocbp == NULL) { printk(KERN_ERR "%s: out of buffers! Failing " "completion.\n", __func__); break; } lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb, phba->iocb_rsp_size); irsp = &rspiocbp->iocb; if (++pring->sli.sli3.rspidx >= portRspMax) pring->sli.sli3.rspidx = 0; if (pring->ringno == LPFC_ELS_RING) { lpfc_debugfs_slow_ring_trc(phba, "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x", *(((uint32_t *) irsp) + 4), *(((uint32_t *) irsp) + 6), *(((uint32_t *) irsp) + 7)); } writel(pring->sli.sli3.rspidx, &phba->host_gp[pring->ringno].rspGetInx); spin_unlock_irqrestore(&phba->hbalock, iflag); /* Handle the response IOCB */ rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp); spin_lock_irqsave(&phba->hbalock, iflag); /* * If the port response put pointer has not been updated, sync * the pgp->rspPutInx in the MAILBOX_tand fetch the new port * response put pointer. */ if (pring->sli.sli3.rspidx == portRspPut) { portRspPut = le32_to_cpu(pgp->rspPutInx); } } /* while (pring->sli.sli3.rspidx != portRspPut) */ if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) { /* At least one response entry has been freed */ pring->stats.iocb_rsp_full++; /* SET RxRE_RSP in Chip Att register */ status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4)); writel(status, phba->CAregaddr); readl(phba->CAregaddr); /* flush */ } if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) { pring->flag &= ~LPFC_CALL_RING_AVAILABLE; pring->stats.iocb_cmd_empty++; /* Force update of the local copy of cmdGetInx */ pring->sli.sli3.local_getidx = le32_to_cpu(pgp->cmdGetInx); lpfc_sli_resume_iocb(phba, pring); if ((pring->lpfc_sli_cmd_available)) (pring->lpfc_sli_cmd_available) (phba, pring); } spin_unlock_irqrestore(&phba->hbalock, iflag); return; } /** * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events * @phba: Pointer to HBA context object. * @pring: Pointer to driver SLI ring object. * @mask: Host attention register mask for this ring. * * This function is called from the worker thread when there is a pending * ELS response iocb on the driver internal slow-path response iocb worker * queue. The caller does not hold any lock. The function will remove each * response iocb from the response worker queue and calls the handle * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it. **/ static void lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, uint32_t mask) { struct lpfc_iocbq *irspiocbq; struct hbq_dmabuf *dmabuf; struct lpfc_cq_event *cq_event; unsigned long iflag; int count = 0; spin_lock_irqsave(&phba->hbalock, iflag); phba->hba_flag &= ~HBA_SP_QUEUE_EVT; spin_unlock_irqrestore(&phba->hbalock, iflag); while (!list_empty(&phba->sli4_hba.sp_queue_event)) { /* Get the response iocb from the head of work queue */ spin_lock_irqsave(&phba->hbalock, iflag); list_remove_head(&phba->sli4_hba.sp_queue_event, cq_event, struct lpfc_cq_event, list); spin_unlock_irqrestore(&phba->hbalock, iflag); switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { case CQE_CODE_COMPL_WQE: irspiocbq = container_of(cq_event, struct lpfc_iocbq, cq_event); /* Translate ELS WCQE to response IOCBQ */ irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba, irspiocbq); if (irspiocbq) lpfc_sli_sp_handle_rspiocb(phba, pring, irspiocbq); count++; break; case CQE_CODE_RECEIVE: case CQE_CODE_RECEIVE_V1: dmabuf = container_of(cq_event, struct hbq_dmabuf, cq_event); lpfc_sli4_handle_received_buffer(phba, dmabuf); count++; break; default: break; } /* Limit the number of events to 64 to avoid soft lockups */ if (count == 64) break; } } /** * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring * @phba: Pointer to HBA context object. * @pring: Pointer to driver SLI ring object. * * This function aborts all iocbs in the given ring and frees all the iocb * objects in txq. This function issues an abort iocb for all the iocb commands * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before * the return of this function. The caller is not required to hold any locks. **/ void lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring) { LIST_HEAD(completions); struct lpfc_iocbq *iocb, *next_iocb; if (pring->ringno == LPFC_ELS_RING) { lpfc_fabric_abort_hba(phba); } /* Error everything on txq and txcmplq * First do the txq. */ if (phba->sli_rev >= LPFC_SLI_REV4) { spin_lock_irq(&pring->ring_lock); list_splice_init(&pring->txq, &completions); pring->txq_cnt = 0; spin_unlock_irq(&pring->ring_lock); spin_lock_irq(&phba->hbalock); /* Next issue ABTS for everything on the txcmplq */ list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) lpfc_sli_issue_abort_iotag(phba, pring, iocb, NULL); spin_unlock_irq(&phba->hbalock); } else { spin_lock_irq(&phba->hbalock); list_splice_init(&pring->txq, &completions); pring->txq_cnt = 0; /* Next issue ABTS for everything on the txcmplq */ list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) lpfc_sli_issue_abort_iotag(phba, pring, iocb, NULL); spin_unlock_irq(&phba->hbalock); } /* Make sure HBA is alive */ lpfc_issue_hb_tmo(phba); /* Cancel all the IOCBs from the completions list */ lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED); } /** * lpfc_sli_abort_fcp_rings - Abort all iocbs in all FCP rings * @phba: Pointer to HBA context object. * * This function aborts all iocbs in FCP rings and frees all the iocb * objects in txq. This function issues an abort iocb for all the iocb commands * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before * the return of this function. The caller is not required to hold any locks. **/ void lpfc_sli_abort_fcp_rings(struct lpfc_hba *phba) { struct lpfc_sli *psli = &phba->sli; struct lpfc_sli_ring *pring; uint32_t i; /* Look on all the FCP Rings for the iotag */ if (phba->sli_rev >= LPFC_SLI_REV4) { for (i = 0; i < phba->cfg_hdw_queue; i++) { pring = phba->sli4_hba.hdwq[i].io_wq->pring; lpfc_sli_abort_iocb_ring(phba, pring); } } else { pring = &psli->sli3_ring[LPFC_FCP_RING]; lpfc_sli_abort_iocb_ring(phba, pring); } } /** * lpfc_sli_flush_io_rings - flush all iocbs in the IO ring * @phba: Pointer to HBA context object. * * This function flushes all iocbs in the IO ring and frees all the iocb * objects in txq and txcmplq. This function will not issue abort iocbs * for all the iocb commands in txcmplq, they will just be returned with * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI * slot has been permanently disabled. **/ void lpfc_sli_flush_io_rings(struct lpfc_hba *phba) { LIST_HEAD(txq); LIST_HEAD(txcmplq); struct lpfc_sli *psli = &phba->sli; struct lpfc_sli_ring *pring; uint32_t i; struct lpfc_iocbq *piocb, *next_iocb; spin_lock_irq(&phba->hbalock); if (phba->hba_flag & HBA_IOQ_FLUSH || !phba->sli4_hba.hdwq) { spin_unlock_irq(&phba->hbalock); return; } /* Indicate the I/O queues are flushed */ phba->hba_flag |= HBA_IOQ_FLUSH; spin_unlock_irq(&phba->hbalock); /* Look on all the FCP Rings for the iotag */ if (phba->sli_rev >= LPFC_SLI_REV4) { for (i = 0; i < phba->cfg_hdw_queue; i++) { pring = phba->sli4_hba.hdwq[i].io_wq->pring; spin_lock_irq(&pring->ring_lock); /* Retrieve everything on txq */ list_splice_init(&pring->txq, &txq); list_for_each_entry_safe(piocb, next_iocb, &pring->txcmplq, list) piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; /* Retrieve everything on the txcmplq */ list_splice_init(&pring->txcmplq, &txcmplq); pring->txq_cnt = 0; pring->txcmplq_cnt = 0; spin_unlock_irq(&pring->ring_lock); /* Flush the txq */ lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, IOERR_SLI_DOWN); /* Flush the txcmplq */ lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, IOERR_SLI_DOWN); if (unlikely(pci_channel_offline(phba->pcidev))) lpfc_sli4_io_xri_aborted(phba, NULL, 0); } } else { pring = &psli->sli3_ring[LPFC_FCP_RING]; spin_lock_irq(&phba->hbalock); /* Retrieve everything on txq */ list_splice_init(&pring->txq, &txq); list_for_each_entry_safe(piocb, next_iocb, &pring->txcmplq, list) piocb->iocb_flag &= ~LPFC_IO_ON_TXCMPLQ; /* Retrieve everything on the txcmplq */ list_splice_init(&pring->txcmplq, &txcmplq); pring->txq_cnt = 0; pring->txcmplq_cnt = 0; spin_unlock_irq(&phba->hbalock); /* Flush the txq */ lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT, IOERR_SLI_DOWN); /* Flush the txcmpq */ lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT, IOERR_SLI_DOWN); } } /** * lpfc_sli_brdready_s3 - Check for sli3 host ready status * @phba: Pointer to HBA context object. * @mask: Bit mask to be checked. * * This function reads the host status register and compares * with the provided bit mask to check if HBA completed * the restart. This function will wait in a loop for the * HBA to complete restart. If the HBA does not restart within * 15 iterations, the function will reset the HBA again. The * function returns 1 when HBA fail to restart otherwise returns * zero. **/ static int lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask) { uint32_t status; int i = 0; int retval = 0; /* Read the HBA Host Status Register */ if (lpfc_readl(phba->HSregaddr, &status)) return 1; phba->hba_flag |= HBA_NEEDS_CFG_PORT; /* * Check status register every 100ms for 5 retries, then every * 500ms for 5, then every 2.5 sec for 5, then reset board and * every 2.5 sec for 4. * Break our of the loop if errors occurred during init. */ while (((status & mask) != mask) && !(status & HS_FFERM) && i++ < 20) { if (i <= 5) msleep(10); else if (i <= 10) msleep(500); else msleep(2500); if (i == 15) { /* Do post */ phba->pport->port_state = LPFC_VPORT_UNKNOWN; lpfc_sli_brdrestart(phba); } /* Read the HBA Host Status Register */ if (lpfc_readl(phba->HSregaddr, &status)) { retval = 1; break; } } /* Check to see if any errors occurred during init */ if ((status & HS_FFERM) || (i >= 20)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2751 Adapter failed to restart, " "status reg x%x, FW Data: A8 x%x AC x%x\n", status, readl(phba->MBslimaddr + 0xa8), readl(phba->MBslimaddr + 0xac)); phba->link_state = LPFC_HBA_ERROR; retval = 1; } return retval; } /** * lpfc_sli_brdready_s4 - Check for sli4 host ready status * @phba: Pointer to HBA context object. * @mask: Bit mask to be checked. * * This function checks the host status register to check if HBA is * ready. This function will wait in a loop for the HBA to be ready * If the HBA is not ready , the function will will reset the HBA PCI * function again. The function returns 1 when HBA fail to be ready * otherwise returns zero. **/ static int lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask) { uint32_t status; int retval = 0; /* Read the HBA Host Status Register */ status = lpfc_sli4_post_status_check(phba); if (status) { phba->pport->port_state = LPFC_VPORT_UNKNOWN; lpfc_sli_brdrestart(phba); status = lpfc_sli4_post_status_check(phba); } /* Check to see if any errors occurred during init */ if (status) { phba->link_state = LPFC_HBA_ERROR; retval = 1; } else phba->sli4_hba.intr_enable = 0; phba->hba_flag &= ~HBA_SETUP; return retval; } /** * lpfc_sli_brdready - Wrapper func for checking the hba readyness * @phba: Pointer to HBA context object. * @mask: Bit mask to be checked. * * This routine wraps the actual SLI3 or SLI4 hba readyness check routine * from the API jump table function pointer from the lpfc_hba struct. **/ int lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask) { return phba->lpfc_sli_brdready(phba, mask); } #define BARRIER_TEST_PATTERN (0xdeadbeef) /** * lpfc_reset_barrier - Make HBA ready for HBA reset * @phba: Pointer to HBA context object. * * This function is called before resetting an HBA. This function is called * with hbalock held and requests HBA to quiesce DMAs before a reset. **/ void lpfc_reset_barrier(struct lpfc_hba *phba) { uint32_t __iomem *resp_buf; uint32_t __iomem *mbox_buf; volatile uint32_t mbox; uint32_t hc_copy, ha_copy, resp_data; int i; uint8_t hdrtype; lockdep_assert_held(&phba->hbalock); pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype); if (hdrtype != 0x80 || (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID && FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID)) return; /* * Tell the other part of the chip to suspend temporarily all * its DMA activity. */ resp_buf = phba->MBslimaddr; /* Disable the error attention */ if (lpfc_readl(phba->HCregaddr, &hc_copy)) return; writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr); readl(phba->HCregaddr); /* flush */ phba->link_flag |= LS_IGNORE_ERATT; if (lpfc_readl(phba->HAregaddr, &ha_copy)) return; if (ha_copy & HA_ERATT) { /* Clear Chip error bit */ writel(HA_ERATT, phba->HAregaddr); phba->pport->stopped = 1; } mbox = 0; ((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD; ((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP; writel(BARRIER_TEST_PATTERN, (resp_buf + 1)); mbox_buf = phba->MBslimaddr; writel(mbox, mbox_buf); for (i = 0; i < 50; i++) { if (lpfc_readl((resp_buf + 1), &resp_data)) return; if (resp_data != ~(BARRIER_TEST_PATTERN)) mdelay(1); else break; } resp_data = 0; if (lpfc_readl((resp_buf + 1), &resp_data)) return; if (resp_data != ~(BARRIER_TEST_PATTERN)) { if (phba->sli.sli_flag & LPFC_SLI_ACTIVE || phba->pport->stopped) goto restore_hc; else goto clear_errat; } ((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST; resp_data = 0; for (i = 0; i < 500; i++) { if (lpfc_readl(resp_buf, &resp_data)) return; if (resp_data != mbox) mdelay(1); else break; } clear_errat: while (++i < 500) { if (lpfc_readl(phba->HAregaddr, &ha_copy)) return; if (!(ha_copy & HA_ERATT)) mdelay(1); else break; } if (readl(phba->HAregaddr) & HA_ERATT) { writel(HA_ERATT, phba->HAregaddr); phba->pport->stopped = 1; } restore_hc: phba->link_flag &= ~LS_IGNORE_ERATT; writel(hc_copy, phba->HCregaddr); readl(phba->HCregaddr); /* flush */ } /** * lpfc_sli_brdkill - Issue a kill_board mailbox command * @phba: Pointer to HBA context object. * * This function issues a kill_board mailbox command and waits for * the error attention interrupt. This function is called for stopping * the firmware processing. The caller is not required to hold any * locks. This function calls lpfc_hba_down_post function to free * any pending commands after the kill. The function will return 1 when it * fails to kill the board else will return 0. **/ int lpfc_sli_brdkill(struct lpfc_hba *phba) { struct lpfc_sli *psli; LPFC_MBOXQ_t *pmb; uint32_t status; uint32_t ha_copy; int retval; int i = 0; psli = &phba->sli; /* Kill HBA */ lpfc_printf_log(phba, KERN_INFO, LOG_SLI, "0329 Kill HBA Data: x%x x%x\n", phba->pport->port_state, psli->sli_flag); pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!pmb) return 1; /* Disable the error attention */ spin_lock_irq(&phba->hbalock); if (lpfc_readl(phba->HCregaddr, &status)) { spin_unlock_irq(&phba->hbalock); mempool_free(pmb, phba->mbox_mem_pool); return 1; } status &= ~HC_ERINT_ENA; writel(status, phba->HCregaddr); readl(phba->HCregaddr); /* flush */ phba->link_flag |= LS_IGNORE_ERATT; spin_unlock_irq(&phba->hbalock); lpfc_kill_board(phba, pmb); pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); if (retval != MBX_SUCCESS) { if (retval != MBX_BUSY) mempool_free(pmb, phba->mbox_mem_pool); lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2752 KILL_BOARD command failed retval %d\n", retval); spin_lock_irq(&phba->hbalock); phba->link_flag &= ~LS_IGNORE_ERATT; spin_unlock_irq(&phba->hbalock); return 1; } spin_lock_irq(&phba->hbalock); psli->sli_flag &= ~LPFC_SLI_ACTIVE; spin_unlock_irq(&phba->hbalock); mempool_free(pmb, phba->mbox_mem_pool); /* There is no completion for a KILL_BOARD mbox cmd. Check for an error * attention every 100ms for 3 seconds. If we don't get ERATT after * 3 seconds we still set HBA_ERROR state because the status of the * board is now undefined. */ if (lpfc_readl(phba->HAregaddr, &ha_copy)) return 1; while ((i++ < 30) && !(ha_copy & HA_ERATT)) { mdelay(100); if (lpfc_readl(phba->HAregaddr, &ha_copy)) return 1; } del_timer_sync(&psli->mbox_tmo); if (ha_copy & HA_ERATT) { writel(HA_ERATT, phba->HAregaddr); phba->pport->stopped = 1; } spin_lock_irq(&phba->hbalock); psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; psli->mbox_active = NULL; phba->link_flag &= ~LS_IGNORE_ERATT; spin_unlock_irq(&phba->hbalock); lpfc_hba_down_post(phba); phba->link_state = LPFC_HBA_ERROR; return ha_copy & HA_ERATT ? 0 : 1; } /** * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA * @phba: Pointer to HBA context object. * * This function resets the HBA by writing HC_INITFF to the control * register. After the HBA resets, this function resets all the iocb ring * indices. This function disables PCI layer parity checking during * the reset. * This function returns 0 always. * The caller is not required to hold any locks. **/ int lpfc_sli_brdreset(struct lpfc_hba *phba) { struct lpfc_sli *psli; struct lpfc_sli_ring *pring; uint16_t cfg_value; int i; psli = &phba->sli; /* Reset HBA */ lpfc_printf_log(phba, KERN_INFO, LOG_SLI, "0325 Reset HBA Data: x%x x%x\n", (phba->pport) ? phba->pport->port_state : 0, psli->sli_flag); /* perform board reset */ phba->fc_eventTag = 0; phba->link_events = 0; phba->hba_flag |= HBA_NEEDS_CFG_PORT; if (phba->pport) { phba->pport->fc_myDID = 0; phba->pport->fc_prevDID = 0; } /* Turn off parity checking and serr during the physical reset */ if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) return -EIO; pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA); /* Now toggle INITFF bit in the Host Control Register */ writel(HC_INITFF, phba->HCregaddr); mdelay(1); readl(phba->HCregaddr); /* flush */ writel(0, phba->HCregaddr); readl(phba->HCregaddr); /* flush */ /* Restore PCI cmd register */ pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); /* Initialize relevant SLI info */ for (i = 0; i < psli->num_rings; i++) { pring = &psli->sli3_ring[i]; pring->flag = 0; pring->sli.sli3.rspidx = 0; pring->sli.sli3.next_cmdidx = 0; pring->sli.sli3.local_getidx = 0; pring->sli.sli3.cmdidx = 0; pring->missbufcnt = 0; } phba->link_state = LPFC_WARM_START; return 0; } /** * lpfc_sli4_brdreset - Reset a sli-4 HBA * @phba: Pointer to HBA context object. * * This function resets a SLI4 HBA. This function disables PCI layer parity * checking during resets the device. The caller is not required to hold * any locks. * * This function returns 0 on success else returns negative error code. **/ int lpfc_sli4_brdreset(struct lpfc_hba *phba) { struct lpfc_sli *psli = &phba->sli; uint16_t cfg_value; int rc = 0; /* Reset HBA */ lpfc_printf_log(phba, KERN_INFO, LOG_SLI, "0295 Reset HBA Data: x%x x%x x%x\n", phba->pport->port_state, psli->sli_flag, phba->hba_flag); /* perform board reset */ phba->fc_eventTag = 0; phba->link_events = 0; phba->pport->fc_myDID = 0; phba->pport->fc_prevDID = 0; phba->hba_flag &= ~HBA_SETUP; spin_lock_irq(&phba->hbalock); psli->sli_flag &= ~(LPFC_PROCESS_LA); phba->fcf.fcf_flag = 0; spin_unlock_irq(&phba->hbalock); /* Now physically reset the device */ lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "0389 Performing PCI function reset!\n"); /* Turn off parity checking and serr during the physical reset */ if (pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value)) { lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "3205 PCI read Config failed\n"); return -EIO; } pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value & ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR))); /* Perform FCoE PCI function reset before freeing queue memory */ rc = lpfc_pci_function_reset(phba); /* Restore PCI cmd register */ pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value); return rc; } /** * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba * @phba: Pointer to HBA context object. * * This function is called in the SLI initialization code path to * restart the HBA. The caller is not required to hold any lock. * This function writes MBX_RESTART mailbox command to the SLIM and * resets the HBA. At the end of the function, it calls lpfc_hba_down_post * function to free any pending commands. The function enables * POST only during the first initialization. The function returns zero. * The function does not guarantee completion of MBX_RESTART mailbox * command before the return of this function. **/ static int lpfc_sli_brdrestart_s3(struct lpfc_hba *phba) { MAILBOX_t *mb; struct lpfc_sli *psli; volatile uint32_t word0; void __iomem *to_slim; uint32_t hba_aer_enabled; spin_lock_irq(&phba->hbalock); /* Take PCIe device Advanced Error Reporting (AER) state */ hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; psli = &phba->sli; /* Restart HBA */ lpfc_printf_log(phba, KERN_INFO, LOG_SLI, "0337 Restart HBA Data: x%x x%x\n", (phba->pport) ? phba->pport->port_state : 0, psli->sli_flag); word0 = 0; mb = (MAILBOX_t *) &word0; mb->mbxCommand = MBX_RESTART; mb->mbxHc = 1; lpfc_reset_barrier(phba); to_slim = phba->MBslimaddr; writel(*(uint32_t *) mb, to_slim); readl(to_slim); /* flush */ /* Only skip post after fc_ffinit is completed */ if (phba->pport && phba->pport->port_state) word0 = 1; /* This is really setting up word1 */ else word0 = 0; /* This is really setting up word1 */ to_slim = phba->MBslimaddr + sizeof (uint32_t); writel(*(uint32_t *) mb, to_slim); readl(to_slim); /* flush */ lpfc_sli_brdreset(phba); if (phba->pport) phba->pport->stopped = 0; phba->link_state = LPFC_INIT_START; phba->hba_flag = 0; spin_unlock_irq(&phba->hbalock); memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); psli->stats_start = ktime_get_seconds(); /* Give the INITFF and Post time to settle. */ mdelay(100); /* Reset HBA AER if it was enabled, note hba_flag was reset above */ if (hba_aer_enabled) pci_disable_pcie_error_reporting(phba->pcidev); lpfc_hba_down_post(phba); return 0; } /** * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba * @phba: Pointer to HBA context object. * * This function is called in the SLI initialization code path to restart * a SLI4 HBA. The caller is not required to hold any lock. * At the end of the function, it calls lpfc_hba_down_post function to * free any pending commands. **/ static int lpfc_sli_brdrestart_s4(struct lpfc_hba *phba) { struct lpfc_sli *psli = &phba->sli; uint32_t hba_aer_enabled; int rc; /* Restart HBA */ lpfc_printf_log(phba, KERN_INFO, LOG_SLI, "0296 Restart HBA Data: x%x x%x\n", phba->pport->port_state, psli->sli_flag); /* Take PCIe device Advanced Error Reporting (AER) state */ hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED; rc = lpfc_sli4_brdreset(phba); if (rc) { phba->link_state = LPFC_HBA_ERROR; goto hba_down_queue; } spin_lock_irq(&phba->hbalock); phba->pport->stopped = 0; phba->link_state = LPFC_INIT_START; phba->hba_flag = 0; spin_unlock_irq(&phba->hbalock); memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets)); psli->stats_start = ktime_get_seconds(); /* Reset HBA AER if it was enabled, note hba_flag was reset above */ if (hba_aer_enabled) pci_disable_pcie_error_reporting(phba->pcidev); hba_down_queue: lpfc_hba_down_post(phba); lpfc_sli4_queue_destroy(phba); return rc; } /** * lpfc_sli_brdrestart - Wrapper func for restarting hba * @phba: Pointer to HBA context object. * * This routine wraps the actual SLI3 or SLI4 hba restart routine from the * API jump table function pointer from the lpfc_hba struct. **/ int lpfc_sli_brdrestart(struct lpfc_hba *phba) { return phba->lpfc_sli_brdrestart(phba); } /** * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart * @phba: Pointer to HBA context object. * * This function is called after a HBA restart to wait for successful * restart of the HBA. Successful restart of the HBA is indicated by * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15 * iteration, the function will restart the HBA again. The function returns * zero if HBA successfully restarted else returns negative error code. **/ int lpfc_sli_chipset_init(struct lpfc_hba *phba) { uint32_t status, i = 0; /* Read the HBA Host Status Register */ if (lpfc_readl(phba->HSregaddr, &status)) return -EIO; /* Check status register to see what current state is */ i = 0; while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) { /* Check every 10ms for 10 retries, then every 100ms for 90 * retries, then every 1 sec for 50 retires for a total of * ~60 seconds before reset the board again and check every * 1 sec for 50 retries. The up to 60 seconds before the * board ready is required by the Falcon FIPS zeroization * complete, and any reset the board in between shall cause * restart of zeroization, further delay the board ready. */ if (i++ >= 200) { /* Adapter failed to init, timeout, status reg */ lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0436 Adapter failed to init, " "timeout, status reg x%x, " "FW Data: A8 x%x AC x%x\n", status, readl(phba->MBslimaddr + 0xa8), readl(phba->MBslimaddr + 0xac)); phba->link_state = LPFC_HBA_ERROR; return -ETIMEDOUT; } /* Check to see if any errors occurred during init */ if (status & HS_FFERM) { /* ERROR: During chipset initialization */ /* Adapter failed to init, chipset, status reg */ lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0437 Adapter failed to init, " "chipset, status reg x%x, " "FW Data: A8 x%x AC x%x\n", status, readl(phba->MBslimaddr + 0xa8), readl(phba->MBslimaddr + 0xac)); phba->link_state = LPFC_HBA_ERROR; return -EIO; } if (i <= 10) msleep(10); else if (i <= 100) msleep(100); else msleep(1000); if (i == 150) { /* Do post */ phba->pport->port_state = LPFC_VPORT_UNKNOWN; lpfc_sli_brdrestart(phba); } /* Read the HBA Host Status Register */ if (lpfc_readl(phba->HSregaddr, &status)) return -EIO; } /* Check to see if any errors occurred during init */ if (status & HS_FFERM) { /* ERROR: During chipset initialization */ /* Adapter failed to init, chipset, status reg */ lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0438 Adapter failed to init, chipset, " "status reg x%x, " "FW Data: A8 x%x AC x%x\n", status, readl(phba->MBslimaddr + 0xa8), readl(phba->MBslimaddr + 0xac)); phba->link_state = LPFC_HBA_ERROR; return -EIO; } phba->hba_flag |= HBA_NEEDS_CFG_PORT; /* Clear all interrupt enable conditions */ writel(0, phba->HCregaddr); readl(phba->HCregaddr); /* flush */ /* setup host attn register */ writel(0xffffffff, phba->HAregaddr); readl(phba->HAregaddr); /* flush */ return 0; } /** * lpfc_sli_hbq_count - Get the number of HBQs to be configured * * This function calculates and returns the number of HBQs required to be * configured. **/ int lpfc_sli_hbq_count(void) { return ARRAY_SIZE(lpfc_hbq_defs); } /** * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries * * This function adds the number of hbq entries in every HBQ to get * the total number of hbq entries required for the HBA and returns * the total count. **/ static int lpfc_sli_hbq_entry_count(void) { int hbq_count = lpfc_sli_hbq_count(); int count = 0; int i; for (i = 0; i < hbq_count; ++i) count += lpfc_hbq_defs[i]->entry_count; return count; } /** * lpfc_sli_hbq_size - Calculate memory required for all hbq entries * * This function calculates amount of memory required for all hbq entries * to be configured and returns the total memory required. **/ int lpfc_sli_hbq_size(void) { return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry); } /** * lpfc_sli_hbq_setup - configure and initialize HBQs * @phba: Pointer to HBA context object. * * This function is called during the SLI initialization to configure * all the HBQs and post buffers to the HBQ. The caller is not * required to hold any locks. This function will return zero if successful * else it will return negative error code. **/ static int lpfc_sli_hbq_setup(struct lpfc_hba *phba) { int hbq_count = lpfc_sli_hbq_count(); LPFC_MBOXQ_t *pmb; MAILBOX_t *pmbox; uint32_t hbqno; uint32_t hbq_entry_index; /* Get a Mailbox buffer to setup mailbox * commands for HBA initialization */ pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!pmb) return -ENOMEM; pmbox = &pmb->u.mb; /* Initialize the struct lpfc_sli_hbq structure for each hbq */ phba->link_state = LPFC_INIT_MBX_CMDS; phba->hbq_in_use = 1; hbq_entry_index = 0; for (hbqno = 0; hbqno < hbq_count; ++hbqno) { phba->hbqs[hbqno].next_hbqPutIdx = 0; phba->hbqs[hbqno].hbqPutIdx = 0; phba->hbqs[hbqno].local_hbqGetIdx = 0; phba->hbqs[hbqno].entry_count = lpfc_hbq_defs[hbqno]->entry_count; lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno], hbq_entry_index, pmb); hbq_entry_index += phba->hbqs[hbqno].entry_count; if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { /* Adapter failed to init, mbxCmd CFG_RING, mbxStatus , ring */ lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_VPORT, "1805 Adapter failed to init. " "Data: x%x x%x x%x\n", pmbox->mbxCommand, pmbox->mbxStatus, hbqno); phba->link_state = LPFC_HBA_ERROR; mempool_free(pmb, phba->mbox_mem_pool); return -ENXIO; } } phba->hbq_count = hbq_count; mempool_free(pmb, phba->mbox_mem_pool); /* Initially populate or replenish the HBQs */ for (hbqno = 0; hbqno < hbq_count; ++hbqno) lpfc_sli_hbqbuf_init_hbqs(phba, hbqno); return 0; } /** * lpfc_sli4_rb_setup - Initialize and post RBs to HBA * @phba: Pointer to HBA context object. * * This function is called during the SLI initialization to configure * all the HBQs and post buffers to the HBQ. The caller is not * required to hold any locks. This function will return zero if successful * else it will return negative error code. **/ static int lpfc_sli4_rb_setup(struct lpfc_hba *phba) { phba->hbq_in_use = 1; /** * Specific case when the MDS diagnostics is enabled and supported. * The receive buffer count is truncated to manage the incoming * traffic. **/ if (phba->cfg_enable_mds_diags && phba->mds_diags_support) phba->hbqs[LPFC_ELS_HBQ].entry_count = lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count >> 1; else phba->hbqs[LPFC_ELS_HBQ].entry_count = lpfc_hbq_defs[LPFC_ELS_HBQ]->entry_count; phba->hbq_count = 1; lpfc_sli_hbqbuf_init_hbqs(phba, LPFC_ELS_HBQ); /* Initially populate or replenish the HBQs */ return 0; } /** * lpfc_sli_config_port - Issue config port mailbox command * @phba: Pointer to HBA context object. * @sli_mode: sli mode - 2/3 * * This function is called by the sli initialization code path * to issue config_port mailbox command. This function restarts the * HBA firmware and issues a config_port mailbox command to configure * the SLI interface in the sli mode specified by sli_mode * variable. The caller is not required to hold any locks. * The function returns 0 if successful, else returns negative error * code. **/ int lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode) { LPFC_MBOXQ_t *pmb; uint32_t resetcount = 0, rc = 0, done = 0; pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!pmb) { phba->link_state = LPFC_HBA_ERROR; return -ENOMEM; } phba->sli_rev = sli_mode; while (resetcount < 2 && !done) { spin_lock_irq(&phba->hbalock); phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE; spin_unlock_irq(&phba->hbalock); phba->pport->port_state = LPFC_VPORT_UNKNOWN; lpfc_sli_brdrestart(phba); rc = lpfc_sli_chipset_init(phba); if (rc) break; spin_lock_irq(&phba->hbalock); phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; spin_unlock_irq(&phba->hbalock); resetcount++; /* Call pre CONFIG_PORT mailbox command initialization. A * value of 0 means the call was successful. Any other * nonzero value is a failure, but if ERESTART is returned, * the driver may reset the HBA and try again. */ rc = lpfc_config_port_prep(phba); if (rc == -ERESTART) { phba->link_state = LPFC_LINK_UNKNOWN; continue; } else if (rc) break; phba->link_state = LPFC_INIT_MBX_CMDS; lpfc_config_port(phba, pmb); rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED | LPFC_SLI3_CRP_ENABLED | LPFC_SLI3_DSS_ENABLED); if (rc != MBX_SUCCESS) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0442 Adapter failed to init, mbxCmd x%x " "CONFIG_PORT, mbxStatus x%x Data: x%x\n", pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0); spin_lock_irq(&phba->hbalock); phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; spin_unlock_irq(&phba->hbalock); rc = -ENXIO; } else { /* Allow asynchronous mailbox command to go through */ spin_lock_irq(&phba->hbalock); phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; spin_unlock_irq(&phba->hbalock); done = 1; if ((pmb->u.mb.un.varCfgPort.casabt == 1) && (pmb->u.mb.un.varCfgPort.gasabt == 0)) lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, "3110 Port did not grant ASABT\n"); } } if (!done) { rc = -EINVAL; goto do_prep_failed; } if (pmb->u.mb.un.varCfgPort.sli_mode == 3) { if (!pmb->u.mb.un.varCfgPort.cMA) { rc = -ENXIO; goto do_prep_failed; } if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) { phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED; phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi; phba->max_vports = (phba->max_vpi > phba->max_vports) ? phba->max_vpi : phba->max_vports; } else phba->max_vpi = 0; if (pmb->u.mb.un.varCfgPort.gerbm) phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED; if (pmb->u.mb.un.varCfgPort.gcrp) phba->sli3_options |= LPFC_SLI3_CRP_ENABLED; phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get; phba->port_gp = phba->mbox->us.s3_pgp.port; if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { if (pmb->u.mb.un.varCfgPort.gbg == 0) { phba->cfg_enable_bg = 0; phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0443 Adapter did not grant " "BlockGuard\n"); } } } else { phba->hbq_get = NULL; phba->port_gp = phba->mbox->us.s2.port; phba->max_vpi = 0; } do_prep_failed: mempool_free(pmb, phba->mbox_mem_pool); return rc; } /** * lpfc_sli_hba_setup - SLI initialization function * @phba: Pointer to HBA context object. * * This function is the main SLI initialization function. This function * is called by the HBA initialization code, HBA reset code and HBA * error attention handler code. Caller is not required to hold any * locks. This function issues config_port mailbox command to configure * the SLI, setup iocb rings and HBQ rings. In the end the function * calls the config_port_post function to issue init_link mailbox * command and to start the discovery. The function will return zero * if successful, else it will return negative error code. **/ int lpfc_sli_hba_setup(struct lpfc_hba *phba) { uint32_t rc; int i; int longs; /* Enable ISR already does config_port because of config_msi mbx */ if (phba->hba_flag & HBA_NEEDS_CFG_PORT) { rc = lpfc_sli_config_port(phba, LPFC_SLI_REV3); if (rc) return -EIO; phba->hba_flag &= ~HBA_NEEDS_CFG_PORT; } phba->fcp_embed_io = 0; /* SLI4 FC support only */ /* Enable PCIe device Advanced Error Reporting (AER) if configured */ if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { rc = pci_enable_pcie_error_reporting(phba->pcidev); if (!rc) { lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "2709 This device supports " "Advanced Error Reporting (AER)\n"); spin_lock_irq(&phba->hbalock); phba->hba_flag |= HBA_AER_ENABLED; spin_unlock_irq(&phba->hbalock); } else { lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "2708 This device does not support " "Advanced Error Reporting (AER): %d\n", rc); phba->cfg_aer_support = 0; } } if (phba->sli_rev == 3) { phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE; phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE; } else { phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE; phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE; phba->sli3_options = 0; } lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "0444 Firmware in SLI %x mode. Max_vpi %d\n", phba->sli_rev, phba->max_vpi); rc = lpfc_sli_ring_map(phba); if (rc) goto lpfc_sli_hba_setup_error; /* Initialize VPIs. */ if (phba->sli_rev == LPFC_SLI_REV3) { /* * The VPI bitmask and physical ID array are allocated * and initialized once only - at driver load. A port * reset doesn't need to reinitialize this memory. */ if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) { longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG; phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), GFP_KERNEL); if (!phba->vpi_bmask) { rc = -ENOMEM; goto lpfc_sli_hba_setup_error; } phba->vpi_ids = kcalloc(phba->max_vpi + 1, sizeof(uint16_t), GFP_KERNEL); if (!phba->vpi_ids) { kfree(phba->vpi_bmask); rc = -ENOMEM; goto lpfc_sli_hba_setup_error; } for (i = 0; i < phba->max_vpi; i++) phba->vpi_ids[i] = i; } } /* Init HBQs */ if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) { rc = lpfc_sli_hbq_setup(phba); if (rc) goto lpfc_sli_hba_setup_error; } spin_lock_irq(&phba->hbalock); phba->sli.sli_flag |= LPFC_PROCESS_LA; spin_unlock_irq(&phba->hbalock); rc = lpfc_config_port_post(phba); if (rc) goto lpfc_sli_hba_setup_error; return rc; lpfc_sli_hba_setup_error: phba->link_state = LPFC_HBA_ERROR; lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0445 Firmware initialization failed\n"); return rc; } /** * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region * @phba: Pointer to HBA context object. * * This function issue a dump mailbox command to read config region * 23 and parse the records in the region and populate driver * data structure. **/ static int lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba) { LPFC_MBOXQ_t *mboxq; struct lpfc_dmabuf *mp; struct lpfc_mqe *mqe; uint32_t data_length; int rc; /* Program the default value of vlan_id and fc_map */ phba->valid_vlan = 0; phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!mboxq) return -ENOMEM; mqe = &mboxq->u.mqe; if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) { rc = -ENOMEM; goto out_free_mboxq; } mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, "(%d):2571 Mailbox cmd x%x Status x%x " "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x " "x%x x%x x%x x%x x%x x%x x%x x%x x%x " "CQ: x%x x%x x%x x%x\n", mboxq->vport ? mboxq->vport->vpi : 0, bf_get(lpfc_mqe_command, mqe), bf_get(lpfc_mqe_status, mqe), mqe->un.mb_words[0], mqe->un.mb_words[1], mqe->un.mb_words[2], mqe->un.mb_words[3], mqe->un.mb_words[4], mqe->un.mb_words[5], mqe->un.mb_words[6], mqe->un.mb_words[7], mqe->un.mb_words[8], mqe->un.mb_words[9], mqe->un.mb_words[10], mqe->un.mb_words[11], mqe->un.mb_words[12], mqe->un.mb_words[13], mqe->un.mb_words[14], mqe->un.mb_words[15], mqe->un.mb_words[16], mqe->un.mb_words[50], mboxq->mcqe.word0, mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, mboxq->mcqe.trailer); if (rc) { lpfc_mbuf_free(phba, mp->virt, mp->phys); kfree(mp); rc = -EIO; goto out_free_mboxq; } data_length = mqe->un.mb_words[5]; if (data_length > DMP_RGN23_SIZE) { lpfc_mbuf_free(phba, mp->virt, mp->phys); kfree(mp); rc = -EIO; goto out_free_mboxq; } lpfc_parse_fcoe_conf(phba, mp->virt, data_length); lpfc_mbuf_free(phba, mp->virt, mp->phys); kfree(mp); rc = 0; out_free_mboxq: mempool_free(mboxq, phba->mbox_mem_pool); return rc; } /** * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data * @phba: pointer to lpfc hba data structure. * @mboxq: pointer to the LPFC_MBOXQ_t structure. * @vpd: pointer to the memory to hold resulting port vpd data. * @vpd_size: On input, the number of bytes allocated to @vpd. * On output, the number of data bytes in @vpd. * * This routine executes a READ_REV SLI4 mailbox command. In * addition, this routine gets the port vpd data. * * Return codes * 0 - successful * -ENOMEM - could not allocated memory. **/ static int lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, uint8_t *vpd, uint32_t *vpd_size) { int rc = 0; uint32_t dma_size; struct lpfc_dmabuf *dmabuf; struct lpfc_mqe *mqe; dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); if (!dmabuf) return -ENOMEM; /* * Get a DMA buffer for the vpd data resulting from the READ_REV * mailbox command. */ dma_size = *vpd_size; dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, dma_size, &dmabuf->phys, GFP_KERNEL); if (!dmabuf->virt) { kfree(dmabuf); return -ENOMEM; } /* * The SLI4 implementation of READ_REV conflicts at word1, * bits 31:16 and SLI4 adds vpd functionality not present * in SLI3. This code corrects the conflicts. */ lpfc_read_rev(phba, mboxq); mqe = &mboxq->u.mqe; mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys); mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys); mqe->un.read_rev.word1 &= 0x0000FFFF; bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1); bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size); rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); if (rc) { dma_free_coherent(&phba->pcidev->dev, dma_size, dmabuf->virt, dmabuf->phys); kfree(dmabuf); return -EIO; } /* * The available vpd length cannot be bigger than the * DMA buffer passed to the port. Catch the less than * case and update the caller's size. */ if (mqe->un.read_rev.avail_vpd_len < *vpd_size) *vpd_size = mqe->un.read_rev.avail_vpd_len; memcpy(vpd, dmabuf->virt, *vpd_size); dma_free_coherent(&phba->pcidev->dev, dma_size, dmabuf->virt, dmabuf->phys); kfree(dmabuf); return 0; } /** * lpfc_sli4_get_ctl_attr - Retrieve SLI4 device controller attributes * @phba: pointer to lpfc hba data structure. * * This routine retrieves SLI4 device physical port name this PCI function * is attached to. * * Return codes * 0 - successful * otherwise - failed to retrieve controller attributes **/ static int lpfc_sli4_get_ctl_attr(struct lpfc_hba *phba) { LPFC_MBOXQ_t *mboxq; struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr; struct lpfc_controller_attribute *cntl_attr; void *virtaddr = NULL; uint32_t alloclen, reqlen; uint32_t shdr_status, shdr_add_status; union lpfc_sli4_cfg_shdr *shdr; int rc; mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!mboxq) return -ENOMEM; /* Send COMMON_GET_CNTL_ATTRIBUTES mbox cmd */ reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes); alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen, LPFC_SLI4_MBX_NEMBED); if (alloclen < reqlen) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3084 Allocated DMA memory size (%d) is " "less than the requested DMA memory size " "(%d)\n", alloclen, reqlen); rc = -ENOMEM; goto out_free_mboxq; } rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); virtaddr = mboxq->sge_array->addr[0]; mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr; shdr = &mbx_cntl_attr->cfg_shdr; shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); if (shdr_status || shdr_add_status || rc) { lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, "3085 Mailbox x%x (x%x/x%x) failed, " "rc:x%x, status:x%x, add_status:x%x\n", bf_get(lpfc_mqe_command, &mboxq->u.mqe), lpfc_sli_config_mbox_subsys_get(phba, mboxq), lpfc_sli_config_mbox_opcode_get(phba, mboxq), rc, shdr_status, shdr_add_status); rc = -ENXIO; goto out_free_mboxq; } cntl_attr = &mbx_cntl_attr->cntl_attr; phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; phba->sli4_hba.lnk_info.lnk_tp = bf_get(lpfc_cntl_attr_lnk_type, cntl_attr); phba->sli4_hba.lnk_info.lnk_no = bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr); phba->sli4_hba.flash_id = bf_get(lpfc_cntl_attr_flash_id, cntl_attr); phba->sli4_hba.asic_rev = bf_get(lpfc_cntl_attr_asic_rev, cntl_attr); memset(phba->BIOSVersion, 0, sizeof(phba->BIOSVersion)); strlcat(phba->BIOSVersion, (char *)cntl_attr->bios_ver_str, sizeof(phba->BIOSVersion)); lpfc_printf_log(phba, KERN_INFO, LOG_SLI, "3086 lnk_type:%d, lnk_numb:%d, bios_ver:%s, " "flash_id: x%02x, asic_rev: x%02x\n", phba->sli4_hba.lnk_info.lnk_tp, phba->sli4_hba.lnk_info.lnk_no, phba->BIOSVersion, phba->sli4_hba.flash_id, phba->sli4_hba.asic_rev); out_free_mboxq: if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) lpfc_sli4_mbox_cmd_free(phba, mboxq); else mempool_free(mboxq, phba->mbox_mem_pool); return rc; } /** * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name * @phba: pointer to lpfc hba data structure. * * This routine retrieves SLI4 device physical port name this PCI function * is attached to. * * Return codes * 0 - successful * otherwise - failed to retrieve physical port name **/ static int lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba) { LPFC_MBOXQ_t *mboxq; struct lpfc_mbx_get_port_name *get_port_name; uint32_t shdr_status, shdr_add_status; union lpfc_sli4_cfg_shdr *shdr; char cport_name = 0; int rc; /* We assume nothing at this point */ phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON; mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!mboxq) return -ENOMEM; /* obtain link type and link number via READ_CONFIG */ phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL; lpfc_sli4_read_config(phba); if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL) goto retrieve_ppname; /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */ rc = lpfc_sli4_get_ctl_attr(phba); if (rc) goto out_free_mboxq; retrieve_ppname: lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, LPFC_MBOX_OPCODE_GET_PORT_NAME, sizeof(struct lpfc_mbx_get_port_name) - sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); get_port_name = &mboxq->u.mqe.un.get_port_name; shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr; bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1); bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request, phba->sli4_hba.lnk_info.lnk_tp); rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); if (shdr_status || shdr_add_status || rc) { lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, "3087 Mailbox x%x (x%x/x%x) failed: " "rc:x%x, status:x%x, add_status:x%x\n", bf_get(lpfc_mqe_command, &mboxq->u.mqe), lpfc_sli_config_mbox_subsys_get(phba, mboxq), lpfc_sli_config_mbox_opcode_get(phba, mboxq), rc, shdr_status, shdr_add_status); rc = -ENXIO; goto out_free_mboxq; } switch (phba->sli4_hba.lnk_info.lnk_no) { case LPFC_LINK_NUMBER_0: cport_name = bf_get(lpfc_mbx_get_port_name_name0, &get_port_name->u.response); phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; break; case LPFC_LINK_NUMBER_1: cport_name = bf_get(lpfc_mbx_get_port_name_name1, &get_port_name->u.response); phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; break; case LPFC_LINK_NUMBER_2: cport_name = bf_get(lpfc_mbx_get_port_name_name2, &get_port_name->u.response); phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; break; case LPFC_LINK_NUMBER_3: cport_name = bf_get(lpfc_mbx_get_port_name_name3, &get_port_name->u.response); phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET; break; default: break; } if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) { phba->Port[0] = cport_name; phba->Port[1] = '\0'; lpfc_printf_log(phba, KERN_INFO, LOG_SLI, "3091 SLI get port name: %s\n", phba->Port); } out_free_mboxq: if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG) lpfc_sli4_mbox_cmd_free(phba, mboxq); else mempool_free(mboxq, phba->mbox_mem_pool); return rc; } /** * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues * @phba: pointer to lpfc hba data structure. * * This routine is called to explicitly arm the SLI4 device's completion and * event queues **/ static void lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba) { int qidx; struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; struct lpfc_sli4_hdw_queue *qp; struct lpfc_queue *eq; sli4_hba->sli4_write_cq_db(phba, sli4_hba->mbx_cq, 0, LPFC_QUEUE_REARM); sli4_hba->sli4_write_cq_db(phba, sli4_hba->els_cq, 0, LPFC_QUEUE_REARM); if (sli4_hba->nvmels_cq) sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmels_cq, 0, LPFC_QUEUE_REARM); if (sli4_hba->hdwq) { /* Loop thru all Hardware Queues */ for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { qp = &sli4_hba->hdwq[qidx]; /* ARM the corresponding CQ */ sli4_hba->sli4_write_cq_db(phba, qp->io_cq, 0, LPFC_QUEUE_REARM); } /* Loop thru all IRQ vectors */ for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { eq = sli4_hba->hba_eq_hdl[qidx].eq; /* ARM the corresponding EQ */ sli4_hba->sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM); } } if (phba->nvmet_support) { for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) { sli4_hba->sli4_write_cq_db(phba, sli4_hba->nvmet_cqset[qidx], 0, LPFC_QUEUE_REARM); } } } /** * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count. * @phba: Pointer to HBA context object. * @type: The resource extent type. * @extnt_count: buffer to hold port available extent count. * @extnt_size: buffer to hold element count per extent. * * This function calls the port and retrievs the number of available * extents and their size for a particular extent type. * * Returns: 0 if successful. Nonzero otherwise. **/ int lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type, uint16_t *extnt_count, uint16_t *extnt_size) { int rc = 0; uint32_t length; uint32_t mbox_tmo; struct lpfc_mbx_get_rsrc_extent_info *rsrc_info; LPFC_MBOXQ_t *mbox; mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!mbox) return -ENOMEM; /* Find out how many extents are available for this resource type */ length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) - sizeof(struct lpfc_sli4_cfg_mhdr)); lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO, length, LPFC_SLI4_MBX_EMBED); /* Send an extents count of 0 - the GET doesn't use it. */ rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, LPFC_SLI4_MBX_EMBED); if (unlikely(rc)) { rc = -EIO; goto err_exit; } if (!phba->sli4_hba.intr_enable) rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); else { mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); } if (unlikely(rc)) { rc = -EIO; goto err_exit; } rsrc_info = &mbox->u.mqe.un.rsrc_extent_info; if (bf_get(lpfc_mbox_hdr_status, &rsrc_info->header.cfg_shdr.response)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2930 Failed to get resource extents " "Status 0x%x Add'l Status 0x%x\n", bf_get(lpfc_mbox_hdr_status, &rsrc_info->header.cfg_shdr.response), bf_get(lpfc_mbox_hdr_add_status, &rsrc_info->header.cfg_shdr.response)); rc = -EIO; goto err_exit; } *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt, &rsrc_info->u.rsp); *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size, &rsrc_info->u.rsp); lpfc_printf_log(phba, KERN_INFO, LOG_SLI, "3162 Retrieved extents type-%d from port: count:%d, " "size:%d\n", type, *extnt_count, *extnt_size); err_exit: mempool_free(mbox, phba->mbox_mem_pool); return rc; } /** * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents. * @phba: Pointer to HBA context object. * @type: The extent type to check. * * This function reads the current available extents from the port and checks * if the extent count or extent size has changed since the last access. * Callers use this routine post port reset to understand if there is a * extent reprovisioning requirement. * * Returns: * -Error: error indicates problem. * 1: Extent count or size has changed. * 0: No changes. **/ static int lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type) { uint16_t curr_ext_cnt, rsrc_ext_cnt; uint16_t size_diff, rsrc_ext_size; int rc = 0; struct lpfc_rsrc_blks *rsrc_entry; struct list_head *rsrc_blk_list = NULL; size_diff = 0; curr_ext_cnt = 0; rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, &rsrc_ext_cnt, &rsrc_ext_size); if (unlikely(rc)) return -EIO; switch (type) { case LPFC_RSC_TYPE_FCOE_RPI: rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; break; case LPFC_RSC_TYPE_FCOE_VPI: rsrc_blk_list = &phba->lpfc_vpi_blk_list; break; case LPFC_RSC_TYPE_FCOE_XRI: rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; break; case LPFC_RSC_TYPE_FCOE_VFI: rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; break; default: break; } list_for_each_entry(rsrc_entry, rsrc_blk_list, list) { curr_ext_cnt++; if (rsrc_entry->rsrc_size != rsrc_ext_size) size_diff++; } if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0) rc = 1; return rc; } /** * lpfc_sli4_cfg_post_extnts - * @phba: Pointer to HBA context object. * @extnt_cnt: number of available extents. * @type: the extent type (rpi, xri, vfi, vpi). * @emb: buffer to hold either MBX_EMBED or MBX_NEMBED operation. * @mbox: pointer to the caller's allocated mailbox structure. * * This function executes the extents allocation request. It also * takes care of the amount of memory needed to allocate or get the * allocated extents. It is the caller's responsibility to evaluate * the response. * * Returns: * -Error: Error value describes the condition found. * 0: if successful **/ static int lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t extnt_cnt, uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox) { int rc = 0; uint32_t req_len; uint32_t emb_len; uint32_t alloc_len, mbox_tmo; /* Calculate the total requested length of the dma memory */ req_len = extnt_cnt * sizeof(uint16_t); /* * Calculate the size of an embedded mailbox. The uint32_t * accounts for extents-specific word. */ emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - sizeof(uint32_t); /* * Presume the allocation and response will fit into an embedded * mailbox. If not true, reconfigure to a non-embedded mailbox. */ *emb = LPFC_SLI4_MBX_EMBED; if (req_len > emb_len) { req_len = extnt_cnt * sizeof(uint16_t) + sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); *emb = LPFC_SLI4_MBX_NEMBED; } alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT, req_len, *emb); if (alloc_len < req_len) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2982 Allocated DMA memory size (x%x) is " "less than the requested DMA memory " "size (x%x)\n", alloc_len, req_len); return -ENOMEM; } rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, extnt_cnt, type, *emb); if (unlikely(rc)) return -EIO; if (!phba->sli4_hba.intr_enable) rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); else { mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); } if (unlikely(rc)) rc = -EIO; return rc; } /** * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent. * @phba: Pointer to HBA context object. * @type: The resource extent type to allocate. * * This function allocates the number of elements for the specified * resource type. **/ static int lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type) { bool emb = false; uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size; uint16_t rsrc_id, rsrc_start, j, k; uint16_t *ids; int i, rc; unsigned long longs; unsigned long *bmask; struct lpfc_rsrc_blks *rsrc_blks; LPFC_MBOXQ_t *mbox; uint32_t length; struct lpfc_id_range *id_array = NULL; void *virtaddr = NULL; struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; struct list_head *ext_blk_list; rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type, &rsrc_cnt, &rsrc_size); if (unlikely(rc)) return -EIO; if ((rsrc_cnt == 0) || (rsrc_size == 0)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3009 No available Resource Extents " "for resource type 0x%x: Count: 0x%x, " "Size 0x%x\n", type, rsrc_cnt, rsrc_size); return -ENOMEM; } lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT | LOG_SLI, "2903 Post resource extents type-0x%x: " "count:%d, size %d\n", type, rsrc_cnt, rsrc_size); mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!mbox) return -ENOMEM; rc = lpfc_sli4_cfg_post_extnts(phba, rsrc_cnt, type, &emb, mbox); if (unlikely(rc)) { rc = -EIO; goto err_exit; } /* * Figure out where the response is located. Then get local pointers * to the response data. The port does not guarantee to respond to * all extents counts request so update the local variable with the * allocated count from the port. */ if (emb == LPFC_SLI4_MBX_EMBED) { rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; id_array = &rsrc_ext->u.rsp.id[0]; rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); } else { virtaddr = mbox->sge_array->addr[0]; n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); id_array = &n_rsrc->id; } longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG; rsrc_id_cnt = rsrc_cnt * rsrc_size; /* * Based on the resource size and count, correct the base and max * resource values. */ length = sizeof(struct lpfc_rsrc_blks); switch (type) { case LPFC_RSC_TYPE_FCOE_RPI: phba->sli4_hba.rpi_bmask = kcalloc(longs, sizeof(unsigned long), GFP_KERNEL); if (unlikely(!phba->sli4_hba.rpi_bmask)) { rc = -ENOMEM; goto err_exit; } phba->sli4_hba.rpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t), GFP_KERNEL); if (unlikely(!phba->sli4_hba.rpi_ids)) { kfree(phba->sli4_hba.rpi_bmask); rc = -ENOMEM; goto err_exit; } /* * The next_rpi was initialized with the maximum available * count but the port may allocate a smaller number. Catch * that case and update the next_rpi. */ phba->sli4_hba.next_rpi = rsrc_id_cnt; /* Initialize local ptrs for common extent processing later. */ bmask = phba->sli4_hba.rpi_bmask; ids = phba->sli4_hba.rpi_ids; ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list; break; case LPFC_RSC_TYPE_FCOE_VPI: phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), GFP_KERNEL); if (unlikely(!phba->vpi_bmask)) { rc = -ENOMEM; goto err_exit; } phba->vpi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t), GFP_KERNEL); if (unlikely(!phba->vpi_ids)) { kfree(phba->vpi_bmask); rc = -ENOMEM; goto err_exit; } /* Initialize local ptrs for common extent processing later. */ bmask = phba->vpi_bmask; ids = phba->vpi_ids; ext_blk_list = &phba->lpfc_vpi_blk_list; break; case LPFC_RSC_TYPE_FCOE_XRI: phba->sli4_hba.xri_bmask = kcalloc(longs, sizeof(unsigned long), GFP_KERNEL); if (unlikely(!phba->sli4_hba.xri_bmask)) { rc = -ENOMEM; goto err_exit; } phba->sli4_hba.max_cfg_param.xri_used = 0; phba->sli4_hba.xri_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t), GFP_KERNEL); if (unlikely(!phba->sli4_hba.xri_ids)) { kfree(phba->sli4_hba.xri_bmask); rc = -ENOMEM; goto err_exit; } /* Initialize local ptrs for common extent processing later. */ bmask = phba->sli4_hba.xri_bmask; ids = phba->sli4_hba.xri_ids; ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list; break; case LPFC_RSC_TYPE_FCOE_VFI: phba->sli4_hba.vfi_bmask = kcalloc(longs, sizeof(unsigned long), GFP_KERNEL); if (unlikely(!phba->sli4_hba.vfi_bmask)) { rc = -ENOMEM; goto err_exit; } phba->sli4_hba.vfi_ids = kcalloc(rsrc_id_cnt, sizeof(uint16_t), GFP_KERNEL); if (unlikely(!phba->sli4_hba.vfi_ids)) { kfree(phba->sli4_hba.vfi_bmask); rc = -ENOMEM; goto err_exit; } /* Initialize local ptrs for common extent processing later. */ bmask = phba->sli4_hba.vfi_bmask; ids = phba->sli4_hba.vfi_ids; ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list; break; default: /* Unsupported Opcode. Fail call. */ id_array = NULL; bmask = NULL; ids = NULL; ext_blk_list = NULL; goto err_exit; } /* * Complete initializing the extent configuration with the * allocated ids assigned to this function. The bitmask serves * as an index into the array and manages the available ids. The * array just stores the ids communicated to the port via the wqes. */ for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) { if ((i % 2) == 0) rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0, &id_array[k]); else rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1, &id_array[k]); rsrc_blks = kzalloc(length, GFP_KERNEL); if (unlikely(!rsrc_blks)) { rc = -ENOMEM; kfree(bmask); kfree(ids); goto err_exit; } rsrc_blks->rsrc_start = rsrc_id; rsrc_blks->rsrc_size = rsrc_size; list_add_tail(&rsrc_blks->list, ext_blk_list); rsrc_start = rsrc_id; if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0)) { phba->sli4_hba.io_xri_start = rsrc_start + lpfc_sli4_get_iocb_cnt(phba); } while (rsrc_id < (rsrc_start + rsrc_size)) { ids[j] = rsrc_id; rsrc_id++; j++; } /* Entire word processed. Get next word.*/ if ((i % 2) == 1) k++; } err_exit: lpfc_sli4_mbox_cmd_free(phba, mbox); return rc; } /** * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent. * @phba: Pointer to HBA context object. * @type: the extent's type. * * This function deallocates all extents of a particular resource type. * SLI4 does not allow for deallocating a particular extent range. It * is the caller's responsibility to release all kernel memory resources. **/ static int lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type) { int rc; uint32_t length, mbox_tmo = 0; LPFC_MBOXQ_t *mbox; struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc; struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next; mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!mbox) return -ENOMEM; /* * This function sends an embedded mailbox because it only sends the * the resource type. All extents of this type are released by the * port. */ length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) - sizeof(struct lpfc_sli4_cfg_mhdr)); lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT, length, LPFC_SLI4_MBX_EMBED); /* Send an extents count of 0 - the dealloc doesn't use it. */ rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type, LPFC_SLI4_MBX_EMBED); if (unlikely(rc)) { rc = -EIO; goto out_free_mbox; } if (!phba->sli4_hba.intr_enable) rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); else { mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); } if (unlikely(rc)) { rc = -EIO; goto out_free_mbox; } dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents; if (bf_get(lpfc_mbox_hdr_status, &dealloc_rsrc->header.cfg_shdr.response)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2919 Failed to release resource extents " "for type %d - Status 0x%x Add'l Status 0x%x. " "Resource memory not released.\n", type, bf_get(lpfc_mbox_hdr_status, &dealloc_rsrc->header.cfg_shdr.response), bf_get(lpfc_mbox_hdr_add_status, &dealloc_rsrc->header.cfg_shdr.response)); rc = -EIO; goto out_free_mbox; } /* Release kernel memory resources for the specific type. */ switch (type) { case LPFC_RSC_TYPE_FCOE_VPI: kfree(phba->vpi_bmask); kfree(phba->vpi_ids); bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, &phba->lpfc_vpi_blk_list, list) { list_del_init(&rsrc_blk->list); kfree(rsrc_blk); } phba->sli4_hba.max_cfg_param.vpi_used = 0; break; case LPFC_RSC_TYPE_FCOE_XRI: kfree(phba->sli4_hba.xri_bmask); kfree(phba->sli4_hba.xri_ids); list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, &phba->sli4_hba.lpfc_xri_blk_list, list) { list_del_init(&rsrc_blk->list); kfree(rsrc_blk); } break; case LPFC_RSC_TYPE_FCOE_VFI: kfree(phba->sli4_hba.vfi_bmask); kfree(phba->sli4_hba.vfi_ids); bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, &phba->sli4_hba.lpfc_vfi_blk_list, list) { list_del_init(&rsrc_blk->list); kfree(rsrc_blk); } break; case LPFC_RSC_TYPE_FCOE_RPI: /* RPI bitmask and physical id array are cleaned up earlier. */ list_for_each_entry_safe(rsrc_blk, rsrc_blk_next, &phba->sli4_hba.lpfc_rpi_blk_list, list) { list_del_init(&rsrc_blk->list); kfree(rsrc_blk); } break; default: break; } bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); out_free_mbox: mempool_free(mbox, phba->mbox_mem_pool); return rc; } static void lpfc_set_features(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox, uint32_t feature) { uint32_t len; u32 sig_freq = 0; len = sizeof(struct lpfc_mbx_set_feature) - sizeof(struct lpfc_sli4_cfg_mhdr); lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, LPFC_MBOX_OPCODE_SET_FEATURES, len, LPFC_SLI4_MBX_EMBED); switch (feature) { case LPFC_SET_UE_RECOVERY: bf_set(lpfc_mbx_set_feature_UER, &mbox->u.mqe.un.set_feature, 1); mbox->u.mqe.un.set_feature.feature = LPFC_SET_UE_RECOVERY; mbox->u.mqe.un.set_feature.param_len = 8; break; case LPFC_SET_MDS_DIAGS: bf_set(lpfc_mbx_set_feature_mds, &mbox->u.mqe.un.set_feature, 1); bf_set(lpfc_mbx_set_feature_mds_deep_loopbk, &mbox->u.mqe.un.set_feature, 1); mbox->u.mqe.un.set_feature.feature = LPFC_SET_MDS_DIAGS; mbox->u.mqe.un.set_feature.param_len = 8; break; case LPFC_SET_CGN_SIGNAL: if (phba->cmf_active_mode == LPFC_CFG_OFF) sig_freq = 0; else sig_freq = phba->cgn_sig_freq; if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { bf_set(lpfc_mbx_set_feature_CGN_alarm_freq, &mbox->u.mqe.un.set_feature, sig_freq); bf_set(lpfc_mbx_set_feature_CGN_warn_freq, &mbox->u.mqe.un.set_feature, sig_freq); } if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY) bf_set(lpfc_mbx_set_feature_CGN_warn_freq, &mbox->u.mqe.un.set_feature, sig_freq); if (phba->cmf_active_mode == LPFC_CFG_OFF || phba->cgn_reg_signal == EDC_CG_SIG_NOTSUPPORTED) sig_freq = 0; else sig_freq = lpfc_acqe_cgn_frequency; bf_set(lpfc_mbx_set_feature_CGN_acqe_freq, &mbox->u.mqe.un.set_feature, sig_freq); mbox->u.mqe.un.set_feature.feature = LPFC_SET_CGN_SIGNAL; mbox->u.mqe.un.set_feature.param_len = 12; break; case LPFC_SET_DUAL_DUMP: bf_set(lpfc_mbx_set_feature_dd, &mbox->u.mqe.un.set_feature, LPFC_ENABLE_DUAL_DUMP); bf_set(lpfc_mbx_set_feature_ddquery, &mbox->u.mqe.un.set_feature, 0); mbox->u.mqe.un.set_feature.feature = LPFC_SET_DUAL_DUMP; mbox->u.mqe.un.set_feature.param_len = 4; break; case LPFC_SET_ENABLE_MI: mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_MI; mbox->u.mqe.un.set_feature.param_len = 4; bf_set(lpfc_mbx_set_feature_milunq, &mbox->u.mqe.un.set_feature, phba->pport->cfg_lun_queue_depth); bf_set(lpfc_mbx_set_feature_mi, &mbox->u.mqe.un.set_feature, phba->sli4_hba.pc_sli4_params.mi_ver); break; case LPFC_SET_ENABLE_CMF: bf_set(lpfc_mbx_set_feature_dd, &mbox->u.mqe.un.set_feature, 1); mbox->u.mqe.un.set_feature.feature = LPFC_SET_ENABLE_CMF; mbox->u.mqe.un.set_feature.param_len = 4; bf_set(lpfc_mbx_set_feature_cmf, &mbox->u.mqe.un.set_feature, 1); break; } return; } /** * lpfc_ras_stop_fwlog: Disable FW logging by the adapter * @phba: Pointer to HBA context object. * * Disable FW logging into host memory on the adapter. To * be done before reading logs from the host memory. **/ void lpfc_ras_stop_fwlog(struct lpfc_hba *phba) { struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; spin_lock_irq(&phba->hbalock); ras_fwlog->state = INACTIVE; spin_unlock_irq(&phba->hbalock); /* Disable FW logging to host memory */ writel(LPFC_CTL_PDEV_CTL_DDL_RAS, phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PDEV_CTL_OFFSET); /* Wait 10ms for firmware to stop using DMA buffer */ usleep_range(10 * 1000, 20 * 1000); } /** * lpfc_sli4_ras_dma_free - Free memory allocated for FW logging. * @phba: Pointer to HBA context object. * * This function is called to free memory allocated for RAS FW logging * support in the driver. **/ void lpfc_sli4_ras_dma_free(struct lpfc_hba *phba) { struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; struct lpfc_dmabuf *dmabuf, *next; if (!list_empty(&ras_fwlog->fwlog_buff_list)) { list_for_each_entry_safe(dmabuf, next, &ras_fwlog->fwlog_buff_list, list) { list_del(&dmabuf->list); dma_free_coherent(&phba->pcidev->dev, LPFC_RAS_MAX_ENTRY_SIZE, dmabuf->virt, dmabuf->phys); kfree(dmabuf); } } if (ras_fwlog->lwpd.virt) { dma_free_coherent(&phba->pcidev->dev, sizeof(uint32_t) * 2, ras_fwlog->lwpd.virt, ras_fwlog->lwpd.phys); ras_fwlog->lwpd.virt = NULL; } spin_lock_irq(&phba->hbalock); ras_fwlog->state = INACTIVE; spin_unlock_irq(&phba->hbalock); } /** * lpfc_sli4_ras_dma_alloc: Allocate memory for FW support * @phba: Pointer to HBA context object. * @fwlog_buff_count: Count of buffers to be created. * * This routine DMA memory for Log Write Position Data[LPWD] and buffer * to update FW log is posted to the adapter. * Buffer count is calculated based on module param ras_fwlog_buffsize * Size of each buffer posted to FW is 64K. **/ static int lpfc_sli4_ras_dma_alloc(struct lpfc_hba *phba, uint32_t fwlog_buff_count) { struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; struct lpfc_dmabuf *dmabuf; int rc = 0, i = 0; /* Initialize List */ INIT_LIST_HEAD(&ras_fwlog->fwlog_buff_list); /* Allocate memory for the LWPD */ ras_fwlog->lwpd.virt = dma_alloc_coherent(&phba->pcidev->dev, sizeof(uint32_t) * 2, &ras_fwlog->lwpd.phys, GFP_KERNEL); if (!ras_fwlog->lwpd.virt) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "6185 LWPD Memory Alloc Failed\n"); return -ENOMEM; } ras_fwlog->fw_buffcount = fwlog_buff_count; for (i = 0; i < ras_fwlog->fw_buffcount; i++) { dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); if (!dmabuf) { rc = -ENOMEM; lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, "6186 Memory Alloc failed FW logging"); goto free_mem; } dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, LPFC_RAS_MAX_ENTRY_SIZE, &dmabuf->phys, GFP_KERNEL); if (!dmabuf->virt) { kfree(dmabuf); rc = -ENOMEM; lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, "6187 DMA Alloc Failed FW logging"); goto free_mem; } dmabuf->buffer_tag = i; list_add_tail(&dmabuf->list, &ras_fwlog->fwlog_buff_list); } free_mem: if (rc) lpfc_sli4_ras_dma_free(phba); return rc; } /** * lpfc_sli4_ras_mbox_cmpl: Completion handler for RAS MBX command * @phba: pointer to lpfc hba data structure. * @pmb: pointer to the driver internal queue element for mailbox command. * * Completion handler for driver's RAS MBX command to the device. **/ static void lpfc_sli4_ras_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) { MAILBOX_t *mb; union lpfc_sli4_cfg_shdr *shdr; uint32_t shdr_status, shdr_add_status; struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; mb = &pmb->u.mb; shdr = (union lpfc_sli4_cfg_shdr *) &pmb->u.mqe.un.ras_fwlog.header.cfg_shdr; shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); if (mb->mbxStatus != MBX_SUCCESS || shdr_status) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "6188 FW LOG mailbox " "completed with status x%x add_status x%x," " mbx status x%x\n", shdr_status, shdr_add_status, mb->mbxStatus); ras_fwlog->ras_hwsupport = false; goto disable_ras; } spin_lock_irq(&phba->hbalock); ras_fwlog->state = ACTIVE; spin_unlock_irq(&phba->hbalock); mempool_free(pmb, phba->mbox_mem_pool); return; disable_ras: /* Free RAS DMA memory */ lpfc_sli4_ras_dma_free(phba); mempool_free(pmb, phba->mbox_mem_pool); } /** * lpfc_sli4_ras_fwlog_init: Initialize memory and post RAS MBX command * @phba: pointer to lpfc hba data structure. * @fwlog_level: Logging verbosity level. * @fwlog_enable: Enable/Disable logging. * * Initialize memory and post mailbox command to enable FW logging in host * memory. **/ int lpfc_sli4_ras_fwlog_init(struct lpfc_hba *phba, uint32_t fwlog_level, uint32_t fwlog_enable) { struct lpfc_ras_fwlog *ras_fwlog = &phba->ras_fwlog; struct lpfc_mbx_set_ras_fwlog *mbx_fwlog = NULL; struct lpfc_dmabuf *dmabuf; LPFC_MBOXQ_t *mbox; uint32_t len = 0, fwlog_buffsize, fwlog_entry_count; int rc = 0; spin_lock_irq(&phba->hbalock); ras_fwlog->state = INACTIVE; spin_unlock_irq(&phba->hbalock); fwlog_buffsize = (LPFC_RAS_MIN_BUFF_POST_SIZE * phba->cfg_ras_fwlog_buffsize); fwlog_entry_count = (fwlog_buffsize/LPFC_RAS_MAX_ENTRY_SIZE); /* * If re-enabling FW logging support use earlier allocated * DMA buffers while posting MBX command. **/ if (!ras_fwlog->lwpd.virt) { rc = lpfc_sli4_ras_dma_alloc(phba, fwlog_entry_count); if (rc) { lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, "6189 FW Log Memory Allocation Failed"); return rc; } } /* Setup Mailbox command */ mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!mbox) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "6190 RAS MBX Alloc Failed"); rc = -ENOMEM; goto mem_free; } ras_fwlog->fw_loglevel = fwlog_level; len = (sizeof(struct lpfc_mbx_set_ras_fwlog) - sizeof(struct lpfc_sli4_cfg_mhdr)); lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_LOWLEVEL, LPFC_MBOX_OPCODE_SET_DIAG_LOG_OPTION, len, LPFC_SLI4_MBX_EMBED); mbx_fwlog = (struct lpfc_mbx_set_ras_fwlog *)&mbox->u.mqe.un.ras_fwlog; bf_set(lpfc_fwlog_enable, &mbx_fwlog->u.request, fwlog_enable); bf_set(lpfc_fwlog_loglvl, &mbx_fwlog->u.request, ras_fwlog->fw_loglevel); bf_set(lpfc_fwlog_buffcnt, &mbx_fwlog->u.request, ras_fwlog->fw_buffcount); bf_set(lpfc_fwlog_buffsz, &mbx_fwlog->u.request, LPFC_RAS_MAX_ENTRY_SIZE/SLI4_PAGE_SIZE); /* Update DMA buffer address */ list_for_each_entry(dmabuf, &ras_fwlog->fwlog_buff_list, list) { memset(dmabuf->virt, 0, LPFC_RAS_MAX_ENTRY_SIZE); mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); mbx_fwlog->u.request.buff_fwlog[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); } /* Update LPWD address */ mbx_fwlog->u.request.lwpd.addr_lo = putPaddrLow(ras_fwlog->lwpd.phys); mbx_fwlog->u.request.lwpd.addr_hi = putPaddrHigh(ras_fwlog->lwpd.phys); spin_lock_irq(&phba->hbalock); ras_fwlog->state = REG_INPROGRESS; spin_unlock_irq(&phba->hbalock); mbox->vport = phba->pport; mbox->mbox_cmpl = lpfc_sli4_ras_mbox_cmpl; rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); if (rc == MBX_NOT_FINISHED) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "6191 FW-Log Mailbox failed. " "status %d mbxStatus : x%x", rc, bf_get(lpfc_mqe_status, &mbox->u.mqe)); mempool_free(mbox, phba->mbox_mem_pool); rc = -EIO; goto mem_free; } else rc = 0; mem_free: if (rc) lpfc_sli4_ras_dma_free(phba); return rc; } /** * lpfc_sli4_ras_setup - Check if RAS supported on the adapter * @phba: Pointer to HBA context object. * * Check if RAS is supported on the adapter and initialize it. **/ void lpfc_sli4_ras_setup(struct lpfc_hba *phba) { /* Check RAS FW Log needs to be enabled or not */ if (lpfc_check_fwlog_support(phba)) return; lpfc_sli4_ras_fwlog_init(phba, phba->cfg_ras_fwlog_level, LPFC_RAS_ENABLE_LOGGING); } /** * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents. * @phba: Pointer to HBA context object. * * This function allocates all SLI4 resource identifiers. **/ int lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba) { int i, rc, error = 0; uint16_t count, base; unsigned long longs; if (!phba->sli4_hba.rpi_hdrs_in_use) phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi; if (phba->sli4_hba.extents_in_use) { /* * The port supports resource extents. The XRI, VPI, VFI, RPI * resource extent count must be read and allocated before * provisioning the resource id arrays. */ if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == LPFC_IDX_RSRC_RDY) { /* * Extent-based resources are set - the driver could * be in a port reset. Figure out if any corrective * actions need to be taken. */ rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, LPFC_RSC_TYPE_FCOE_VFI); if (rc != 0) error++; rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, LPFC_RSC_TYPE_FCOE_VPI); if (rc != 0) error++; rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, LPFC_RSC_TYPE_FCOE_XRI); if (rc != 0) error++; rc = lpfc_sli4_chk_avail_extnt_rsrc(phba, LPFC_RSC_TYPE_FCOE_RPI); if (rc != 0) error++; /* * It's possible that the number of resources * provided to this port instance changed between * resets. Detect this condition and reallocate * resources. Otherwise, there is no action. */ if (error) { lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT, "2931 Detected extent resource " "change. Reallocating all " "extents.\n"); rc = lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); rc = lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); rc = lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); rc = lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); } else return 0; } rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); if (unlikely(rc)) goto err_exit; rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); if (unlikely(rc)) goto err_exit; rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); if (unlikely(rc)) goto err_exit; rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); if (unlikely(rc)) goto err_exit; bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, LPFC_IDX_RSRC_RDY); return rc; } else { /* * The port does not support resource extents. The XRI, VPI, * VFI, RPI resource ids were determined from READ_CONFIG. * Just allocate the bitmasks and provision the resource id * arrays. If a port reset is active, the resources don't * need any action - just exit. */ if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) == LPFC_IDX_RSRC_RDY) { lpfc_sli4_dealloc_resource_identifiers(phba); lpfc_sli4_remove_rpis(phba); } /* RPIs. */ count = phba->sli4_hba.max_cfg_param.max_rpi; if (count <= 0) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3279 Invalid provisioning of " "rpi:%d\n", count); rc = -EINVAL; goto err_exit; } base = phba->sli4_hba.max_cfg_param.rpi_base; longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; phba->sli4_hba.rpi_bmask = kcalloc(longs, sizeof(unsigned long), GFP_KERNEL); if (unlikely(!phba->sli4_hba.rpi_bmask)) { rc = -ENOMEM; goto err_exit; } phba->sli4_hba.rpi_ids = kcalloc(count, sizeof(uint16_t), GFP_KERNEL); if (unlikely(!phba->sli4_hba.rpi_ids)) { rc = -ENOMEM; goto free_rpi_bmask; } for (i = 0; i < count; i++) phba->sli4_hba.rpi_ids[i] = base + i; /* VPIs. */ count = phba->sli4_hba.max_cfg_param.max_vpi; if (count <= 0) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3280 Invalid provisioning of " "vpi:%d\n", count); rc = -EINVAL; goto free_rpi_ids; } base = phba->sli4_hba.max_cfg_param.vpi_base; longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; phba->vpi_bmask = kcalloc(longs, sizeof(unsigned long), GFP_KERNEL); if (unlikely(!phba->vpi_bmask)) { rc = -ENOMEM; goto free_rpi_ids; } phba->vpi_ids = kcalloc(count, sizeof(uint16_t), GFP_KERNEL); if (unlikely(!phba->vpi_ids)) { rc = -ENOMEM; goto free_vpi_bmask; } for (i = 0; i < count; i++) phba->vpi_ids[i] = base + i; /* XRIs. */ count = phba->sli4_hba.max_cfg_param.max_xri; if (count <= 0) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3281 Invalid provisioning of " "xri:%d\n", count); rc = -EINVAL; goto free_vpi_ids; } base = phba->sli4_hba.max_cfg_param.xri_base; longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; phba->sli4_hba.xri_bmask = kcalloc(longs, sizeof(unsigned long), GFP_KERNEL); if (unlikely(!phba->sli4_hba.xri_bmask)) { rc = -ENOMEM; goto free_vpi_ids; } phba->sli4_hba.max_cfg_param.xri_used = 0; phba->sli4_hba.xri_ids = kcalloc(count, sizeof(uint16_t), GFP_KERNEL); if (unlikely(!phba->sli4_hba.xri_ids)) { rc = -ENOMEM; goto free_xri_bmask; } for (i = 0; i < count; i++) phba->sli4_hba.xri_ids[i] = base + i; /* VFIs. */ count = phba->sli4_hba.max_cfg_param.max_vfi; if (count <= 0) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3282 Invalid provisioning of " "vfi:%d\n", count); rc = -EINVAL; goto free_xri_ids; } base = phba->sli4_hba.max_cfg_param.vfi_base; longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG; phba->sli4_hba.vfi_bmask = kcalloc(longs, sizeof(unsigned long), GFP_KERNEL); if (unlikely(!phba->sli4_hba.vfi_bmask)) { rc = -ENOMEM; goto free_xri_ids; } phba->sli4_hba.vfi_ids = kcalloc(count, sizeof(uint16_t), GFP_KERNEL); if (unlikely(!phba->sli4_hba.vfi_ids)) { rc = -ENOMEM; goto free_vfi_bmask; } for (i = 0; i < count; i++) phba->sli4_hba.vfi_ids[i] = base + i; /* * Mark all resources ready. An HBA reset doesn't need * to reset the initialization. */ bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, LPFC_IDX_RSRC_RDY); return 0; } free_vfi_bmask: kfree(phba->sli4_hba.vfi_bmask); phba->sli4_hba.vfi_bmask = NULL; free_xri_ids: kfree(phba->sli4_hba.xri_ids); phba->sli4_hba.xri_ids = NULL; free_xri_bmask: kfree(phba->sli4_hba.xri_bmask); phba->sli4_hba.xri_bmask = NULL; free_vpi_ids: kfree(phba->vpi_ids); phba->vpi_ids = NULL; free_vpi_bmask: kfree(phba->vpi_bmask); phba->vpi_bmask = NULL; free_rpi_ids: kfree(phba->sli4_hba.rpi_ids); phba->sli4_hba.rpi_ids = NULL; free_rpi_bmask: kfree(phba->sli4_hba.rpi_bmask); phba->sli4_hba.rpi_bmask = NULL; err_exit: return rc; } /** * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents. * @phba: Pointer to HBA context object. * * This function allocates the number of elements for the specified * resource type. **/ int lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba) { if (phba->sli4_hba.extents_in_use) { lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI); lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI); lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI); lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI); } else { kfree(phba->vpi_bmask); phba->sli4_hba.max_cfg_param.vpi_used = 0; kfree(phba->vpi_ids); bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); kfree(phba->sli4_hba.xri_bmask); kfree(phba->sli4_hba.xri_ids); kfree(phba->sli4_hba.vfi_bmask); kfree(phba->sli4_hba.vfi_ids); bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); } return 0; } /** * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents. * @phba: Pointer to HBA context object. * @type: The resource extent type. * @extnt_cnt: buffer to hold port extent count response * @extnt_size: buffer to hold port extent size response. * * This function calls the port to read the host allocated extents * for a particular type. **/ int lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type, uint16_t *extnt_cnt, uint16_t *extnt_size) { bool emb; int rc = 0; uint16_t curr_blks = 0; uint32_t req_len, emb_len; uint32_t alloc_len, mbox_tmo; struct list_head *blk_list_head; struct lpfc_rsrc_blks *rsrc_blk; LPFC_MBOXQ_t *mbox; void *virtaddr = NULL; struct lpfc_mbx_nembed_rsrc_extent *n_rsrc; struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext; union lpfc_sli4_cfg_shdr *shdr; switch (type) { case LPFC_RSC_TYPE_FCOE_VPI: blk_list_head = &phba->lpfc_vpi_blk_list; break; case LPFC_RSC_TYPE_FCOE_XRI: blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list; break; case LPFC_RSC_TYPE_FCOE_VFI: blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list; break; case LPFC_RSC_TYPE_FCOE_RPI: blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list; break; default: return -EIO; } /* Count the number of extents currently allocatd for this type. */ list_for_each_entry(rsrc_blk, blk_list_head, list) { if (curr_blks == 0) { /* * The GET_ALLOCATED mailbox does not return the size, * just the count. The size should be just the size * stored in the current allocated block and all sizes * for an extent type are the same so set the return * value now. */ *extnt_size = rsrc_blk->rsrc_size; } curr_blks++; } /* * Calculate the size of an embedded mailbox. The uint32_t * accounts for extents-specific word. */ emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) - sizeof(uint32_t); /* * Presume the allocation and response will fit into an embedded * mailbox. If not true, reconfigure to a non-embedded mailbox. */ emb = LPFC_SLI4_MBX_EMBED; req_len = emb_len; if (req_len > emb_len) { req_len = curr_blks * sizeof(uint16_t) + sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); emb = LPFC_SLI4_MBX_NEMBED; } mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!mbox) return -ENOMEM; memset(mbox, 0, sizeof(LPFC_MBOXQ_t)); alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT, req_len, emb); if (alloc_len < req_len) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2983 Allocated DMA memory size (x%x) is " "less than the requested DMA memory " "size (x%x)\n", alloc_len, req_len); rc = -ENOMEM; goto err_exit; } rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb); if (unlikely(rc)) { rc = -EIO; goto err_exit; } if (!phba->sli4_hba.intr_enable) rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); else { mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); } if (unlikely(rc)) { rc = -EIO; goto err_exit; } /* * Figure out where the response is located. Then get local pointers * to the response data. The port does not guarantee to respond to * all extents counts request so update the local variable with the * allocated count from the port. */ if (emb == LPFC_SLI4_MBX_EMBED) { rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents; shdr = &rsrc_ext->header.cfg_shdr; *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp); } else { virtaddr = mbox->sge_array->addr[0]; n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr; shdr = &n_rsrc->cfg_shdr; *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc); } if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2984 Failed to read allocated resources " "for type %d - Status 0x%x Add'l Status 0x%x.\n", type, bf_get(lpfc_mbox_hdr_status, &shdr->response), bf_get(lpfc_mbox_hdr_add_status, &shdr->response)); rc = -EIO; goto err_exit; } err_exit: lpfc_sli4_mbox_cmd_free(phba, mbox); return rc; } /** * lpfc_sli4_repost_sgl_list - Repost the buffers sgl pages as block * @phba: pointer to lpfc hba data structure. * @sgl_list: linked link of sgl buffers to post * @cnt: number of linked list buffers * * This routine walks the list of buffers that have been allocated and * repost them to the port by using SGL block post. This is needed after a * pci_function_reset/warm_start or start. It attempts to construct blocks * of buffer sgls which contains contiguous xris and uses the non-embedded * SGL block post mailbox commands to post them to the port. For single * buffer sgl with non-contiguous xri, if any, it shall use embedded SGL post * mailbox command for posting. * * Returns: 0 = success, non-zero failure. **/ static int lpfc_sli4_repost_sgl_list(struct lpfc_hba *phba, struct list_head *sgl_list, int cnt) { struct lpfc_sglq *sglq_entry = NULL; struct lpfc_sglq *sglq_entry_next = NULL; struct lpfc_sglq *sglq_entry_first = NULL; int status, total_cnt; int post_cnt = 0, num_posted = 0, block_cnt = 0; int last_xritag = NO_XRI; LIST_HEAD(prep_sgl_list); LIST_HEAD(blck_sgl_list); LIST_HEAD(allc_sgl_list); LIST_HEAD(post_sgl_list); LIST_HEAD(free_sgl_list); spin_lock_irq(&phba->hbalock); spin_lock(&phba->sli4_hba.sgl_list_lock); list_splice_init(sgl_list, &allc_sgl_list); spin_unlock(&phba->sli4_hba.sgl_list_lock); spin_unlock_irq(&phba->hbalock); total_cnt = cnt; list_for_each_entry_safe(sglq_entry, sglq_entry_next, &allc_sgl_list, list) { list_del_init(&sglq_entry->list); block_cnt++; if ((last_xritag != NO_XRI) && (sglq_entry->sli4_xritag != last_xritag + 1)) { /* a hole in xri block, form a sgl posting block */ list_splice_init(&prep_sgl_list, &blck_sgl_list); post_cnt = block_cnt - 1; /* prepare list for next posting block */ list_add_tail(&sglq_entry->list, &prep_sgl_list); block_cnt = 1; } else { /* prepare list for next posting block */ list_add_tail(&sglq_entry->list, &prep_sgl_list); /* enough sgls for non-embed sgl mbox command */ if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { list_splice_init(&prep_sgl_list, &blck_sgl_list); post_cnt = block_cnt; block_cnt = 0; } } num_posted++; /* keep track of last sgl's xritag */ last_xritag = sglq_entry->sli4_xritag; /* end of repost sgl list condition for buffers */ if (num_posted == total_cnt) { if (post_cnt == 0) { list_splice_init(&prep_sgl_list, &blck_sgl_list); post_cnt = block_cnt; } else if (block_cnt == 1) { status = lpfc_sli4_post_sgl(phba, sglq_entry->phys, 0, sglq_entry->sli4_xritag); if (!status) { /* successful, put sgl to posted list */ list_add_tail(&sglq_entry->list, &post_sgl_list); } else { /* Failure, put sgl to free list */ lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, "3159 Failed to post " "sgl, xritag:x%x\n", sglq_entry->sli4_xritag); list_add_tail(&sglq_entry->list, &free_sgl_list); total_cnt--; } } } /* continue until a nembed page worth of sgls */ if (post_cnt == 0) continue; /* post the buffer list sgls as a block */ status = lpfc_sli4_post_sgl_list(phba, &blck_sgl_list, post_cnt); if (!status) { /* success, put sgl list to posted sgl list */ list_splice_init(&blck_sgl_list, &post_sgl_list); } else { /* Failure, put sgl list to free sgl list */ sglq_entry_first = list_first_entry(&blck_sgl_list, struct lpfc_sglq, list); lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, "3160 Failed to post sgl-list, " "xritag:x%x-x%x\n", sglq_entry_first->sli4_xritag, (sglq_entry_first->sli4_xritag + post_cnt - 1)); list_splice_init(&blck_sgl_list, &free_sgl_list); total_cnt -= post_cnt; } /* don't reset xirtag due to hole in xri block */ if (block_cnt == 0) last_xritag = NO_XRI; /* reset sgl post count for next round of posting */ post_cnt = 0; } /* free the sgls failed to post */ lpfc_free_sgl_list(phba, &free_sgl_list); /* push sgls posted to the available list */ if (!list_empty(&post_sgl_list)) { spin_lock_irq(&phba->hbalock); spin_lock(&phba->sli4_hba.sgl_list_lock); list_splice_init(&post_sgl_list, sgl_list); spin_unlock(&phba->sli4_hba.sgl_list_lock); spin_unlock_irq(&phba->hbalock); } else { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3161 Failure to post sgl to port.\n"); return -EIO; } /* return the number of XRIs actually posted */ return total_cnt; } /** * lpfc_sli4_repost_io_sgl_list - Repost all the allocated nvme buffer sgls * @phba: pointer to lpfc hba data structure. * * This routine walks the list of nvme buffers that have been allocated and * repost them to the port by using SGL block post. This is needed after a * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine * is responsible for moving all nvme buffers on the lpfc_abts_nvme_sgl_list * to the lpfc_io_buf_list. If the repost fails, reject all nvme buffers. * * Returns: 0 = success, non-zero failure. **/ static int lpfc_sli4_repost_io_sgl_list(struct lpfc_hba *phba) { LIST_HEAD(post_nblist); int num_posted, rc = 0; /* get all NVME buffers need to repost to a local list */ lpfc_io_buf_flush(phba, &post_nblist); /* post the list of nvme buffer sgls to port if available */ if (!list_empty(&post_nblist)) { num_posted = lpfc_sli4_post_io_sgl_list( phba, &post_nblist, phba->sli4_hba.io_xri_cnt); /* failed to post any nvme buffer, return error */ if (num_posted == 0) rc = -EIO; } return rc; } static void lpfc_set_host_data(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) { uint32_t len; len = sizeof(struct lpfc_mbx_set_host_data) - sizeof(struct lpfc_sli4_cfg_mhdr); lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, LPFC_MBOX_OPCODE_SET_HOST_DATA, len, LPFC_SLI4_MBX_EMBED); mbox->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_OS_DRIVER_VERSION; mbox->u.mqe.un.set_host_data.param_len = LPFC_HOST_OS_DRIVER_VERSION_SIZE; snprintf(mbox->u.mqe.un.set_host_data.un.data, LPFC_HOST_OS_DRIVER_VERSION_SIZE, "Linux %s v"LPFC_DRIVER_VERSION, (phba->hba_flag & HBA_FCOE_MODE) ? "FCoE" : "FC"); } int lpfc_post_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *hrq, struct lpfc_queue *drq, int count, int idx) { int rc, i; struct lpfc_rqe hrqe; struct lpfc_rqe drqe; struct lpfc_rqb *rqbp; unsigned long flags; struct rqb_dmabuf *rqb_buffer; LIST_HEAD(rqb_buf_list); rqbp = hrq->rqbp; for (i = 0; i < count; i++) { spin_lock_irqsave(&phba->hbalock, flags); /* IF RQ is already full, don't bother */ if (rqbp->buffer_count + i >= rqbp->entry_count - 1) { spin_unlock_irqrestore(&phba->hbalock, flags); break; } spin_unlock_irqrestore(&phba->hbalock, flags); rqb_buffer = rqbp->rqb_alloc_buffer(phba); if (!rqb_buffer) break; rqb_buffer->hrq = hrq; rqb_buffer->drq = drq; rqb_buffer->idx = idx; list_add_tail(&rqb_buffer->hbuf.list, &rqb_buf_list); } spin_lock_irqsave(&phba->hbalock, flags); while (!list_empty(&rqb_buf_list)) { list_remove_head(&rqb_buf_list, rqb_buffer, struct rqb_dmabuf, hbuf.list); hrqe.address_lo = putPaddrLow(rqb_buffer->hbuf.phys); hrqe.address_hi = putPaddrHigh(rqb_buffer->hbuf.phys); drqe.address_lo = putPaddrLow(rqb_buffer->dbuf.phys); drqe.address_hi = putPaddrHigh(rqb_buffer->dbuf.phys); rc = lpfc_sli4_rq_put(hrq, drq, &hrqe, &drqe); if (rc < 0) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "6421 Cannot post to HRQ %d: %x %x %x " "DRQ %x %x\n", hrq->queue_id, hrq->host_index, hrq->hba_index, hrq->entry_count, drq->host_index, drq->hba_index); rqbp->rqb_free_buffer(phba, rqb_buffer); } else { list_add_tail(&rqb_buffer->hbuf.list, &rqbp->rqb_buffer_list); rqbp->buffer_count++; } } spin_unlock_irqrestore(&phba->hbalock, flags); return 1; } static void lpfc_mbx_cmpl_cgn_set_ftrs(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) { struct lpfc_vport *vport = pmb->vport; union lpfc_sli4_cfg_shdr *shdr; u32 shdr_status, shdr_add_status; u32 sig, acqe; /* Two outcomes. (1) Set featurs was successul and EDC negotiation * is done. (2) Mailbox failed and send FPIN support only. */ shdr = (union lpfc_sli4_cfg_shdr *) &pmb->u.mqe.un.sli4_config.header.cfg_shdr; shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); if (shdr_status || shdr_add_status || pmb->u.mb.mbxStatus) { lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, "2516 CGN SET_FEATURE mbox failed with " "status x%x add_status x%x, mbx status x%x " "Reset Congestion to FPINs only\n", shdr_status, shdr_add_status, pmb->u.mb.mbxStatus); /* If there is a mbox error, move on to RDF */ phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; goto out; } /* Zero out Congestion Signal ACQE counter */ phba->cgn_acqe_cnt = 0; atomic64_set(&phba->cgn_acqe_stat.warn, 0); atomic64_set(&phba->cgn_acqe_stat.alarm, 0); acqe = bf_get(lpfc_mbx_set_feature_CGN_acqe_freq, &pmb->u.mqe.un.set_feature); sig = bf_get(lpfc_mbx_set_feature_CGN_warn_freq, &pmb->u.mqe.un.set_feature); lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, "4620 SET_FEATURES Success: Freq: %ds %dms " " Reg: x%x x%x\n", acqe, sig, phba->cgn_reg_signal, phba->cgn_reg_fpin); out: mempool_free(pmb, phba->mbox_mem_pool); /* Register for FPIN events from the fabric now that the * EDC common_set_features has completed. */ lpfc_issue_els_rdf(vport, 0); } int lpfc_config_cgn_signal(struct lpfc_hba *phba) { LPFC_MBOXQ_t *mboxq; u32 rc; mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!mboxq) goto out_rdf; lpfc_set_features(phba, mboxq, LPFC_SET_CGN_SIGNAL); mboxq->vport = phba->pport; mboxq->mbox_cmpl = lpfc_mbx_cmpl_cgn_set_ftrs; lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, "4621 SET_FEATURES: FREQ sig x%x acqe x%x: " "Reg: x%x x%x\n", phba->cgn_sig_freq, lpfc_acqe_cgn_frequency, phba->cgn_reg_signal, phba->cgn_reg_fpin); rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); if (rc == MBX_NOT_FINISHED) goto out; return 0; out: mempool_free(mboxq, phba->mbox_mem_pool); out_rdf: /* If there is a mbox error, move on to RDF */ phba->cgn_reg_fpin = LPFC_CGN_FPIN_WARN | LPFC_CGN_FPIN_ALARM; phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; lpfc_issue_els_rdf(phba->pport, 0); return -EIO; } /** * lpfc_init_idle_stat_hb - Initialize idle_stat tracking * @phba: pointer to lpfc hba data structure. * * This routine initializes the per-cq idle_stat to dynamically dictate * polling decisions. * * Return codes: * None **/ static void lpfc_init_idle_stat_hb(struct lpfc_hba *phba) { int i; struct lpfc_sli4_hdw_queue *hdwq; struct lpfc_queue *cq; struct lpfc_idle_stat *idle_stat; u64 wall; for_each_present_cpu(i) { hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq]; cq = hdwq->io_cq; /* Skip if we've already handled this cq's primary CPU */ if (cq->chann != i) continue; idle_stat = &phba->sli4_hba.idle_stat[i]; idle_stat->prev_idle = get_cpu_idle_time(i, &wall, 1); idle_stat->prev_wall = wall; if (phba->nvmet_support || phba->cmf_active_mode != LPFC_CFG_OFF) cq->poll_mode = LPFC_QUEUE_WORK; else cq->poll_mode = LPFC_IRQ_POLL; } if (!phba->nvmet_support) schedule_delayed_work(&phba->idle_stat_delay_work, msecs_to_jiffies(LPFC_IDLE_STAT_DELAY)); } static void lpfc_sli4_dip(struct lpfc_hba *phba) { uint32_t if_type; if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); if (if_type == LPFC_SLI_INTF_IF_TYPE_2 || if_type == LPFC_SLI_INTF_IF_TYPE_6) { struct lpfc_register reg_data; if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, ®_data.word0)) return; if (bf_get(lpfc_sliport_status_dip, ®_data)) lpfc_printf_log(phba, KERN_ERR, LOG_SLI, "2904 Firmware Dump Image Present" " on Adapter"); } } /** * lpfc_rx_monitor_create_ring - Initialize ring buffer for rx_monitor * @rx_monitor: Pointer to lpfc_rx_info_monitor object * @entries: Number of rx_info_entry objects to allocate in ring * * Return: * 0 - Success * ENOMEM - Failure to kmalloc **/ int lpfc_rx_monitor_create_ring(struct lpfc_rx_info_monitor *rx_monitor, u32 entries) { rx_monitor->ring = kmalloc_array(entries, sizeof(struct rx_info_entry), GFP_KERNEL); if (!rx_monitor->ring) return -ENOMEM; rx_monitor->head_idx = 0; rx_monitor->tail_idx = 0; spin_lock_init(&rx_monitor->lock); rx_monitor->entries = entries; return 0; } /** * lpfc_rx_monitor_destroy_ring - Free ring buffer for rx_monitor * @rx_monitor: Pointer to lpfc_rx_info_monitor object **/ void lpfc_rx_monitor_destroy_ring(struct lpfc_rx_info_monitor *rx_monitor) { spin_lock(&rx_monitor->lock); kfree(rx_monitor->ring); rx_monitor->ring = NULL; rx_monitor->entries = 0; rx_monitor->head_idx = 0; rx_monitor->tail_idx = 0; spin_unlock(&rx_monitor->lock); } /** * lpfc_rx_monitor_record - Insert an entry into rx_monitor's ring * @rx_monitor: Pointer to lpfc_rx_info_monitor object * @entry: Pointer to rx_info_entry * * Used to insert an rx_info_entry into rx_monitor's ring. Note that this is a * deep copy of rx_info_entry not a shallow copy of the rx_info_entry ptr. * * This is called from lpfc_cmf_timer, which is in timer/softirq context. * * In cases of old data overflow, we do a best effort of FIFO order. **/ void lpfc_rx_monitor_record(struct lpfc_rx_info_monitor *rx_monitor, struct rx_info_entry *entry) { struct rx_info_entry *ring = rx_monitor->ring; u32 *head_idx = &rx_monitor->head_idx; u32 *tail_idx = &rx_monitor->tail_idx; spinlock_t *ring_lock = &rx_monitor->lock; u32 ring_size = rx_monitor->entries; spin_lock(ring_lock); memcpy(&ring[*tail_idx], entry, sizeof(*entry)); *tail_idx = (*tail_idx + 1) % ring_size; /* Best effort of FIFO saved data */ if (*tail_idx == *head_idx) *head_idx = (*head_idx + 1) % ring_size; spin_unlock(ring_lock); } /** * lpfc_rx_monitor_report - Read out rx_monitor's ring * @phba: Pointer to lpfc_hba object * @rx_monitor: Pointer to lpfc_rx_info_monitor object * @buf: Pointer to char buffer that will contain rx monitor info data * @buf_len: Length buf including null char * @max_read_entries: Maximum number of entries to read out of ring * * Used to dump/read what's in rx_monitor's ring buffer. * * If buf is NULL || buf_len == 0, then it is implied that we want to log the * information to kmsg instead of filling out buf. * * Return: * Number of entries read out of the ring **/ u32 lpfc_rx_monitor_report(struct lpfc_hba *phba, struct lpfc_rx_info_monitor *rx_monitor, char *buf, u32 buf_len, u32 max_read_entries) { struct rx_info_entry *ring = rx_monitor->ring; struct rx_info_entry *entry; u32 *head_idx = &rx_monitor->head_idx; u32 *tail_idx = &rx_monitor->tail_idx; spinlock_t *ring_lock = &rx_monitor->lock; u32 ring_size = rx_monitor->entries; u32 cnt = 0; char tmp[DBG_LOG_STR_SZ] = {0}; bool log_to_kmsg = (!buf || !buf_len) ? true : false; if (!log_to_kmsg) { /* clear the buffer to be sure */ memset(buf, 0, buf_len); scnprintf(buf, buf_len, "\t%-16s%-16s%-16s%-16s%-8s%-8s%-8s" "%-8s%-8s%-8s%-16s\n", "MaxBPI", "Tot_Data_CMF", "Tot_Data_Cmd", "Tot_Data_Cmpl", "Lat(us)", "Avg_IO", "Max_IO", "Bsy", "IO_cnt", "Info", "BWutil(ms)"); } /* Needs to be _irq because record is called from timer interrupt * context */ spin_lock_irq(ring_lock); while (*head_idx != *tail_idx) { entry = &ring[*head_idx]; /* Read out this entry's data. */ if (!log_to_kmsg) { /* If !log_to_kmsg, then store to buf. */ scnprintf(tmp, sizeof(tmp), "%03d:\t%-16llu%-16llu%-16llu%-16llu%-8llu" "%-8llu%-8llu%-8u%-8u%-8u%u(%u)\n", *head_idx, entry->max_bytes_per_interval, entry->cmf_bytes, entry->total_bytes, entry->rcv_bytes, entry->avg_io_latency, entry->avg_io_size, entry->max_read_cnt, entry->cmf_busy, entry->io_cnt, entry->cmf_info, entry->timer_utilization, entry->timer_interval); /* Check for buffer overflow */ if ((strlen(buf) + strlen(tmp)) >= buf_len) break; /* Append entry's data to buffer */ strlcat(buf, tmp, buf_len); } else { lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, "4410 %02u: MBPI %llu Xmit %llu " "Cmpl %llu Lat %llu ASz %llu Info %02u " "BWUtil %u Int %u slot %u\n", cnt, entry->max_bytes_per_interval, entry->total_bytes, entry->rcv_bytes, entry->avg_io_latency, entry->avg_io_size, entry->cmf_info, entry->timer_utilization, entry->timer_interval, *head_idx); } *head_idx = (*head_idx + 1) % ring_size; /* Don't feed more than max_read_entries */ cnt++; if (cnt >= max_read_entries) break; } spin_unlock_irq(ring_lock); return cnt; } /** * lpfc_cmf_setup - Initialize idle_stat tracking * @phba: Pointer to HBA context object. * * This is called from HBA setup during driver load or when the HBA * comes online. this does all the initialization to support CMF and MI. **/ static int lpfc_cmf_setup(struct lpfc_hba *phba) { LPFC_MBOXQ_t *mboxq; struct lpfc_mqe *mqe; struct lpfc_dmabuf *mp; struct lpfc_pc_sli4_params *sli4_params; struct lpfc_sli4_parameters *mbx_sli4_parameters; int length; int rc, cmf, mi_ver; mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!mboxq) return -ENOMEM; mqe = &mboxq->u.mqe; /* Read the port's SLI4 Config Parameters */ length = (sizeof(struct lpfc_mbx_get_sli4_parameters) - sizeof(struct lpfc_sli4_cfg_mhdr)); lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS, length, LPFC_SLI4_MBX_EMBED); rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); if (unlikely(rc)) { mempool_free(mboxq, phba->mbox_mem_pool); return rc; } /* Gather info on CMF and MI support */ sli4_params = &phba->sli4_hba.pc_sli4_params; mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters; sli4_params->mi_ver = bf_get(cfg_mi_ver, mbx_sli4_parameters); sli4_params->cmf = bf_get(cfg_cmf, mbx_sli4_parameters); /* Are we forcing MI off via module parameter? */ if (!phba->cfg_enable_mi) sli4_params->mi_ver = 0; /* Always try to enable MI feature if we can */ if (sli4_params->mi_ver) { lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_MI); rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); mi_ver = bf_get(lpfc_mbx_set_feature_mi, &mboxq->u.mqe.un.set_feature); if (rc == MBX_SUCCESS) { if (mi_ver) { lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, "6215 MI is enabled\n"); sli4_params->mi_ver = mi_ver; } else { lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, "6338 MI is disabled\n"); sli4_params->mi_ver = 0; } } else { /* mi_ver is already set from GET_SLI4_PARAMETERS */ lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT, "6245 Enable MI Mailbox x%x (x%x/x%x) " "failed, rc:x%x mi:x%x\n", bf_get(lpfc_mqe_command, &mboxq->u.mqe), lpfc_sli_config_mbox_subsys_get (phba, mboxq), lpfc_sli_config_mbox_opcode_get (phba, mboxq), rc, sli4_params->mi_ver); } } else { lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, "6217 MI is disabled\n"); } /* Ensure FDMI is enabled for MI if enable_mi is set */ if (sli4_params->mi_ver) phba->cfg_fdmi_on = LPFC_FDMI_SUPPORT; /* Always try to enable CMF feature if we can */ if (sli4_params->cmf) { lpfc_set_features(phba, mboxq, LPFC_SET_ENABLE_CMF); rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); cmf = bf_get(lpfc_mbx_set_feature_cmf, &mboxq->u.mqe.un.set_feature); if (rc == MBX_SUCCESS && cmf) { lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, "6218 CMF is enabled: mode %d\n", phba->cmf_active_mode); } else { lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT | LOG_INIT, "6219 Enable CMF Mailbox x%x (x%x/x%x) " "failed, rc:x%x dd:x%x\n", bf_get(lpfc_mqe_command, &mboxq->u.mqe), lpfc_sli_config_mbox_subsys_get (phba, mboxq), lpfc_sli_config_mbox_opcode_get (phba, mboxq), rc, cmf); sli4_params->cmf = 0; phba->cmf_active_mode = LPFC_CFG_OFF; goto no_cmf; } /* Allocate Congestion Information Buffer */ if (!phba->cgn_i) { mp = kmalloc(sizeof(*mp), GFP_KERNEL); if (mp) mp->virt = dma_alloc_coherent (&phba->pcidev->dev, sizeof(struct lpfc_cgn_info), &mp->phys, GFP_KERNEL); if (!mp || !mp->virt) { lpfc_printf_log(phba, KERN_ERR, LOG_INIT, "2640 Failed to alloc memory " "for Congestion Info\n"); kfree(mp); sli4_params->cmf = 0; phba->cmf_active_mode = LPFC_CFG_OFF; goto no_cmf; } phba->cgn_i = mp; /* initialize congestion buffer info */ lpfc_init_congestion_buf(phba); lpfc_init_congestion_stat(phba); } rc = lpfc_sli4_cgn_params_read(phba); if (rc < 0) { lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, "6242 Error reading Cgn Params (%d)\n", rc); /* Ensure CGN Mode is off */ sli4_params->cmf = 0; } else if (!rc) { lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, "6243 CGN Event empty object.\n"); /* Ensure CGN Mode is off */ sli4_params->cmf = 0; } } else { no_cmf: lpfc_printf_log(phba, KERN_WARNING, LOG_CGN_MGMT, "6220 CMF is disabled\n"); } /* Only register congestion buffer with firmware if BOTH * CMF and E2E are enabled. */ if (sli4_params->cmf && sli4_params->mi_ver) { rc = lpfc_reg_congestion_buf(phba); if (rc) { dma_free_coherent(&phba->pcidev->dev, sizeof(struct lpfc_cgn_info), phba->cgn_i->virt, phba->cgn_i->phys); kfree(phba->cgn_i); phba->cgn_i = NULL; /* Ensure CGN Mode is off */ phba->cmf_active_mode = LPFC_CFG_OFF; return 0; } } lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "6470 Setup MI version %d CMF %d mode %d\n", sli4_params->mi_ver, sli4_params->cmf, phba->cmf_active_mode); mempool_free(mboxq, phba->mbox_mem_pool); /* Initialize atomic counters */ atomic_set(&phba->cgn_fabric_warn_cnt, 0); atomic_set(&phba->cgn_fabric_alarm_cnt, 0); atomic_set(&phba->cgn_sync_alarm_cnt, 0); atomic_set(&phba->cgn_sync_warn_cnt, 0); atomic_set(&phba->cgn_driver_evt_cnt, 0); atomic_set(&phba->cgn_latency_evt_cnt, 0); atomic64_set(&phba->cgn_latency_evt, 0); phba->cmf_interval_rate = LPFC_CMF_INTERVAL; /* Allocate RX Monitor Buffer */ if (!phba->rx_monitor) { phba->rx_monitor = kzalloc(sizeof(*phba->rx_monitor), GFP_KERNEL); if (!phba->rx_monitor) { lpfc_printf_log(phba, KERN_ERR, LOG_INIT, "2644 Failed to alloc memory " "for RX Monitor Buffer\n"); return -ENOMEM; } /* Instruct the rx_monitor object to instantiate its ring */ if (lpfc_rx_monitor_create_ring(phba->rx_monitor, LPFC_MAX_RXMONITOR_ENTRY)) { kfree(phba->rx_monitor); phba->rx_monitor = NULL; lpfc_printf_log(phba, KERN_ERR, LOG_INIT, "2645 Failed to alloc memory " "for RX Monitor's Ring\n"); return -ENOMEM; } } return 0; } static int lpfc_set_host_tm(struct lpfc_hba *phba) { LPFC_MBOXQ_t *mboxq; uint32_t len, rc; struct timespec64 cur_time; struct tm broken; uint32_t month, day, year; uint32_t hour, minute, second; struct lpfc_mbx_set_host_date_time *tm; mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!mboxq) return -ENOMEM; len = sizeof(struct lpfc_mbx_set_host_data) - sizeof(struct lpfc_sli4_cfg_mhdr); lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, LPFC_MBOX_OPCODE_SET_HOST_DATA, len, LPFC_SLI4_MBX_EMBED); mboxq->u.mqe.un.set_host_data.param_id = LPFC_SET_HOST_DATE_TIME; mboxq->u.mqe.un.set_host_data.param_len = sizeof(struct lpfc_mbx_set_host_date_time); tm = &mboxq->u.mqe.un.set_host_data.un.tm; ktime_get_real_ts64(&cur_time); time64_to_tm(cur_time.tv_sec, 0, &broken); month = broken.tm_mon + 1; day = broken.tm_mday; year = broken.tm_year - 100; hour = broken.tm_hour; minute = broken.tm_min; second = broken.tm_sec; bf_set(lpfc_mbx_set_host_month, tm, month); bf_set(lpfc_mbx_set_host_day, tm, day); bf_set(lpfc_mbx_set_host_year, tm, year); bf_set(lpfc_mbx_set_host_hour, tm, hour); bf_set(lpfc_mbx_set_host_min, tm, minute); bf_set(lpfc_mbx_set_host_sec, tm, second); rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); mempool_free(mboxq, phba->mbox_mem_pool); return rc; } /** * lpfc_sli4_hba_setup - SLI4 device initialization PCI function * @phba: Pointer to HBA context object. * * This function is the main SLI4 device initialization PCI function. This * function is called by the HBA initialization code, HBA reset code and * HBA error attention handler code. Caller is not required to hold any * locks. **/ int lpfc_sli4_hba_setup(struct lpfc_hba *phba) { int rc, i, cnt, len, dd; LPFC_MBOXQ_t *mboxq; struct lpfc_mqe *mqe; uint8_t *vpd; uint32_t vpd_size; uint32_t ftr_rsp = 0; struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport); struct lpfc_vport *vport = phba->pport; struct lpfc_dmabuf *mp; struct lpfc_rqb *rqbp; u32 flg; /* Perform a PCI function reset to start from clean */ rc = lpfc_pci_function_reset(phba); if (unlikely(rc)) return -ENODEV; /* Check the HBA Host Status Register for readyness */ rc = lpfc_sli4_post_status_check(phba); if (unlikely(rc)) return -ENODEV; else { spin_lock_irq(&phba->hbalock); phba->sli.sli_flag |= LPFC_SLI_ACTIVE; flg = phba->sli.sli_flag; spin_unlock_irq(&phba->hbalock); /* Allow a little time after setting SLI_ACTIVE for any polled * MBX commands to complete via BSG. */ for (i = 0; i < 50 && (flg & LPFC_SLI_MBOX_ACTIVE); i++) { msleep(20); spin_lock_irq(&phba->hbalock); flg = phba->sli.sli_flag; spin_unlock_irq(&phba->hbalock); } } lpfc_sli4_dip(phba); /* * Allocate a single mailbox container for initializing the * port. */ mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!mboxq) return -ENOMEM; /* Issue READ_REV to collect vpd and FW information. */ vpd_size = SLI4_PAGE_SIZE; vpd = kzalloc(vpd_size, GFP_KERNEL); if (!vpd) { rc = -ENOMEM; goto out_free_mbox; } rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size); if (unlikely(rc)) { kfree(vpd); goto out_free_mbox; } mqe = &mboxq->u.mqe; phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev); if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev)) { phba->hba_flag |= HBA_FCOE_MODE; phba->fcp_embed_io = 0; /* SLI4 FC support only */ } else { phba->hba_flag &= ~HBA_FCOE_MODE; } if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) == LPFC_DCBX_CEE_MODE) phba->hba_flag |= HBA_FIP_SUPPORT; else phba->hba_flag &= ~HBA_FIP_SUPPORT; phba->hba_flag &= ~HBA_IOQ_FLUSH; if (phba->sli_rev != LPFC_SLI_REV4) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0376 READ_REV Error. SLI Level %d " "FCoE enabled %d\n", phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE); rc = -EIO; kfree(vpd); goto out_free_mbox; } rc = lpfc_set_host_tm(phba); lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT, "6468 Set host date / time: Status x%x:\n", rc); /* * Continue initialization with default values even if driver failed * to read FCoE param config regions, only read parameters if the * board is FCoE */ if (phba->hba_flag & HBA_FCOE_MODE && lpfc_sli4_read_fcoe_params(phba)) lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT, "2570 Failed to read FCoE parameters\n"); /* * Retrieve sli4 device physical port name, failure of doing it * is considered as non-fatal. */ rc = lpfc_sli4_retrieve_pport_name(phba); if (!rc) lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, "3080 Successful retrieving SLI4 device " "physical port name: %s.\n", phba->Port); rc = lpfc_sli4_get_ctl_attr(phba); if (!rc) lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, "8351 Successful retrieving SLI4 device " "CTL ATTR\n"); /* * Evaluate the read rev and vpd data. Populate the driver * state with the results. If this routine fails, the failure * is not fatal as the driver will use generic values. */ rc = lpfc_parse_vpd(phba, vpd, vpd_size); if (unlikely(!rc)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0377 Error %d parsing vpd. " "Using defaults.\n", rc); rc = 0; } kfree(vpd); /* Save information as VPD data */ phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev; phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev; /* * This is because first G7 ASIC doesn't support the standard * 0x5a NVME cmd descriptor type/subtype */ if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == LPFC_SLI_INTF_IF_TYPE_6) && (phba->vpd.rev.biuRev == LPFC_G7_ASIC_1) && (phba->vpd.rev.smRev == 0) && (phba->cfg_nvme_embed_cmd == 1)) phba->cfg_nvme_embed_cmd = 0; phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev; phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high, &mqe->un.read_rev); phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low, &mqe->un.read_rev); phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high, &mqe->un.read_rev); phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low, &mqe->un.read_rev); phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev; memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16); phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev; memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16); phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev; memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16); lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, "(%d):0380 READ_REV Status x%x " "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n", mboxq->vport ? mboxq->vport->vpi : 0, bf_get(lpfc_mqe_status, mqe), phba->vpd.rev.opFwName, phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow, phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow); if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == LPFC_SLI_INTF_IF_TYPE_0) { lpfc_set_features(phba, mboxq, LPFC_SET_UE_RECOVERY); rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); if (rc == MBX_SUCCESS) { phba->hba_flag |= HBA_RECOVERABLE_UE; /* Set 1Sec interval to detect UE */ phba->eratt_poll_interval = 1; phba->sli4_hba.ue_to_sr = bf_get( lpfc_mbx_set_feature_UESR, &mboxq->u.mqe.un.set_feature); phba->sli4_hba.ue_to_rp = bf_get( lpfc_mbx_set_feature_UERP, &mboxq->u.mqe.un.set_feature); } } if (phba->cfg_enable_mds_diags && phba->mds_diags_support) { /* Enable MDS Diagnostics only if the SLI Port supports it */ lpfc_set_features(phba, mboxq, LPFC_SET_MDS_DIAGS); rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); if (rc != MBX_SUCCESS) phba->mds_diags_support = 0; } /* * Discover the port's supported feature set and match it against the * hosts requests. */ lpfc_request_features(phba, mboxq); rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); if (unlikely(rc)) { rc = -EIO; goto out_free_mbox; } /* Disable VMID if app header is not supported */ if (phba->cfg_vmid_app_header && !(bf_get(lpfc_mbx_rq_ftr_rsp_ashdr, &mqe->un.req_ftrs))) { bf_set(lpfc_ftr_ashdr, &phba->sli4_hba.sli4_flags, 0); phba->cfg_vmid_app_header = 0; lpfc_printf_log(phba, KERN_DEBUG, LOG_SLI, "1242 vmid feature not supported\n"); } /* * The port must support FCP initiator mode as this is the * only mode running in the host. */ if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) { lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, "0378 No support for fcpi mode.\n"); ftr_rsp++; } /* Performance Hints are ONLY for FCoE */ if (phba->hba_flag & HBA_FCOE_MODE) { if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs)) phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED; else phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED; } /* * If the port cannot support the host's requested features * then turn off the global config parameters to disable the * feature in the driver. This is not a fatal error. */ if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) { phba->cfg_enable_bg = 0; phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED; ftr_rsp++; } } if (phba->max_vpi && phba->cfg_enable_npiv && !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) ftr_rsp++; if (ftr_rsp) { lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, "0379 Feature Mismatch Data: x%08x %08x " "x%x x%x x%x\n", mqe->un.req_ftrs.word2, mqe->un.req_ftrs.word3, phba->cfg_enable_bg, phba->cfg_enable_npiv, phba->max_vpi); if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))) phba->cfg_enable_bg = 0; if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs))) phba->cfg_enable_npiv = 0; } /* These SLI3 features are assumed in SLI4 */ spin_lock_irq(&phba->hbalock); phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED); spin_unlock_irq(&phba->hbalock); /* Always try to enable dual dump feature if we can */ lpfc_set_features(phba, mboxq, LPFC_SET_DUAL_DUMP); rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); dd = bf_get(lpfc_mbx_set_feature_dd, &mboxq->u.mqe.un.set_feature); if ((rc == MBX_SUCCESS) && (dd == LPFC_ENABLE_DUAL_DUMP)) lpfc_printf_log(phba, KERN_ERR, LOG_SLI, "6448 Dual Dump is enabled\n"); else lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_INIT, "6447 Dual Dump Mailbox x%x (x%x/x%x) failed, " "rc:x%x dd:x%x\n", bf_get(lpfc_mqe_command, &mboxq->u.mqe), lpfc_sli_config_mbox_subsys_get( phba, mboxq), lpfc_sli_config_mbox_opcode_get( phba, mboxq), rc, dd); /* * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent * calls depends on these resources to complete port setup. */ rc = lpfc_sli4_alloc_resource_identifiers(phba); if (rc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2920 Failed to alloc Resource IDs " "rc = x%x\n", rc); goto out_free_mbox; } lpfc_set_host_data(phba, mboxq); rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); if (rc) { lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, "2134 Failed to set host os driver version %x", rc); } /* Read the port's service parameters. */ rc = lpfc_read_sparam(phba, mboxq, vport->vpi); if (rc) { phba->link_state = LPFC_HBA_ERROR; rc = -ENOMEM; goto out_free_mbox; } mboxq->vport = vport; rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; if (rc == MBX_SUCCESS) { memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm)); rc = 0; } /* * This memory was allocated by the lpfc_read_sparam routine. Release * it to the mbuf pool. */ lpfc_mbuf_free(phba, mp->virt, mp->phys); kfree(mp); mboxq->ctx_buf = NULL; if (unlikely(rc)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0382 READ_SPARAM command failed " "status %d, mbxStatus x%x\n", rc, bf_get(lpfc_mqe_status, mqe)); phba->link_state = LPFC_HBA_ERROR; rc = -EIO; goto out_free_mbox; } lpfc_update_vport_wwn(vport); /* Update the fc_host data structures with new wwn. */ fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); /* Create all the SLI4 queues */ rc = lpfc_sli4_queue_create(phba); if (rc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3089 Failed to allocate queues\n"); rc = -ENODEV; goto out_free_mbox; } /* Set up all the queues to the device */ rc = lpfc_sli4_queue_setup(phba); if (unlikely(rc)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0381 Error %d during queue setup.\n ", rc); goto out_stop_timers; } /* Initialize the driver internal SLI layer lists. */ lpfc_sli4_setup(phba); lpfc_sli4_queue_init(phba); /* update host els xri-sgl sizes and mappings */ rc = lpfc_sli4_els_sgl_update(phba); if (unlikely(rc)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "1400 Failed to update xri-sgl size and " "mapping: %d\n", rc); goto out_destroy_queue; } /* register the els sgl pool to the port */ rc = lpfc_sli4_repost_sgl_list(phba, &phba->sli4_hba.lpfc_els_sgl_list, phba->sli4_hba.els_xri_cnt); if (unlikely(rc < 0)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0582 Error %d during els sgl post " "operation\n", rc); rc = -ENODEV; goto out_destroy_queue; } phba->sli4_hba.els_xri_cnt = rc; if (phba->nvmet_support) { /* update host nvmet xri-sgl sizes and mappings */ rc = lpfc_sli4_nvmet_sgl_update(phba); if (unlikely(rc)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "6308 Failed to update nvmet-sgl size " "and mapping: %d\n", rc); goto out_destroy_queue; } /* register the nvmet sgl pool to the port */ rc = lpfc_sli4_repost_sgl_list( phba, &phba->sli4_hba.lpfc_nvmet_sgl_list, phba->sli4_hba.nvmet_xri_cnt); if (unlikely(rc < 0)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3117 Error %d during nvmet " "sgl post\n", rc); rc = -ENODEV; goto out_destroy_queue; } phba->sli4_hba.nvmet_xri_cnt = rc; /* We allocate an iocbq for every receive context SGL. * The additional allocation is for abort and ls handling. */ cnt = phba->sli4_hba.nvmet_xri_cnt + phba->sli4_hba.max_cfg_param.max_xri; } else { /* update host common xri-sgl sizes and mappings */ rc = lpfc_sli4_io_sgl_update(phba); if (unlikely(rc)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "6082 Failed to update nvme-sgl size " "and mapping: %d\n", rc); goto out_destroy_queue; } /* register the allocated common sgl pool to the port */ rc = lpfc_sli4_repost_io_sgl_list(phba); if (unlikely(rc)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "6116 Error %d during nvme sgl post " "operation\n", rc); /* Some NVME buffers were moved to abort nvme list */ /* A pci function reset will repost them */ rc = -ENODEV; goto out_destroy_queue; } /* Each lpfc_io_buf job structure has an iocbq element. * This cnt provides for abort, els, ct and ls requests. */ cnt = phba->sli4_hba.max_cfg_param.max_xri; } if (!phba->sli.iocbq_lookup) { /* Initialize and populate the iocb list per host */ lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "2821 initialize iocb list with %d entries\n", cnt); rc = lpfc_init_iocb_list(phba, cnt); if (rc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "1413 Failed to init iocb list.\n"); goto out_destroy_queue; } } if (phba->nvmet_support) lpfc_nvmet_create_targetport(phba); if (phba->nvmet_support && phba->cfg_nvmet_mrq) { /* Post initial buffers to all RQs created */ for (i = 0; i < phba->cfg_nvmet_mrq; i++) { rqbp = phba->sli4_hba.nvmet_mrq_hdr[i]->rqbp; INIT_LIST_HEAD(&rqbp->rqb_buffer_list); rqbp->rqb_alloc_buffer = lpfc_sli4_nvmet_alloc; rqbp->rqb_free_buffer = lpfc_sli4_nvmet_free; rqbp->entry_count = LPFC_NVMET_RQE_DEF_COUNT; rqbp->buffer_count = 0; lpfc_post_rq_buffer( phba, phba->sli4_hba.nvmet_mrq_hdr[i], phba->sli4_hba.nvmet_mrq_data[i], phba->cfg_nvmet_mrq_post, i); } } /* Post the rpi header region to the device. */ rc = lpfc_sli4_post_all_rpi_hdrs(phba); if (unlikely(rc)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0393 Error %d during rpi post operation\n", rc); rc = -ENODEV; goto out_free_iocblist; } lpfc_sli4_node_prep(phba); if (!(phba->hba_flag & HBA_FCOE_MODE)) { if ((phba->nvmet_support == 0) || (phba->cfg_nvmet_mrq == 1)) { /* * The FC Port needs to register FCFI (index 0) */ lpfc_reg_fcfi(phba, mboxq); mboxq->vport = phba->pport; rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); if (rc != MBX_SUCCESS) goto out_unset_queue; rc = 0; phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi, &mboxq->u.mqe.un.reg_fcfi); } else { /* We are a NVME Target mode with MRQ > 1 */ /* First register the FCFI */ lpfc_reg_fcfi_mrq(phba, mboxq, 0); mboxq->vport = phba->pport; rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); if (rc != MBX_SUCCESS) goto out_unset_queue; rc = 0; phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_mrq_fcfi, &mboxq->u.mqe.un.reg_fcfi_mrq); /* Next register the MRQs */ lpfc_reg_fcfi_mrq(phba, mboxq, 1); mboxq->vport = phba->pport; rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); if (rc != MBX_SUCCESS) goto out_unset_queue; rc = 0; } /* Check if the port is configured to be disabled */ lpfc_sli_read_link_ste(phba); } /* Don't post more new bufs if repost already recovered * the nvme sgls. */ if (phba->nvmet_support == 0) { if (phba->sli4_hba.io_xri_cnt == 0) { len = lpfc_new_io_buf( phba, phba->sli4_hba.io_xri_max); if (len == 0) { rc = -ENOMEM; goto out_unset_queue; } if (phba->cfg_xri_rebalancing) lpfc_create_multixri_pools(phba); } } else { phba->cfg_xri_rebalancing = 0; } /* Allow asynchronous mailbox command to go through */ spin_lock_irq(&phba->hbalock); phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; spin_unlock_irq(&phba->hbalock); /* Post receive buffers to the device */ lpfc_sli4_rb_setup(phba); /* Reset HBA FCF states after HBA reset */ phba->fcf.fcf_flag = 0; phba->fcf.current_rec.flag = 0; /* Start the ELS watchdog timer */ mod_timer(&vport->els_tmofunc, jiffies + msecs_to_jiffies(1000 * (phba->fc_ratov * 2))); /* Start heart beat timer */ mod_timer(&phba->hb_tmofunc, jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); phba->hba_flag &= ~(HBA_HBEAT_INP | HBA_HBEAT_TMO); phba->last_completion_time = jiffies; /* start eq_delay heartbeat */ if (phba->cfg_auto_imax) queue_delayed_work(phba->wq, &phba->eq_delay_work, msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); /* start per phba idle_stat_delay heartbeat */ lpfc_init_idle_stat_hb(phba); /* Start error attention (ERATT) polling timer */ mod_timer(&phba->eratt_poll, jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); /* Enable PCIe device Advanced Error Reporting (AER) if configured */ if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) { rc = pci_enable_pcie_error_reporting(phba->pcidev); if (!rc) { lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "2829 This device supports " "Advanced Error Reporting (AER)\n"); spin_lock_irq(&phba->hbalock); phba->hba_flag |= HBA_AER_ENABLED; spin_unlock_irq(&phba->hbalock); } else { lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "2830 This device does not support " "Advanced Error Reporting (AER)\n"); phba->cfg_aer_support = 0; } rc = 0; } /* * The port is ready, set the host's link state to LINK_DOWN * in preparation for link interrupts. */ spin_lock_irq(&phba->hbalock); phba->link_state = LPFC_LINK_DOWN; /* Check if physical ports are trunked */ if (bf_get(lpfc_conf_trunk_port0, &phba->sli4_hba)) phba->trunk_link.link0.state = LPFC_LINK_DOWN; if (bf_get(lpfc_conf_trunk_port1, &phba->sli4_hba)) phba->trunk_link.link1.state = LPFC_LINK_DOWN; if (bf_get(lpfc_conf_trunk_port2, &phba->sli4_hba)) phba->trunk_link.link2.state = LPFC_LINK_DOWN; if (bf_get(lpfc_conf_trunk_port3, &phba->sli4_hba)) phba->trunk_link.link3.state = LPFC_LINK_DOWN; spin_unlock_irq(&phba->hbalock); /* Arm the CQs and then EQs on device */ lpfc_sli4_arm_cqeq_intr(phba); /* Indicate device interrupt mode */ phba->sli4_hba.intr_enable = 1; /* Setup CMF after HBA is initialized */ lpfc_cmf_setup(phba); if (!(phba->hba_flag & HBA_FCOE_MODE) && (phba->hba_flag & LINK_DISABLED)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3103 Adapter Link is disabled.\n"); lpfc_down_link(phba, mboxq); rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); if (rc != MBX_SUCCESS) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3104 Adapter failed to issue " "DOWN_LINK mbox cmd, rc:x%x\n", rc); goto out_io_buff_free; } } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { /* don't perform init_link on SLI4 FC port loopback test */ if (!(phba->link_flag & LS_LOOPBACK_MODE)) { rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); if (rc) goto out_io_buff_free; } } mempool_free(mboxq, phba->mbox_mem_pool); phba->hba_flag |= HBA_SETUP; return rc; out_io_buff_free: /* Free allocated IO Buffers */ lpfc_io_free(phba); out_unset_queue: /* Unset all the queues set up in this routine when error out */ lpfc_sli4_queue_unset(phba); out_free_iocblist: lpfc_free_iocb_list(phba); out_destroy_queue: lpfc_sli4_queue_destroy(phba); out_stop_timers: lpfc_stop_hba_timers(phba); out_free_mbox: mempool_free(mboxq, phba->mbox_mem_pool); return rc; } /** * lpfc_mbox_timeout - Timeout call back function for mbox timer * @t: Context to fetch pointer to hba structure from. * * This is the callback function for mailbox timer. The mailbox * timer is armed when a new mailbox command is issued and the timer * is deleted when the mailbox complete. The function is called by * the kernel timer code when a mailbox does not complete within * expected time. This function wakes up the worker thread to * process the mailbox timeout and returns. All the processing is * done by the worker thread function lpfc_mbox_timeout_handler. **/ void lpfc_mbox_timeout(struct timer_list *t) { struct lpfc_hba *phba = from_timer(phba, t, sli.mbox_tmo); unsigned long iflag; uint32_t tmo_posted; spin_lock_irqsave(&phba->pport->work_port_lock, iflag); tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO; if (!tmo_posted) phba->pport->work_port_events |= WORKER_MBOX_TMO; spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); if (!tmo_posted) lpfc_worker_wake_up(phba); return; } /** * lpfc_sli4_mbox_completions_pending - check to see if any mailbox completions * are pending * @phba: Pointer to HBA context object. * * This function checks if any mailbox completions are present on the mailbox * completion queue. **/ static bool lpfc_sli4_mbox_completions_pending(struct lpfc_hba *phba) { uint32_t idx; struct lpfc_queue *mcq; struct lpfc_mcqe *mcqe; bool pending_completions = false; uint8_t qe_valid; if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) return false; /* Check for completions on mailbox completion queue */ mcq = phba->sli4_hba.mbx_cq; idx = mcq->hba_index; qe_valid = mcq->qe_valid; while (bf_get_le32(lpfc_cqe_valid, (struct lpfc_cqe *)lpfc_sli4_qe(mcq, idx)) == qe_valid) { mcqe = (struct lpfc_mcqe *)(lpfc_sli4_qe(mcq, idx)); if (bf_get_le32(lpfc_trailer_completed, mcqe) && (!bf_get_le32(lpfc_trailer_async, mcqe))) { pending_completions = true; break; } idx = (idx + 1) % mcq->entry_count; if (mcq->hba_index == idx) break; /* if the index wrapped around, toggle the valid bit */ if (phba->sli4_hba.pc_sli4_params.cqav && !idx) qe_valid = (qe_valid) ? 0 : 1; } return pending_completions; } /** * lpfc_sli4_process_missed_mbox_completions - process mbox completions * that were missed. * @phba: Pointer to HBA context object. * * For sli4, it is possible to miss an interrupt. As such mbox completions * maybe missed causing erroneous mailbox timeouts to occur. This function * checks to see if mbox completions are on the mailbox completion queue * and will process all the completions associated with the eq for the * mailbox completion queue. **/ static bool lpfc_sli4_process_missed_mbox_completions(struct lpfc_hba *phba) { struct lpfc_sli4_hba *sli4_hba = &phba->sli4_hba; uint32_t eqidx; struct lpfc_queue *fpeq = NULL; struct lpfc_queue *eq; bool mbox_pending; if (unlikely(!phba) || (phba->sli_rev != LPFC_SLI_REV4)) return false; /* Find the EQ associated with the mbox CQ */ if (sli4_hba->hdwq) { for (eqidx = 0; eqidx < phba->cfg_irq_chann; eqidx++) { eq = phba->sli4_hba.hba_eq_hdl[eqidx].eq; if (eq && eq->queue_id == sli4_hba->mbx_cq->assoc_qid) { fpeq = eq; break; } } } if (!fpeq) return false; /* Turn off interrupts from this EQ */ sli4_hba->sli4_eq_clr_intr(fpeq); /* Check to see if a mbox completion is pending */ mbox_pending = lpfc_sli4_mbox_completions_pending(phba); /* * If a mbox completion is pending, process all the events on EQ * associated with the mbox completion queue (this could include * mailbox commands, async events, els commands, receive queue data * and fcp commands) */ if (mbox_pending) /* process and rearm the EQ */ lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); else /* Always clear and re-arm the EQ */ sli4_hba->sli4_write_eq_db(phba, fpeq, 0, LPFC_QUEUE_REARM); return mbox_pending; } /** * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout * @phba: Pointer to HBA context object. * * This function is called from worker thread when a mailbox command times out. * The caller is not required to hold any locks. This function will reset the * HBA and recover all the pending commands. **/ void lpfc_mbox_timeout_handler(struct lpfc_hba *phba) { LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active; MAILBOX_t *mb = NULL; struct lpfc_sli *psli = &phba->sli; /* If the mailbox completed, process the completion */ lpfc_sli4_process_missed_mbox_completions(phba); if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) return; if (pmbox != NULL) mb = &pmbox->u.mb; /* Check the pmbox pointer first. There is a race condition * between the mbox timeout handler getting executed in the * worklist and the mailbox actually completing. When this * race condition occurs, the mbox_active will be NULL. */ spin_lock_irq(&phba->hbalock); if (pmbox == NULL) { lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, "0353 Active Mailbox cleared - mailbox timeout " "exiting\n"); spin_unlock_irq(&phba->hbalock); return; } /* Mbox cmd timeout */ lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0310 Mailbox command x%x timeout Data: x%x x%x x%px\n", mb->mbxCommand, phba->pport->port_state, phba->sli.sli_flag, phba->sli.mbox_active); spin_unlock_irq(&phba->hbalock); /* Setting state unknown so lpfc_sli_abort_iocb_ring * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing * it to fail all outstanding SCSI IO. */ spin_lock_irq(&phba->pport->work_port_lock); phba->pport->work_port_events &= ~WORKER_MBOX_TMO; spin_unlock_irq(&phba->pport->work_port_lock); spin_lock_irq(&phba->hbalock); phba->link_state = LPFC_LINK_UNKNOWN; psli->sli_flag &= ~LPFC_SLI_ACTIVE; spin_unlock_irq(&phba->hbalock); lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0345 Resetting board due to mailbox timeout\n"); /* Reset the HBA device */ lpfc_reset_hba(phba); } /** * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware * @phba: Pointer to HBA context object. * @pmbox: Pointer to mailbox object. * @flag: Flag indicating how the mailbox need to be processed. * * This function is called by discovery code and HBA management code * to submit a mailbox command to firmware with SLI-3 interface spec. This * function gets the hbalock to protect the data structures. * The mailbox command can be submitted in polling mode, in which case * this function will wait in a polling loop for the completion of the * mailbox. * If the mailbox is submitted in no_wait mode (not polling) the * function will submit the command and returns immediately without waiting * for the mailbox completion. The no_wait is supported only when HBA * is in SLI2/SLI3 mode - interrupts are enabled. * The SLI interface allows only one mailbox pending at a time. If the * mailbox is issued in polling mode and there is already a mailbox * pending, then the function will return an error. If the mailbox is issued * in NO_WAIT mode and there is a mailbox pending already, the function * will return MBX_BUSY after queuing the mailbox into mailbox queue. * The sli layer owns the mailbox object until the completion of mailbox * command if this function return MBX_BUSY or MBX_SUCCESS. For all other * return codes the caller owns the mailbox command after the return of * the function. **/ static int lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) { MAILBOX_t *mbx; struct lpfc_sli *psli = &phba->sli; uint32_t status, evtctr; uint32_t ha_copy, hc_copy; int i; unsigned long timeout; unsigned long drvr_flag = 0; uint32_t word0, ldata; void __iomem *to_slim; int processing_queue = 0; spin_lock_irqsave(&phba->hbalock, drvr_flag); if (!pmbox) { phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; /* processing mbox queue from intr_handler */ if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { spin_unlock_irqrestore(&phba->hbalock, drvr_flag); return MBX_SUCCESS; } processing_queue = 1; pmbox = lpfc_mbox_get(phba); if (!pmbox) { spin_unlock_irqrestore(&phba->hbalock, drvr_flag); return MBX_SUCCESS; } } if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) { if(!pmbox->vport) { spin_unlock_irqrestore(&phba->hbalock, drvr_flag); lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_VPORT, "1806 Mbox x%x failed. No vport\n", pmbox->u.mb.mbxCommand); dump_stack(); goto out_not_finished; } } /* If the PCI channel is in offline state, do not post mbox. */ if (unlikely(pci_channel_offline(phba->pcidev))) { spin_unlock_irqrestore(&phba->hbalock, drvr_flag); goto out_not_finished; } /* If HBA has a deferred error attention, fail the iocb. */ if (unlikely(phba->hba_flag & DEFER_ERATT)) { spin_unlock_irqrestore(&phba->hbalock, drvr_flag); goto out_not_finished; } psli = &phba->sli; mbx = &pmbox->u.mb; status = MBX_SUCCESS; if (phba->link_state == LPFC_HBA_ERROR) { spin_unlock_irqrestore(&phba->hbalock, drvr_flag); /* Mbox command cannot issue */ lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "(%d):0311 Mailbox command x%x cannot " "issue Data: x%x x%x\n", pmbox->vport ? pmbox->vport->vpi : 0, pmbox->u.mb.mbxCommand, psli->sli_flag, flag); goto out_not_finished; } if (mbx->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) { if (lpfc_readl(phba->HCregaddr, &hc_copy) || !(hc_copy & HC_MBINT_ENA)) { spin_unlock_irqrestore(&phba->hbalock, drvr_flag); lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "(%d):2528 Mailbox command x%x cannot " "issue Data: x%x x%x\n", pmbox->vport ? pmbox->vport->vpi : 0, pmbox->u.mb.mbxCommand, psli->sli_flag, flag); goto out_not_finished; } } if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { /* Polling for a mbox command when another one is already active * is not allowed in SLI. Also, the driver must have established * SLI2 mode to queue and process multiple mbox commands. */ if (flag & MBX_POLL) { spin_unlock_irqrestore(&phba->hbalock, drvr_flag); /* Mbox command cannot issue */ lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "(%d):2529 Mailbox command x%x " "cannot issue Data: x%x x%x\n", pmbox->vport ? pmbox->vport->vpi : 0, pmbox->u.mb.mbxCommand, psli->sli_flag, flag); goto out_not_finished; } if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) { spin_unlock_irqrestore(&phba->hbalock, drvr_flag); /* Mbox command cannot issue */ lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "(%d):2530 Mailbox command x%x " "cannot issue Data: x%x x%x\n", pmbox->vport ? pmbox->vport->vpi : 0, pmbox->u.mb.mbxCommand, psli->sli_flag, flag); goto out_not_finished; } /* Another mailbox command is still being processed, queue this * command to be processed later. */ lpfc_mbox_put(phba, pmbox); /* Mbox cmd issue - BUSY */ lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, "(%d):0308 Mbox cmd issue - BUSY Data: " "x%x x%x x%x x%x\n", pmbox->vport ? pmbox->vport->vpi : 0xffffff, mbx->mbxCommand, phba->pport ? phba->pport->port_state : 0xff, psli->sli_flag, flag); psli->slistat.mbox_busy++; spin_unlock_irqrestore(&phba->hbalock, drvr_flag); if (pmbox->vport) { lpfc_debugfs_disc_trc(pmbox->vport, LPFC_DISC_TRC_MBOX_VPORT, "MBOX Bsy vport: cmd:x%x mb:x%x x%x", (uint32_t)mbx->mbxCommand, mbx->un.varWords[0], mbx->un.varWords[1]); } else { lpfc_debugfs_disc_trc(phba->pport, LPFC_DISC_TRC_MBOX, "MBOX Bsy: cmd:x%x mb:x%x x%x", (uint32_t)mbx->mbxCommand, mbx->un.varWords[0], mbx->un.varWords[1]); } return MBX_BUSY; } psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; /* If we are not polling, we MUST be in SLI2 mode */ if (flag != MBX_POLL) { if (!(psli->sli_flag & LPFC_SLI_ACTIVE) && (mbx->mbxCommand != MBX_KILL_BOARD)) { psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; spin_unlock_irqrestore(&phba->hbalock, drvr_flag); /* Mbox command cannot issue */ lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "(%d):2531 Mailbox command x%x " "cannot issue Data: x%x x%x\n", pmbox->vport ? pmbox->vport->vpi : 0, pmbox->u.mb.mbxCommand, psli->sli_flag, flag); goto out_not_finished; } /* timeout active mbox command */ timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 1000); mod_timer(&psli->mbox_tmo, jiffies + timeout); } /* Mailbox cmd issue */ lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x " "x%x\n", pmbox->vport ? pmbox->vport->vpi : 0, mbx->mbxCommand, phba->pport ? phba->pport->port_state : 0xff, psli->sli_flag, flag); if (mbx->mbxCommand != MBX_HEARTBEAT) { if (pmbox->vport) { lpfc_debugfs_disc_trc(pmbox->vport, LPFC_DISC_TRC_MBOX_VPORT, "MBOX Send vport: cmd:x%x mb:x%x x%x", (uint32_t)mbx->mbxCommand, mbx->un.varWords[0], mbx->un.varWords[1]); } else { lpfc_debugfs_disc_trc(phba->pport, LPFC_DISC_TRC_MBOX, "MBOX Send: cmd:x%x mb:x%x x%x", (uint32_t)mbx->mbxCommand, mbx->un.varWords[0], mbx->un.varWords[1]); } } psli->slistat.mbox_cmd++; evtctr = psli->slistat.mbox_event; /* next set own bit for the adapter and copy over command word */ mbx->mbxOwner = OWN_CHIP; if (psli->sli_flag & LPFC_SLI_ACTIVE) { /* Populate mbox extension offset word. */ if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) { *(((uint32_t *)mbx) + pmbox->mbox_offset_word) = (uint8_t *)phba->mbox_ext - (uint8_t *)phba->mbox; } /* Copy the mailbox extension data */ if (pmbox->in_ext_byte_len && pmbox->ctx_buf) { lpfc_sli_pcimem_bcopy(pmbox->ctx_buf, (uint8_t *)phba->mbox_ext, pmbox->in_ext_byte_len); } /* Copy command data to host SLIM area */ lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); } else { /* Populate mbox extension offset word. */ if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) *(((uint32_t *)mbx) + pmbox->mbox_offset_word) = MAILBOX_HBA_EXT_OFFSET; /* Copy the mailbox extension data */ if (pmbox->in_ext_byte_len && pmbox->ctx_buf) lpfc_memcpy_to_slim(phba->MBslimaddr + MAILBOX_HBA_EXT_OFFSET, pmbox->ctx_buf, pmbox->in_ext_byte_len); if (mbx->mbxCommand == MBX_CONFIG_PORT) /* copy command data into host mbox for cmpl */ lpfc_sli_pcimem_bcopy(mbx, phba->mbox, MAILBOX_CMD_SIZE); /* First copy mbox command data to HBA SLIM, skip past first word */ to_slim = phba->MBslimaddr + sizeof (uint32_t); lpfc_memcpy_to_slim(to_slim, &mbx->un.varWords[0], MAILBOX_CMD_SIZE - sizeof (uint32_t)); /* Next copy over first word, with mbxOwner set */ ldata = *((uint32_t *)mbx); to_slim = phba->MBslimaddr; writel(ldata, to_slim); readl(to_slim); /* flush */ if (mbx->mbxCommand == MBX_CONFIG_PORT) /* switch over to host mailbox */ psli->sli_flag |= LPFC_SLI_ACTIVE; } wmb(); switch (flag) { case MBX_NOWAIT: /* Set up reference to mailbox command */ psli->mbox_active = pmbox; /* Interrupt board to do it */ writel(CA_MBATT, phba->CAregaddr); readl(phba->CAregaddr); /* flush */ /* Don't wait for it to finish, just return */ break; case MBX_POLL: /* Set up null reference to mailbox command */ psli->mbox_active = NULL; /* Interrupt board to do it */ writel(CA_MBATT, phba->CAregaddr); readl(phba->CAregaddr); /* flush */ if (psli->sli_flag & LPFC_SLI_ACTIVE) { /* First read mbox status word */ word0 = *((uint32_t *)phba->mbox); word0 = le32_to_cpu(word0); } else { /* First read mbox status word */ if (lpfc_readl(phba->MBslimaddr, &word0)) { spin_unlock_irqrestore(&phba->hbalock, drvr_flag); goto out_not_finished; } } /* Read the HBA Host Attention Register */ if (lpfc_readl(phba->HAregaddr, &ha_copy)) { spin_unlock_irqrestore(&phba->hbalock, drvr_flag); goto out_not_finished; } timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) * 1000) + jiffies; i = 0; /* Wait for command to complete */ while (((word0 & OWN_CHIP) == OWN_CHIP) || (!(ha_copy & HA_MBATT) && (phba->link_state > LPFC_WARM_START))) { if (time_after(jiffies, timeout)) { psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; spin_unlock_irqrestore(&phba->hbalock, drvr_flag); goto out_not_finished; } /* Check if we took a mbox interrupt while we were polling */ if (((word0 & OWN_CHIP) != OWN_CHIP) && (evtctr != psli->slistat.mbox_event)) break; if (i++ > 10) { spin_unlock_irqrestore(&phba->hbalock, drvr_flag); msleep(1); spin_lock_irqsave(&phba->hbalock, drvr_flag); } if (psli->sli_flag & LPFC_SLI_ACTIVE) { /* First copy command data */ word0 = *((uint32_t *)phba->mbox); word0 = le32_to_cpu(word0); if (mbx->mbxCommand == MBX_CONFIG_PORT) { MAILBOX_t *slimmb; uint32_t slimword0; /* Check real SLIM for any errors */ slimword0 = readl(phba->MBslimaddr); slimmb = (MAILBOX_t *) & slimword0; if (((slimword0 & OWN_CHIP) != OWN_CHIP) && slimmb->mbxStatus) { psli->sli_flag &= ~LPFC_SLI_ACTIVE; word0 = slimword0; } } } else { /* First copy command data */ word0 = readl(phba->MBslimaddr); } /* Read the HBA Host Attention Register */ if (lpfc_readl(phba->HAregaddr, &ha_copy)) { spin_unlock_irqrestore(&phba->hbalock, drvr_flag); goto out_not_finished; } } if (psli->sli_flag & LPFC_SLI_ACTIVE) { /* copy results back to user */ lpfc_sli_pcimem_bcopy(phba->mbox, mbx, MAILBOX_CMD_SIZE); /* Copy the mailbox extension data */ if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { lpfc_sli_pcimem_bcopy(phba->mbox_ext, pmbox->ctx_buf, pmbox->out_ext_byte_len); } } else { /* First copy command data */ lpfc_memcpy_from_slim(mbx, phba->MBslimaddr, MAILBOX_CMD_SIZE); /* Copy the mailbox extension data */ if (pmbox->out_ext_byte_len && pmbox->ctx_buf) { lpfc_memcpy_from_slim( pmbox->ctx_buf, phba->MBslimaddr + MAILBOX_HBA_EXT_OFFSET, pmbox->out_ext_byte_len); } } writel(HA_MBATT, phba->HAregaddr); readl(phba->HAregaddr); /* flush */ psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; status = mbx->mbxStatus; } spin_unlock_irqrestore(&phba->hbalock, drvr_flag); return status; out_not_finished: if (processing_queue) { pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED; lpfc_mbox_cmpl_put(phba, pmbox); } return MBX_NOT_FINISHED; } /** * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command * @phba: Pointer to HBA context object. * * The function blocks the posting of SLI4 asynchronous mailbox commands from * the driver internal pending mailbox queue. It will then try to wait out the * possible outstanding mailbox command before return. * * Returns: * 0 - the outstanding mailbox command completed; otherwise, the wait for * the outstanding mailbox command timed out. **/ static int lpfc_sli4_async_mbox_block(struct lpfc_hba *phba) { struct lpfc_sli *psli = &phba->sli; LPFC_MBOXQ_t *mboxq; int rc = 0; unsigned long timeout = 0; u32 sli_flag; u8 cmd, subsys, opcode; /* Mark the asynchronous mailbox command posting as blocked */ spin_lock_irq(&phba->hbalock); psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; /* Determine how long we might wait for the active mailbox * command to be gracefully completed by firmware. */ if (phba->sli.mbox_active) timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, phba->sli.mbox_active) * 1000) + jiffies; spin_unlock_irq(&phba->hbalock); /* Make sure the mailbox is really active */ if (timeout) lpfc_sli4_process_missed_mbox_completions(phba); /* Wait for the outstanding mailbox command to complete */ while (phba->sli.mbox_active) { /* Check active mailbox complete status every 2ms */ msleep(2); if (time_after(jiffies, timeout)) { /* Timeout, mark the outstanding cmd not complete */ /* Sanity check sli.mbox_active has not completed or * cancelled from another context during last 2ms sleep, * so take hbalock to be sure before logging. */ spin_lock_irq(&phba->hbalock); if (phba->sli.mbox_active) { mboxq = phba->sli.mbox_active; cmd = mboxq->u.mb.mbxCommand; subsys = lpfc_sli_config_mbox_subsys_get(phba, mboxq); opcode = lpfc_sli_config_mbox_opcode_get(phba, mboxq); sli_flag = psli->sli_flag; spin_unlock_irq(&phba->hbalock); lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2352 Mailbox command x%x " "(x%x/x%x) sli_flag x%x could " "not complete\n", cmd, subsys, opcode, sli_flag); } else { spin_unlock_irq(&phba->hbalock); } rc = 1; break; } } /* Can not cleanly block async mailbox command, fails it */ if (rc) { spin_lock_irq(&phba->hbalock); psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; spin_unlock_irq(&phba->hbalock); } return rc; } /** * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command * @phba: Pointer to HBA context object. * * The function unblocks and resume posting of SLI4 asynchronous mailbox * commands from the driver internal pending mailbox queue. It makes sure * that there is no outstanding mailbox command before resuming posting * asynchronous mailbox commands. If, for any reason, there is outstanding * mailbox command, it will try to wait it out before resuming asynchronous * mailbox command posting. **/ static void lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba) { struct lpfc_sli *psli = &phba->sli; spin_lock_irq(&phba->hbalock); if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { /* Asynchronous mailbox posting is not blocked, do nothing */ spin_unlock_irq(&phba->hbalock); return; } /* Outstanding synchronous mailbox command is guaranteed to be done, * successful or timeout, after timing-out the outstanding mailbox * command shall always be removed, so just unblock posting async * mailbox command and resume */ psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK; spin_unlock_irq(&phba->hbalock); /* wake up worker thread to post asynchronous mailbox command */ lpfc_worker_wake_up(phba); } /** * lpfc_sli4_wait_bmbx_ready - Wait for bootstrap mailbox register ready * @phba: Pointer to HBA context object. * @mboxq: Pointer to mailbox object. * * The function waits for the bootstrap mailbox register ready bit from * port for twice the regular mailbox command timeout value. * * 0 - no timeout on waiting for bootstrap mailbox register ready. * MBXERR_ERROR - wait for bootstrap mailbox register timed out. **/ static int lpfc_sli4_wait_bmbx_ready(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) { uint32_t db_ready; unsigned long timeout; struct lpfc_register bmbx_reg; timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq) * 1000) + jiffies; do { bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr); db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg); if (!db_ready) mdelay(2); if (time_after(jiffies, timeout)) return MBXERR_ERROR; } while (!db_ready); return 0; } /** * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox * @phba: Pointer to HBA context object. * @mboxq: Pointer to mailbox object. * * The function posts a mailbox to the port. The mailbox is expected * to be comletely filled in and ready for the port to operate on it. * This routine executes a synchronous completion operation on the * mailbox by polling for its completion. * * The caller must not be holding any locks when calling this routine. * * Returns: * MBX_SUCCESS - mailbox posted successfully * Any of the MBX error values. **/ static int lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) { int rc = MBX_SUCCESS; unsigned long iflag; uint32_t mcqe_status; uint32_t mbx_cmnd; struct lpfc_sli *psli = &phba->sli; struct lpfc_mqe *mb = &mboxq->u.mqe; struct lpfc_bmbx_create *mbox_rgn; struct dma_address *dma_address; /* * Only one mailbox can be active to the bootstrap mailbox region * at a time and there is no queueing provided. */ spin_lock_irqsave(&phba->hbalock, iflag); if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { spin_unlock_irqrestore(&phba->hbalock, iflag); lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "(%d):2532 Mailbox command x%x (x%x/x%x) " "cannot issue Data: x%x x%x\n", mboxq->vport ? mboxq->vport->vpi : 0, mboxq->u.mb.mbxCommand, lpfc_sli_config_mbox_subsys_get(phba, mboxq), lpfc_sli_config_mbox_opcode_get(phba, mboxq), psli->sli_flag, MBX_POLL); return MBXERR_ERROR; } /* The server grabs the token and owns it until release */ psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; phba->sli.mbox_active = mboxq; spin_unlock_irqrestore(&phba->hbalock, iflag); /* wait for bootstrap mbox register for readyness */ rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); if (rc) goto exit; /* * Initialize the bootstrap memory region to avoid stale data areas * in the mailbox post. Then copy the caller's mailbox contents to * the bmbx mailbox region. */ mbx_cmnd = bf_get(lpfc_mqe_command, mb); memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create)); lpfc_sli4_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt, sizeof(struct lpfc_mqe)); /* Post the high mailbox dma address to the port and wait for ready. */ dma_address = &phba->sli4_hba.bmbx.dma_address; writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr); /* wait for bootstrap mbox register for hi-address write done */ rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); if (rc) goto exit; /* Post the low mailbox dma address to the port. */ writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr); /* wait for bootstrap mbox register for low address write done */ rc = lpfc_sli4_wait_bmbx_ready(phba, mboxq); if (rc) goto exit; /* * Read the CQ to ensure the mailbox has completed. * If so, update the mailbox status so that the upper layers * can complete the request normally. */ lpfc_sli4_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb, sizeof(struct lpfc_mqe)); mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt; lpfc_sli4_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe, sizeof(struct lpfc_mcqe)); mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe); /* * When the CQE status indicates a failure and the mailbox status * indicates success then copy the CQE status into the mailbox status * (and prefix it with x4000). */ if (mcqe_status != MB_CQE_STATUS_SUCCESS) { if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS) bf_set(lpfc_mqe_status, mb, (LPFC_MBX_ERROR_RANGE | mcqe_status)); rc = MBXERR_ERROR; } else lpfc_sli4_swap_str(phba, mboxq); lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x " "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x" " x%x x%x CQ: x%x x%x x%x x%x\n", mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, lpfc_sli_config_mbox_subsys_get(phba, mboxq), lpfc_sli_config_mbox_opcode_get(phba, mboxq), bf_get(lpfc_mqe_status, mb), mb->un.mb_words[0], mb->un.mb_words[1], mb->un.mb_words[2], mb->un.mb_words[3], mb->un.mb_words[4], mb->un.mb_words[5], mb->un.mb_words[6], mb->un.mb_words[7], mb->un.mb_words[8], mb->un.mb_words[9], mb->un.mb_words[10], mb->un.mb_words[11], mb->un.mb_words[12], mboxq->mcqe.word0, mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1, mboxq->mcqe.trailer); exit: /* We are holding the token, no needed for lock when release */ spin_lock_irqsave(&phba->hbalock, iflag); psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; phba->sli.mbox_active = NULL; spin_unlock_irqrestore(&phba->hbalock, iflag); return rc; } /** * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware * @phba: Pointer to HBA context object. * @mboxq: Pointer to mailbox object. * @flag: Flag indicating how the mailbox need to be processed. * * This function is called by discovery code and HBA management code to submit * a mailbox command to firmware with SLI-4 interface spec. * * Return codes the caller owns the mailbox command after the return of the * function. **/ static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq, uint32_t flag) { struct lpfc_sli *psli = &phba->sli; unsigned long iflags; int rc; /* dump from issue mailbox command if setup */ lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb); rc = lpfc_mbox_dev_check(phba); if (unlikely(rc)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "(%d):2544 Mailbox command x%x (x%x/x%x) " "cannot issue Data: x%x x%x\n", mboxq->vport ? mboxq->vport->vpi : 0, mboxq->u.mb.mbxCommand, lpfc_sli_config_mbox_subsys_get(phba, mboxq), lpfc_sli_config_mbox_opcode_get(phba, mboxq), psli->sli_flag, flag); goto out_not_finished; } /* Detect polling mode and jump to a handler */ if (!phba->sli4_hba.intr_enable) { if (flag == MBX_POLL) rc = lpfc_sli4_post_sync_mbox(phba, mboxq); else rc = -EIO; if (rc != MBX_SUCCESS) lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, "(%d):2541 Mailbox command x%x " "(x%x/x%x) failure: " "mqe_sta: x%x mcqe_sta: x%x/x%x " "Data: x%x x%x\n", mboxq->vport ? mboxq->vport->vpi : 0, mboxq->u.mb.mbxCommand, lpfc_sli_config_mbox_subsys_get(phba, mboxq), lpfc_sli_config_mbox_opcode_get(phba, mboxq), bf_get(lpfc_mqe_status, &mboxq->u.mqe), bf_get(lpfc_mcqe_status, &mboxq->mcqe), bf_get(lpfc_mcqe_ext_status, &mboxq->mcqe), psli->sli_flag, flag); return rc; } else if (flag == MBX_POLL) { lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, "(%d):2542 Try to issue mailbox command " "x%x (x%x/x%x) synchronously ahead of async " "mailbox command queue: x%x x%x\n", mboxq->vport ? mboxq->vport->vpi : 0, mboxq->u.mb.mbxCommand, lpfc_sli_config_mbox_subsys_get(phba, mboxq), lpfc_sli_config_mbox_opcode_get(phba, mboxq), psli->sli_flag, flag); /* Try to block the asynchronous mailbox posting */ rc = lpfc_sli4_async_mbox_block(phba); if (!rc) { /* Successfully blocked, now issue sync mbox cmd */ rc = lpfc_sli4_post_sync_mbox(phba, mboxq); if (rc != MBX_SUCCESS) lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, "(%d):2597 Sync Mailbox command " "x%x (x%x/x%x) failure: " "mqe_sta: x%x mcqe_sta: x%x/x%x " "Data: x%x x%x\n", mboxq->vport ? mboxq->vport->vpi : 0, mboxq->u.mb.mbxCommand, lpfc_sli_config_mbox_subsys_get(phba, mboxq), lpfc_sli_config_mbox_opcode_get(phba, mboxq), bf_get(lpfc_mqe_status, &mboxq->u.mqe), bf_get(lpfc_mcqe_status, &mboxq->mcqe), bf_get(lpfc_mcqe_ext_status, &mboxq->mcqe), psli->sli_flag, flag); /* Unblock the async mailbox posting afterward */ lpfc_sli4_async_mbox_unblock(phba); } return rc; } /* Now, interrupt mode asynchronous mailbox command */ rc = lpfc_mbox_cmd_check(phba, mboxq); if (rc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "(%d):2543 Mailbox command x%x (x%x/x%x) " "cannot issue Data: x%x x%x\n", mboxq->vport ? mboxq->vport->vpi : 0, mboxq->u.mb.mbxCommand, lpfc_sli_config_mbox_subsys_get(phba, mboxq), lpfc_sli_config_mbox_opcode_get(phba, mboxq), psli->sli_flag, flag); goto out_not_finished; } /* Put the mailbox command to the driver internal FIFO */ psli->slistat.mbox_busy++; spin_lock_irqsave(&phba->hbalock, iflags); lpfc_mbox_put(phba, mboxq); spin_unlock_irqrestore(&phba->hbalock, iflags); lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, "(%d):0354 Mbox cmd issue - Enqueue Data: " "x%x (x%x/x%x) x%x x%x x%x\n", mboxq->vport ? mboxq->vport->vpi : 0xffffff, bf_get(lpfc_mqe_command, &mboxq->u.mqe), lpfc_sli_config_mbox_subsys_get(phba, mboxq), lpfc_sli_config_mbox_opcode_get(phba, mboxq), phba->pport->port_state, psli->sli_flag, MBX_NOWAIT); /* Wake up worker thread to transport mailbox command from head */ lpfc_worker_wake_up(phba); return MBX_BUSY; out_not_finished: return MBX_NOT_FINISHED; } /** * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device * @phba: Pointer to HBA context object. * * This function is called by worker thread to send a mailbox command to * SLI4 HBA firmware. * **/ int lpfc_sli4_post_async_mbox(struct lpfc_hba *phba) { struct lpfc_sli *psli = &phba->sli; LPFC_MBOXQ_t *mboxq; int rc = MBX_SUCCESS; unsigned long iflags; struct lpfc_mqe *mqe; uint32_t mbx_cmnd; /* Check interrupt mode before post async mailbox command */ if (unlikely(!phba->sli4_hba.intr_enable)) return MBX_NOT_FINISHED; /* Check for mailbox command service token */ spin_lock_irqsave(&phba->hbalock, iflags); if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) { spin_unlock_irqrestore(&phba->hbalock, iflags); return MBX_NOT_FINISHED; } if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) { spin_unlock_irqrestore(&phba->hbalock, iflags); return MBX_NOT_FINISHED; } if (unlikely(phba->sli.mbox_active)) { spin_unlock_irqrestore(&phba->hbalock, iflags); lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0384 There is pending active mailbox cmd\n"); return MBX_NOT_FINISHED; } /* Take the mailbox command service token */ psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE; /* Get the next mailbox command from head of queue */ mboxq = lpfc_mbox_get(phba); /* If no more mailbox command waiting for post, we're done */ if (!mboxq) { psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; spin_unlock_irqrestore(&phba->hbalock, iflags); return MBX_SUCCESS; } phba->sli.mbox_active = mboxq; spin_unlock_irqrestore(&phba->hbalock, iflags); /* Check device readiness for posting mailbox command */ rc = lpfc_mbox_dev_check(phba); if (unlikely(rc)) /* Driver clean routine will clean up pending mailbox */ goto out_not_finished; /* Prepare the mbox command to be posted */ mqe = &mboxq->u.mqe; mbx_cmnd = bf_get(lpfc_mqe_command, mqe); /* Start timer for the mbox_tmo and log some mailbox post messages */ mod_timer(&psli->mbox_tmo, (jiffies + msecs_to_jiffies(1000 * lpfc_mbox_tmo_val(phba, mboxq)))); lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: " "x%x x%x\n", mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd, lpfc_sli_config_mbox_subsys_get(phba, mboxq), lpfc_sli_config_mbox_opcode_get(phba, mboxq), phba->pport->port_state, psli->sli_flag); if (mbx_cmnd != MBX_HEARTBEAT) { if (mboxq->vport) { lpfc_debugfs_disc_trc(mboxq->vport, LPFC_DISC_TRC_MBOX_VPORT, "MBOX Send vport: cmd:x%x mb:x%x x%x", mbx_cmnd, mqe->un.mb_words[0], mqe->un.mb_words[1]); } else { lpfc_debugfs_disc_trc(phba->pport, LPFC_DISC_TRC_MBOX, "MBOX Send: cmd:x%x mb:x%x x%x", mbx_cmnd, mqe->un.mb_words[0], mqe->un.mb_words[1]); } } psli->slistat.mbox_cmd++; /* Post the mailbox command to the port */ rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe); if (rc != MBX_SUCCESS) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "(%d):2533 Mailbox command x%x (x%x/x%x) " "cannot issue Data: x%x x%x\n", mboxq->vport ? mboxq->vport->vpi : 0, mboxq->u.mb.mbxCommand, lpfc_sli_config_mbox_subsys_get(phba, mboxq), lpfc_sli_config_mbox_opcode_get(phba, mboxq), psli->sli_flag, MBX_NOWAIT); goto out_not_finished; } return rc; out_not_finished: spin_lock_irqsave(&phba->hbalock, iflags); if (phba->sli.mbox_active) { mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; __lpfc_mbox_cmpl_put(phba, mboxq); /* Release the token */ psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; phba->sli.mbox_active = NULL; } spin_unlock_irqrestore(&phba->hbalock, iflags); return MBX_NOT_FINISHED; } /** * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command * @phba: Pointer to HBA context object. * @pmbox: Pointer to mailbox object. * @flag: Flag indicating how the mailbox need to be processed. * * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from * the API jump table function pointer from the lpfc_hba struct. * * Return codes the caller owns the mailbox command after the return of the * function. **/ int lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag) { return phba->lpfc_sli_issue_mbox(phba, pmbox, flag); } /** * lpfc_mbox_api_table_setup - Set up mbox api function jump table * @phba: The hba struct for which this call is being executed. * @dev_grp: The HBA PCI-Device group number. * * This routine sets up the mbox interface API function jump table in @phba * struct. * Returns: 0 - success, -ENODEV - failure. **/ int lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) { switch (dev_grp) { case LPFC_PCI_DEV_LP: phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3; phba->lpfc_sli_handle_slow_ring_event = lpfc_sli_handle_slow_ring_event_s3; phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3; phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3; phba->lpfc_sli_brdready = lpfc_sli_brdready_s3; break; case LPFC_PCI_DEV_OC: phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4; phba->lpfc_sli_handle_slow_ring_event = lpfc_sli_handle_slow_ring_event_s4; phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4; phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4; phba->lpfc_sli_brdready = lpfc_sli_brdready_s4; break; default: lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "1420 Invalid HBA PCI-device group: 0x%x\n", dev_grp); return -ENODEV; } return 0; } /** * __lpfc_sli_ringtx_put - Add an iocb to the txq * @phba: Pointer to HBA context object. * @pring: Pointer to driver SLI ring object. * @piocb: Pointer to address of newly added command iocb. * * This function is called with hbalock held for SLI3 ports or * the ring lock held for SLI4 ports to add a command * iocb to the txq when SLI layer cannot submit the command iocb * to the ring. **/ void __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, struct lpfc_iocbq *piocb) { if (phba->sli_rev == LPFC_SLI_REV4) lockdep_assert_held(&pring->ring_lock); else lockdep_assert_held(&phba->hbalock); /* Insert the caller's iocb in the txq tail for later processing. */ list_add_tail(&piocb->list, &pring->txq); } /** * lpfc_sli_next_iocb - Get the next iocb in the txq * @phba: Pointer to HBA context object. * @pring: Pointer to driver SLI ring object. * @piocb: Pointer to address of newly added command iocb. * * This function is called with hbalock held before a new * iocb is submitted to the firmware. This function checks * txq to flush the iocbs in txq to Firmware before * submitting new iocbs to the Firmware. * If there are iocbs in the txq which need to be submitted * to firmware, lpfc_sli_next_iocb returns the first element * of the txq after dequeuing it from txq. * If there is no iocb in the txq then the function will return * *piocb and *piocb is set to NULL. Caller needs to check * *piocb to find if there are more commands in the txq. **/ static struct lpfc_iocbq * lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, struct lpfc_iocbq **piocb) { struct lpfc_iocbq * nextiocb; lockdep_assert_held(&phba->hbalock); nextiocb = lpfc_sli_ringtx_get(phba, pring); if (!nextiocb) { nextiocb = *piocb; *piocb = NULL; } return nextiocb; } /** * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb * @phba: Pointer to HBA context object. * @ring_number: SLI ring number to issue iocb on. * @piocb: Pointer to command iocb. * @flag: Flag indicating if this command can be put into txq. * * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT * flag is turned on, the function returns IOCB_ERROR. When the link is down, * this function allows only iocbs for posting buffers. This function finds * next available slot in the command ring and posts the command to the * available slot and writes the port attention register to request HBA start * processing new iocb. If there is no slot available in the ring and * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise * the function returns IOCB_BUSY. * * This function is called with hbalock held. The function will return success * after it successfully submit the iocb to firmware or after adding to the * txq. **/ static int __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number, struct lpfc_iocbq *piocb, uint32_t flag) { struct lpfc_iocbq *nextiocb; IOCB_t *iocb; struct lpfc_sli_ring *pring = &phba->sli.sli3_ring[ring_number]; lockdep_assert_held(&phba->hbalock); if (piocb->iocb_cmpl && (!piocb->vport) && (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) && (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "1807 IOCB x%x failed. No vport\n", piocb->iocb.ulpCommand); dump_stack(); return IOCB_ERROR; } /* If the PCI channel is in offline state, do not post iocbs. */ if (unlikely(pci_channel_offline(phba->pcidev))) return IOCB_ERROR; /* If HBA has a deferred error attention, fail the iocb. */ if (unlikely(phba->hba_flag & DEFER_ERATT)) return IOCB_ERROR; /* * We should never get an IOCB if we are in a < LINK_DOWN state */ if (unlikely(phba->link_state < LPFC_LINK_DOWN)) return IOCB_ERROR; /* * Check to see if we are blocking IOCB processing because of a * outstanding event. */ if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT)) goto iocb_busy; if (unlikely(phba->link_state == LPFC_LINK_DOWN)) { /* * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF * can be issued if the link is not up. */ switch (piocb->iocb.ulpCommand) { case CMD_GEN_REQUEST64_CR: case CMD_GEN_REQUEST64_CX: if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) || (piocb->iocb.un.genreq64.w5.hcsw.Rctl != FC_RCTL_DD_UNSOL_CMD) || (piocb->iocb.un.genreq64.w5.hcsw.Type != MENLO_TRANSPORT_TYPE)) goto iocb_busy; break; case CMD_QUE_RING_BUF_CN: case CMD_QUE_RING_BUF64_CN: /* * For IOCBs, like QUE_RING_BUF, that have no rsp ring * completion, iocb_cmpl MUST be 0. */ if (piocb->iocb_cmpl) piocb->iocb_cmpl = NULL; fallthrough; case CMD_CREATE_XRI_CR: case CMD_CLOSE_XRI_CN: case CMD_CLOSE_XRI_CX: break; default: goto iocb_busy; } /* * For FCP commands, we must be in a state where we can process link * attention events. */ } else if (unlikely(pring->ringno == LPFC_FCP_RING && !(phba->sli.sli_flag & LPFC_PROCESS_LA))) { goto iocb_busy; } while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) && (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb))) lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb); if (iocb) lpfc_sli_update_ring(phba, pring); else lpfc_sli_update_full_ring(phba, pring); if (!piocb) return IOCB_SUCCESS; goto out_busy; iocb_busy: pring->stats.iocb_cmd_delay++; out_busy: if (!(flag & SLI_IOCB_RET_IOCB)) { __lpfc_sli_ringtx_put(phba, pring, piocb); return IOCB_SUCCESS; } return IOCB_BUSY; } /** * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl. * @phba: Pointer to HBA context object. * @piocbq: Pointer to command iocb. * @sglq: Pointer to the scatter gather queue object. * * This routine converts the bpl or bde that is in the IOCB * to a sgl list for the sli4 hardware. The physical address * of the bpl/bde is converted back to a virtual address. * If the IOCB contains a BPL then the list of BDE's is * converted to sli4_sge's. If the IOCB contains a single * BDE then it is converted to a single sli_sge. * The IOCB is still in cpu endianess so the contents of * the bpl can be used without byte swapping. * * Returns valid XRI = Success, NO_XRI = Failure. **/ static uint16_t lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq, struct lpfc_sglq *sglq) { uint16_t xritag = NO_XRI; struct ulp_bde64 *bpl = NULL; struct ulp_bde64 bde; struct sli4_sge *sgl = NULL; struct lpfc_dmabuf *dmabuf; IOCB_t *icmd; int numBdes = 0; int i = 0; uint32_t offset = 0; /* accumulated offset in the sg request list */ int inbound = 0; /* number of sg reply entries inbound from firmware */ if (!piocbq || !sglq) return xritag; sgl = (struct sli4_sge *)sglq->sgl; icmd = &piocbq->iocb; if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX) return sglq->sli4_xritag; if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { numBdes = icmd->un.genreq64.bdl.bdeSize / sizeof(struct ulp_bde64); /* The addrHigh and addrLow fields within the IOCB * have not been byteswapped yet so there is no * need to swap them back. */ if (piocbq->context3) dmabuf = (struct lpfc_dmabuf *)piocbq->context3; else return xritag; bpl = (struct ulp_bde64 *)dmabuf->virt; if (!bpl) return xritag; for (i = 0; i < numBdes; i++) { /* Should already be byte swapped. */ sgl->addr_hi = bpl->addrHigh; sgl->addr_lo = bpl->addrLow; sgl->word2 = le32_to_cpu(sgl->word2); if ((i+1) == numBdes) bf_set(lpfc_sli4_sge_last, sgl, 1); else bf_set(lpfc_sli4_sge_last, sgl, 0); /* swap the size field back to the cpu so we * can assign it to the sgl. */ bde.tus.w = le32_to_cpu(bpl->tus.w); sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); /* The offsets in the sgl need to be accumulated * separately for the request and reply lists. * The request is always first, the reply follows. */ if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) { /* add up the reply sg entries */ if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) inbound++; /* first inbound? reset the offset */ if (inbound == 1) offset = 0; bf_set(lpfc_sli4_sge_offset, sgl, offset); bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DATA); offset += bde.tus.f.bdeSize; } sgl->word2 = cpu_to_le32(sgl->word2); bpl++; sgl++; } } else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) { /* The addrHigh and addrLow fields of the BDE have not * been byteswapped yet so they need to be swapped * before putting them in the sgl. */ sgl->addr_hi = cpu_to_le32(icmd->un.genreq64.bdl.addrHigh); sgl->addr_lo = cpu_to_le32(icmd->un.genreq64.bdl.addrLow); sgl->word2 = le32_to_cpu(sgl->word2); bf_set(lpfc_sli4_sge_last, sgl, 1); sgl->word2 = cpu_to_le32(sgl->word2); sgl->sge_len = cpu_to_le32(icmd->un.genreq64.bdl.bdeSize); } return sglq->sli4_xritag; } /** * lpfc_sli4_iocb2wqe - Convert the IOCB to a work queue entry. * @phba: Pointer to HBA context object. * @iocbq: Pointer to command iocb. * @wqe: Pointer to the work queue entry. * * This routine converts the iocb command to its Work Queue Entry * equivalent. The wqe pointer should not have any fields set when * this routine is called because it will memcpy over them. * This routine does not set the CQ_ID or the WQEC bits in the * wqe. * * Returns: 0 = Success, IOCB_ERROR = Failure. **/ static int lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq, union lpfc_wqe128 *wqe) { uint32_t xmit_len = 0, total_len = 0; uint8_t ct = 0; uint32_t fip; uint32_t abort_tag; uint8_t command_type = ELS_COMMAND_NON_FIP; uint8_t cmnd; uint16_t xritag; uint16_t abrt_iotag; struct lpfc_iocbq *abrtiocbq; struct ulp_bde64 *bpl = NULL; uint32_t els_id = LPFC_ELS_ID_DEFAULT; int numBdes, i; struct ulp_bde64 bde; struct lpfc_nodelist *ndlp; uint32_t *pcmd; uint32_t if_type; fip = phba->hba_flag & HBA_FIP_SUPPORT; /* The fcp commands will set command type */ if (iocbq->iocb_flag & LPFC_IO_FCP) command_type = FCP_COMMAND; else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)) command_type = ELS_COMMAND_FIP; else command_type = ELS_COMMAND_NON_FIP; if (phba->fcp_embed_io) memset(wqe, 0, sizeof(union lpfc_wqe128)); /* Some of the fields are in the right position already */ memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe)); /* The ct field has moved so reset */ wqe->generic.wqe_com.word7 = 0; wqe->generic.wqe_com.word10 = 0; abort_tag = (uint32_t) iocbq->iotag; xritag = iocbq->sli4_xritag; /* words0-2 bpl convert bde */ if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) { numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / sizeof(struct ulp_bde64); bpl = (struct ulp_bde64 *) ((struct lpfc_dmabuf *)iocbq->context3)->virt; if (!bpl) return IOCB_ERROR; /* Should already be byte swapped. */ wqe->generic.bde.addrHigh = le32_to_cpu(bpl->addrHigh); wqe->generic.bde.addrLow = le32_to_cpu(bpl->addrLow); /* swap the size field back to the cpu so we * can assign it to the sgl. */ wqe->generic.bde.tus.w = le32_to_cpu(bpl->tus.w); xmit_len = wqe->generic.bde.tus.f.bdeSize; total_len = 0; for (i = 0; i < numBdes; i++) { bde.tus.w = le32_to_cpu(bpl[i].tus.w); total_len += bde.tus.f.bdeSize; } } else xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize; iocbq->iocb.ulpIoTag = iocbq->iotag; cmnd = iocbq->iocb.ulpCommand; switch (iocbq->iocb.ulpCommand) { case CMD_ELS_REQUEST64_CR: if (iocbq->iocb_flag & LPFC_IO_LIBDFC) ndlp = iocbq->context_un.ndlp; else ndlp = (struct lpfc_nodelist *)iocbq->context1; if (!iocbq->iocb.ulpLe) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2007 Only Limited Edition cmd Format" " supported 0x%x\n", iocbq->iocb.ulpCommand); return IOCB_ERROR; } wqe->els_req.payload_len = xmit_len; /* Els_reguest64 has a TMO */ bf_set(wqe_tmo, &wqe->els_req.wqe_com, iocbq->iocb.ulpTimeout); /* Need a VF for word 4 set the vf bit*/ bf_set(els_req64_vf, &wqe->els_req, 0); /* And a VFID for word 12 */ bf_set(els_req64_vfid, &wqe->els_req, 0); ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, iocbq->iocb.ulpContext); bf_set(wqe_ct, &wqe->els_req.wqe_com, ct); bf_set(wqe_pu, &wqe->els_req.wqe_com, 0); /* CCP CCPE PV PRI in word10 were set in the memcpy */ if (command_type == ELS_COMMAND_FIP) els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK) >> LPFC_FIP_ELS_ID_SHIFT); pcmd = (uint32_t *) (((struct lpfc_dmabuf *) iocbq->context2)->virt); if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { if (pcmd && (*pcmd == ELS_CMD_FLOGI || *pcmd == ELS_CMD_SCR || *pcmd == ELS_CMD_RDF || *pcmd == ELS_CMD_EDC || *pcmd == ELS_CMD_RSCN_XMT || *pcmd == ELS_CMD_FDISC || *pcmd == ELS_CMD_LOGO || *pcmd == ELS_CMD_QFPA || *pcmd == ELS_CMD_UVEM || *pcmd == ELS_CMD_PLOGI)) { bf_set(els_req64_sp, &wqe->els_req, 1); bf_set(els_req64_sid, &wqe->els_req, iocbq->vport->fc_myDID); if ((*pcmd == ELS_CMD_FLOGI) && !(phba->fc_topology == LPFC_TOPOLOGY_LOOP)) bf_set(els_req64_sid, &wqe->els_req, 0); bf_set(wqe_ct, &wqe->els_req.wqe_com, 1); bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, phba->vpi_ids[iocbq->vport->vpi]); } else if (pcmd && iocbq->context1) { bf_set(wqe_ct, &wqe->els_req.wqe_com, 0); bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); } } bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id); bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1); bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ); bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1); bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE); bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0); wqe->els_req.max_response_payload_len = total_len - xmit_len; break; case CMD_XMIT_SEQUENCE64_CX: bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, iocbq->iocb.un.ulpWord[3]); bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, iocbq->iocb.unsli3.rcvsli3.ox_id); /* The entire sequence is transmitted for this IOCB */ xmit_len = total_len; cmnd = CMD_XMIT_SEQUENCE64_CR; if (phba->link_flag & LS_LOOPBACK_MODE) bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1); fallthrough; case CMD_XMIT_SEQUENCE64_CR: /* word3 iocb=io_tag32 wqe=reserved */ wqe->xmit_sequence.rsvd3 = 0; /* word4 relative_offset memcpy */ /* word5 r_ctl/df_ctl memcpy */ bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, LPFC_WQE_IOD_WRITE); bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, LPFC_WQE_LENLOC_WORD12); bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); wqe->xmit_sequence.xmit_len = xmit_len; command_type = OTHER_COMMAND; break; case CMD_XMIT_BCAST64_CN: /* word3 iocb=iotag32 wqe=seq_payload_len */ wqe->xmit_bcast64.seq_payload_len = xmit_len; /* word4 iocb=rsvd wqe=rsvd */ /* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */ /* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */ bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com, ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1); bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE); bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_LENLOC_WORD3); bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0); break; case CMD_FCP_IWRITE64_CR: command_type = FCP_COMMAND_DATA_OUT; /* word3 iocb=iotag wqe=payload_offset_len */ /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ bf_set(payload_offset_len, &wqe->fcp_iwrite, xmit_len + sizeof(struct fcp_rsp)); bf_set(cmd_buff_len, &wqe->fcp_iwrite, 0); /* word4 iocb=parameter wqe=total_xfer_length memcpy */ /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpFCP2Rcvy); bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS); /* Always open the exchange */ bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE); bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_LENLOC_WORD4); bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU); bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1); if (iocbq->iocb_flag & LPFC_IO_OAS) { bf_set(wqe_oas, &wqe->fcp_iwrite.wqe_com, 1); bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); if (iocbq->priority) { bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, (iocbq->priority << 1)); } else { bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, (phba->cfg_XLanePriority << 1)); } } /* Note, word 10 is already initialized to 0 */ /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */ if (phba->cfg_enable_pbde) bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 1); else bf_set(wqe_pbde, &wqe->fcp_iwrite.wqe_com, 0); if (phba->fcp_embed_io) { struct lpfc_io_buf *lpfc_cmd; struct sli4_sge *sgl; struct fcp_cmnd *fcp_cmnd; uint32_t *ptr; /* 128 byte wqe support here */ lpfc_cmd = iocbq->context1; sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; fcp_cmnd = lpfc_cmd->fcp_cmnd; /* Word 0-2 - FCP_CMND */ wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_IMMED; wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; wqe->generic.bde.addrHigh = 0; wqe->generic.bde.addrLow = 88; /* Word 22 */ bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); /* Word 22-29 FCP CMND Payload */ ptr = &wqe->words[22]; memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); } break; case CMD_FCP_IREAD64_CR: /* word3 iocb=iotag wqe=payload_offset_len */ /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ bf_set(payload_offset_len, &wqe->fcp_iread, xmit_len + sizeof(struct fcp_rsp)); bf_set(cmd_buff_len, &wqe->fcp_iread, 0); /* word4 iocb=parameter wqe=total_xfer_length memcpy */ /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */ bf_set(wqe_erp, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpFCP2Rcvy); bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS); /* Always open the exchange */ bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ); bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com, LPFC_WQE_LENLOC_WORD4); bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU); bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1); if (iocbq->iocb_flag & LPFC_IO_OAS) { bf_set(wqe_oas, &wqe->fcp_iread.wqe_com, 1); bf_set(wqe_ccpe, &wqe->fcp_iread.wqe_com, 1); if (iocbq->priority) { bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, (iocbq->priority << 1)); } else { bf_set(wqe_ccp, &wqe->fcp_iread.wqe_com, (phba->cfg_XLanePriority << 1)); } } /* Note, word 10 is already initialized to 0 */ /* Don't set PBDE for Perf hints, just lpfc_enable_pbde */ if (phba->cfg_enable_pbde) bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 1); else bf_set(wqe_pbde, &wqe->fcp_iread.wqe_com, 0); if (phba->fcp_embed_io) { struct lpfc_io_buf *lpfc_cmd; struct sli4_sge *sgl; struct fcp_cmnd *fcp_cmnd; uint32_t *ptr; /* 128 byte wqe support here */ lpfc_cmd = iocbq->context1; sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; fcp_cmnd = lpfc_cmd->fcp_cmnd; /* Word 0-2 - FCP_CMND */ wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_IMMED; wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; wqe->generic.bde.addrHigh = 0; wqe->generic.bde.addrLow = 88; /* Word 22 */ bf_set(wqe_wqes, &wqe->fcp_iread.wqe_com, 1); bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 0); /* Word 22-29 FCP CMND Payload */ ptr = &wqe->words[22]; memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); } break; case CMD_FCP_ICMND64_CR: /* word3 iocb=iotag wqe=payload_offset_len */ /* Add the FCP_CMD and FCP_RSP sizes to get the offset */ bf_set(payload_offset_len, &wqe->fcp_icmd, xmit_len + sizeof(struct fcp_rsp)); bf_set(cmd_buff_len, &wqe->fcp_icmd, 0); /* word3 iocb=IO_TAG wqe=reserved */ bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0); /* Always open the exchange */ bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1); bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE); bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1); bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com, LPFC_WQE_LENLOC_NONE); bf_set(wqe_erp, &wqe->fcp_icmd.wqe_com, iocbq->iocb.ulpFCP2Rcvy); if (iocbq->iocb_flag & LPFC_IO_OAS) { bf_set(wqe_oas, &wqe->fcp_icmd.wqe_com, 1); bf_set(wqe_ccpe, &wqe->fcp_icmd.wqe_com, 1); if (iocbq->priority) { bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, (iocbq->priority << 1)); } else { bf_set(wqe_ccp, &wqe->fcp_icmd.wqe_com, (phba->cfg_XLanePriority << 1)); } } /* Note, word 10 is already initialized to 0 */ if (phba->fcp_embed_io) { struct lpfc_io_buf *lpfc_cmd; struct sli4_sge *sgl; struct fcp_cmnd *fcp_cmnd; uint32_t *ptr; /* 128 byte wqe support here */ lpfc_cmd = iocbq->context1; sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; fcp_cmnd = lpfc_cmd->fcp_cmnd; /* Word 0-2 - FCP_CMND */ wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_IMMED; wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; wqe->generic.bde.addrHigh = 0; wqe->generic.bde.addrLow = 88; /* Word 22 */ bf_set(wqe_wqes, &wqe->fcp_icmd.wqe_com, 1); bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 0); /* Word 22-29 FCP CMND Payload */ ptr = &wqe->words[22]; memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); } break; case CMD_GEN_REQUEST64_CR: /* For this command calculate the xmit length of the * request bde. */ xmit_len = 0; numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize / sizeof(struct ulp_bde64); for (i = 0; i < numBdes; i++) { bde.tus.w = le32_to_cpu(bpl[i].tus.w); if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) break; xmit_len += bde.tus.f.bdeSize; } /* word3 iocb=IO_TAG wqe=request_payload_len */ wqe->gen_req.request_payload_len = xmit_len; /* word4 iocb=parameter wqe=relative_offset memcpy */ /* word5 [rctl, type, df_ctl, la] copied in memcpy */ /* word6 context tag copied in memcpy */ if (iocbq->iocb.ulpCt_h || iocbq->iocb.ulpCt_l) { ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l); lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2015 Invalid CT %x command 0x%x\n", ct, iocbq->iocb.ulpCommand); return IOCB_ERROR; } bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0); bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout); bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU); bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1); bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ); bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1); bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE); bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0); wqe->gen_req.max_response_payload_len = total_len - xmit_len; command_type = OTHER_COMMAND; break; case CMD_XMIT_ELS_RSP64_CX: ndlp = (struct lpfc_nodelist *)iocbq->context1; /* words0-2 BDE memcpy */ /* word3 iocb=iotag32 wqe=response_payload_len */ wqe->xmit_els_rsp.response_payload_len = xmit_len; /* word4 */ wqe->xmit_els_rsp.word4 = 0; /* word5 iocb=rsvd wge=did */ bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, iocbq->iocb.un.xseq64.xmit_els_remoteID); if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { if (iocbq->vport->fc_flag & FC_PT2PT) { bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, iocbq->vport->fc_myDID); if (iocbq->vport->fc_myDID == Fabric_DID) { bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest, 0); } } } bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU); bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.unsli3.rcvsli3.ox_id); if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l) bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, phba->vpi_ids[iocbq->vport->vpi]); bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1); bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE); bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1); bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_LENLOC_WORD3); bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0); bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { bf_set(els_rsp64_sp, &wqe->xmit_els_rsp, 1); bf_set(els_rsp64_sid, &wqe->xmit_els_rsp, iocbq->vport->fc_myDID); bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com, 1); bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com, phba->vpi_ids[phba->pport->vpi]); } command_type = OTHER_COMMAND; break; case CMD_CLOSE_XRI_CN: case CMD_ABORT_XRI_CN: case CMD_ABORT_XRI_CX: /* words 0-2 memcpy should be 0 rserved */ /* port will send abts */ abrt_iotag = iocbq->iocb.un.acxri.abortContextTag; if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) { abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag]; fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK; } else fip = 0; if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip) /* * The link is down, or the command was ELS_FIP * so the fw does not need to send abts * on the wire. */ bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); else bf_set(abort_cmd_ia, &wqe->abort_cmd, 0); bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); /* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */ wqe->abort_cmd.rsrvd5 = 0; bf_set(wqe_ct, &wqe->abort_cmd.wqe_com, ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l)); abort_tag = iocbq->iocb.un.acxri.abortIoTag; /* * The abort handler will send us CMD_ABORT_XRI_CN or * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX */ bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); cmnd = CMD_ABORT_XRI_CX; command_type = OTHER_COMMAND; xritag = 0; break; case CMD_XMIT_BLS_RSP64_CX: ndlp = (struct lpfc_nodelist *)iocbq->context1; /* As BLS ABTS RSP WQE is very different from other WQEs, * we re-construct this WQE here based on information in * iocbq from scratch. */ memset(wqe, 0, sizeof(*wqe)); /* OX_ID is invariable to who sent ABTS to CT exchange */ bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp, bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp)); if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) == LPFC_ABTS_UNSOL_INT) { /* ABTS sent by initiator to CT exchange, the * RX_ID field will be filled with the newly * allocated responder XRI. */ bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, iocbq->sli4_xritag); } else { /* ABTS sent by responder to CT exchange, the * RX_ID field will be filled with the responder * RX_ID from ABTS. */ bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp, bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp)); } bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff); bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1); /* Use CT=VPI */ bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest, ndlp->nlp_DID); bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp, iocbq->iocb.ulpContext); bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1); bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com, phba->vpi_ids[phba->pport->vpi]); bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1); bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com, LPFC_WQE_LENLOC_NONE); /* Overwrite the pre-set comnd type with OTHER_COMMAND */ command_type = OTHER_COMMAND; if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) { bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp, bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp)); bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp, bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp)); bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp, bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp)); } break; case CMD_SEND_FRAME: bf_set(wqe_cmnd, &wqe->generic.wqe_com, CMD_SEND_FRAME); bf_set(wqe_sof, &wqe->generic.wqe_com, 0x2E); /* SOF byte */ bf_set(wqe_eof, &wqe->generic.wqe_com, 0x41); /* EOF byte */ bf_set(wqe_lenloc, &wqe->generic.wqe_com, 1); bf_set(wqe_xbl, &wqe->generic.wqe_com, 1); bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); bf_set(wqe_xc, &wqe->generic.wqe_com, 1); bf_set(wqe_cmd_type, &wqe->generic.wqe_com, 0xA); bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); return 0; case CMD_XRI_ABORTED_CX: case CMD_CREATE_XRI_CR: /* Do we expect to use this? */ case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */ case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */ case CMD_FCP_TRSP64_CX: /* Target mode rcv */ case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */ default: lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2014 Invalid command 0x%x\n", iocbq->iocb.ulpCommand); return IOCB_ERROR; } if (iocbq->iocb_flag & LPFC_IO_DIF_PASS) bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_PASSTHRU); else if (iocbq->iocb_flag & LPFC_IO_DIF_STRIP) bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_STRIP); else if (iocbq->iocb_flag & LPFC_IO_DIF_INSERT) bf_set(wqe_dif, &wqe->generic.wqe_com, LPFC_WQE_DIF_INSERT); iocbq->iocb_flag &= ~(LPFC_IO_DIF_PASS | LPFC_IO_DIF_STRIP | LPFC_IO_DIF_INSERT); bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag); bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag); wqe->generic.wqe_com.abort_tag = abort_tag; bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type); bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd); bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass); bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); return 0; } /** * __lpfc_sli_issue_fcp_io_s3 - SLI3 device for sending fcp io iocb * @phba: Pointer to HBA context object. * @ring_number: SLI ring number to issue wqe on. * @piocb: Pointer to command iocb. * @flag: Flag indicating if this command can be put into txq. * * __lpfc_sli_issue_fcp_io_s3 is wrapper function to invoke lockless func to * send an iocb command to an HBA with SLI-4 interface spec. * * This function takes the hbalock before invoking the lockless version. * The function will return success after it successfully submit the wqe to * firmware or after adding to the txq. **/ static int __lpfc_sli_issue_fcp_io_s3(struct lpfc_hba *phba, uint32_t ring_number, struct lpfc_iocbq *piocb, uint32_t flag) { unsigned long iflags; int rc; spin_lock_irqsave(&phba->hbalock, iflags); rc = __lpfc_sli_issue_iocb_s3(phba, ring_number, piocb, flag); spin_unlock_irqrestore(&phba->hbalock, iflags); return rc; } /** * __lpfc_sli_issue_fcp_io_s4 - SLI4 device for sending fcp io wqe * @phba: Pointer to HBA context object. * @ring_number: SLI ring number to issue wqe on. * @piocb: Pointer to command iocb. * @flag: Flag indicating if this command can be put into txq. * * __lpfc_sli_issue_fcp_io_s4 is used by other functions in the driver to issue * an wqe command to an HBA with SLI-4 interface spec. * * This function is a lockless version. The function will return success * after it successfully submit the wqe to firmware or after adding to the * txq. **/ static int __lpfc_sli_issue_fcp_io_s4(struct lpfc_hba *phba, uint32_t ring_number, struct lpfc_iocbq *piocb, uint32_t flag) { int rc; struct lpfc_io_buf *lpfc_cmd = (struct lpfc_io_buf *)piocb->context1; union lpfc_wqe128 *wqe = &piocb->wqe; struct sli4_sge *sgl; /* 128 byte wqe support here */ sgl = (struct sli4_sge *)lpfc_cmd->dma_sgl; if (phba->fcp_embed_io) { struct fcp_cmnd *fcp_cmnd; u32 *ptr; fcp_cmnd = lpfc_cmd->fcp_cmnd; /* Word 0-2 - FCP_CMND */ wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_IMMED; wqe->generic.bde.tus.f.bdeSize = sgl->sge_len; wqe->generic.bde.addrHigh = 0; wqe->generic.bde.addrLow = 88; /* Word 22 */ bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 0); /* Word 22-29 FCP CMND Payload */ ptr = &wqe->words[22]; memcpy(ptr, fcp_cmnd, sizeof(struct fcp_cmnd)); } else { /* Word 0-2 - Inline BDE */ wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; wqe->generic.bde.tus.f.bdeSize = sizeof(struct fcp_cmnd); wqe->generic.bde.addrHigh = sgl->addr_hi; wqe->generic.bde.addrLow = sgl->addr_lo; /* Word 10 */ bf_set(wqe_dbde, &wqe->generic.wqe_com, 1); bf_set(wqe_wqes, &wqe->generic.wqe_com, 0); } /* add the VMID tags as per switch response */ if (unlikely(piocb->iocb_flag & LPFC_IO_VMID)) { if (phba->pport->vmid_priority_tagging) { bf_set(wqe_ccpe, &wqe->fcp_iwrite.wqe_com, 1); bf_set(wqe_ccp, &wqe->fcp_iwrite.wqe_com, (piocb->vmid_tag.cs_ctl_vmid)); } else { bf_set(wqe_appid, &wqe->fcp_iwrite.wqe_com, 1); bf_set(wqe_wqes, &wqe->fcp_iwrite.wqe_com, 1); wqe->words[31] = piocb->vmid_tag.app_id; } } rc = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, piocb); return rc; } /** * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb * @phba: Pointer to HBA context object. * @ring_number: SLI ring number to issue iocb on. * @piocb: Pointer to command iocb. * @flag: Flag indicating if this command can be put into txq. * * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue * an iocb command to an HBA with SLI-4 interface spec. * * This function is called with ringlock held. The function will return success * after it successfully submit the iocb to firmware or after adding to the * txq. **/ static int __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number, struct lpfc_iocbq *piocb, uint32_t flag) { struct lpfc_sglq *sglq; union lpfc_wqe128 wqe; struct lpfc_queue *wq; struct lpfc_sli_ring *pring; /* Get the WQ */ if ((piocb->iocb_flag & LPFC_IO_FCP) || (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { wq = phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq; } else { wq = phba->sli4_hba.els_wq; } /* Get corresponding ring */ pring = wq->pring; /* * The WQE can be either 64 or 128 bytes, */ lockdep_assert_held(&pring->ring_lock); if (piocb->sli4_xritag == NO_XRI) { if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN || piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN) sglq = NULL; else { if (!list_empty(&pring->txq)) { if (!(flag & SLI_IOCB_RET_IOCB)) { __lpfc_sli_ringtx_put(phba, pring, piocb); return IOCB_SUCCESS; } else { return IOCB_BUSY; } } else { sglq = __lpfc_sli_get_els_sglq(phba, piocb); if (!sglq) { if (!(flag & SLI_IOCB_RET_IOCB)) { __lpfc_sli_ringtx_put(phba, pring, piocb); return IOCB_SUCCESS; } else return IOCB_BUSY; } } } } else if (piocb->iocb_flag & LPFC_IO_FCP) { /* These IO's already have an XRI and a mapped sgl. */ sglq = NULL; } else { /* * This is a continuation of a commandi,(CX) so this * sglq is on the active list */ sglq = __lpfc_get_active_sglq(phba, piocb->sli4_lxritag); if (!sglq) return IOCB_ERROR; } if (sglq) { piocb->sli4_lxritag = sglq->sli4_lxritag; piocb->sli4_xritag = sglq->sli4_xritag; if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq)) return IOCB_ERROR; } if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe)) return IOCB_ERROR; if (lpfc_sli4_wq_put(wq, &wqe)) return IOCB_ERROR; lpfc_sli_ringtxcmpl_put(phba, pring, piocb); return 0; } /* * lpfc_sli_issue_fcp_io - Wrapper func for issuing fcp i/o * * This routine wraps the actual fcp i/o function for issusing WQE for sli-4 * or IOCB for sli-3 function. * pointer from the lpfc_hba struct. * * Return codes: * IOCB_ERROR - Error * IOCB_SUCCESS - Success * IOCB_BUSY - Busy **/ int lpfc_sli_issue_fcp_io(struct lpfc_hba *phba, uint32_t ring_number, struct lpfc_iocbq *piocb, uint32_t flag) { return phba->__lpfc_sli_issue_fcp_io(phba, ring_number, piocb, flag); } /* * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb * * This routine wraps the actual lockless version for issusing IOCB function * pointer from the lpfc_hba struct. * * Return codes: * IOCB_ERROR - Error * IOCB_SUCCESS - Success * IOCB_BUSY - Busy **/ int __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, struct lpfc_iocbq *piocb, uint32_t flag) { return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); } /** * lpfc_sli_api_table_setup - Set up sli api function jump table * @phba: The hba struct for which this call is being executed. * @dev_grp: The HBA PCI-Device group number. * * This routine sets up the SLI interface API function jump table in @phba * struct. * Returns: 0 - success, -ENODEV - failure. **/ int lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) { switch (dev_grp) { case LPFC_PCI_DEV_LP: phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3; phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3; phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s3; break; case LPFC_PCI_DEV_OC: phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4; phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4; phba->__lpfc_sli_issue_fcp_io = __lpfc_sli_issue_fcp_io_s4; break; default: lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "1419 Invalid HBA PCI-device group: 0x%x\n", dev_grp); return -ENODEV; } phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq; return 0; } /** * lpfc_sli4_calc_ring - Calculates which ring to use * @phba: Pointer to HBA context object. * @piocb: Pointer to command iocb. * * For SLI4 only, FCP IO can deferred to one fo many WQs, based on * hba_wqidx, thus we need to calculate the corresponding ring. * Since ABORTS must go on the same WQ of the command they are * aborting, we use command's hba_wqidx. */ struct lpfc_sli_ring * lpfc_sli4_calc_ring(struct lpfc_hba *phba, struct lpfc_iocbq *piocb) { struct lpfc_io_buf *lpfc_cmd; if (piocb->iocb_flag & (LPFC_IO_FCP | LPFC_USE_FCPWQIDX)) { if (unlikely(!phba->sli4_hba.hdwq)) return NULL; /* * for abort iocb hba_wqidx should already * be setup based on what work queue we used. */ if (!(piocb->iocb_flag & LPFC_USE_FCPWQIDX)) { lpfc_cmd = (struct lpfc_io_buf *)piocb->context1; piocb->hba_wqidx = lpfc_cmd->hdwq_no; } return phba->sli4_hba.hdwq[piocb->hba_wqidx].io_wq->pring; } else { if (unlikely(!phba->sli4_hba.els_wq)) return NULL; piocb->hba_wqidx = 0; return phba->sli4_hba.els_wq->pring; } } /** * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb * @phba: Pointer to HBA context object. * @ring_number: Ring number * @piocb: Pointer to command iocb. * @flag: Flag indicating if this command can be put into txq. * * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb * function. This function gets the hbalock and calls * __lpfc_sli_issue_iocb function and will return the error returned * by __lpfc_sli_issue_iocb function. This wrapper is used by * functions which do not hold hbalock. **/ int lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number, struct lpfc_iocbq *piocb, uint32_t flag) { struct lpfc_sli_ring *pring; struct lpfc_queue *eq; unsigned long iflags; int rc; if (phba->sli_rev == LPFC_SLI_REV4) { eq = phba->sli4_hba.hdwq[piocb->hba_wqidx].hba_eq; pring = lpfc_sli4_calc_ring(phba, piocb); if (unlikely(pring == NULL)) return IOCB_ERROR; spin_lock_irqsave(&pring->ring_lock, iflags); rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); spin_unlock_irqrestore(&pring->ring_lock, iflags); lpfc_sli4_poll_eq(eq, LPFC_POLL_FASTPATH); } else { /* For now, SLI2/3 will still use hbalock */ spin_lock_irqsave(&phba->hbalock, iflags); rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag); spin_unlock_irqrestore(&phba->hbalock, iflags); } return rc; } /** * lpfc_extra_ring_setup - Extra ring setup function * @phba: Pointer to HBA context object. * * This function is called while driver attaches with the * HBA to setup the extra ring. The extra ring is used * only when driver needs to support target mode functionality * or IP over FC functionalities. * * This function is called with no lock held. SLI3 only. **/ static int lpfc_extra_ring_setup( struct lpfc_hba *phba) { struct lpfc_sli *psli; struct lpfc_sli_ring *pring; psli = &phba->sli; /* Adjust cmd/rsp ring iocb entries more evenly */ /* Take some away from the FCP ring */ pring = &psli->sli3_ring[LPFC_FCP_RING]; pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES; pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES; pring->sli.sli3.numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES; pring->sli.sli3.numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES; /* and give them to the extra ring */ pring = &psli->sli3_ring[LPFC_EXTRA_RING]; pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; /* Setup default profile for this ring */ pring->iotag_max = 4096; pring->num_mask = 1; pring->prt[0].profile = 0; /* Mask 0 */ pring->prt[0].rctl = phba->cfg_multi_ring_rctl; pring->prt[0].type = phba->cfg_multi_ring_type; pring->prt[0].lpfc_sli_rcv_unsol_event = NULL; return 0; } static void lpfc_sli_post_recovery_event(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp) { unsigned long iflags; struct lpfc_work_evt *evtp = &ndlp->recovery_evt; spin_lock_irqsave(&phba->hbalock, iflags); if (!list_empty(&evtp->evt_listp)) { spin_unlock_irqrestore(&phba->hbalock, iflags); return; } /* Incrementing the reference count until the queued work is done. */ evtp->evt_arg1 = lpfc_nlp_get(ndlp); if (!evtp->evt_arg1) { spin_unlock_irqrestore(&phba->hbalock, iflags); return; } evtp->evt = LPFC_EVT_RECOVER_PORT; list_add_tail(&evtp->evt_listp, &phba->work_list); spin_unlock_irqrestore(&phba->hbalock, iflags); lpfc_worker_wake_up(phba); } /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port. * @phba: Pointer to HBA context object. * @iocbq: Pointer to iocb object. * * The async_event handler calls this routine when it receives * an ASYNC_STATUS_CN event from the port. The port generates * this event when an Abort Sequence request to an rport fails * twice in succession. The abort could be originated by the * driver or by the port. The ABTS could have been for an ELS * or FCP IO. The port only generates this event when an ABTS * fails to complete after one retry. */ static void lpfc_sli_abts_err_handler(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq) { struct lpfc_nodelist *ndlp = NULL; uint16_t rpi = 0, vpi = 0; struct lpfc_vport *vport = NULL; /* The rpi in the ulpContext is vport-sensitive. */ vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag; rpi = iocbq->iocb.ulpContext; lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, "3092 Port generated ABTS async event " "on vpi %d rpi %d status 0x%x\n", vpi, rpi, iocbq->iocb.ulpStatus); vport = lpfc_find_vport_by_vpid(phba, vpi); if (!vport) goto err_exit; ndlp = lpfc_findnode_rpi(vport, rpi); if (!ndlp) goto err_exit; if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT) lpfc_sli_abts_recover_port(vport, ndlp); return; err_exit: lpfc_printf_log(phba, KERN_INFO, LOG_SLI, "3095 Event Context not found, no " "action on vpi %d rpi %d status 0x%x, reason 0x%x\n", iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus, vpi, rpi); } /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port. * @phba: pointer to HBA context object. * @ndlp: nodelist pointer for the impacted rport. * @axri: pointer to the wcqe containing the failed exchange. * * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the * port. The port generates this event when an abort exchange request to an * rport fails twice in succession with no reply. The abort could be originated * by the driver or by the port. The ABTS could have been for an ELS or FCP IO. */ void lpfc_sli4_abts_err_handler(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, struct sli4_wcqe_xri_aborted *axri) { uint32_t ext_status = 0; if (!ndlp) { lpfc_printf_log(phba, KERN_INFO, LOG_SLI, "3115 Node Context not found, driver " "ignoring abts err event\n"); return; } lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, "3116 Port generated FCP XRI ABORT event on " "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n", ndlp->vport->vpi, phba->sli4_hba.rpi_ids[ndlp->nlp_rpi], bf_get(lpfc_wcqe_xa_xri, axri), bf_get(lpfc_wcqe_xa_status, axri), axri->parameter); /* * Catch the ABTS protocol failure case. Older OCe FW releases returned * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT. */ ext_status = axri->parameter & IOERR_PARAM_MASK; if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) && ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0))) lpfc_sli_post_recovery_event(phba, ndlp); } /** * lpfc_sli_async_event_handler - ASYNC iocb handler function * @phba: Pointer to HBA context object. * @pring: Pointer to driver SLI ring object. * @iocbq: Pointer to iocb object. * * This function is called by the slow ring event handler * function when there is an ASYNC event iocb in the ring. * This function is called with no lock held. * Currently this function handles only temperature related * ASYNC events. The function decodes the temperature sensor * event message and posts events for the management applications. **/ static void lpfc_sli_async_event_handler(struct lpfc_hba * phba, struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq) { IOCB_t *icmd; uint16_t evt_code; struct temp_event temp_event_data; struct Scsi_Host *shost; uint32_t *iocb_w; icmd = &iocbq->iocb; evt_code = icmd->un.asyncstat.evt_code; switch (evt_code) { case ASYNC_TEMP_WARN: case ASYNC_TEMP_SAFE: temp_event_data.data = (uint32_t) icmd->ulpContext; temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; if (evt_code == ASYNC_TEMP_WARN) { temp_event_data.event_code = LPFC_THRESHOLD_TEMP; lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0347 Adapter is very hot, please take " "corrective action. temperature : %d Celsius\n", (uint32_t) icmd->ulpContext); } else { temp_event_data.event_code = LPFC_NORMAL_TEMP; lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0340 Adapter temperature is OK now. " "temperature : %d Celsius\n", (uint32_t) icmd->ulpContext); } /* Send temperature change event to applications */ shost = lpfc_shost_from_vport(phba->pport); fc_host_post_vendor_event(shost, fc_get_event_number(), sizeof(temp_event_data), (char *) &temp_event_data, LPFC_NL_VENDOR_ID); break; case ASYNC_STATUS_CN: lpfc_sli_abts_err_handler(phba, iocbq); break; default: iocb_w = (uint32_t *) icmd; lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0346 Ring %d handler: unexpected ASYNC_STATUS" " evt_code 0x%x\n" "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n" "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n" "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n" "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n", pring->ringno, icmd->un.asyncstat.evt_code, iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3], iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7], iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11], iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]); break; } } /** * lpfc_sli4_setup - SLI ring setup function * @phba: Pointer to HBA context object. * * lpfc_sli_setup sets up rings of the SLI interface with * number of iocbs per ring and iotags. This function is * called while driver attach to the HBA and before the * interrupts are enabled. So there is no need for locking. * * This function always returns 0. **/ int lpfc_sli4_setup(struct lpfc_hba *phba) { struct lpfc_sli_ring *pring; pring = phba->sli4_hba.els_wq->pring; pring->num_mask = LPFC_MAX_RING_MASK; pring->prt[0].profile = 0; /* Mask 0 */ pring->prt[0].rctl = FC_RCTL_ELS_REQ; pring->prt[0].type = FC_TYPE_ELS; pring->prt[0].lpfc_sli_rcv_unsol_event = lpfc_els_unsol_event; pring->prt[1].profile = 0; /* Mask 1 */ pring->prt[1].rctl = FC_RCTL_ELS_REP; pring->prt[1].type = FC_TYPE_ELS; pring->prt[1].lpfc_sli_rcv_unsol_event = lpfc_els_unsol_event; pring->prt[2].profile = 0; /* Mask 2 */ /* NameServer Inquiry */ pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; /* NameServer */ pring->prt[2].type = FC_TYPE_CT; pring->prt[2].lpfc_sli_rcv_unsol_event = lpfc_ct_unsol_event; pring->prt[3].profile = 0; /* Mask 3 */ /* NameServer response */ pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; /* NameServer */ pring->prt[3].type = FC_TYPE_CT; pring->prt[3].lpfc_sli_rcv_unsol_event = lpfc_ct_unsol_event; return 0; } /** * lpfc_sli_setup - SLI ring setup function * @phba: Pointer to HBA context object. * * lpfc_sli_setup sets up rings of the SLI interface with * number of iocbs per ring and iotags. This function is * called while driver attach to the HBA and before the * interrupts are enabled. So there is no need for locking. * * This function always returns 0. SLI3 only. **/ int lpfc_sli_setup(struct lpfc_hba *phba) { int i, totiocbsize = 0; struct lpfc_sli *psli = &phba->sli; struct lpfc_sli_ring *pring; psli->num_rings = MAX_SLI3_CONFIGURED_RINGS; psli->sli_flag = 0; psli->iocbq_lookup = NULL; psli->iocbq_lookup_len = 0; psli->last_iotag = 0; for (i = 0; i < psli->num_rings; i++) { pring = &psli->sli3_ring[i]; switch (i) { case LPFC_FCP_RING: /* ring 0 - FCP */ /* numCiocb and numRiocb are used in config_port */ pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R0_ENTRIES; pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R0_ENTRIES; pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES; pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES; pring->sli.sli3.numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES; pring->sli.sli3.numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES; pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? SLI3_IOCB_CMD_SIZE : SLI2_IOCB_CMD_SIZE; pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? SLI3_IOCB_RSP_SIZE : SLI2_IOCB_RSP_SIZE; pring->iotag_ctr = 0; pring->iotag_max = (phba->cfg_hba_queue_depth * 2); pring->fast_iotag = pring->iotag_max; pring->num_mask = 0; break; case LPFC_EXTRA_RING: /* ring 1 - EXTRA */ /* numCiocb and numRiocb are used in config_port */ pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R1_ENTRIES; pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R1_ENTRIES; pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? SLI3_IOCB_CMD_SIZE : SLI2_IOCB_CMD_SIZE; pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? SLI3_IOCB_RSP_SIZE : SLI2_IOCB_RSP_SIZE; pring->iotag_max = phba->cfg_hba_queue_depth; pring->num_mask = 0; break; case LPFC_ELS_RING: /* ring 2 - ELS / CT */ /* numCiocb and numRiocb are used in config_port */ pring->sli.sli3.numCiocb = SLI2_IOCB_CMD_R2_ENTRIES; pring->sli.sli3.numRiocb = SLI2_IOCB_RSP_R2_ENTRIES; pring->sli.sli3.sizeCiocb = (phba->sli_rev == 3) ? SLI3_IOCB_CMD_SIZE : SLI2_IOCB_CMD_SIZE; pring->sli.sli3.sizeRiocb = (phba->sli_rev == 3) ? SLI3_IOCB_RSP_SIZE : SLI2_IOCB_RSP_SIZE; pring->fast_iotag = 0; pring->iotag_ctr = 0; pring->iotag_max = 4096; pring->lpfc_sli_rcv_async_status = lpfc_sli_async_event_handler; pring->num_mask = LPFC_MAX_RING_MASK; pring->prt[0].profile = 0; /* Mask 0 */ pring->prt[0].rctl = FC_RCTL_ELS_REQ; pring->prt[0].type = FC_TYPE_ELS; pring->prt[0].lpfc_sli_rcv_unsol_event = lpfc_els_unsol_event; pring->prt[1].profile = 0; /* Mask 1 */ pring->prt[1].rctl = FC_RCTL_ELS_REP; pring->prt[1].type = FC_TYPE_ELS; pring->prt[1].lpfc_sli_rcv_unsol_event = lpfc_els_unsol_event; pring->prt[2].profile = 0; /* Mask 2 */ /* NameServer Inquiry */ pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL; /* NameServer */ pring->prt[2].type = FC_TYPE_CT; pring->prt[2].lpfc_sli_rcv_unsol_event = lpfc_ct_unsol_event; pring->prt[3].profile = 0; /* Mask 3 */ /* NameServer response */ pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL; /* NameServer */ pring->prt[3].type = FC_TYPE_CT; pring->prt[3].lpfc_sli_rcv_unsol_event = lpfc_ct_unsol_event; break; } totiocbsize += (pring->sli.sli3.numCiocb * pring->sli.sli3.sizeCiocb) + (pring->sli.sli3.numRiocb * pring->sli.sli3.sizeRiocb); } if (totiocbsize > MAX_SLIM_IOCB_SIZE) { /* Too many cmd / rsp ring entries in SLI2 SLIM */ printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in " "SLI2 SLIM Data: x%x x%lx\n", phba->brd_no, totiocbsize, (unsigned long) MAX_SLIM_IOCB_SIZE); } if (phba->cfg_multi_ring_support == 2) lpfc_extra_ring_setup(phba); return 0; } /** * lpfc_sli4_queue_init - Queue initialization function * @phba: Pointer to HBA context object. * * lpfc_sli4_queue_init sets up mailbox queues and iocb queues for each * ring. This function also initializes ring indices of each ring. * This function is called during the initialization of the SLI * interface of an HBA. * This function is called with no lock held and always returns * 1. **/ void lpfc_sli4_queue_init(struct lpfc_hba *phba) { struct lpfc_sli *psli; struct lpfc_sli_ring *pring; int i; psli = &phba->sli; spin_lock_irq(&phba->hbalock); INIT_LIST_HEAD(&psli->mboxq); INIT_LIST_HEAD(&psli->mboxq_cmpl); /* Initialize list headers for txq and txcmplq as double linked lists */ for (i = 0; i < phba->cfg_hdw_queue; i++) { pring = phba->sli4_hba.hdwq[i].io_wq->pring; pring->flag = 0; pring->ringno = LPFC_FCP_RING; pring->txcmplq_cnt = 0; INIT_LIST_HEAD(&pring->txq); INIT_LIST_HEAD(&pring->txcmplq); INIT_LIST_HEAD(&pring->iocb_continueq); spin_lock_init(&pring->ring_lock); } pring = phba->sli4_hba.els_wq->pring; pring->flag = 0; pring->ringno = LPFC_ELS_RING; pring->txcmplq_cnt = 0; INIT_LIST_HEAD(&pring->txq); INIT_LIST_HEAD(&pring->txcmplq); INIT_LIST_HEAD(&pring->iocb_continueq); spin_lock_init(&pring->ring_lock); if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { pring = phba->sli4_hba.nvmels_wq->pring; pring->flag = 0; pring->ringno = LPFC_ELS_RING; pring->txcmplq_cnt = 0; INIT_LIST_HEAD(&pring->txq); INIT_LIST_HEAD(&pring->txcmplq); INIT_LIST_HEAD(&pring->iocb_continueq); spin_lock_init(&pring->ring_lock); } spin_unlock_irq(&phba->hbalock); } /** * lpfc_sli_queue_init - Queue initialization function * @phba: Pointer to HBA context object. * * lpfc_sli_queue_init sets up mailbox queues and iocb queues for each * ring. This function also initializes ring indices of each ring. * This function is called during the initialization of the SLI * interface of an HBA. * This function is called with no lock held and always returns * 1. **/ void lpfc_sli_queue_init(struct lpfc_hba *phba) { struct lpfc_sli *psli; struct lpfc_sli_ring *pring; int i; psli = &phba->sli; spin_lock_irq(&phba->hbalock); INIT_LIST_HEAD(&psli->mboxq); INIT_LIST_HEAD(&psli->mboxq_cmpl); /* Initialize list headers for txq and txcmplq as double linked lists */ for (i = 0; i < psli->num_rings; i++) { pring = &psli->sli3_ring[i]; pring->ringno = i; pring->sli.sli3.next_cmdidx = 0; pring->sli.sli3.local_getidx = 0; pring->sli.sli3.cmdidx = 0; INIT_LIST_HEAD(&pring->iocb_continueq); INIT_LIST_HEAD(&pring->iocb_continue_saveq); INIT_LIST_HEAD(&pring->postbufq); pring->flag = 0; INIT_LIST_HEAD(&pring->txq); INIT_LIST_HEAD(&pring->txcmplq); spin_lock_init(&pring->ring_lock); } spin_unlock_irq(&phba->hbalock); } /** * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system * @phba: Pointer to HBA context object. * * This routine flushes the mailbox command subsystem. It will unconditionally * flush all the mailbox commands in the three possible stages in the mailbox * command sub-system: pending mailbox command queue; the outstanding mailbox * command; and completed mailbox command queue. It is caller's responsibility * to make sure that the driver is in the proper state to flush the mailbox * command sub-system. Namely, the posting of mailbox commands into the * pending mailbox command queue from the various clients must be stopped; * either the HBA is in a state that it will never works on the outstanding * mailbox command (such as in EEH or ERATT conditions) or the outstanding * mailbox command has been completed. **/ static void lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba) { LIST_HEAD(completions); struct lpfc_sli *psli = &phba->sli; LPFC_MBOXQ_t *pmb; unsigned long iflag; /* Disable softirqs, including timers from obtaining phba->hbalock */ local_bh_disable(); /* Flush all the mailbox commands in the mbox system */ spin_lock_irqsave(&phba->hbalock, iflag); /* The pending mailbox command queue */ list_splice_init(&phba->sli.mboxq, &completions); /* The outstanding active mailbox command */ if (psli->mbox_active) { list_add_tail(&psli->mbox_active->list, &completions); psli->mbox_active = NULL; psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; } /* The completed mailbox command queue */ list_splice_init(&phba->sli.mboxq_cmpl, &completions); spin_unlock_irqrestore(&phba->hbalock, iflag); /* Enable softirqs again, done with phba->hbalock */ local_bh_enable(); /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */ while (!list_empty(&completions)) { list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list); pmb->u.mb.mbxStatus = MBX_NOT_FINISHED; if (pmb->mbox_cmpl) pmb->mbox_cmpl(phba, pmb); } } /** * lpfc_sli_host_down - Vport cleanup function * @vport: Pointer to virtual port object. * * lpfc_sli_host_down is called to clean up the resources * associated with a vport before destroying virtual * port data structures. * This function does following operations: * - Free discovery resources associated with this virtual * port. * - Free iocbs associated with this virtual port in * the txq. * - Send abort for all iocb commands associated with this * vport in txcmplq. * * This function is called with no lock held and always returns 1. **/ int lpfc_sli_host_down(struct lpfc_vport *vport) { LIST_HEAD(completions); struct lpfc_hba *phba = vport->phba; struct lpfc_sli *psli = &phba->sli; struct lpfc_queue *qp = NULL; struct lpfc_sli_ring *pring; struct lpfc_iocbq *iocb, *next_iocb; int i; unsigned long flags = 0; uint16_t prev_pring_flag; lpfc_cleanup_discovery_resources(vport); spin_lock_irqsave(&phba->hbalock, flags); /* * Error everything on the txq since these iocbs * have not been given to the FW yet. * Also issue ABTS for everything on the txcmplq */ if (phba->sli_rev != LPFC_SLI_REV4) { for (i = 0; i < psli->num_rings; i++) { pring = &psli->sli3_ring[i]; prev_pring_flag = pring->flag; /* Only slow rings */ if (pring->ringno == LPFC_ELS_RING) { pring->flag |= LPFC_DEFERRED_RING_EVENT; /* Set the lpfc data pending flag */ set_bit(LPFC_DATA_READY, &phba->data_flags); } list_for_each_entry_safe(iocb, next_iocb, &pring->txq, list) { if (iocb->vport != vport) continue; list_move_tail(&iocb->list, &completions); } list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) { if (iocb->vport != vport) continue; lpfc_sli_issue_abort_iotag(phba, pring, iocb, NULL); } pring->flag = prev_pring_flag; } } else { list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { pring = qp->pring; if (!pring) continue; if (pring == phba->sli4_hba.els_wq->pring) { pring->flag |= LPFC_DEFERRED_RING_EVENT; /* Set the lpfc data pending flag */ set_bit(LPFC_DATA_READY, &phba->data_flags); } prev_pring_flag = pring->flag; spin_lock(&pring->ring_lock); list_for_each_entry_safe(iocb, next_iocb, &pring->txq, list) { if (iocb->vport != vport) continue; list_move_tail(&iocb->list, &completions); } spin_unlock(&pring->ring_lock); list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list) { if (iocb->vport != vport) continue; lpfc_sli_issue_abort_iotag(phba, pring, iocb, NULL); } pring->flag = prev_pring_flag; } } spin_unlock_irqrestore(&phba->hbalock, flags); /* Make sure HBA is alive */ lpfc_issue_hb_tmo(phba); /* Cancel all the IOCBs from the completions list */ lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, IOERR_SLI_DOWN); return 1; } /** * lpfc_sli_hba_down - Resource cleanup function for the HBA * @phba: Pointer to HBA context object. * * This function cleans up all iocb, buffers, mailbox commands * while shutting down the HBA. This function is called with no * lock held and always returns 1. * This function does the following to cleanup driver resources: * - Free discovery resources for each virtual port * - Cleanup any pending fabric iocbs * - Iterate through the iocb txq and free each entry * in the list. * - Free up any buffer posted to the HBA * - Free mailbox commands in the mailbox queue. **/ int lpfc_sli_hba_down(struct lpfc_hba *phba) { LIST_HEAD(completions); struct lpfc_sli *psli = &phba->sli; struct lpfc_queue *qp = NULL; struct lpfc_sli_ring *pring; struct lpfc_dmabuf *buf_ptr; unsigned long flags = 0; int i; /* Shutdown the mailbox command sub-system */ lpfc_sli_mbox_sys_shutdown(phba, LPFC_MBX_WAIT); lpfc_hba_down_prep(phba); /* Disable softirqs, including timers from obtaining phba->hbalock */ local_bh_disable(); lpfc_fabric_abort_hba(phba); spin_lock_irqsave(&phba->hbalock, flags); /* * Error everything on the txq since these iocbs * have not been given to the FW yet. */ if (phba->sli_rev != LPFC_SLI_REV4) { for (i = 0; i < psli->num_rings; i++) { pring = &psli->sli3_ring[i]; /* Only slow rings */ if (pring->ringno == LPFC_ELS_RING) { pring->flag |= LPFC_DEFERRED_RING_EVENT; /* Set the lpfc data pending flag */ set_bit(LPFC_DATA_READY, &phba->data_flags); } list_splice_init(&pring->txq, &completions); } } else { list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { pring = qp->pring; if (!pring) continue; spin_lock(&pring->ring_lock); list_splice_init(&pring->txq, &completions); spin_unlock(&pring->ring_lock); if (pring == phba->sli4_hba.els_wq->pring) { pring->flag |= LPFC_DEFERRED_RING_EVENT; /* Set the lpfc data pending flag */ set_bit(LPFC_DATA_READY, &phba->data_flags); } } } spin_unlock_irqrestore(&phba->hbalock, flags); /* Cancel all the IOCBs from the completions list */ lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, IOERR_SLI_DOWN); spin_lock_irqsave(&phba->hbalock, flags); list_splice_init(&phba->elsbuf, &completions); phba->elsbuf_cnt = 0; phba->elsbuf_prev_cnt = 0; spin_unlock_irqrestore(&phba->hbalock, flags); while (!list_empty(&completions)) { list_remove_head(&completions, buf_ptr, struct lpfc_dmabuf, list); lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); kfree(buf_ptr); } /* Enable softirqs again, done with phba->hbalock */ local_bh_enable(); /* Return any active mbox cmds */ del_timer_sync(&psli->mbox_tmo); spin_lock_irqsave(&phba->pport->work_port_lock, flags); phba->pport->work_port_events &= ~WORKER_MBOX_TMO; spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); return 1; } /** * lpfc_sli_pcimem_bcopy - SLI memory copy function * @srcp: Source memory pointer. * @destp: Destination memory pointer. * @cnt: Number of words required to be copied. * * This function is used for copying data between driver memory * and the SLI memory. This function also changes the endianness * of each word if native endianness is different from SLI * endianness. This function can be called with or without * lock. **/ void lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt) { uint32_t *src = srcp; uint32_t *dest = destp; uint32_t ldata; int i; for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) { ldata = *src; ldata = le32_to_cpu(ldata); *dest = ldata; src++; dest++; } } /** * lpfc_sli_bemem_bcopy - SLI memory copy function * @srcp: Source memory pointer. * @destp: Destination memory pointer. * @cnt: Number of words required to be copied. * * This function is used for copying data between a data structure * with big endian representation to local endianness. * This function can be called with or without lock. **/ void lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt) { uint32_t *src = srcp; uint32_t *dest = destp; uint32_t ldata; int i; for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) { ldata = *src; ldata = be32_to_cpu(ldata); *dest = ldata; src++; dest++; } } /** * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq * @phba: Pointer to HBA context object. * @pring: Pointer to driver SLI ring object. * @mp: Pointer to driver buffer object. * * This function is called with no lock held. * It always return zero after adding the buffer to the postbufq * buffer list. **/ int lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, struct lpfc_dmabuf *mp) { /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up later */ spin_lock_irq(&phba->hbalock); list_add_tail(&mp->list, &pring->postbufq); pring->postbufq_cnt++; spin_unlock_irq(&phba->hbalock); return 0; } /** * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer * @phba: Pointer to HBA context object. * * When HBQ is enabled, buffers are searched based on tags. This function * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag * does not conflict with tags of buffer posted for unsolicited events. * The function returns the allocated tag. The function is called with * no locks held. **/ uint32_t lpfc_sli_get_buffer_tag(struct lpfc_hba *phba) { spin_lock_irq(&phba->hbalock); phba->buffer_tag_count++; /* * Always set the QUE_BUFTAG_BIT to distiguish between * a tag assigned by HBQ. */ phba->buffer_tag_count |= QUE_BUFTAG_BIT; spin_unlock_irq(&phba->hbalock); return phba->buffer_tag_count; } /** * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag * @phba: Pointer to HBA context object. * @pring: Pointer to driver SLI ring object. * @tag: Buffer tag. * * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX * iocb is posted to the response ring with the tag of the buffer. * This function searches the pring->postbufq list using the tag * to find buffer associated with CMD_IOCB_RET_XRI64_CX * iocb. If the buffer is found then lpfc_dmabuf object of the * buffer is returned to the caller else NULL is returned. * This function is called with no lock held. **/ struct lpfc_dmabuf * lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, uint32_t tag) { struct lpfc_dmabuf *mp, *next_mp; struct list_head *slp = &pring->postbufq; /* Search postbufq, from the beginning, looking for a match on tag */ spin_lock_irq(&phba->hbalock); list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { if (mp->buffer_tag == tag) { list_del_init(&mp->list); pring->postbufq_cnt--; spin_unlock_irq(&phba->hbalock); return mp; } } spin_unlock_irq(&phba->hbalock); lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0402 Cannot find virtual addr for buffer tag on " "ring %d Data x%lx x%px x%px x%x\n", pring->ringno, (unsigned long) tag, slp->next, slp->prev, pring->postbufq_cnt); return NULL; } /** * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events * @phba: Pointer to HBA context object. * @pring: Pointer to driver SLI ring object. * @phys: DMA address of the buffer. * * This function searches the buffer list using the dma_address * of unsolicited event to find the driver's lpfc_dmabuf object * corresponding to the dma_address. The function returns the * lpfc_dmabuf object if a buffer is found else it returns NULL. * This function is called by the ct and els unsolicited event * handlers to get the buffer associated with the unsolicited * event. * * This function is called with no lock held. **/ struct lpfc_dmabuf * lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, dma_addr_t phys) { struct lpfc_dmabuf *mp, *next_mp; struct list_head *slp = &pring->postbufq; /* Search postbufq, from the beginning, looking for a match on phys */ spin_lock_irq(&phba->hbalock); list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) { if (mp->phys == phys) { list_del_init(&mp->list); pring->postbufq_cnt--; spin_unlock_irq(&phba->hbalock); return mp; } } spin_unlock_irq(&phba->hbalock); lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0410 Cannot find virtual addr for mapped buf on " "ring %d Data x%llx x%px x%px x%x\n", pring->ringno, (unsigned long long)phys, slp->next, slp->prev, pring->postbufq_cnt); return NULL; } /** * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs * @phba: Pointer to HBA context object. * @cmdiocb: Pointer to driver command iocb object. * @rspiocb: Pointer to driver response iocb object. * * This function is the completion handler for the abort iocbs for * ELS commands. This function is called from the ELS ring event * handler with no lock held. This function frees memory resources * associated with the abort iocb. **/ static void lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, struct lpfc_iocbq *rspiocb) { IOCB_t *irsp = &rspiocb->iocb; uint16_t abort_iotag, abort_context; struct lpfc_iocbq *abort_iocb = NULL; if (irsp->ulpStatus) { /* * Assume that the port already completed and returned, or * will return the iocb. Just Log the message. */ abort_context = cmdiocb->iocb.un.acxri.abortContextTag; abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag; spin_lock_irq(&phba->hbalock); if (phba->sli_rev < LPFC_SLI_REV4) { if (irsp->ulpCommand == CMD_ABORT_XRI_CX && irsp->ulpStatus == IOSTAT_LOCAL_REJECT && irsp->un.ulpWord[4] == IOERR_ABORT_REQUESTED) { spin_unlock_irq(&phba->hbalock); goto release_iocb; } if (abort_iotag != 0 && abort_iotag <= phba->sli.last_iotag) abort_iocb = phba->sli.iocbq_lookup[abort_iotag]; } else /* For sli4 the abort_tag is the XRI, * so the abort routine puts the iotag of the iocb * being aborted in the context field of the abort * IOCB. */ abort_iocb = phba->sli.iocbq_lookup[abort_context]; lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI, "0327 Cannot abort els iocb x%px " "with tag %x context %x, abort status %x, " "abort code %x\n", abort_iocb, abort_iotag, abort_context, irsp->ulpStatus, irsp->un.ulpWord[4]); spin_unlock_irq(&phba->hbalock); } release_iocb: lpfc_sli_release_iocbq(phba, cmdiocb); return; } /** * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command * @phba: Pointer to HBA context object. * @cmdiocb: Pointer to driver command iocb object. * @rspiocb: Pointer to driver response iocb object. * * The function is called from SLI ring event handler with no * lock held. This function is the completion handler for ELS commands * which are aborted. The function frees memory resources used for * the aborted ELS commands. **/ void lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, struct lpfc_iocbq *rspiocb) { struct lpfc_nodelist *ndlp = NULL; IOCB_t *irsp = &rspiocb->iocb; /* ELS cmd tag completes */ lpfc_printf_log(phba, KERN_INFO, LOG_ELS, "0139 Ignoring ELS cmd code x%x completion Data: " "x%x x%x x%x\n", irsp->ulpIoTag, irsp->ulpStatus, irsp->un.ulpWord[4], irsp->ulpTimeout); /* * Deref the ndlp after free_iocb. sli_release_iocb will access the ndlp * if exchange is busy. */ if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) { ndlp = cmdiocb->context_un.ndlp; lpfc_ct_free_iocb(phba, cmdiocb); } else { ndlp = (struct lpfc_nodelist *) cmdiocb->context1; lpfc_els_free_iocb(phba, cmdiocb); } lpfc_nlp_put(ndlp); } /** * lpfc_sli_issue_abort_iotag - Abort function for a command iocb * @phba: Pointer to HBA context object. * @pring: Pointer to driver SLI ring object. * @cmdiocb: Pointer to driver command iocb object. * @cmpl: completion function. * * This function issues an abort iocb for the provided command iocb. In case * of unloading, the abort iocb will not be issued to commands on the ELS * ring. Instead, the callback function shall be changed to those commands * so that nothing happens when them finishes. This function is called with * hbalock held andno ring_lock held (SLI4). The function returns IOCB_SUCCESS * when the command iocb is an abort request. * **/ int lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, struct lpfc_iocbq *cmdiocb, void *cmpl) { struct lpfc_vport *vport = cmdiocb->vport; struct lpfc_iocbq *abtsiocbp; IOCB_t *icmd = NULL; IOCB_t *iabt = NULL; int retval = IOCB_ERROR; unsigned long iflags; struct lpfc_nodelist *ndlp; /* * There are certain command types we don't want to abort. And we * don't want to abort commands that are already in the process of * being aborted. */ icmd = &cmdiocb->iocb; if (icmd->ulpCommand == CMD_ABORT_XRI_CN || icmd->ulpCommand == CMD_CLOSE_XRI_CN || cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) return IOCB_ABORTING; if (!pring) { if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; else cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; return retval; } /* * If we're unloading, don't abort iocb on the ELS ring, but change * the callback so that nothing happens when it finishes. */ if ((vport->load_flag & FC_UNLOADING) && pring->ringno == LPFC_ELS_RING) { if (cmdiocb->iocb_flag & LPFC_IO_FABRIC) cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl; else cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl; return retval; } /* issue ABTS for this IOCB based on iotag */ abtsiocbp = __lpfc_sli_get_iocbq(phba); if (abtsiocbp == NULL) return IOCB_NORESOURCE; /* This signals the response to set the correct status * before calling the completion handler */ cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; iabt = &abtsiocbp->iocb; iabt->un.acxri.abortType = ABORT_TYPE_ABTS; iabt->un.acxri.abortContextTag = icmd->ulpContext; if (phba->sli_rev == LPFC_SLI_REV4) { iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag; if (pring->ringno == LPFC_ELS_RING) iabt->un.acxri.abortContextTag = cmdiocb->iotag; } else { iabt->un.acxri.abortIoTag = icmd->ulpIoTag; if (pring->ringno == LPFC_ELS_RING) { ndlp = (struct lpfc_nodelist *)(cmdiocb->context1); iabt->un.acxri.abortContextTag = ndlp->nlp_rpi; } } iabt->ulpLe = 1; iabt->ulpClass = icmd->ulpClass; /* ABTS WQE must go to the same WQ as the WQE to be aborted */ abtsiocbp->hba_wqidx = cmdiocb->hba_wqidx; if (cmdiocb->iocb_flag & LPFC_IO_FCP) abtsiocbp->iocb_flag |= (LPFC_IO_FCP | LPFC_USE_FCPWQIDX); if (cmdiocb->iocb_flag & LPFC_IO_FOF) abtsiocbp->iocb_flag |= LPFC_IO_FOF; if (phba->link_state < LPFC_LINK_UP || (phba->sli_rev == LPFC_SLI_REV4 && phba->sli4_hba.link_state.status == LPFC_FC_LA_TYPE_LINK_DOWN)) iabt->ulpCommand = CMD_CLOSE_XRI_CN; else iabt->ulpCommand = CMD_ABORT_XRI_CN; if (cmpl) abtsiocbp->iocb_cmpl = cmpl; else abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl; abtsiocbp->vport = vport; if (phba->sli_rev == LPFC_SLI_REV4) { pring = lpfc_sli4_calc_ring(phba, abtsiocbp); if (unlikely(pring == NULL)) goto abort_iotag_exit; /* Note: both hbalock and ring_lock need to be set here */ spin_lock_irqsave(&pring->ring_lock, iflags); retval = __lpfc_sli_issue_iocb(phba, pring->ringno, abtsiocbp, 0); spin_unlock_irqrestore(&pring->ring_lock, iflags); } else { retval = __lpfc_sli_issue_iocb(phba, pring->ringno, abtsiocbp, 0); } abort_iotag_exit: lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, "0339 Abort xri x%x, original iotag x%x, " "abort cmd iotag x%x retval x%x\n", iabt->un.acxri.abortIoTag, iabt->un.acxri.abortContextTag, abtsiocbp->iotag, retval); if (retval) { cmdiocb->iocb_flag &= ~LPFC_DRIVER_ABORTED; __lpfc_sli_release_iocbq(phba, abtsiocbp); } /* * Caller to this routine should check for IOCB_ERROR * and handle it properly. This routine no longer removes * iocb off txcmplq and call compl in case of IOCB_ERROR. */ return retval; } /** * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba. * @phba: pointer to lpfc HBA data structure. * * This routine will abort all pending and outstanding iocbs to an HBA. **/ void lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba) { struct lpfc_sli *psli = &phba->sli; struct lpfc_sli_ring *pring; struct lpfc_queue *qp = NULL; int i; if (phba->sli_rev != LPFC_SLI_REV4) { for (i = 0; i < psli->num_rings; i++) { pring = &psli->sli3_ring[i]; lpfc_sli_abort_iocb_ring(phba, pring); } return; } list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { pring = qp->pring; if (!pring) continue; lpfc_sli_abort_iocb_ring(phba, pring); } } /** * lpfc_sli_validate_fcp_iocb_for_abort - filter iocbs appropriate for FCP aborts * @iocbq: Pointer to iocb object. * @vport: Pointer to driver virtual port object. * * This function acts as an iocb filter for functions which abort FCP iocbs. * * Return values * -ENODEV, if a null iocb or vport ptr is encountered * -EINVAL, if the iocb is not an FCP I/O, not on the TX cmpl queue, premarked as * driver already started the abort process, or is an abort iocb itself * 0, passes criteria for aborting the FCP I/O iocb **/ static int lpfc_sli_validate_fcp_iocb_for_abort(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport) { IOCB_t *icmd = NULL; /* No null ptr vports */ if (!iocbq || iocbq->vport != vport) return -ENODEV; /* iocb must be for FCP IO, already exists on the TX cmpl queue, * can't be premarked as driver aborted, nor be an ABORT iocb itself */ icmd = &iocbq->iocb; if (!(iocbq->iocb_flag & LPFC_IO_FCP) || !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ) || (iocbq->iocb_flag & LPFC_DRIVER_ABORTED) || (icmd->ulpCommand == CMD_ABORT_XRI_CN || icmd->ulpCommand == CMD_CLOSE_XRI_CN)) return -EINVAL; return 0; } /** * lpfc_sli_validate_fcp_iocb - validate commands associated with a SCSI target * @iocbq: Pointer to driver iocb object. * @vport: Pointer to driver virtual port object. * @tgt_id: SCSI ID of the target. * @lun_id: LUN ID of the scsi device. * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST * * This function acts as an iocb filter for validating a lun/SCSI target/SCSI * host. * * It will return * 0 if the filtering criteria is met for the given iocb and will return * 1 if the filtering criteria is not met. * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the * given iocb is for the SCSI device specified by vport, tgt_id and * lun_id parameter. * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the * given iocb is for the SCSI target specified by vport and tgt_id * parameters. * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the * given iocb is for the SCSI host associated with the given vport. * This function is called with no locks held. **/ static int lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd ctx_cmd) { struct lpfc_io_buf *lpfc_cmd; int rc = 1; lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); if (lpfc_cmd->pCmd == NULL) return rc; switch (ctx_cmd) { case LPFC_CTX_LUN: if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) && (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id)) rc = 0; break; case LPFC_CTX_TGT: if ((lpfc_cmd->rdata) && (lpfc_cmd->rdata->pnode) && (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id)) rc = 0; break; case LPFC_CTX_HOST: rc = 0; break; default: printk(KERN_ERR "%s: Unknown context cmd type, value %d\n", __func__, ctx_cmd); break; } return rc; } /** * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending * @vport: Pointer to virtual port. * @tgt_id: SCSI ID of the target. * @lun_id: LUN ID of the scsi device. * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. * * This function returns number of FCP commands pending for the vport. * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP * commands pending on the vport associated with SCSI device specified * by tgt_id and lun_id parameters. * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP * commands pending on the vport associated with SCSI target specified * by tgt_id parameter. * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP * commands pending on the vport. * This function returns the number of iocbs which satisfy the filter. * This function is called without any lock held. **/ int lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd ctx_cmd) { struct lpfc_hba *phba = vport->phba; struct lpfc_iocbq *iocbq; IOCB_t *icmd = NULL; int sum, i; unsigned long iflags; spin_lock_irqsave(&phba->hbalock, iflags); for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) { iocbq = phba->sli.iocbq_lookup[i]; if (!iocbq || iocbq->vport != vport) continue; if (!(iocbq->iocb_flag & LPFC_IO_FCP) || !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) continue; /* Include counting outstanding aborts */ icmd = &iocbq->iocb; if (icmd->ulpCommand == CMD_ABORT_XRI_CN || icmd->ulpCommand == CMD_CLOSE_XRI_CN) { sum++; continue; } if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, ctx_cmd) == 0) sum++; } spin_unlock_irqrestore(&phba->hbalock, iflags); return sum; } /** * lpfc_sli4_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs * @phba: Pointer to HBA context object * @cmdiocb: Pointer to command iocb object. * @wcqe: pointer to the complete wcqe * * This function is called when an aborted FCP iocb completes. This * function is called by the ring event handler with no lock held. * This function frees the iocb. It is called for sli-4 adapters. **/ void lpfc_sli4_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, struct lpfc_wcqe_complete *wcqe) { lpfc_printf_log(phba, KERN_INFO, LOG_SLI, "3017 ABORT_XRI_CN completing on rpi x%x " "original iotag x%x, abort cmd iotag x%x " "status 0x%x, reason 0x%x\n", cmdiocb->iocb.un.acxri.abortContextTag, cmdiocb->iocb.un.acxri.abortIoTag, cmdiocb->iotag, (bf_get(lpfc_wcqe_c_status, wcqe) & LPFC_IOCB_STATUS_MASK), wcqe->parameter); lpfc_sli_release_iocbq(phba, cmdiocb); } /** * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs * @phba: Pointer to HBA context object * @cmdiocb: Pointer to command iocb object. * @rspiocb: Pointer to response iocb object. * * This function is called when an aborted FCP iocb completes. This * function is called by the ring event handler with no lock held. * This function frees the iocb. **/ void lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, struct lpfc_iocbq *rspiocb) { lpfc_printf_log(phba, KERN_INFO, LOG_SLI, "3096 ABORT_XRI_CN completing on rpi x%x " "original iotag x%x, abort cmd iotag x%x " "status 0x%x, reason 0x%x\n", cmdiocb->iocb.un.acxri.abortContextTag, cmdiocb->iocb.un.acxri.abortIoTag, cmdiocb->iotag, rspiocb->iocb.ulpStatus, rspiocb->iocb.un.ulpWord[4]); lpfc_sli_release_iocbq(phba, cmdiocb); return; } /** * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN * @vport: Pointer to virtual port. * @tgt_id: SCSI ID of the target. * @lun_id: LUN ID of the scsi device. * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. * * This function sends an abort command for every SCSI command * associated with the given virtual port pending on the ring * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then * lpfc_sli_validate_fcp_iocb function. The ordering for validation before * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort * followed by lpfc_sli_validate_fcp_iocb. * * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the * FCP iocbs associated with lun specified by tgt_id and lun_id * parameters * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the * FCP iocbs associated with SCSI target specified by tgt_id parameter. * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all * FCP iocbs associated with virtual port. * The pring used for SLI3 is sli3_ring[LPFC_FCP_RING], for SLI4 * lpfc_sli4_calc_ring is used. * This function returns number of iocbs it failed to abort. * This function is called with no locks held. **/ int lpfc_sli_abort_iocb(struct lpfc_vport *vport, u16 tgt_id, u64 lun_id, lpfc_ctx_cmd abort_cmd) { struct lpfc_hba *phba = vport->phba; struct lpfc_sli_ring *pring = NULL; struct lpfc_iocbq *iocbq; int errcnt = 0, ret_val = 0; unsigned long iflags; int i; void *fcp_cmpl = NULL; /* all I/Os are in process of being flushed */ if (phba->hba_flag & HBA_IOQ_FLUSH) return errcnt; for (i = 1; i <= phba->sli.last_iotag; i++) { iocbq = phba->sli.iocbq_lookup[i]; if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) continue; if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, abort_cmd) != 0) continue; spin_lock_irqsave(&phba->hbalock, iflags); if (phba->sli_rev == LPFC_SLI_REV3) { pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; fcp_cmpl = lpfc_sli_abort_fcp_cmpl; } else if (phba->sli_rev == LPFC_SLI_REV4) { pring = lpfc_sli4_calc_ring(phba, iocbq); fcp_cmpl = lpfc_sli4_abort_fcp_cmpl; } ret_val = lpfc_sli_issue_abort_iotag(phba, pring, iocbq, fcp_cmpl); spin_unlock_irqrestore(&phba->hbalock, iflags); if (ret_val != IOCB_SUCCESS) errcnt++; } return errcnt; } /** * lpfc_sli_abort_taskmgmt - issue abort for all commands on a host/target/LUN * @vport: Pointer to virtual port. * @pring: Pointer to driver SLI ring object. * @tgt_id: SCSI ID of the target. * @lun_id: LUN ID of the scsi device. * @cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST. * * This function sends an abort command for every SCSI command * associated with the given virtual port pending on the ring * filtered by lpfc_sli_validate_fcp_iocb_for_abort and then * lpfc_sli_validate_fcp_iocb function. The ordering for validation before * submitting abort iocbs must be lpfc_sli_validate_fcp_iocb_for_abort * followed by lpfc_sli_validate_fcp_iocb. * * When taskmgmt_cmd == LPFC_CTX_LUN, the function sends abort only to the * FCP iocbs associated with lun specified by tgt_id and lun_id * parameters * When taskmgmt_cmd == LPFC_CTX_TGT, the function sends abort only to the * FCP iocbs associated with SCSI target specified by tgt_id parameter. * When taskmgmt_cmd == LPFC_CTX_HOST, the function sends abort to all * FCP iocbs associated with virtual port. * This function returns number of iocbs it aborted . * This function is called with no locks held right after a taskmgmt * command is sent. **/ int lpfc_sli_abort_taskmgmt(struct lpfc_vport *vport, struct lpfc_sli_ring *pring, uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd cmd) { struct lpfc_hba *phba = vport->phba; struct lpfc_io_buf *lpfc_cmd; struct lpfc_iocbq *abtsiocbq; struct lpfc_nodelist *ndlp; struct lpfc_iocbq *iocbq; IOCB_t *icmd; int sum, i, ret_val; unsigned long iflags; struct lpfc_sli_ring *pring_s4 = NULL; spin_lock_irqsave(&phba->hbalock, iflags); /* all I/Os are in process of being flushed */ if (phba->hba_flag & HBA_IOQ_FLUSH) { spin_unlock_irqrestore(&phba->hbalock, iflags); return 0; } sum = 0; for (i = 1; i <= phba->sli.last_iotag; i++) { iocbq = phba->sli.iocbq_lookup[i]; if (lpfc_sli_validate_fcp_iocb_for_abort(iocbq, vport)) continue; if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id, cmd) != 0) continue; /* Guard against IO completion being called at same time */ lpfc_cmd = container_of(iocbq, struct lpfc_io_buf, cur_iocbq); spin_lock(&lpfc_cmd->buf_lock); if (!lpfc_cmd->pCmd) { spin_unlock(&lpfc_cmd->buf_lock); continue; } if (phba->sli_rev == LPFC_SLI_REV4) { pring_s4 = phba->sli4_hba.hdwq[iocbq->hba_wqidx].io_wq->pring; if (!pring_s4) { spin_unlock(&lpfc_cmd->buf_lock); continue; } /* Note: both hbalock and ring_lock must be set here */ spin_lock(&pring_s4->ring_lock); } /* * If the iocbq is already being aborted, don't take a second * action, but do count it. */ if ((iocbq->iocb_flag & LPFC_DRIVER_ABORTED) || !(iocbq->iocb_flag & LPFC_IO_ON_TXCMPLQ)) { if (phba->sli_rev == LPFC_SLI_REV4) spin_unlock(&pring_s4->ring_lock); spin_unlock(&lpfc_cmd->buf_lock); continue; } /* issue ABTS for this IOCB based on iotag */ abtsiocbq = __lpfc_sli_get_iocbq(phba); if (!abtsiocbq) { if (phba->sli_rev == LPFC_SLI_REV4) spin_unlock(&pring_s4->ring_lock); spin_unlock(&lpfc_cmd->buf_lock); continue; } icmd = &iocbq->iocb; abtsiocbq->iocb.un.acxri.abortType = ABORT_TYPE_ABTS; abtsiocbq->iocb.un.acxri.abortContextTag = icmd->ulpContext; if (phba->sli_rev == LPFC_SLI_REV4) abtsiocbq->iocb.un.acxri.abortIoTag = iocbq->sli4_xritag; else abtsiocbq->iocb.un.acxri.abortIoTag = icmd->ulpIoTag; abtsiocbq->iocb.ulpLe = 1; abtsiocbq->iocb.ulpClass = icmd->ulpClass; abtsiocbq->vport = vport; /* ABTS WQE must go to the same WQ as the WQE to be aborted */ abtsiocbq->hba_wqidx = iocbq->hba_wqidx; if (iocbq->iocb_flag & LPFC_IO_FCP) abtsiocbq->iocb_flag |= LPFC_USE_FCPWQIDX; if (iocbq->iocb_flag & LPFC_IO_FOF) abtsiocbq->iocb_flag |= LPFC_IO_FOF; ndlp = lpfc_cmd->rdata->pnode; if (lpfc_is_link_up(phba) && (ndlp && ndlp->nlp_state == NLP_STE_MAPPED_NODE)) abtsiocbq->iocb.ulpCommand = CMD_ABORT_XRI_CN; else abtsiocbq->iocb.ulpCommand = CMD_CLOSE_XRI_CN; /* Setup callback routine and issue the command. */ abtsiocbq->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; /* * Indicate the IO is being aborted by the driver and set * the caller's flag into the aborted IO. */ iocbq->iocb_flag |= LPFC_DRIVER_ABORTED; if (phba->sli_rev == LPFC_SLI_REV4) { ret_val = __lpfc_sli_issue_iocb(phba, pring_s4->ringno, abtsiocbq, 0); spin_unlock(&pring_s4->ring_lock); } else { ret_val = __lpfc_sli_issue_iocb(phba, pring->ringno, abtsiocbq, 0); } spin_unlock(&lpfc_cmd->buf_lock); if (ret_val == IOCB_ERROR) __lpfc_sli_release_iocbq(phba, abtsiocbq); else sum++; } spin_unlock_irqrestore(&phba->hbalock, iflags); return sum; } /** * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler * @phba: Pointer to HBA context object. * @cmdiocbq: Pointer to command iocb. * @rspiocbq: Pointer to response iocb. * * This function is the completion handler for iocbs issued using * lpfc_sli_issue_iocb_wait function. This function is called by the * ring event handler function without any lock held. This function * can be called from both worker thread context and interrupt * context. This function also can be called from other thread which * cleans up the SLI layer objects. * This function copy the contents of the response iocb to the * response iocb memory object provided by the caller of * lpfc_sli_issue_iocb_wait and then wakes up the thread which * sleeps for the iocb completion. **/ static void lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, struct lpfc_iocbq *rspiocbq) { wait_queue_head_t *pdone_q; unsigned long iflags; struct lpfc_io_buf *lpfc_cmd; spin_lock_irqsave(&phba->hbalock, iflags); if (cmdiocbq->iocb_flag & LPFC_IO_WAKE_TMO) { /* * A time out has occurred for the iocb. If a time out * completion handler has been supplied, call it. Otherwise, * just free the iocbq. */ spin_unlock_irqrestore(&phba->hbalock, iflags); cmdiocbq->iocb_cmpl = cmdiocbq->wait_iocb_cmpl; cmdiocbq->wait_iocb_cmpl = NULL; if (cmdiocbq->iocb_cmpl) (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, NULL); else lpfc_sli_release_iocbq(phba, cmdiocbq); return; } cmdiocbq->iocb_flag |= LPFC_IO_WAKE; if (cmdiocbq->context2 && rspiocbq) memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb, &rspiocbq->iocb, sizeof(IOCB_t)); /* Set the exchange busy flag for task management commands */ if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) && !(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) { lpfc_cmd = container_of(cmdiocbq, struct lpfc_io_buf, cur_iocbq); if (rspiocbq && (rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY)) lpfc_cmd->flags |= LPFC_SBUF_XBUSY; else lpfc_cmd->flags &= ~LPFC_SBUF_XBUSY; } pdone_q = cmdiocbq->context_un.wait_queue; if (pdone_q) wake_up(pdone_q); spin_unlock_irqrestore(&phba->hbalock, iflags); return; } /** * lpfc_chk_iocb_flg - Test IOCB flag with lock held. * @phba: Pointer to HBA context object.. * @piocbq: Pointer to command iocb. * @flag: Flag to test. * * This routine grabs the hbalock and then test the iocb_flag to * see if the passed in flag is set. * Returns: * 1 if flag is set. * 0 if flag is not set. **/ static int lpfc_chk_iocb_flg(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq, uint32_t flag) { unsigned long iflags; int ret; spin_lock_irqsave(&phba->hbalock, iflags); ret = piocbq->iocb_flag & flag; spin_unlock_irqrestore(&phba->hbalock, iflags); return ret; } /** * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands * @phba: Pointer to HBA context object.. * @ring_number: Ring number * @piocb: Pointer to command iocb. * @prspiocbq: Pointer to response iocb. * @timeout: Timeout in number of seconds. * * This function issues the iocb to firmware and waits for the * iocb to complete. The iocb_cmpl field of the shall be used * to handle iocbs which time out. If the field is NULL, the * function shall free the iocbq structure. If more clean up is * needed, the caller is expected to provide a completion function * that will provide the needed clean up. If the iocb command is * not completed within timeout seconds, the function will either * free the iocbq structure (if iocb_cmpl == NULL) or execute the * completion function set in the iocb_cmpl field and then return * a status of IOCB_TIMEDOUT. The caller should not free the iocb * resources if this function returns IOCB_TIMEDOUT. * The function waits for the iocb completion using an * non-interruptible wait. * This function will sleep while waiting for iocb completion. * So, this function should not be called from any context which * does not allow sleeping. Due to the same reason, this function * cannot be called with interrupt disabled. * This function assumes that the iocb completions occur while * this function sleep. So, this function cannot be called from * the thread which process iocb completion for this ring. * This function clears the iocb_flag of the iocb object before * issuing the iocb and the iocb completion handler sets this * flag and wakes this thread when the iocb completes. * The contents of the response iocb will be copied to prspiocbq * by the completion handler when the command completes. * This function returns IOCB_SUCCESS when success. * This function is called with no lock held. **/ int lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba, uint32_t ring_number, struct lpfc_iocbq *piocb, struct lpfc_iocbq *prspiocbq, uint32_t timeout) { DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q); long timeleft, timeout_req = 0; int retval = IOCB_SUCCESS; uint32_t creg_val; struct lpfc_iocbq *iocb; int txq_cnt = 0; int txcmplq_cnt = 0; struct lpfc_sli_ring *pring; unsigned long iflags; bool iocb_completed = true; if (phba->sli_rev >= LPFC_SLI_REV4) pring = lpfc_sli4_calc_ring(phba, piocb); else pring = &phba->sli.sli3_ring[ring_number]; /* * If the caller has provided a response iocbq buffer, then context2 * is NULL or its an error. */ if (prspiocbq) { if (piocb->context2) return IOCB_ERROR; piocb->context2 = prspiocbq; } piocb->wait_iocb_cmpl = piocb->iocb_cmpl; piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait; piocb->context_un.wait_queue = &done_q; piocb->iocb_flag &= ~(LPFC_IO_WAKE | LPFC_IO_WAKE_TMO); if (phba->cfg_poll & DISABLE_FCP_RING_INT) { if (lpfc_readl(phba->HCregaddr, &creg_val)) return IOCB_ERROR; creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING); writel(creg_val, phba->HCregaddr); readl(phba->HCregaddr); /* flush */ } retval = lpfc_sli_issue_iocb(phba, ring_number, piocb, SLI_IOCB_RET_IOCB); if (retval == IOCB_SUCCESS) { timeout_req = msecs_to_jiffies(timeout * 1000); timeleft = wait_event_timeout(done_q, lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE), timeout_req); spin_lock_irqsave(&phba->hbalock, iflags); if (!(piocb->iocb_flag & LPFC_IO_WAKE)) { /* * IOCB timed out. Inform the wake iocb wait * completion function and set local status */ iocb_completed = false; piocb->iocb_flag |= LPFC_IO_WAKE_TMO; } spin_unlock_irqrestore(&phba->hbalock, iflags); if (iocb_completed) { lpfc_printf_log(phba, KERN_INFO, LOG_SLI, "0331 IOCB wake signaled\n"); /* Note: we are not indicating if the IOCB has a success * status or not - that's for the caller to check. * IOCB_SUCCESS means just that the command was sent and * completed. Not that it completed successfully. * */ } else if (timeleft == 0) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0338 IOCB wait timeout error - no " "wake response Data x%x\n", timeout); retval = IOCB_TIMEDOUT; } else { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0330 IOCB wake NOT set, " "Data x%x x%lx\n", timeout, (timeleft / jiffies)); retval = IOCB_TIMEDOUT; } } else if (retval == IOCB_BUSY) { if (phba->cfg_log_verbose & LOG_SLI) { list_for_each_entry(iocb, &pring->txq, list) { txq_cnt++; } list_for_each_entry(iocb, &pring->txcmplq, list) { txcmplq_cnt++; } lpfc_printf_log(phba, KERN_INFO, LOG_SLI, "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n", phba->iocb_cnt, txq_cnt, txcmplq_cnt); } return retval; } else { lpfc_printf_log(phba, KERN_INFO, LOG_SLI, "0332 IOCB wait issue failed, Data x%x\n", retval); retval = IOCB_ERROR; } if (phba->cfg_poll & DISABLE_FCP_RING_INT) { if (lpfc_readl(phba->HCregaddr, &creg_val)) return IOCB_ERROR; creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING); writel(creg_val, phba->HCregaddr); readl(phba->HCregaddr); /* flush */ } if (prspiocbq) piocb->context2 = NULL; piocb->context_un.wait_queue = NULL; piocb->iocb_cmpl = NULL; return retval; } /** * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox * @phba: Pointer to HBA context object. * @pmboxq: Pointer to driver mailbox object. * @timeout: Timeout in number of seconds. * * This function issues the mailbox to firmware and waits for the * mailbox command to complete. If the mailbox command is not * completed within timeout seconds, it returns MBX_TIMEOUT. * The function waits for the mailbox completion using an * interruptible wait. If the thread is woken up due to a * signal, MBX_TIMEOUT error is returned to the caller. Caller * should not free the mailbox resources, if this function returns * MBX_TIMEOUT. * This function will sleep while waiting for mailbox completion. * So, this function should not be called from any context which * does not allow sleeping. Due to the same reason, this function * cannot be called with interrupt disabled. * This function assumes that the mailbox completion occurs while * this function sleep. So, this function cannot be called from * the worker thread which processes mailbox completion. * This function is called in the context of HBA management * applications. * This function returns MBX_SUCCESS when successful. * This function is called with no lock held. **/ int lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq, uint32_t timeout) { struct completion mbox_done; int retval; unsigned long flag; pmboxq->mbox_flag &= ~LPFC_MBX_WAKE; /* setup wake call as IOCB callback */ pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait; /* setup context3 field to pass wait_queue pointer to wake function */ init_completion(&mbox_done); pmboxq->context3 = &mbox_done; /* now issue the command */ retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); if (retval == MBX_BUSY || retval == MBX_SUCCESS) { wait_for_completion_timeout(&mbox_done, msecs_to_jiffies(timeout * 1000)); spin_lock_irqsave(&phba->hbalock, flag); pmboxq->context3 = NULL; /* * if LPFC_MBX_WAKE flag is set the mailbox is completed * else do not free the resources. */ if (pmboxq->mbox_flag & LPFC_MBX_WAKE) { retval = MBX_SUCCESS; } else { retval = MBX_TIMEOUT; pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; } spin_unlock_irqrestore(&phba->hbalock, flag); } return retval; } /** * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system * @phba: Pointer to HBA context. * @mbx_action: Mailbox shutdown options. * * This function is called to shutdown the driver's mailbox sub-system. * It first marks the mailbox sub-system is in a block state to prevent * the asynchronous mailbox command from issued off the pending mailbox * command queue. If the mailbox command sub-system shutdown is due to * HBA error conditions such as EEH or ERATT, this routine shall invoke * the mailbox sub-system flush routine to forcefully bring down the * mailbox sub-system. Otherwise, if it is due to normal condition (such * as with offline or HBA function reset), this routine will wait for the * outstanding mailbox command to complete before invoking the mailbox * sub-system flush routine to gracefully bring down mailbox sub-system. **/ void lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba, int mbx_action) { struct lpfc_sli *psli = &phba->sli; unsigned long timeout; if (mbx_action == LPFC_MBX_NO_WAIT) { /* delay 100ms for port state */ msleep(100); lpfc_sli_mbox_sys_flush(phba); return; } timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; /* Disable softirqs, including timers from obtaining phba->hbalock */ local_bh_disable(); spin_lock_irq(&phba->hbalock); psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; if (psli->sli_flag & LPFC_SLI_ACTIVE) { /* Determine how long we might wait for the active mailbox * command to be gracefully completed by firmware. */ if (phba->sli.mbox_active) timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, phba->sli.mbox_active) * 1000) + jiffies; spin_unlock_irq(&phba->hbalock); /* Enable softirqs again, done with phba->hbalock */ local_bh_enable(); while (phba->sli.mbox_active) { /* Check active mailbox complete status every 2ms */ msleep(2); if (time_after(jiffies, timeout)) /* Timeout, let the mailbox flush routine to * forcefully release active mailbox command */ break; } } else { spin_unlock_irq(&phba->hbalock); /* Enable softirqs again, done with phba->hbalock */ local_bh_enable(); } lpfc_sli_mbox_sys_flush(phba); } /** * lpfc_sli_eratt_read - read sli-3 error attention events * @phba: Pointer to HBA context. * * This function is called to read the SLI3 device error attention registers * for possible error attention events. The caller must hold the hostlock * with spin_lock_irq(). * * This function returns 1 when there is Error Attention in the Host Attention * Register and returns 0 otherwise. **/ static int lpfc_sli_eratt_read(struct lpfc_hba *phba) { uint32_t ha_copy; /* Read chip Host Attention (HA) register */ if (lpfc_readl(phba->HAregaddr, &ha_copy)) goto unplug_err; if (ha_copy & HA_ERATT) { /* Read host status register to retrieve error event */ if (lpfc_sli_read_hs(phba)) goto unplug_err; /* Check if there is a deferred error condition is active */ if ((HS_FFER1 & phba->work_hs) && ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { phba->hba_flag |= DEFER_ERATT; /* Clear all interrupt enable conditions */ writel(0, phba->HCregaddr); readl(phba->HCregaddr); } /* Set the driver HA work bitmap */ phba->work_ha |= HA_ERATT; /* Indicate polling handles this ERATT */ phba->hba_flag |= HBA_ERATT_HANDLED; return 1; } return 0; unplug_err: /* Set the driver HS work bitmap */ phba->work_hs |= UNPLUG_ERR; /* Set the driver HA work bitmap */ phba->work_ha |= HA_ERATT; /* Indicate polling handles this ERATT */ phba->hba_flag |= HBA_ERATT_HANDLED; return 1; } /** * lpfc_sli4_eratt_read - read sli-4 error attention events * @phba: Pointer to HBA context. * * This function is called to read the SLI4 device error attention registers * for possible error attention events. The caller must hold the hostlock * with spin_lock_irq(). * * This function returns 1 when there is Error Attention in the Host Attention * Register and returns 0 otherwise. **/ static int lpfc_sli4_eratt_read(struct lpfc_hba *phba) { uint32_t uerr_sta_hi, uerr_sta_lo; uint32_t if_type, portsmphr; struct lpfc_register portstat_reg; u32 logmask; /* * For now, use the SLI4 device internal unrecoverable error * registers for error attention. This can be changed later. */ if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); switch (if_type) { case LPFC_SLI_INTF_IF_TYPE_0: if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr, &uerr_sta_lo) || lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr, &uerr_sta_hi)) { phba->work_hs |= UNPLUG_ERR; phba->work_ha |= HA_ERATT; phba->hba_flag |= HBA_ERATT_HANDLED; return 1; } if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) || (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "1423 HBA Unrecoverable error: " "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, " "ue_mask_lo_reg=0x%x, " "ue_mask_hi_reg=0x%x\n", uerr_sta_lo, uerr_sta_hi, phba->sli4_hba.ue_mask_lo, phba->sli4_hba.ue_mask_hi); phba->work_status[0] = uerr_sta_lo; phba->work_status[1] = uerr_sta_hi; phba->work_ha |= HA_ERATT; phba->hba_flag |= HBA_ERATT_HANDLED; return 1; } break; case LPFC_SLI_INTF_IF_TYPE_2: case LPFC_SLI_INTF_IF_TYPE_6: if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, &portstat_reg.word0) || lpfc_readl(phba->sli4_hba.PSMPHRregaddr, &portsmphr)){ phba->work_hs |= UNPLUG_ERR; phba->work_ha |= HA_ERATT; phba->hba_flag |= HBA_ERATT_HANDLED; return 1; } if (bf_get(lpfc_sliport_status_err, &portstat_reg)) { phba->work_status[0] = readl(phba->sli4_hba.u.if_type2.ERR1regaddr); phba->work_status[1] = readl(phba->sli4_hba.u.if_type2.ERR2regaddr); logmask = LOG_TRACE_EVENT; if (phba->work_status[0] == SLIPORT_ERR1_REG_ERR_CODE_2 && phba->work_status[1] == SLIPORT_ERR2_REG_FW_RESTART) logmask = LOG_SLI; lpfc_printf_log(phba, KERN_ERR, logmask, "2885 Port Status Event: " "port status reg 0x%x, " "port smphr reg 0x%x, " "error 1=0x%x, error 2=0x%x\n", portstat_reg.word0, portsmphr, phba->work_status[0], phba->work_status[1]); phba->work_ha |= HA_ERATT; phba->hba_flag |= HBA_ERATT_HANDLED; return 1; } break; case LPFC_SLI_INTF_IF_TYPE_1: default: lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2886 HBA Error Attention on unsupported " "if type %d.", if_type); return 1; } return 0; } /** * lpfc_sli_check_eratt - check error attention events * @phba: Pointer to HBA context. * * This function is called from timer soft interrupt context to check HBA's * error attention register bit for error attention events. * * This function returns 1 when there is Error Attention in the Host Attention * Register and returns 0 otherwise. **/ int lpfc_sli_check_eratt(struct lpfc_hba *phba) { uint32_t ha_copy; /* If somebody is waiting to handle an eratt, don't process it * here. The brdkill function will do this. */ if (phba->link_flag & LS_IGNORE_ERATT) return 0; /* Check if interrupt handler handles this ERATT */ spin_lock_irq(&phba->hbalock); if (phba->hba_flag & HBA_ERATT_HANDLED) { /* Interrupt handler has handled ERATT */ spin_unlock_irq(&phba->hbalock); return 0; } /* * If there is deferred error attention, do not check for error * attention */ if (unlikely(phba->hba_flag & DEFER_ERATT)) { spin_unlock_irq(&phba->hbalock); return 0; } /* If PCI channel is offline, don't process it */ if (unlikely(pci_channel_offline(phba->pcidev))) { spin_unlock_irq(&phba->hbalock); return 0; } switch (phba->sli_rev) { case LPFC_SLI_REV2: case LPFC_SLI_REV3: /* Read chip Host Attention (HA) register */ ha_copy = lpfc_sli_eratt_read(phba); break; case LPFC_SLI_REV4: /* Read device Uncoverable Error (UERR) registers */ ha_copy = lpfc_sli4_eratt_read(phba); break; default: lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0299 Invalid SLI revision (%d)\n", phba->sli_rev); ha_copy = 0; break; } spin_unlock_irq(&phba->hbalock); return ha_copy; } /** * lpfc_intr_state_check - Check device state for interrupt handling * @phba: Pointer to HBA context. * * This inline routine checks whether a device or its PCI slot is in a state * that the interrupt should be handled. * * This function returns 0 if the device or the PCI slot is in a state that * interrupt should be handled, otherwise -EIO. */ static inline int lpfc_intr_state_check(struct lpfc_hba *phba) { /* If the pci channel is offline, ignore all the interrupts */ if (unlikely(pci_channel_offline(phba->pcidev))) return -EIO; /* Update device level interrupt statistics */ phba->sli.slistat.sli_intr++; /* Ignore all interrupts during initialization. */ if (unlikely(phba->link_state < LPFC_LINK_DOWN)) return -EIO; return 0; } /** * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device * @irq: Interrupt number. * @dev_id: The device context pointer. * * This function is directly called from the PCI layer as an interrupt * service routine when device with SLI-3 interface spec is enabled with * MSI-X multi-message interrupt mode and there are slow-path events in * the HBA. However, when the device is enabled with either MSI or Pin-IRQ * interrupt mode, this function is called as part of the device-level * interrupt handler. When the PCI slot is in error recovery or the HBA * is undergoing initialization, the interrupt handler will not process * the interrupt. The link attention and ELS ring attention events are * handled by the worker thread. The interrupt handler signals the worker * thread and returns for these events. This function is called without * any lock held. It gets the hbalock to access and update SLI data * structures. * * This function returns IRQ_HANDLED when interrupt is handled else it * returns IRQ_NONE. **/ irqreturn_t lpfc_sli_sp_intr_handler(int irq, void *dev_id) { struct lpfc_hba *phba; uint32_t ha_copy, hc_copy; uint32_t work_ha_copy; unsigned long status; unsigned long iflag; uint32_t control; MAILBOX_t *mbox, *pmbox; struct lpfc_vport *vport; struct lpfc_nodelist *ndlp; struct lpfc_dmabuf *mp; LPFC_MBOXQ_t *pmb; int rc; /* * Get the driver's phba structure from the dev_id and * assume the HBA is not interrupting. */ phba = (struct lpfc_hba *)dev_id; if (unlikely(!phba)) return IRQ_NONE; /* * Stuff needs to be attented to when this function is invoked as an * individual interrupt handler in MSI-X multi-message interrupt mode */ if (phba->intr_type == MSIX) { /* Check device state for handling interrupt */ if (lpfc_intr_state_check(phba)) return IRQ_NONE; /* Need to read HA REG for slow-path events */ spin_lock_irqsave(&phba->hbalock, iflag); if (lpfc_readl(phba->HAregaddr, &ha_copy)) goto unplug_error; /* If somebody is waiting to handle an eratt don't process it * here. The brdkill function will do this. */ if (phba->link_flag & LS_IGNORE_ERATT) ha_copy &= ~HA_ERATT; /* Check the need for handling ERATT in interrupt handler */ if (ha_copy & HA_ERATT) { if (phba->hba_flag & HBA_ERATT_HANDLED) /* ERATT polling has handled ERATT */ ha_copy &= ~HA_ERATT; else /* Indicate interrupt handler handles ERATT */ phba->hba_flag |= HBA_ERATT_HANDLED; } /* * If there is deferred error attention, do not check for any * interrupt. */ if (unlikely(phba->hba_flag & DEFER_ERATT)) { spin_unlock_irqrestore(&phba->hbalock, iflag); return IRQ_NONE; } /* Clear up only attention source related to slow-path */ if (lpfc_readl(phba->HCregaddr, &hc_copy)) goto unplug_error; writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), phba->HCregaddr); writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)), phba->HAregaddr); writel(hc_copy, phba->HCregaddr); readl(phba->HAregaddr); /* flush */ spin_unlock_irqrestore(&phba->hbalock, iflag); } else ha_copy = phba->ha_copy; work_ha_copy = ha_copy & phba->work_ha_mask; if (work_ha_copy) { if (work_ha_copy & HA_LATT) { if (phba->sli.sli_flag & LPFC_PROCESS_LA) { /* * Turn off Link Attention interrupts * until CLEAR_LA done */ spin_lock_irqsave(&phba->hbalock, iflag); phba->sli.sli_flag &= ~LPFC_PROCESS_LA; if (lpfc_readl(phba->HCregaddr, &control)) goto unplug_error; control &= ~HC_LAINT_ENA; writel(control, phba->HCregaddr); readl(phba->HCregaddr); /* flush */ spin_unlock_irqrestore(&phba->hbalock, iflag); } else work_ha_copy &= ~HA_LATT; } if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) { /* * Turn off Slow Rings interrupts, LPFC_ELS_RING is * the only slow ring. */ status = (work_ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); status >>= (4*LPFC_ELS_RING); if (status & HA_RXMASK) { spin_lock_irqsave(&phba->hbalock, iflag); if (lpfc_readl(phba->HCregaddr, &control)) goto unplug_error; lpfc_debugfs_slow_ring_trc(phba, "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x", control, status, (uint32_t)phba->sli.slistat.sli_intr); if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) { lpfc_debugfs_slow_ring_trc(phba, "ISR Disable ring:" "pwork:x%x hawork:x%x wait:x%x", phba->work_ha, work_ha_copy, (uint32_t)((unsigned long) &phba->work_waitq)); control &= ~(HC_R0INT_ENA << LPFC_ELS_RING); writel(control, phba->HCregaddr); readl(phba->HCregaddr); /* flush */ } else { lpfc_debugfs_slow_ring_trc(phba, "ISR slow ring: pwork:" "x%x hawork:x%x wait:x%x", phba->work_ha, work_ha_copy, (uint32_t)((unsigned long) &phba->work_waitq)); } spin_unlock_irqrestore(&phba->hbalock, iflag); } } spin_lock_irqsave(&phba->hbalock, iflag); if (work_ha_copy & HA_ERATT) { if (lpfc_sli_read_hs(phba)) goto unplug_error; /* * Check if there is a deferred error condition * is active */ if ((HS_FFER1 & phba->work_hs) && ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 | HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) { phba->hba_flag |= DEFER_ERATT; /* Clear all interrupt enable conditions */ writel(0, phba->HCregaddr); readl(phba->HCregaddr); } } if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) { pmb = phba->sli.mbox_active; pmbox = &pmb->u.mb; mbox = phba->mbox; vport = pmb->vport; /* First check out the status word */ lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t)); if (pmbox->mbxOwner != OWN_HOST) { spin_unlock_irqrestore(&phba->hbalock, iflag); /* * Stray Mailbox Interrupt, mbxCommand * mbxStatus */ lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "(%d):0304 Stray Mailbox " "Interrupt mbxCommand x%x " "mbxStatus x%x\n", (vport ? vport->vpi : 0), pmbox->mbxCommand, pmbox->mbxStatus); /* clear mailbox attention bit */ work_ha_copy &= ~HA_MBATT; } else { phba->sli.mbox_active = NULL; spin_unlock_irqrestore(&phba->hbalock, iflag); phba->last_completion_time = jiffies; del_timer(&phba->sli.mbox_tmo); if (pmb->mbox_cmpl) { lpfc_sli_pcimem_bcopy(mbox, pmbox, MAILBOX_CMD_SIZE); if (pmb->out_ext_byte_len && pmb->ctx_buf) lpfc_sli_pcimem_bcopy( phba->mbox_ext, pmb->ctx_buf, pmb->out_ext_byte_len); } if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, "MBOX dflt rpi: : " "status:x%x rpi:x%x", (uint32_t)pmbox->mbxStatus, pmbox->un.varWords[0], 0); if (!pmbox->mbxStatus) { mp = (struct lpfc_dmabuf *) (pmb->ctx_buf); ndlp = (struct lpfc_nodelist *) pmb->ctx_ndlp; /* Reg_LOGIN of dflt RPI was * successful. new lets get * rid of the RPI using the * same mbox buffer. */ lpfc_unreg_login(phba, vport->vpi, pmbox->un.varWords[0], pmb); pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; pmb->ctx_buf = mp; pmb->ctx_ndlp = ndlp; pmb->vport = vport; rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); if (rc != MBX_BUSY) lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0350 rc should have" "been MBX_BUSY\n"); if (rc != MBX_NOT_FINISHED) goto send_current_mbox; } } spin_lock_irqsave( &phba->pport->work_port_lock, iflag); phba->pport->work_port_events &= ~WORKER_MBOX_TMO; spin_unlock_irqrestore( &phba->pport->work_port_lock, iflag); /* Do NOT queue MBX_HEARTBEAT to the worker * thread for processing. */ if (pmbox->mbxCommand == MBX_HEARTBEAT) { /* Process mbox now */ phba->sli.mbox_active = NULL; phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; if (pmb->mbox_cmpl) pmb->mbox_cmpl(phba, pmb); } else { /* Queue to worker thread to process */ lpfc_mbox_cmpl_put(phba, pmb); } } } else spin_unlock_irqrestore(&phba->hbalock, iflag); if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active == NULL)) { send_current_mbox: /* Process next mailbox command if there is one */ do { rc = lpfc_sli_issue_mbox(phba, NULL, MBX_NOWAIT); } while (rc == MBX_NOT_FINISHED); if (rc != MBX_SUCCESS) lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0349 rc should be " "MBX_SUCCESS\n"); } spin_lock_irqsave(&phba->hbalock, iflag); phba->work_ha |= work_ha_copy; spin_unlock_irqrestore(&phba->hbalock, iflag); lpfc_worker_wake_up(phba); } return IRQ_HANDLED; unplug_error: spin_unlock_irqrestore(&phba->hbalock, iflag); return IRQ_HANDLED; } /* lpfc_sli_sp_intr_handler */ /** * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device. * @irq: Interrupt number. * @dev_id: The device context pointer. * * This function is directly called from the PCI layer as an interrupt * service routine when device with SLI-3 interface spec is enabled with * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB * ring event in the HBA. However, when the device is enabled with either * MSI or Pin-IRQ interrupt mode, this function is called as part of the * device-level interrupt handler. When the PCI slot is in error recovery * or the HBA is undergoing initialization, the interrupt handler will not * process the interrupt. The SCSI FCP fast-path ring event are handled in * the intrrupt context. This function is called without any lock held. * It gets the hbalock to access and update SLI data structures. * * This function returns IRQ_HANDLED when interrupt is handled else it * returns IRQ_NONE. **/ irqreturn_t lpfc_sli_fp_intr_handler(int irq, void *dev_id) { struct lpfc_hba *phba; uint32_t ha_copy; unsigned long status; unsigned long iflag; struct lpfc_sli_ring *pring; /* Get the driver's phba structure from the dev_id and * assume the HBA is not interrupting. */ phba = (struct lpfc_hba *) dev_id; if (unlikely(!phba)) return IRQ_NONE; /* * Stuff needs to be attented to when this function is invoked as an * individual interrupt handler in MSI-X multi-message interrupt mode */ if (phba->intr_type == MSIX) { /* Check device state for handling interrupt */ if (lpfc_intr_state_check(phba)) return IRQ_NONE; /* Need to read HA REG for FCP ring and other ring events */ if (lpfc_readl(phba->HAregaddr, &ha_copy)) return IRQ_HANDLED; /* Clear up only attention source related to fast-path */ spin_lock_irqsave(&phba->hbalock, iflag); /* * If there is deferred error attention, do not check for * any interrupt. */ if (unlikely(phba->hba_flag & DEFER_ERATT)) { spin_unlock_irqrestore(&phba->hbalock, iflag); return IRQ_NONE; } writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)), phba->HAregaddr); readl(phba->HAregaddr); /* flush */ spin_unlock_irqrestore(&phba->hbalock, iflag); } else ha_copy = phba->ha_copy; /* * Process all events on FCP ring. Take the optimized path for FCP IO. */ ha_copy &= ~(phba->work_ha_mask); status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); status >>= (4*LPFC_FCP_RING); pring = &phba->sli.sli3_ring[LPFC_FCP_RING]; if (status & HA_RXMASK) lpfc_sli_handle_fast_ring_event(phba, pring, status); if (phba->cfg_multi_ring_support == 2) { /* * Process all events on extra ring. Take the optimized path * for extra ring IO. */ status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); status >>= (4*LPFC_EXTRA_RING); if (status & HA_RXMASK) { lpfc_sli_handle_fast_ring_event(phba, &phba->sli.sli3_ring[LPFC_EXTRA_RING], status); } } return IRQ_HANDLED; } /* lpfc_sli_fp_intr_handler */ /** * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device * @irq: Interrupt number. * @dev_id: The device context pointer. * * This function is the HBA device-level interrupt handler to device with * SLI-3 interface spec, called from the PCI layer when either MSI or * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which * requires driver attention. This function invokes the slow-path interrupt * attention handling function and fast-path interrupt attention handling * function in turn to process the relevant HBA attention events. This * function is called without any lock held. It gets the hbalock to access * and update SLI data structures. * * This function returns IRQ_HANDLED when interrupt is handled, else it * returns IRQ_NONE. **/ irqreturn_t lpfc_sli_intr_handler(int irq, void *dev_id) { struct lpfc_hba *phba; irqreturn_t sp_irq_rc, fp_irq_rc; unsigned long status1, status2; uint32_t hc_copy; /* * Get the driver's phba structure from the dev_id and * assume the HBA is not interrupting. */ phba = (struct lpfc_hba *) dev_id; if (unlikely(!phba)) return IRQ_NONE; /* Check device state for handling interrupt */ if (lpfc_intr_state_check(phba)) return IRQ_NONE; spin_lock(&phba->hbalock); if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) { spin_unlock(&phba->hbalock); return IRQ_HANDLED; } if (unlikely(!phba->ha_copy)) { spin_unlock(&phba->hbalock); return IRQ_NONE; } else if (phba->ha_copy & HA_ERATT) { if (phba->hba_flag & HBA_ERATT_HANDLED) /* ERATT polling has handled ERATT */ phba->ha_copy &= ~HA_ERATT; else /* Indicate interrupt handler handles ERATT */ phba->hba_flag |= HBA_ERATT_HANDLED; } /* * If there is deferred error attention, do not check for any interrupt. */ if (unlikely(phba->hba_flag & DEFER_ERATT)) { spin_unlock(&phba->hbalock); return IRQ_NONE; } /* Clear attention sources except link and error attentions */ if (lpfc_readl(phba->HCregaddr, &hc_copy)) { spin_unlock(&phba->hbalock); return IRQ_HANDLED; } writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA), phba->HCregaddr); writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr); writel(hc_copy, phba->HCregaddr); readl(phba->HAregaddr); /* flush */ spin_unlock(&phba->hbalock); /* * Invokes slow-path host attention interrupt handling as appropriate. */ /* status of events with mailbox and link attention */ status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT); /* status of events with ELS ring */ status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING))); status2 >>= (4*LPFC_ELS_RING); if (status1 || (status2 & HA_RXMASK)) sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id); else sp_irq_rc = IRQ_NONE; /* * Invoke fast-path host attention interrupt handling as appropriate. */ /* status of events with FCP ring */ status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING))); status1 >>= (4*LPFC_FCP_RING); /* status of events with extra ring */ if (phba->cfg_multi_ring_support == 2) { status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING))); status2 >>= (4*LPFC_EXTRA_RING); } else status2 = 0; if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK)) fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id); else fp_irq_rc = IRQ_NONE; /* Return device-level interrupt handling status */ return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc; } /* lpfc_sli_intr_handler */ /** * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event * @phba: pointer to lpfc hba data structure. * * This routine is invoked by the worker thread to process all the pending * SLI4 els abort xri events. **/ void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba) { struct lpfc_cq_event *cq_event; unsigned long iflags; /* First, declare the els xri abort event has been handled */ spin_lock_irqsave(&phba->hbalock, iflags); phba->hba_flag &= ~ELS_XRI_ABORT_EVENT; spin_unlock_irqrestore(&phba->hbalock, iflags); /* Now, handle all the els xri abort events */ spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) { /* Get the first event from the head of the event queue */ list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue, cq_event, struct lpfc_cq_event, list); spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); /* Notify aborted XRI for ELS work queue */ lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri); /* Free the event processed back to the free pool */ lpfc_sli4_cq_event_release(phba, cq_event); spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); } spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); } /** * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn * @phba: pointer to lpfc hba data structure * @pIocbIn: pointer to the rspiocbq * @pIocbOut: pointer to the cmdiocbq * @wcqe: pointer to the complete wcqe * * This routine transfers the fields of a command iocbq to a response iocbq * by copying all the IOCB fields from command iocbq and transferring the * completion status information from the complete wcqe. **/ static void lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba, struct lpfc_iocbq *pIocbIn, struct lpfc_iocbq *pIocbOut, struct lpfc_wcqe_complete *wcqe) { int numBdes, i; unsigned long iflags; uint32_t status, max_response; struct lpfc_dmabuf *dmabuf; struct ulp_bde64 *bpl, bde; size_t offset = offsetof(struct lpfc_iocbq, iocb); memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset, sizeof(struct lpfc_iocbq) - offset); /* Map WCQE parameters into irspiocb parameters */ status = bf_get(lpfc_wcqe_c_status, wcqe); pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK); if (pIocbOut->iocb_flag & LPFC_IO_FCP) if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR) pIocbIn->iocb.un.fcpi.fcpi_parm = pIocbOut->iocb.un.fcpi.fcpi_parm - wcqe->total_data_placed; else pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; else { pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter; switch (pIocbOut->iocb.ulpCommand) { case CMD_ELS_REQUEST64_CR: dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; bpl = (struct ulp_bde64 *)dmabuf->virt; bde.tus.w = le32_to_cpu(bpl[1].tus.w); max_response = bde.tus.f.bdeSize; break; case CMD_GEN_REQUEST64_CR: max_response = 0; if (!pIocbOut->context3) break; numBdes = pIocbOut->iocb.un.genreq64.bdl.bdeSize/ sizeof(struct ulp_bde64); dmabuf = (struct lpfc_dmabuf *)pIocbOut->context3; bpl = (struct ulp_bde64 *)dmabuf->virt; for (i = 0; i < numBdes; i++) { bde.tus.w = le32_to_cpu(bpl[i].tus.w); if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64) max_response += bde.tus.f.bdeSize; } break; default: max_response = wcqe->total_data_placed; break; } if (max_response < wcqe->total_data_placed) pIocbIn->iocb.un.genreq64.bdl.bdeSize = max_response; else pIocbIn->iocb.un.genreq64.bdl.bdeSize = wcqe->total_data_placed; } /* Convert BG errors for completion status */ if (status == CQE_STATUS_DI_ERROR) { pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT; if (bf_get(lpfc_wcqe_c_bg_edir, wcqe)) pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED; else pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED; pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0; if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */ pIocbIn->iocb.unsli3.sli3_bg.bgstat |= BGS_GUARD_ERR_MASK; if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */ pIocbIn->iocb.unsli3.sli3_bg.bgstat |= BGS_APPTAG_ERR_MASK; if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */ pIocbIn->iocb.unsli3.sli3_bg.bgstat |= BGS_REFTAG_ERR_MASK; /* Check to see if there was any good data before the error */ if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) { pIocbIn->iocb.unsli3.sli3_bg.bgstat |= BGS_HI_WATER_MARK_PRESENT_MASK; pIocbIn->iocb.unsli3.sli3_bg.bghm = wcqe->total_data_placed; } /* * Set ALL the error bits to indicate we don't know what * type of error it is. */ if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat) pIocbIn->iocb.unsli3.sli3_bg.bgstat |= (BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK | BGS_GUARD_ERR_MASK); } /* Pick up HBA exchange busy condition */ if (bf_get(lpfc_wcqe_c_xb, wcqe)) { spin_lock_irqsave(&phba->hbalock, iflags); pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY; spin_unlock_irqrestore(&phba->hbalock, iflags); } } /** * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe * @phba: Pointer to HBA context object. * @irspiocbq: Pointer to work-queue completion queue entry. * * This routine handles an ELS work-queue completion event and construct * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common * discovery engine to handle. * * Return: Pointer to the receive IOCBQ, NULL otherwise. **/ static struct lpfc_iocbq * lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba, struct lpfc_iocbq *irspiocbq) { struct lpfc_sli_ring *pring; struct lpfc_iocbq *cmdiocbq; struct lpfc_wcqe_complete *wcqe; unsigned long iflags; pring = lpfc_phba_elsring(phba); if (unlikely(!pring)) return NULL; wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl; pring->stats.iocb_event++; /* Look up the ELS command IOCB and create pseudo response IOCB */ cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, bf_get(lpfc_wcqe_c_request_tag, wcqe)); if (unlikely(!cmdiocbq)) { lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, "0386 ELS complete with no corresponding " "cmdiocb: 0x%x 0x%x 0x%x 0x%x\n", wcqe->word0, wcqe->total_data_placed, wcqe->parameter, wcqe->word3); lpfc_sli_release_iocbq(phba, irspiocbq); return NULL; } spin_lock_irqsave(&pring->ring_lock, iflags); /* Put the iocb back on the txcmplq */ lpfc_sli_ringtxcmpl_put(phba, pring, cmdiocbq); spin_unlock_irqrestore(&pring->ring_lock, iflags); /* Fake the irspiocbq and copy necessary response information */ lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe); return irspiocbq; } inline struct lpfc_cq_event * lpfc_cq_event_setup(struct lpfc_hba *phba, void *entry, int size) { struct lpfc_cq_event *cq_event; /* Allocate a new internal CQ_EVENT entry */ cq_event = lpfc_sli4_cq_event_alloc(phba); if (!cq_event) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0602 Failed to alloc CQ_EVENT entry\n"); return NULL; } /* Move the CQE into the event */ memcpy(&cq_event->cqe, entry, size); return cq_event; } /** * lpfc_sli4_sp_handle_async_event - Handle an asynchronous event * @phba: Pointer to HBA context object. * @mcqe: Pointer to mailbox completion queue entry. * * This routine process a mailbox completion queue entry with asynchronous * event. * * Return: true if work posted to worker thread, otherwise false. **/ static bool lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) { struct lpfc_cq_event *cq_event; unsigned long iflags; lpfc_printf_log(phba, KERN_INFO, LOG_SLI, "0392 Async Event: word0:x%x, word1:x%x, " "word2:x%x, word3:x%x\n", mcqe->word0, mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer); cq_event = lpfc_cq_event_setup(phba, mcqe, sizeof(struct lpfc_mcqe)); if (!cq_event) return false; spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue); spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); /* Set the async event flag */ spin_lock_irqsave(&phba->hbalock, iflags); phba->hba_flag |= ASYNC_EVENT; spin_unlock_irqrestore(&phba->hbalock, iflags); return true; } /** * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event * @phba: Pointer to HBA context object. * @mcqe: Pointer to mailbox completion queue entry. * * This routine process a mailbox completion queue entry with mailbox * completion event. * * Return: true if work posted to worker thread, otherwise false. **/ static bool lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe) { uint32_t mcqe_status; MAILBOX_t *mbox, *pmbox; struct lpfc_mqe *mqe; struct lpfc_vport *vport; struct lpfc_nodelist *ndlp; struct lpfc_dmabuf *mp; unsigned long iflags; LPFC_MBOXQ_t *pmb; bool workposted = false; int rc; /* If not a mailbox complete MCQE, out by checking mailbox consume */ if (!bf_get(lpfc_trailer_completed, mcqe)) goto out_no_mqe_complete; /* Get the reference to the active mbox command */ spin_lock_irqsave(&phba->hbalock, iflags); pmb = phba->sli.mbox_active; if (unlikely(!pmb)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "1832 No pending MBOX command to handle\n"); spin_unlock_irqrestore(&phba->hbalock, iflags); goto out_no_mqe_complete; } spin_unlock_irqrestore(&phba->hbalock, iflags); mqe = &pmb->u.mqe; pmbox = (MAILBOX_t *)&pmb->u.mqe; mbox = phba->mbox; vport = pmb->vport; /* Reset heartbeat timer */ phba->last_completion_time = jiffies; del_timer(&phba->sli.mbox_tmo); /* Move mbox data to caller's mailbox region, do endian swapping */ if (pmb->mbox_cmpl && mbox) lpfc_sli4_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe)); /* * For mcqe errors, conditionally move a modified error code to * the mbox so that the error will not be missed. */ mcqe_status = bf_get(lpfc_mcqe_status, mcqe); if (mcqe_status != MB_CQE_STATUS_SUCCESS) { if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS) bf_set(lpfc_mqe_status, mqe, (LPFC_MBX_ERROR_RANGE | mcqe_status)); } if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) { pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG; lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT, "MBOX dflt rpi: status:x%x rpi:x%x", mcqe_status, pmbox->un.varWords[0], 0); if (mcqe_status == MB_CQE_STATUS_SUCCESS) { mp = (struct lpfc_dmabuf *)(pmb->ctx_buf); ndlp = (struct lpfc_nodelist *)pmb->ctx_ndlp; /* Reg_LOGIN of dflt RPI was successful. Mark the * node as having an UNREG_LOGIN in progress to stop * an unsolicited PLOGI from the same NPortId from * starting another mailbox transaction. */ spin_lock_irqsave(&ndlp->lock, iflags); ndlp->nlp_flag |= NLP_UNREG_INP; spin_unlock_irqrestore(&ndlp->lock, iflags); lpfc_unreg_login(phba, vport->vpi, pmbox->un.varWords[0], pmb); pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi; pmb->ctx_buf = mp; /* No reference taken here. This is a default * RPI reg/immediate unreg cycle. The reference was * taken in the reg rpi path and is released when * this mailbox completes. */ pmb->ctx_ndlp = ndlp; pmb->vport = vport; rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); if (rc != MBX_BUSY) lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0385 rc should " "have been MBX_BUSY\n"); if (rc != MBX_NOT_FINISHED) goto send_current_mbox; } } spin_lock_irqsave(&phba->pport->work_port_lock, iflags); phba->pport->work_port_events &= ~WORKER_MBOX_TMO; spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags); /* Do NOT queue MBX_HEARTBEAT to the worker thread for processing. */ if (pmbox->mbxCommand == MBX_HEARTBEAT) { spin_lock_irqsave(&phba->hbalock, iflags); /* Release the mailbox command posting token */ phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; phba->sli.mbox_active = NULL; if (bf_get(lpfc_trailer_consumed, mcqe)) lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); spin_unlock_irqrestore(&phba->hbalock, iflags); /* Post the next mbox command, if there is one */ lpfc_sli4_post_async_mbox(phba); /* Process cmpl now */ if (pmb->mbox_cmpl) pmb->mbox_cmpl(phba, pmb); return false; } /* There is mailbox completion work to queue to the worker thread */ spin_lock_irqsave(&phba->hbalock, iflags); __lpfc_mbox_cmpl_put(phba, pmb); phba->work_ha |= HA_MBATT; spin_unlock_irqrestore(&phba->hbalock, iflags); workposted = true; send_current_mbox: spin_lock_irqsave(&phba->hbalock, iflags); /* Release the mailbox command posting token */ phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; /* Setting active mailbox pointer need to be in sync to flag clear */ phba->sli.mbox_active = NULL; if (bf_get(lpfc_trailer_consumed, mcqe)) lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); spin_unlock_irqrestore(&phba->hbalock, iflags); /* Wake up worker thread to post the next pending mailbox command */ lpfc_worker_wake_up(phba); return workposted; out_no_mqe_complete: spin_lock_irqsave(&phba->hbalock, iflags); if (bf_get(lpfc_trailer_consumed, mcqe)) lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq); spin_unlock_irqrestore(&phba->hbalock, iflags); return false; } /** * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry * @phba: Pointer to HBA context object. * @cq: Pointer to associated CQ * @cqe: Pointer to mailbox completion queue entry. * * This routine process a mailbox completion queue entry, it invokes the * proper mailbox complete handling or asynchronous event handling routine * according to the MCQE's async bit. * * Return: true if work posted to worker thread, otherwise false. **/ static bool lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, struct lpfc_cqe *cqe) { struct lpfc_mcqe mcqe; bool workposted; cq->CQ_mbox++; /* Copy the mailbox MCQE and convert endian order as needed */ lpfc_sli4_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe)); /* Invoke the proper event handling routine */ if (!bf_get(lpfc_trailer_async, &mcqe)) workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe); else workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe); return workposted; } /** * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event * @phba: Pointer to HBA context object. * @cq: Pointer to associated CQ * @wcqe: Pointer to work-queue completion queue entry. * * This routine handles an ELS work-queue completion event. * * Return: true if work posted to worker thread, otherwise false. **/ static bool lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, struct lpfc_wcqe_complete *wcqe) { struct lpfc_iocbq *irspiocbq; unsigned long iflags; struct lpfc_sli_ring *pring = cq->pring; int txq_cnt = 0; int txcmplq_cnt = 0; /* Check for response status */ if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { /* Log the error status */ lpfc_printf_log(phba, KERN_INFO, LOG_SLI, "0357 ELS CQE error: status=x%x: " "CQE: %08x %08x %08x %08x\n", bf_get(lpfc_wcqe_c_status, wcqe), wcqe->word0, wcqe->total_data_placed, wcqe->parameter, wcqe->word3); } /* Get an irspiocbq for later ELS response processing use */ irspiocbq = lpfc_sli_get_iocbq(phba); if (!irspiocbq) { if (!list_empty(&pring->txq)) txq_cnt++; if (!list_empty(&pring->txcmplq)) txcmplq_cnt++; lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d " "els_txcmplq_cnt=%d\n", txq_cnt, phba->iocb_cnt, txcmplq_cnt); return false; } /* Save off the slow-path queue event for work thread to process */ memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe)); spin_lock_irqsave(&phba->hbalock, iflags); list_add_tail(&irspiocbq->cq_event.list, &phba->sli4_hba.sp_queue_event); phba->hba_flag |= HBA_SP_QUEUE_EVT; spin_unlock_irqrestore(&phba->hbalock, iflags); return true; } /** * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event * @phba: Pointer to HBA context object. * @wcqe: Pointer to work-queue completion queue entry. * * This routine handles slow-path WQ entry consumed event by invoking the * proper WQ release routine to the slow-path WQ. **/ static void lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_wcqe_release *wcqe) { /* sanity check on queue memory */ if (unlikely(!phba->sli4_hba.els_wq)) return; /* Check for the slow-path ELS work queue */ if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id) lpfc_sli4_wq_release(phba->sli4_hba.els_wq, bf_get(lpfc_wcqe_r_wqe_index, wcqe)); else lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, "2579 Slow-path wqe consume event carries " "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n", bf_get(lpfc_wcqe_r_wqe_index, wcqe), phba->sli4_hba.els_wq->queue_id); } /** * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event * @phba: Pointer to HBA context object. * @cq: Pointer to a WQ completion queue. * @wcqe: Pointer to work-queue completion queue entry. * * This routine handles an XRI abort event. * * Return: true if work posted to worker thread, otherwise false. **/ static bool lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, struct sli4_wcqe_xri_aborted *wcqe) { bool workposted = false; struct lpfc_cq_event *cq_event; unsigned long iflags; switch (cq->subtype) { case LPFC_IO: lpfc_sli4_io_xri_aborted(phba, wcqe, cq->hdwq); if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { /* Notify aborted XRI for NVME work queue */ if (phba->nvmet_support) lpfc_sli4_nvmet_xri_aborted(phba, wcqe); } workposted = false; break; case LPFC_NVME_LS: /* NVME LS uses ELS resources */ case LPFC_ELS: cq_event = lpfc_cq_event_setup(phba, wcqe, sizeof(*wcqe)); if (!cq_event) { workposted = false; break; } cq_event->hdwq = cq->hdwq; spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); list_add_tail(&cq_event->list, &phba->sli4_hba.sp_els_xri_aborted_work_queue); /* Set the els xri abort event flag */ phba->hba_flag |= ELS_XRI_ABORT_EVENT; spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); workposted = true; break; default: lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0603 Invalid CQ subtype %d: " "%08x %08x %08x %08x\n", cq->subtype, wcqe->word0, wcqe->parameter, wcqe->word2, wcqe->word3); workposted = false; break; } return workposted; } #define FC_RCTL_MDS_DIAGS 0xF4 /** * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry * @phba: Pointer to HBA context object. * @rcqe: Pointer to receive-queue completion queue entry. * * This routine process a receive-queue completion queue entry. * * Return: true if work posted to worker thread, otherwise false. **/ static bool lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe) { bool workposted = false; struct fc_frame_header *fc_hdr; struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq; struct lpfc_queue *drq = phba->sli4_hba.dat_rq; struct lpfc_nvmet_tgtport *tgtp; struct hbq_dmabuf *dma_buf; uint32_t status, rq_id; unsigned long iflags; /* sanity check on queue memory */ if (unlikely(!hrq) || unlikely(!drq)) return workposted; if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); else rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); if (rq_id != hrq->queue_id) goto out; status = bf_get(lpfc_rcqe_status, rcqe); switch (status) { case FC_STATUS_RQ_BUF_LEN_EXCEEDED: lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2537 Receive Frame Truncated!!\n"); fallthrough; case FC_STATUS_RQ_SUCCESS: spin_lock_irqsave(&phba->hbalock, iflags); lpfc_sli4_rq_release(hrq, drq); dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list); if (!dma_buf) { hrq->RQ_no_buf_found++; spin_unlock_irqrestore(&phba->hbalock, iflags); goto out; } hrq->RQ_rcv_buf++; hrq->RQ_buf_posted--; memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe)); fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { spin_unlock_irqrestore(&phba->hbalock, iflags); /* Handle MDS Loopback frames */ if (!(phba->pport->load_flag & FC_UNLOADING)) lpfc_sli4_handle_mds_loopback(phba->pport, dma_buf); else lpfc_in_buf_free(phba, &dma_buf->dbuf); break; } /* save off the frame for the work thread to process */ list_add_tail(&dma_buf->cq_event.list, &phba->sli4_hba.sp_queue_event); /* Frame received */ phba->hba_flag |= HBA_SP_QUEUE_EVT; spin_unlock_irqrestore(&phba->hbalock, iflags); workposted = true; break; case FC_STATUS_INSUFF_BUF_FRM_DISC: if (phba->nvmet_support) { tgtp = phba->targetport->private; lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "6402 RQE Error x%x, posted %d err_cnt " "%d: %x %x %x\n", status, hrq->RQ_buf_posted, hrq->RQ_no_posted_buf, atomic_read(&tgtp->rcv_fcp_cmd_in), atomic_read(&tgtp->rcv_fcp_cmd_out), atomic_read(&tgtp->xmt_fcp_release)); } fallthrough; case FC_STATUS_INSUFF_BUF_NEED_BUF: hrq->RQ_no_posted_buf++; /* Post more buffers if possible */ spin_lock_irqsave(&phba->hbalock, iflags); phba->hba_flag |= HBA_POST_RECEIVE_BUFFER; spin_unlock_irqrestore(&phba->hbalock, iflags); workposted = true; break; } out: return workposted; } /** * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry * @phba: Pointer to HBA context object. * @cq: Pointer to the completion queue. * @cqe: Pointer to a completion queue entry. * * This routine process a slow-path work-queue or receive queue completion queue * entry. * * Return: true if work posted to worker thread, otherwise false. **/ static bool lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, struct lpfc_cqe *cqe) { struct lpfc_cqe cqevt; bool workposted = false; /* Copy the work queue CQE and convert endian order if needed */ lpfc_sli4_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe)); /* Check and process for different type of WCQE and dispatch */ switch (bf_get(lpfc_cqe_code, &cqevt)) { case CQE_CODE_COMPL_WQE: /* Process the WQ/RQ complete event */ phba->last_completion_time = jiffies; workposted = lpfc_sli4_sp_handle_els_wcqe(phba, cq, (struct lpfc_wcqe_complete *)&cqevt); break; case CQE_CODE_RELEASE_WQE: /* Process the WQ release event */ lpfc_sli4_sp_handle_rel_wcqe(phba, (struct lpfc_wcqe_release *)&cqevt); break; case CQE_CODE_XRI_ABORTED: /* Process the WQ XRI abort event */ phba->last_completion_time = jiffies; workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, (struct sli4_wcqe_xri_aborted *)&cqevt); break; case CQE_CODE_RECEIVE: case CQE_CODE_RECEIVE_V1: /* Process the RQ event */ phba->last_completion_time = jiffies; workposted = lpfc_sli4_sp_handle_rcqe(phba, (struct lpfc_rcqe *)&cqevt); break; default: lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0388 Not a valid WCQE code: x%x\n", bf_get(lpfc_cqe_code, &cqevt)); break; } return workposted; } /** * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry * @phba: Pointer to HBA context object. * @eqe: Pointer to fast-path event queue entry. * @speq: Pointer to slow-path event queue. * * This routine process a event queue entry from the slow-path event queue. * It will check the MajorCode and MinorCode to determine this is for a * completion event on a completion queue, if not, an error shall be logged * and just return. Otherwise, it will get to the corresponding completion * queue and process all the entries on that completion queue, rearm the * completion queue, and then return. * **/ static void lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe, struct lpfc_queue *speq) { struct lpfc_queue *cq = NULL, *childq; uint16_t cqid; int ret = 0; /* Get the reference to the corresponding CQ */ cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); list_for_each_entry(childq, &speq->child_list, list) { if (childq->queue_id == cqid) { cq = childq; break; } } if (unlikely(!cq)) { if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0365 Slow-path CQ identifier " "(%d) does not exist\n", cqid); return; } /* Save EQ associated with this CQ */ cq->assoc_qp = speq; if (is_kdump_kernel()) ret = queue_work(phba->wq, &cq->spwork); else ret = queue_work_on(cq->chann, phba->wq, &cq->spwork); if (!ret) lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0390 Cannot schedule queue work " "for CQ eqcqid=%d, cqid=%d on CPU %d\n", cqid, cq->queue_id, raw_smp_processor_id()); } /** * __lpfc_sli4_process_cq - Process elements of a CQ * @phba: Pointer to HBA context object. * @cq: Pointer to CQ to be processed * @handler: Routine to process each cqe * @delay: Pointer to usdelay to set in case of rescheduling of the handler * @poll_mode: Polling mode we were called from * * This routine processes completion queue entries in a CQ. While a valid * queue element is found, the handler is called. During processing checks * are made for periodic doorbell writes to let the hardware know of * element consumption. * * If the max limit on cqes to process is hit, or there are no more valid * entries, the loop stops. If we processed a sufficient number of elements, * meaning there is sufficient load, rather than rearming and generating * another interrupt, a cq rescheduling delay will be set. A delay of 0 * indicates no rescheduling. * * Returns True if work scheduled, False otherwise. **/ static bool __lpfc_sli4_process_cq(struct lpfc_hba *phba, struct lpfc_queue *cq, bool (*handler)(struct lpfc_hba *, struct lpfc_queue *, struct lpfc_cqe *), unsigned long *delay, enum lpfc_poll_mode poll_mode) { struct lpfc_cqe *cqe; bool workposted = false; int count = 0, consumed = 0; bool arm = true; /* default - no reschedule */ *delay = 0; if (cmpxchg(&cq->queue_claimed, 0, 1) != 0) goto rearm_and_exit; /* Process all the entries to the CQ */ cq->q_flag = 0; cqe = lpfc_sli4_cq_get(cq); while (cqe) { workposted |= handler(phba, cq, cqe); __lpfc_sli4_consume_cqe(phba, cq, cqe); consumed++; if (!(++count % cq->max_proc_limit)) break; if (!(count % cq->notify_interval)) { phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, LPFC_QUEUE_NOARM); consumed = 0; cq->assoc_qp->q_flag |= HBA_EQ_DELAY_CHK; } if (count == LPFC_NVMET_CQ_NOTIFY) cq->q_flag |= HBA_NVMET_CQ_NOTIFY; cqe = lpfc_sli4_cq_get(cq); } if (count >= phba->cfg_cq_poll_threshold) { *delay = 1; arm = false; } /* Note: complete the irq_poll softirq before rearming CQ */ if (poll_mode == LPFC_IRQ_POLL) irq_poll_complete(&cq->iop); /* Track the max number of CQEs processed in 1 EQ */ if (count > cq->CQ_max_cqe) cq->CQ_max_cqe = count; cq->assoc_qp->EQ_cqe_cnt += count; /* Catch the no cq entry condition */ if (unlikely(count == 0)) lpfc_printf_log(phba, KERN_INFO, LOG_SLI, "0369 No entry from completion queue " "qid=%d\n", cq->queue_id); xchg(&cq->queue_claimed, 0); rearm_and_exit: phba->sli4_hba.sli4_write_cq_db(phba, cq, consumed, arm ? LPFC_QUEUE_REARM : LPFC_QUEUE_NOARM); return workposted; } /** * __lpfc_sli4_sp_process_cq - Process a slow-path event queue entry * @cq: pointer to CQ to process * * This routine calls the cq processing routine with a handler specific * to the type of queue bound to it. * * The CQ routine returns two values: the first is the calling status, * which indicates whether work was queued to the background discovery * thread. If true, the routine should wakeup the discovery thread; * the second is the delay parameter. If non-zero, rather than rearming * the CQ and yet another interrupt, the CQ handler should be queued so * that it is processed in a subsequent polling action. The value of * the delay indicates when to reschedule it. **/ static void __lpfc_sli4_sp_process_cq(struct lpfc_queue *cq) { struct lpfc_hba *phba = cq->phba; unsigned long delay; bool workposted = false; int ret = 0; /* Process and rearm the CQ */ switch (cq->type) { case LPFC_MCQ: workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_sp_handle_mcqe, &delay, LPFC_QUEUE_WORK); break; case LPFC_WCQ: if (cq->subtype == LPFC_IO) workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe, &delay, LPFC_QUEUE_WORK); else workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_sp_handle_cqe, &delay, LPFC_QUEUE_WORK); break; default: lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0370 Invalid completion queue type (%d)\n", cq->type); return; } if (delay) { if (is_kdump_kernel()) ret = queue_delayed_work(phba->wq, &cq->sched_spwork, delay); else ret = queue_delayed_work_on(cq->chann, phba->wq, &cq->sched_spwork, delay); if (!ret) lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0394 Cannot schedule queue work " "for cqid=%d on CPU %d\n", cq->queue_id, cq->chann); } /* wake up worker thread if there are works to be done */ if (workposted) lpfc_worker_wake_up(phba); } /** * lpfc_sli4_sp_process_cq - slow-path work handler when started by * interrupt * @work: pointer to work element * * translates from the work handler and calls the slow-path handler. **/ static void lpfc_sli4_sp_process_cq(struct work_struct *work) { struct lpfc_queue *cq = container_of(work, struct lpfc_queue, spwork); __lpfc_sli4_sp_process_cq(cq); } /** * lpfc_sli4_dly_sp_process_cq - slow-path work handler when started by timer * @work: pointer to work element * * translates from the work handler and calls the slow-path handler. **/ static void lpfc_sli4_dly_sp_process_cq(struct work_struct *work) { struct lpfc_queue *cq = container_of(to_delayed_work(work), struct lpfc_queue, sched_spwork); __lpfc_sli4_sp_process_cq(cq); } /** * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry * @phba: Pointer to HBA context object. * @cq: Pointer to associated CQ * @wcqe: Pointer to work-queue completion queue entry. * * This routine process a fast-path work queue completion entry from fast-path * event queue for FCP command response completion. **/ static void lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, struct lpfc_wcqe_complete *wcqe) { struct lpfc_sli_ring *pring = cq->pring; struct lpfc_iocbq *cmdiocbq; struct lpfc_iocbq irspiocbq; unsigned long iflags; /* Check for response status */ if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) { /* If resource errors reported from HBA, reduce queue * depth of the SCSI device. */ if (((bf_get(lpfc_wcqe_c_status, wcqe) == IOSTAT_LOCAL_REJECT)) && ((wcqe->parameter & IOERR_PARAM_MASK) == IOERR_NO_RESOURCES)) phba->lpfc_rampdown_queue_depth(phba); /* Log the cmpl status */ lpfc_printf_log(phba, KERN_INFO, LOG_SLI, "0373 FCP CQE cmpl: status=x%x: " "CQE: %08x %08x %08x %08x\n", bf_get(lpfc_wcqe_c_status, wcqe), wcqe->word0, wcqe->total_data_placed, wcqe->parameter, wcqe->word3); } /* Look up the FCP command IOCB and create pseudo response IOCB */ spin_lock_irqsave(&pring->ring_lock, iflags); pring->stats.iocb_event++; spin_unlock_irqrestore(&pring->ring_lock, iflags); cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring, bf_get(lpfc_wcqe_c_request_tag, wcqe)); if (unlikely(!cmdiocbq)) { lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, "0374 FCP complete with no corresponding " "cmdiocb: iotag (%d)\n", bf_get(lpfc_wcqe_c_request_tag, wcqe)); return; } #ifdef CONFIG_SCSI_LPFC_DEBUG_FS cmdiocbq->isr_timestamp = cq->isr_timestamp; #endif if (cmdiocbq->iocb_cmpl == NULL) { if (cmdiocbq->wqe_cmpl) { /* For FCP the flag is cleared in wqe_cmpl */ if (!(cmdiocbq->iocb_flag & LPFC_IO_FCP) && cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { spin_lock_irqsave(&phba->hbalock, iflags); cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; spin_unlock_irqrestore(&phba->hbalock, iflags); } /* Pass the cmd_iocb and the wcqe to the upper layer */ (cmdiocbq->wqe_cmpl)(phba, cmdiocbq, wcqe); return; } lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, "0375 FCP cmdiocb not callback function " "iotag: (%d)\n", bf_get(lpfc_wcqe_c_request_tag, wcqe)); return; } /* Only SLI4 non-IO commands stil use IOCB */ /* Fake the irspiocb and copy necessary response information */ lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe); if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) { spin_lock_irqsave(&phba->hbalock, iflags); cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED; spin_unlock_irqrestore(&phba->hbalock, iflags); } /* Pass the cmd_iocb and the rsp state to the upper layer */ (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq); } /** * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event * @phba: Pointer to HBA context object. * @cq: Pointer to completion queue. * @wcqe: Pointer to work-queue completion queue entry. * * This routine handles an fast-path WQ entry consumed event by invoking the * proper WQ release routine to the slow-path WQ. **/ static void lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, struct lpfc_wcqe_release *wcqe) { struct lpfc_queue *childwq; bool wqid_matched = false; uint16_t hba_wqid; /* Check for fast-path FCP work queue release */ hba_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe); list_for_each_entry(childwq, &cq->child_list, list) { if (childwq->queue_id == hba_wqid) { lpfc_sli4_wq_release(childwq, bf_get(lpfc_wcqe_r_wqe_index, wcqe)); if (childwq->q_flag & HBA_NVMET_WQFULL) lpfc_nvmet_wqfull_process(phba, childwq); wqid_matched = true; break; } } /* Report warning log message if no match found */ if (wqid_matched != true) lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, "2580 Fast-path wqe consume event carries " "miss-matched qid: wcqe-qid=x%x\n", hba_wqid); } /** * lpfc_sli4_nvmet_handle_rcqe - Process a receive-queue completion queue entry * @phba: Pointer to HBA context object. * @cq: Pointer to completion queue. * @rcqe: Pointer to receive-queue completion queue entry. * * This routine process a receive-queue completion queue entry. * * Return: true if work posted to worker thread, otherwise false. **/ static bool lpfc_sli4_nvmet_handle_rcqe(struct lpfc_hba *phba, struct lpfc_queue *cq, struct lpfc_rcqe *rcqe) { bool workposted = false; struct lpfc_queue *hrq; struct lpfc_queue *drq; struct rqb_dmabuf *dma_buf; struct fc_frame_header *fc_hdr; struct lpfc_nvmet_tgtport *tgtp; uint32_t status, rq_id; unsigned long iflags; uint32_t fctl, idx; if ((phba->nvmet_support == 0) || (phba->sli4_hba.nvmet_cqset == NULL)) return workposted; idx = cq->queue_id - phba->sli4_hba.nvmet_cqset[0]->queue_id; hrq = phba->sli4_hba.nvmet_mrq_hdr[idx]; drq = phba->sli4_hba.nvmet_mrq_data[idx]; /* sanity check on queue memory */ if (unlikely(!hrq) || unlikely(!drq)) return workposted; if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1) rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe); else rq_id = bf_get(lpfc_rcqe_rq_id, rcqe); if ((phba->nvmet_support == 0) || (rq_id != hrq->queue_id)) return workposted; status = bf_get(lpfc_rcqe_status, rcqe); switch (status) { case FC_STATUS_RQ_BUF_LEN_EXCEEDED: lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "6126 Receive Frame Truncated!!\n"); fallthrough; case FC_STATUS_RQ_SUCCESS: spin_lock_irqsave(&phba->hbalock, iflags); lpfc_sli4_rq_release(hrq, drq); dma_buf = lpfc_sli_rqbuf_get(phba, hrq); if (!dma_buf) { hrq->RQ_no_buf_found++; spin_unlock_irqrestore(&phba->hbalock, iflags); goto out; } spin_unlock_irqrestore(&phba->hbalock, iflags); hrq->RQ_rcv_buf++; hrq->RQ_buf_posted--; fc_hdr = (struct fc_frame_header *)dma_buf->hbuf.virt; /* Just some basic sanity checks on FCP Command frame */ fctl = (fc_hdr->fh_f_ctl[0] << 16 | fc_hdr->fh_f_ctl[1] << 8 | fc_hdr->fh_f_ctl[2]); if (((fctl & (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) != (FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT)) || (fc_hdr->fh_seq_cnt != 0)) /* 0 byte swapped is still 0 */ goto drop; if (fc_hdr->fh_type == FC_TYPE_FCP) { dma_buf->bytes_recv = bf_get(lpfc_rcqe_length, rcqe); lpfc_nvmet_unsol_fcp_event( phba, idx, dma_buf, cq->isr_timestamp, cq->q_flag & HBA_NVMET_CQ_NOTIFY); return false; } drop: lpfc_rq_buf_free(phba, &dma_buf->hbuf); break; case FC_STATUS_INSUFF_BUF_FRM_DISC: if (phba->nvmet_support) { tgtp = phba->targetport->private; lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "6401 RQE Error x%x, posted %d err_cnt " "%d: %x %x %x\n", status, hrq->RQ_buf_posted, hrq->RQ_no_posted_buf, atomic_read(&tgtp->rcv_fcp_cmd_in), atomic_read(&tgtp->rcv_fcp_cmd_out), atomic_read(&tgtp->xmt_fcp_release)); } fallthrough; case FC_STATUS_INSUFF_BUF_NEED_BUF: hrq->RQ_no_posted_buf++; /* Post more buffers if possible */ break; } out: return workposted; } /** * lpfc_sli4_fp_handle_cqe - Process fast-path work queue completion entry * @phba: adapter with cq * @cq: Pointer to the completion queue. * @cqe: Pointer to fast-path completion queue entry. * * This routine process a fast-path work queue completion entry from fast-path * event queue for FCP command response completion. * * Return: true if work posted to worker thread, otherwise false. **/ static bool lpfc_sli4_fp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq, struct lpfc_cqe *cqe) { struct lpfc_wcqe_release wcqe; bool workposted = false; /* Copy the work queue CQE and convert endian order if needed */ lpfc_sli4_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe)); /* Check and process for different type of WCQE and dispatch */ switch (bf_get(lpfc_wcqe_c_code, &wcqe)) { case CQE_CODE_COMPL_WQE: case CQE_CODE_NVME_ERSP: cq->CQ_wq++; /* Process the WQ complete event */ phba->last_completion_time = jiffies; if (cq->subtype == LPFC_IO || cq->subtype == LPFC_NVME_LS) lpfc_sli4_fp_handle_fcp_wcqe(phba, cq, (struct lpfc_wcqe_complete *)&wcqe); break; case CQE_CODE_RELEASE_WQE: cq->CQ_release_wqe++; /* Process the WQ release event */ lpfc_sli4_fp_handle_rel_wcqe(phba, cq, (struct lpfc_wcqe_release *)&wcqe); break; case CQE_CODE_XRI_ABORTED: cq->CQ_xri_aborted++; /* Process the WQ XRI abort event */ phba->last_completion_time = jiffies; workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq, (struct sli4_wcqe_xri_aborted *)&wcqe); break; case CQE_CODE_RECEIVE_V1: case CQE_CODE_RECEIVE: phba->last_completion_time = jiffies; if (cq->subtype == LPFC_NVMET) { workposted = lpfc_sli4_nvmet_handle_rcqe( phba, cq, (struct lpfc_rcqe *)&wcqe); } break; default: lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0144 Not a valid CQE code: x%x\n", bf_get(lpfc_wcqe_c_code, &wcqe)); break; } return workposted; } /** * lpfc_sli4_sched_cq_work - Schedules cq work * @phba: Pointer to HBA context object. * @cq: Pointer to CQ * @cqid: CQ ID * * This routine checks the poll mode of the CQ corresponding to * cq->chann, then either schedules a softirq or queue_work to complete * cq work. * * queue_work path is taken if in NVMET mode, or if poll_mode is in * LPFC_QUEUE_WORK mode. Otherwise, softirq path is taken. * **/ static void lpfc_sli4_sched_cq_work(struct lpfc_hba *phba, struct lpfc_queue *cq, uint16_t cqid) { int ret = 0; switch (cq->poll_mode) { case LPFC_IRQ_POLL: /* CGN mgmt is mutually exclusive from softirq processing */ if (phba->cmf_active_mode == LPFC_CFG_OFF) { irq_poll_sched(&cq->iop); break; } fallthrough; case LPFC_QUEUE_WORK: default: if (is_kdump_kernel()) ret = queue_work(phba->wq, &cq->irqwork); else ret = queue_work_on(cq->chann, phba->wq, &cq->irqwork); if (!ret) lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0383 Cannot schedule queue work " "for CQ eqcqid=%d, cqid=%d on CPU %d\n", cqid, cq->queue_id, raw_smp_processor_id()); } } /** * lpfc_sli4_hba_handle_eqe - Process a fast-path event queue entry * @phba: Pointer to HBA context object. * @eq: Pointer to the queue structure. * @eqe: Pointer to fast-path event queue entry. * * This routine process a event queue entry from the fast-path event queue. * It will check the MajorCode and MinorCode to determine this is for a * completion event on a completion queue, if not, an error shall be logged * and just return. Otherwise, it will get to the corresponding completion * queue and process all the entries on the completion queue, rearm the * completion queue, and then return. **/ static void lpfc_sli4_hba_handle_eqe(struct lpfc_hba *phba, struct lpfc_queue *eq, struct lpfc_eqe *eqe) { struct lpfc_queue *cq = NULL; uint32_t qidx = eq->hdwq; uint16_t cqid, id; if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0366 Not a valid completion " "event: majorcode=x%x, minorcode=x%x\n", bf_get_le32(lpfc_eqe_major_code, eqe), bf_get_le32(lpfc_eqe_minor_code, eqe)); return; } /* Get the reference to the corresponding CQ */ cqid = bf_get_le32(lpfc_eqe_resource_id, eqe); /* Use the fast lookup method first */ if (cqid <= phba->sli4_hba.cq_max) { cq = phba->sli4_hba.cq_lookup[cqid]; if (cq) goto work_cq; } /* Next check for NVMET completion */ if (phba->cfg_nvmet_mrq && phba->sli4_hba.nvmet_cqset) { id = phba->sli4_hba.nvmet_cqset[0]->queue_id; if ((cqid >= id) && (cqid < (id + phba->cfg_nvmet_mrq))) { /* Process NVMET unsol rcv */ cq = phba->sli4_hba.nvmet_cqset[cqid - id]; goto process_cq; } } if (phba->sli4_hba.nvmels_cq && (cqid == phba->sli4_hba.nvmels_cq->queue_id)) { /* Process NVME unsol rcv */ cq = phba->sli4_hba.nvmels_cq; } /* Otherwise this is a Slow path event */ if (cq == NULL) { lpfc_sli4_sp_handle_eqe(phba, eqe, phba->sli4_hba.hdwq[qidx].hba_eq); return; } process_cq: if (unlikely(cqid != cq->queue_id)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0368 Miss-matched fast-path completion " "queue identifier: eqcqid=%d, fcpcqid=%d\n", cqid, cq->queue_id); return; } work_cq: #if defined(CONFIG_SCSI_LPFC_DEBUG_FS) if (phba->ktime_on) cq->isr_timestamp = ktime_get_ns(); else cq->isr_timestamp = 0; #endif lpfc_sli4_sched_cq_work(phba, cq, cqid); } /** * __lpfc_sli4_hba_process_cq - Process a fast-path event queue entry * @cq: Pointer to CQ to be processed * @poll_mode: Enum lpfc_poll_state to determine poll mode * * This routine calls the cq processing routine with the handler for * fast path CQEs. * * The CQ routine returns two values: the first is the calling status, * which indicates whether work was queued to the background discovery * thread. If true, the routine should wakeup the discovery thread; * the second is the delay parameter. If non-zero, rather than rearming * the CQ and yet another interrupt, the CQ handler should be queued so * that it is processed in a subsequent polling action. The value of * the delay indicates when to reschedule it. **/ static void __lpfc_sli4_hba_process_cq(struct lpfc_queue *cq, enum lpfc_poll_mode poll_mode) { struct lpfc_hba *phba = cq->phba; unsigned long delay; bool workposted = false; int ret = 0; /* process and rearm the CQ */ workposted |= __lpfc_sli4_process_cq(phba, cq, lpfc_sli4_fp_handle_cqe, &delay, poll_mode); if (delay) { if (is_kdump_kernel()) ret = queue_delayed_work(phba->wq, &cq->sched_irqwork, delay); else ret = queue_delayed_work_on(cq->chann, phba->wq, &cq->sched_irqwork, delay); if (!ret) lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0367 Cannot schedule queue work " "for cqid=%d on CPU %d\n", cq->queue_id, cq->chann); } /* wake up worker thread if there are works to be done */ if (workposted) lpfc_worker_wake_up(phba); } /** * lpfc_sli4_hba_process_cq - fast-path work handler when started by * interrupt * @work: pointer to work element * * translates from the work handler and calls the fast-path handler. **/ static void lpfc_sli4_hba_process_cq(struct work_struct *work) { struct lpfc_queue *cq = container_of(work, struct lpfc_queue, irqwork); __lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK); } /** * lpfc_sli4_dly_hba_process_cq - fast-path work handler when started by timer * @work: pointer to work element * * translates from the work handler and calls the fast-path handler. **/ static void lpfc_sli4_dly_hba_process_cq(struct work_struct *work) { struct lpfc_queue *cq = container_of(to_delayed_work(work), struct lpfc_queue, sched_irqwork); __lpfc_sli4_hba_process_cq(cq, LPFC_QUEUE_WORK); } /** * lpfc_sli4_hba_intr_handler - HBA interrupt handler to SLI-4 device * @irq: Interrupt number. * @dev_id: The device context pointer. * * This function is directly called from the PCI layer as an interrupt * service routine when device with SLI-4 interface spec is enabled with * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB * ring event in the HBA. However, when the device is enabled with either * MSI or Pin-IRQ interrupt mode, this function is called as part of the * device-level interrupt handler. When the PCI slot is in error recovery * or the HBA is undergoing initialization, the interrupt handler will not * process the interrupt. The SCSI FCP fast-path ring event are handled in * the intrrupt context. This function is called without any lock held. * It gets the hbalock to access and update SLI data structures. Note that, * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is * equal to that of FCP CQ index. * * The link attention and ELS ring attention events are handled * by the worker thread. The interrupt handler signals the worker thread * and returns for these events. This function is called without any lock * held. It gets the hbalock to access and update SLI data structures. * * This function returns IRQ_HANDLED when interrupt is handled else it * returns IRQ_NONE. **/ irqreturn_t lpfc_sli4_hba_intr_handler(int irq, void *dev_id) { struct lpfc_hba *phba; struct lpfc_hba_eq_hdl *hba_eq_hdl; struct lpfc_queue *fpeq; unsigned long iflag; int ecount = 0; int hba_eqidx; struct lpfc_eq_intr_info *eqi; /* Get the driver's phba structure from the dev_id */ hba_eq_hdl = (struct lpfc_hba_eq_hdl *)dev_id; phba = hba_eq_hdl->phba; hba_eqidx = hba_eq_hdl->idx; if (unlikely(!phba)) return IRQ_NONE; if (unlikely(!phba->sli4_hba.hdwq)) return IRQ_NONE; /* Get to the EQ struct associated with this vector */ fpeq = phba->sli4_hba.hba_eq_hdl[hba_eqidx].eq; if (unlikely(!fpeq)) return IRQ_NONE; /* Check device state for handling interrupt */ if (unlikely(lpfc_intr_state_check(phba))) { /* Check again for link_state with lock held */ spin_lock_irqsave(&phba->hbalock, iflag); if (phba->link_state < LPFC_LINK_DOWN) /* Flush, clear interrupt, and rearm the EQ */ lpfc_sli4_eqcq_flush(phba, fpeq); spin_unlock_irqrestore(&phba->hbalock, iflag); return IRQ_NONE; } eqi = this_cpu_ptr(phba->sli4_hba.eq_info); eqi->icnt++; fpeq->last_cpu = raw_smp_processor_id(); if (eqi->icnt > LPFC_EQD_ISR_TRIGGER && fpeq->q_flag & HBA_EQ_DELAY_CHK && phba->cfg_auto_imax && fpeq->q_mode != LPFC_MAX_AUTO_EQ_DELAY && phba->sli.sli_flag & LPFC_SLI_USE_EQDR) lpfc_sli4_mod_hba_eq_delay(phba, fpeq, LPFC_MAX_AUTO_EQ_DELAY); /* process and rearm the EQ */ ecount = lpfc_sli4_process_eq(phba, fpeq, LPFC_QUEUE_REARM); if (unlikely(ecount == 0)) { fpeq->EQ_no_entry++; if (phba->intr_type == MSIX) /* MSI-X treated interrupt served as no EQ share INT */ lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, "0358 MSI-X interrupt with no EQE\n"); else /* Non MSI-X treated on interrupt as EQ share INT */ return IRQ_NONE; } return IRQ_HANDLED; } /* lpfc_sli4_hba_intr_handler */ /** * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device * @irq: Interrupt number. * @dev_id: The device context pointer. * * This function is the device-level interrupt handler to device with SLI-4 * interface spec, called from the PCI layer when either MSI or Pin-IRQ * interrupt mode is enabled and there is an event in the HBA which requires * driver attention. This function invokes the slow-path interrupt attention * handling function and fast-path interrupt attention handling function in * turn to process the relevant HBA attention events. This function is called * without any lock held. It gets the hbalock to access and update SLI data * structures. * * This function returns IRQ_HANDLED when interrupt is handled, else it * returns IRQ_NONE. **/ irqreturn_t lpfc_sli4_intr_handler(int irq, void *dev_id) { struct lpfc_hba *phba; irqreturn_t hba_irq_rc; bool hba_handled = false; int qidx; /* Get the driver's phba structure from the dev_id */ phba = (struct lpfc_hba *)dev_id; if (unlikely(!phba)) return IRQ_NONE; /* * Invoke fast-path host attention interrupt handling as appropriate. */ for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { hba_irq_rc = lpfc_sli4_hba_intr_handler(irq, &phba->sli4_hba.hba_eq_hdl[qidx]); if (hba_irq_rc == IRQ_HANDLED) hba_handled |= true; } return (hba_handled == true) ? IRQ_HANDLED : IRQ_NONE; } /* lpfc_sli4_intr_handler */ void lpfc_sli4_poll_hbtimer(struct timer_list *t) { struct lpfc_hba *phba = from_timer(phba, t, cpuhp_poll_timer); struct lpfc_queue *eq; int i = 0; rcu_read_lock(); list_for_each_entry_rcu(eq, &phba->poll_list, _poll_list) i += lpfc_sli4_poll_eq(eq, LPFC_POLL_SLOWPATH); if (!list_empty(&phba->poll_list)) mod_timer(&phba->cpuhp_poll_timer, jiffies + msecs_to_jiffies(LPFC_POLL_HB)); rcu_read_unlock(); } inline int lpfc_sli4_poll_eq(struct lpfc_queue *eq, uint8_t path) { struct lpfc_hba *phba = eq->phba; int i = 0; /* * Unlocking an irq is one of the entry point to check * for re-schedule, but we are good for io submission * path as midlayer does a get_cpu to glue us in. Flush * out the invalidate queue so we can see the updated * value for flag. */ smp_rmb(); if (READ_ONCE(eq->mode) == LPFC_EQ_POLL) /* We will not likely get the completion for the caller * during this iteration but i guess that's fine. * Future io's coming on this eq should be able to * pick it up. As for the case of single io's, they * will be handled through a sched from polling timer * function which is currently triggered every 1msec. */ i = lpfc_sli4_process_eq(phba, eq, LPFC_QUEUE_NOARM); return i; } static inline void lpfc_sli4_add_to_poll_list(struct lpfc_queue *eq) { struct lpfc_hba *phba = eq->phba; /* kickstart slowpath processing if needed */ if (list_empty(&phba->poll_list)) mod_timer(&phba->cpuhp_poll_timer, jiffies + msecs_to_jiffies(LPFC_POLL_HB)); list_add_rcu(&eq->_poll_list, &phba->poll_list); synchronize_rcu(); } static inline void lpfc_sli4_remove_from_poll_list(struct lpfc_queue *eq) { struct lpfc_hba *phba = eq->phba; /* Disable slowpath processing for this eq. Kick start the eq * by RE-ARMING the eq's ASAP */ list_del_rcu(&eq->_poll_list); synchronize_rcu(); if (list_empty(&phba->poll_list)) del_timer_sync(&phba->cpuhp_poll_timer); } void lpfc_sli4_cleanup_poll_list(struct lpfc_hba *phba) { struct lpfc_queue *eq, *next; list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) list_del(&eq->_poll_list); INIT_LIST_HEAD(&phba->poll_list); synchronize_rcu(); } static inline void __lpfc_sli4_switch_eqmode(struct lpfc_queue *eq, uint8_t mode) { if (mode == eq->mode) return; /* * currently this function is only called during a hotplug * event and the cpu on which this function is executing * is going offline. By now the hotplug has instructed * the scheduler to remove this cpu from cpu active mask. * So we don't need to work about being put aside by the * scheduler for a high priority process. Yes, the inte- * rrupts could come but they are known to retire ASAP. */ /* Disable polling in the fastpath */ WRITE_ONCE(eq->mode, mode); /* flush out the store buffer */ smp_wmb(); /* * Add this eq to the polling list and start polling. For * a grace period both interrupt handler and poller will * try to process the eq _but_ that's fine. We have a * synchronization mechanism in place (queue_claimed) to * deal with it. This is just a draining phase for int- * errupt handler (not eq's) as we have guranteed through * barrier that all the CPUs have seen the new CQ_POLLED * state. which will effectively disable the REARMING of * the EQ. The whole idea is eq's die off eventually as * we are not rearming EQ's anymore. */ mode ? lpfc_sli4_add_to_poll_list(eq) : lpfc_sli4_remove_from_poll_list(eq); } void lpfc_sli4_start_polling(struct lpfc_queue *eq) { __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_POLL); } void lpfc_sli4_stop_polling(struct lpfc_queue *eq) { struct lpfc_hba *phba = eq->phba; __lpfc_sli4_switch_eqmode(eq, LPFC_EQ_INTERRUPT); /* Kick start for the pending io's in h/w. * Once we switch back to interrupt processing on a eq * the io path completion will only arm eq's when it * receives a completion. But since eq's are in disa- * rmed state it doesn't receive a completion. This * creates a deadlock scenaro. */ phba->sli4_hba.sli4_write_eq_db(phba, eq, 0, LPFC_QUEUE_REARM); } /** * lpfc_sli4_queue_free - free a queue structure and associated memory * @queue: The queue structure to free. * * This function frees a queue structure and the DMAable memory used for * the host resident queue. This function must be called after destroying the * queue on the HBA. **/ void lpfc_sli4_queue_free(struct lpfc_queue *queue) { struct lpfc_dmabuf *dmabuf; if (!queue) return; if (!list_empty(&queue->wq_list)) list_del(&queue->wq_list); while (!list_empty(&queue->page_list)) { list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf, list); dma_free_coherent(&queue->phba->pcidev->dev, queue->page_size, dmabuf->virt, dmabuf->phys); kfree(dmabuf); } if (queue->rqbp) { lpfc_free_rq_buffer(queue->phba, queue); kfree(queue->rqbp); } if (!list_empty(&queue->cpu_list)) list_del(&queue->cpu_list); kfree(queue); return; } /** * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure * @phba: The HBA that this queue is being created on. * @page_size: The size of a queue page * @entry_size: The size of each queue entry for this queue. * @entry_count: The number of entries that this queue will handle. * @cpu: The cpu that will primarily utilize this queue. * * This function allocates a queue structure and the DMAable memory used for * the host resident queue. This function must be called before creating the * queue on the HBA. **/ struct lpfc_queue * lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t page_size, uint32_t entry_size, uint32_t entry_count, int cpu) { struct lpfc_queue *queue; struct lpfc_dmabuf *dmabuf; uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; uint16_t x, pgcnt; if (!phba->sli4_hba.pc_sli4_params.supported) hw_page_size = page_size; pgcnt = ALIGN(entry_size * entry_count, hw_page_size) / hw_page_size; /* If needed, Adjust page count to match the max the adapter supports */ if (pgcnt > phba->sli4_hba.pc_sli4_params.wqpcnt) pgcnt = phba->sli4_hba.pc_sli4_params.wqpcnt; queue = kzalloc_node(sizeof(*queue) + (sizeof(void *) * pgcnt), GFP_KERNEL, cpu_to_node(cpu)); if (!queue) return NULL; INIT_LIST_HEAD(&queue->list); INIT_LIST_HEAD(&queue->_poll_list); INIT_LIST_HEAD(&queue->wq_list); INIT_LIST_HEAD(&queue->wqfull_list); INIT_LIST_HEAD(&queue->page_list); INIT_LIST_HEAD(&queue->child_list); INIT_LIST_HEAD(&queue->cpu_list); /* Set queue parameters now. If the system cannot provide memory * resources, the free routine needs to know what was allocated. */ queue->page_count = pgcnt; queue->q_pgs = (void **)&queue[1]; queue->entry_cnt_per_pg = hw_page_size / entry_size; queue->entry_size = entry_size; queue->entry_count = entry_count; queue->page_size = hw_page_size; queue->phba = phba; for (x = 0; x < queue->page_count; x++) { dmabuf = kzalloc_node(sizeof(*dmabuf), GFP_KERNEL, dev_to_node(&phba->pcidev->dev)); if (!dmabuf) goto out_fail; dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, hw_page_size, &dmabuf->phys, GFP_KERNEL); if (!dmabuf->virt) { kfree(dmabuf); goto out_fail; } dmabuf->buffer_tag = x; list_add_tail(&dmabuf->list, &queue->page_list); /* use lpfc_sli4_qe to index a paritcular entry in this page */ queue->q_pgs[x] = dmabuf->virt; } INIT_WORK(&queue->irqwork, lpfc_sli4_hba_process_cq); INIT_WORK(&queue->spwork, lpfc_sli4_sp_process_cq); INIT_DELAYED_WORK(&queue->sched_irqwork, lpfc_sli4_dly_hba_process_cq); INIT_DELAYED_WORK(&queue->sched_spwork, lpfc_sli4_dly_sp_process_cq); /* notify_interval will be set during q creation */ return queue; out_fail: lpfc_sli4_queue_free(queue); return NULL; } /** * lpfc_dual_chute_pci_bar_map - Map pci base address register to host memory * @phba: HBA structure that indicates port to create a queue on. * @pci_barset: PCI BAR set flag. * * This function shall perform iomap of the specified PCI BAR address to host * memory address if not already done so and return it. The returned host * memory address can be NULL. */ static void __iomem * lpfc_dual_chute_pci_bar_map(struct lpfc_hba *phba, uint16_t pci_barset) { if (!phba->pcidev) return NULL; switch (pci_barset) { case WQ_PCI_BAR_0_AND_1: return phba->pci_bar0_memmap_p; case WQ_PCI_BAR_2_AND_3: return phba->pci_bar2_memmap_p; case WQ_PCI_BAR_4_AND_5: return phba->pci_bar4_memmap_p; default: break; } return NULL; } /** * lpfc_modify_hba_eq_delay - Modify Delay Multiplier on EQs * @phba: HBA structure that EQs are on. * @startq: The starting EQ index to modify * @numq: The number of EQs (consecutive indexes) to modify * @usdelay: amount of delay * * This function revises the EQ delay on 1 or more EQs. The EQ delay * is set either by writing to a register (if supported by the SLI Port) * or by mailbox command. The mailbox command allows several EQs to be * updated at once. * * The @phba struct is used to send a mailbox command to HBA. The @startq * is used to get the starting EQ index to change. The @numq value is * used to specify how many consecutive EQ indexes, starting at EQ index, * are to be changed. This function is asynchronous and will wait for any * mailbox commands to finish before returning. * * On success this function will return a zero. If unable to allocate * enough memory this function will return -ENOMEM. If a mailbox command * fails this function will return -ENXIO. Note: on ENXIO, some EQs may * have had their delay multipler changed. **/ void lpfc_modify_hba_eq_delay(struct lpfc_hba *phba, uint32_t startq, uint32_t numq, uint32_t usdelay) { struct lpfc_mbx_modify_eq_delay *eq_delay; LPFC_MBOXQ_t *mbox; struct lpfc_queue *eq; int cnt = 0, rc, length; uint32_t shdr_status, shdr_add_status; uint32_t dmult; int qidx; union lpfc_sli4_cfg_shdr *shdr; if (startq >= phba->cfg_irq_chann) return; if (usdelay > 0xFFFF) { lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP | LOG_NVME, "6429 usdelay %d too large. Scaled down to " "0xFFFF.\n", usdelay); usdelay = 0xFFFF; } /* set values by EQ_DELAY register if supported */ if (phba->sli.sli_flag & LPFC_SLI_USE_EQDR) { for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; if (!eq) continue; lpfc_sli4_mod_hba_eq_delay(phba, eq, usdelay); if (++cnt >= numq) break; } return; } /* Otherwise, set values by mailbox cmd */ mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!mbox) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "6428 Failed allocating mailbox cmd buffer." " EQ delay was not set.\n"); return; } length = (sizeof(struct lpfc_mbx_modify_eq_delay) - sizeof(struct lpfc_sli4_cfg_mhdr)); lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, LPFC_MBOX_OPCODE_MODIFY_EQ_DELAY, length, LPFC_SLI4_MBX_EMBED); eq_delay = &mbox->u.mqe.un.eq_delay; /* Calculate delay multiper from maximum interrupt per second */ dmult = (usdelay * LPFC_DMULT_CONST) / LPFC_SEC_TO_USEC; if (dmult) dmult--; if (dmult > LPFC_DMULT_MAX) dmult = LPFC_DMULT_MAX; for (qidx = startq; qidx < phba->cfg_irq_chann; qidx++) { eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; if (!eq) continue; eq->q_mode = usdelay; eq_delay->u.request.eq[cnt].eq_id = eq->queue_id; eq_delay->u.request.eq[cnt].phase = 0; eq_delay->u.request.eq[cnt].delay_multi = dmult; if (++cnt >= numq) break; } eq_delay->u.request.num_eq = cnt; mbox->vport = phba->pport; mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; mbox->ctx_buf = NULL; mbox->ctx_ndlp = NULL; rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); shdr = (union lpfc_sli4_cfg_shdr *) &eq_delay->header.cfg_shdr; shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); if (shdr_status || shdr_add_status || rc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2512 MODIFY_EQ_DELAY mailbox failed with " "status x%x add_status x%x, mbx status x%x\n", shdr_status, shdr_add_status, rc); } mempool_free(mbox, phba->mbox_mem_pool); return; } /** * lpfc_eq_create - Create an Event Queue on the HBA * @phba: HBA structure that indicates port to create a queue on. * @eq: The queue structure to use to create the event queue. * @imax: The maximum interrupt per second limit. * * This function creates an event queue, as detailed in @eq, on a port, * described by @phba by sending an EQ_CREATE mailbox command to the HBA. * * The @phba struct is used to send mailbox command to HBA. The @eq struct * is used to get the entry count and entry size that are necessary to * determine the number of pages to allocate and use for this queue. This * function will send the EQ_CREATE mailbox command to the HBA to setup the * event queue. This function is asynchronous and will wait for the mailbox * command to finish before continuing. * * On success this function will return a zero. If unable to allocate enough * memory this function will return -ENOMEM. If the queue create mailbox command * fails this function will return -ENXIO. **/ int lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint32_t imax) { struct lpfc_mbx_eq_create *eq_create; LPFC_MBOXQ_t *mbox; int rc, length, status = 0; struct lpfc_dmabuf *dmabuf; uint32_t shdr_status, shdr_add_status; union lpfc_sli4_cfg_shdr *shdr; uint16_t dmult; uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; /* sanity check on queue memory */ if (!eq) return -ENODEV; if (!phba->sli4_hba.pc_sli4_params.supported) hw_page_size = SLI4_PAGE_SIZE; mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!mbox) return -ENOMEM; length = (sizeof(struct lpfc_mbx_eq_create) - sizeof(struct lpfc_sli4_cfg_mhdr)); lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, LPFC_MBOX_OPCODE_EQ_CREATE, length, LPFC_SLI4_MBX_EMBED); eq_create = &mbox->u.mqe.un.eq_create; shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr; bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request, eq->page_count); bf_set(lpfc_eq_context_size, &eq_create->u.request.context, LPFC_EQE_SIZE); bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1); /* Use version 2 of CREATE_EQ if eqav is set */ if (phba->sli4_hba.pc_sli4_params.eqav) { bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); bf_set(lpfc_eq_context_autovalid, &eq_create->u.request.context, phba->sli4_hba.pc_sli4_params.eqav); } /* don't setup delay multiplier using EQ_CREATE */ dmult = 0; bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context, dmult); switch (eq->entry_count) { default: lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0360 Unsupported EQ count. (%d)\n", eq->entry_count); if (eq->entry_count < 256) { status = -EINVAL; goto out; } fallthrough; /* otherwise default to smallest count */ case 256: bf_set(lpfc_eq_context_count, &eq_create->u.request.context, LPFC_EQ_CNT_256); break; case 512: bf_set(lpfc_eq_context_count, &eq_create->u.request.context, LPFC_EQ_CNT_512); break; case 1024: bf_set(lpfc_eq_context_count, &eq_create->u.request.context, LPFC_EQ_CNT_1024); break; case 2048: bf_set(lpfc_eq_context_count, &eq_create->u.request.context, LPFC_EQ_CNT_2048); break; case 4096: bf_set(lpfc_eq_context_count, &eq_create->u.request.context, LPFC_EQ_CNT_4096); break; } list_for_each_entry(dmabuf, &eq->page_list, list) { memset(dmabuf->virt, 0, hw_page_size); eq_create->u.request.page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); eq_create->u.request.page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); } mbox->vport = phba->pport; mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; mbox->ctx_buf = NULL; mbox->ctx_ndlp = NULL; rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); if (shdr_status || shdr_add_status || rc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2500 EQ_CREATE mailbox failed with " "status x%x add_status x%x, mbx status x%x\n", shdr_status, shdr_add_status, rc); status = -ENXIO; } eq->type = LPFC_EQ; eq->subtype = LPFC_NONE; eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response); if (eq->queue_id == 0xFFFF) status = -ENXIO; eq->host_index = 0; eq->notify_interval = LPFC_EQ_NOTIFY_INTRVL; eq->max_proc_limit = LPFC_EQ_MAX_PROC_LIMIT; out: mempool_free(mbox, phba->mbox_mem_pool); return status; } static int lpfc_cq_poll_hdler(struct irq_poll *iop, int budget) { struct lpfc_queue *cq = container_of(iop, struct lpfc_queue, iop); __lpfc_sli4_hba_process_cq(cq, LPFC_IRQ_POLL); return 1; } /** * lpfc_cq_create - Create a Completion Queue on the HBA * @phba: HBA structure that indicates port to create a queue on. * @cq: The queue structure to use to create the completion queue. * @eq: The event queue to bind this completion queue to. * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). * * This function creates a completion queue, as detailed in @wq, on a port, * described by @phba by sending a CQ_CREATE mailbox command to the HBA. * * The @phba struct is used to send mailbox command to HBA. The @cq struct * is used to get the entry count and entry size that are necessary to * determine the number of pages to allocate and use for this queue. The @eq * is used to indicate which event queue to bind this completion queue to. This * function will send the CQ_CREATE mailbox command to the HBA to setup the * completion queue. This function is asynchronous and will wait for the mailbox * command to finish before continuing. * * On success this function will return a zero. If unable to allocate enough * memory this function will return -ENOMEM. If the queue create mailbox command * fails this function will return -ENXIO. **/ int lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq, struct lpfc_queue *eq, uint32_t type, uint32_t subtype) { struct lpfc_mbx_cq_create *cq_create; struct lpfc_dmabuf *dmabuf; LPFC_MBOXQ_t *mbox; int rc, length, status = 0; uint32_t shdr_status, shdr_add_status; union lpfc_sli4_cfg_shdr *shdr; /* sanity check on queue memory */ if (!cq || !eq) return -ENODEV; mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!mbox) return -ENOMEM; length = (sizeof(struct lpfc_mbx_cq_create) - sizeof(struct lpfc_sli4_cfg_mhdr)); lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, LPFC_MBOX_OPCODE_CQ_CREATE, length, LPFC_SLI4_MBX_EMBED); cq_create = &mbox->u.mqe.un.cq_create; shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr; bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request, cq->page_count); bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1); bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1); bf_set(lpfc_mbox_hdr_version, &shdr->request, phba->sli4_hba.pc_sli4_params.cqv); if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, (cq->page_size / SLI4_PAGE_SIZE)); bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context, eq->queue_id); bf_set(lpfc_cq_context_autovalid, &cq_create->u.request.context, phba->sli4_hba.pc_sli4_params.cqav); } else { bf_set(lpfc_cq_eq_id, &cq_create->u.request.context, eq->queue_id); } switch (cq->entry_count) { case 2048: case 4096: if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { cq_create->u.request.context.lpfc_cq_context_count = cq->entry_count; bf_set(lpfc_cq_context_count, &cq_create->u.request.context, LPFC_CQ_CNT_WORD7); break; } fallthrough; default: lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0361 Unsupported CQ count: " "entry cnt %d sz %d pg cnt %d\n", cq->entry_count, cq->entry_size, cq->page_count); if (cq->entry_count < 256) { status = -EINVAL; goto out; } fallthrough; /* otherwise default to smallest count */ case 256: bf_set(lpfc_cq_context_count, &cq_create->u.request.context, LPFC_CQ_CNT_256); break; case 512: bf_set(lpfc_cq_context_count, &cq_create->u.request.context, LPFC_CQ_CNT_512); break; case 1024: bf_set(lpfc_cq_context_count, &cq_create->u.request.context, LPFC_CQ_CNT_1024); break; } list_for_each_entry(dmabuf, &cq->page_list, list) { memset(dmabuf->virt, 0, cq->page_size); cq_create->u.request.page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); cq_create->u.request.page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); } rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); /* The IOCTL status is embedded in the mailbox subheader. */ shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); if (shdr_status || shdr_add_status || rc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2501 CQ_CREATE mailbox failed with " "status x%x add_status x%x, mbx status x%x\n", shdr_status, shdr_add_status, rc); status = -ENXIO; goto out; } cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); if (cq->queue_id == 0xFFFF) { status = -ENXIO; goto out; } /* link the cq onto the parent eq child list */ list_add_tail(&cq->list, &eq->child_list); /* Set up completion queue's type and subtype */ cq->type = type; cq->subtype = subtype; cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response); cq->assoc_qid = eq->queue_id; cq->assoc_qp = eq; cq->host_index = 0; cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count); if (cq->queue_id > phba->sli4_hba.cq_max) phba->sli4_hba.cq_max = cq->queue_id; irq_poll_init(&cq->iop, LPFC_IRQ_POLL_WEIGHT, lpfc_cq_poll_hdler); out: mempool_free(mbox, phba->mbox_mem_pool); return status; } /** * lpfc_cq_create_set - Create a set of Completion Queues on the HBA for MRQ * @phba: HBA structure that indicates port to create a queue on. * @cqp: The queue structure array to use to create the completion queues. * @hdwq: The hardware queue array with the EQ to bind completion queues to. * @type: Type of queue (EQ, GCQ, MCQ, WCQ, etc). * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). * * This function creates a set of completion queue, s to support MRQ * as detailed in @cqp, on a port, * described by @phba by sending a CREATE_CQ_SET mailbox command to the HBA. * * The @phba struct is used to send mailbox command to HBA. The @cq struct * is used to get the entry count and entry size that are necessary to * determine the number of pages to allocate and use for this queue. The @eq * is used to indicate which event queue to bind this completion queue to. This * function will send the CREATE_CQ_SET mailbox command to the HBA to setup the * completion queue. This function is asynchronous and will wait for the mailbox * command to finish before continuing. * * On success this function will return a zero. If unable to allocate enough * memory this function will return -ENOMEM. If the queue create mailbox command * fails this function will return -ENXIO. **/ int lpfc_cq_create_set(struct lpfc_hba *phba, struct lpfc_queue **cqp, struct lpfc_sli4_hdw_queue *hdwq, uint32_t type, uint32_t subtype) { struct lpfc_queue *cq; struct lpfc_queue *eq; struct lpfc_mbx_cq_create_set *cq_set; struct lpfc_dmabuf *dmabuf; LPFC_MBOXQ_t *mbox; int rc, length, alloclen, status = 0; int cnt, idx, numcq, page_idx = 0; uint32_t shdr_status, shdr_add_status; union lpfc_sli4_cfg_shdr *shdr; uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; /* sanity check on queue memory */ numcq = phba->cfg_nvmet_mrq; if (!cqp || !hdwq || !numcq) return -ENODEV; mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!mbox) return -ENOMEM; length = sizeof(struct lpfc_mbx_cq_create_set); length += ((numcq * cqp[0]->page_count) * sizeof(struct dma_address)); alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, LPFC_MBOX_OPCODE_FCOE_CQ_CREATE_SET, length, LPFC_SLI4_MBX_NEMBED); if (alloclen < length) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3098 Allocated DMA memory size (%d) is " "less than the requested DMA memory size " "(%d)\n", alloclen, length); status = -ENOMEM; goto out; } cq_set = mbox->sge_array->addr[0]; shdr = (union lpfc_sli4_cfg_shdr *)&cq_set->cfg_shdr; bf_set(lpfc_mbox_hdr_version, &shdr->request, 0); for (idx = 0; idx < numcq; idx++) { cq = cqp[idx]; eq = hdwq[idx].hba_eq; if (!cq || !eq) { status = -ENOMEM; goto out; } if (!phba->sli4_hba.pc_sli4_params.supported) hw_page_size = cq->page_size; switch (idx) { case 0: bf_set(lpfc_mbx_cq_create_set_page_size, &cq_set->u.request, (hw_page_size / SLI4_PAGE_SIZE)); bf_set(lpfc_mbx_cq_create_set_num_pages, &cq_set->u.request, cq->page_count); bf_set(lpfc_mbx_cq_create_set_evt, &cq_set->u.request, 1); bf_set(lpfc_mbx_cq_create_set_valid, &cq_set->u.request, 1); bf_set(lpfc_mbx_cq_create_set_cqe_size, &cq_set->u.request, 0); bf_set(lpfc_mbx_cq_create_set_num_cq, &cq_set->u.request, numcq); bf_set(lpfc_mbx_cq_create_set_autovalid, &cq_set->u.request, phba->sli4_hba.pc_sli4_params.cqav); switch (cq->entry_count) { case 2048: case 4096: if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) { bf_set(lpfc_mbx_cq_create_set_cqe_cnt, &cq_set->u.request, cq->entry_count); bf_set(lpfc_mbx_cq_create_set_cqe_cnt, &cq_set->u.request, LPFC_CQ_CNT_WORD7); break; } fallthrough; default: lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3118 Bad CQ count. (%d)\n", cq->entry_count); if (cq->entry_count < 256) { status = -EINVAL; goto out; } fallthrough; /* otherwise default to smallest */ case 256: bf_set(lpfc_mbx_cq_create_set_cqe_cnt, &cq_set->u.request, LPFC_CQ_CNT_256); break; case 512: bf_set(lpfc_mbx_cq_create_set_cqe_cnt, &cq_set->u.request, LPFC_CQ_CNT_512); break; case 1024: bf_set(lpfc_mbx_cq_create_set_cqe_cnt, &cq_set->u.request, LPFC_CQ_CNT_1024); break; } bf_set(lpfc_mbx_cq_create_set_eq_id0, &cq_set->u.request, eq->queue_id); break; case 1: bf_set(lpfc_mbx_cq_create_set_eq_id1, &cq_set->u.request, eq->queue_id); break; case 2: bf_set(lpfc_mbx_cq_create_set_eq_id2, &cq_set->u.request, eq->queue_id); break; case 3: bf_set(lpfc_mbx_cq_create_set_eq_id3, &cq_set->u.request, eq->queue_id); break; case 4: bf_set(lpfc_mbx_cq_create_set_eq_id4, &cq_set->u.request, eq->queue_id); break; case 5: bf_set(lpfc_mbx_cq_create_set_eq_id5, &cq_set->u.request, eq->queue_id); break; case 6: bf_set(lpfc_mbx_cq_create_set_eq_id6, &cq_set->u.request, eq->queue_id); break; case 7: bf_set(lpfc_mbx_cq_create_set_eq_id7, &cq_set->u.request, eq->queue_id); break; case 8: bf_set(lpfc_mbx_cq_create_set_eq_id8, &cq_set->u.request, eq->queue_id); break; case 9: bf_set(lpfc_mbx_cq_create_set_eq_id9, &cq_set->u.request, eq->queue_id); break; case 10: bf_set(lpfc_mbx_cq_create_set_eq_id10, &cq_set->u.request, eq->queue_id); break; case 11: bf_set(lpfc_mbx_cq_create_set_eq_id11, &cq_set->u.request, eq->queue_id); break; case 12: bf_set(lpfc_mbx_cq_create_set_eq_id12, &cq_set->u.request, eq->queue_id); break; case 13: bf_set(lpfc_mbx_cq_create_set_eq_id13, &cq_set->u.request, eq->queue_id); break; case 14: bf_set(lpfc_mbx_cq_create_set_eq_id14, &cq_set->u.request, eq->queue_id); break; case 15: bf_set(lpfc_mbx_cq_create_set_eq_id15, &cq_set->u.request, eq->queue_id); break; } /* link the cq onto the parent eq child list */ list_add_tail(&cq->list, &eq->child_list); /* Set up completion queue's type and subtype */ cq->type = type; cq->subtype = subtype; cq->assoc_qid = eq->queue_id; cq->assoc_qp = eq; cq->host_index = 0; cq->notify_interval = LPFC_CQ_NOTIFY_INTRVL; cq->max_proc_limit = min(phba->cfg_cq_max_proc_limit, cq->entry_count); cq->chann = idx; rc = 0; list_for_each_entry(dmabuf, &cq->page_list, list) { memset(dmabuf->virt, 0, hw_page_size); cnt = page_idx + dmabuf->buffer_tag; cq_set->u.request.page[cnt].addr_lo = putPaddrLow(dmabuf->phys); cq_set->u.request.page[cnt].addr_hi = putPaddrHigh(dmabuf->phys); rc++; } page_idx += rc; } rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); /* The IOCTL status is embedded in the mailbox subheader. */ shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); if (shdr_status || shdr_add_status || rc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3119 CQ_CREATE_SET mailbox failed with " "status x%x add_status x%x, mbx status x%x\n", shdr_status, shdr_add_status, rc); status = -ENXIO; goto out; } rc = bf_get(lpfc_mbx_cq_create_set_base_id, &cq_set->u.response); if (rc == 0xFFFF) { status = -ENXIO; goto out; } for (idx = 0; idx < numcq; idx++) { cq = cqp[idx]; cq->queue_id = rc + idx; if (cq->queue_id > phba->sli4_hba.cq_max) phba->sli4_hba.cq_max = cq->queue_id; } out: lpfc_sli4_mbox_cmd_free(phba, mbox); return status; } /** * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration * @phba: HBA structure that indicates port to create a queue on. * @mq: The queue structure to use to create the mailbox queue. * @mbox: An allocated pointer to type LPFC_MBOXQ_t * @cq: The completion queue to associate with this cq. * * This function provides failback (fb) functionality when the * mq_create_ext fails on older FW generations. It's purpose is identical * to mq_create_ext otherwise. * * This routine cannot fail as all attributes were previously accessed and * initialized in mq_create_ext. **/ static void lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq, LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq) { struct lpfc_mbx_mq_create *mq_create; struct lpfc_dmabuf *dmabuf; int length; length = (sizeof(struct lpfc_mbx_mq_create) - sizeof(struct lpfc_sli4_cfg_mhdr)); lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, LPFC_MBOX_OPCODE_MQ_CREATE, length, LPFC_SLI4_MBX_EMBED); mq_create = &mbox->u.mqe.un.mq_create; bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request, mq->page_count); bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context, cq->queue_id); bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1); switch (mq->entry_count) { case 16: bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, LPFC_MQ_RING_SIZE_16); break; case 32: bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, LPFC_MQ_RING_SIZE_32); break; case 64: bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, LPFC_MQ_RING_SIZE_64); break; case 128: bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context, LPFC_MQ_RING_SIZE_128); break; } list_for_each_entry(dmabuf, &mq->page_list, list) { mq_create->u.request.page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); mq_create->u.request.page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); } } /** * lpfc_mq_create - Create a mailbox Queue on the HBA * @phba: HBA structure that indicates port to create a queue on. * @mq: The queue structure to use to create the mailbox queue. * @cq: The completion queue to associate with this cq. * @subtype: The queue's subtype. * * This function creates a mailbox queue, as detailed in @mq, on a port, * described by @phba by sending a MQ_CREATE mailbox command to the HBA. * * The @phba struct is used to send mailbox command to HBA. The @cq struct * is used to get the entry count and entry size that are necessary to * determine the number of pages to allocate and use for this queue. This * function will send the MQ_CREATE mailbox command to the HBA to setup the * mailbox queue. This function is asynchronous and will wait for the mailbox * command to finish before continuing. * * On success this function will return a zero. If unable to allocate enough * memory this function will return -ENOMEM. If the queue create mailbox command * fails this function will return -ENXIO. **/ int32_t lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq, struct lpfc_queue *cq, uint32_t subtype) { struct lpfc_mbx_mq_create *mq_create; struct lpfc_mbx_mq_create_ext *mq_create_ext; struct lpfc_dmabuf *dmabuf; LPFC_MBOXQ_t *mbox; int rc, length, status = 0; uint32_t shdr_status, shdr_add_status; union lpfc_sli4_cfg_shdr *shdr; uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; /* sanity check on queue memory */ if (!mq || !cq) return -ENODEV; if (!phba->sli4_hba.pc_sli4_params.supported) hw_page_size = SLI4_PAGE_SIZE; mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!mbox) return -ENOMEM; length = (sizeof(struct lpfc_mbx_mq_create_ext) - sizeof(struct lpfc_sli4_cfg_mhdr)); lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, LPFC_MBOX_OPCODE_MQ_CREATE_EXT, length, LPFC_SLI4_MBX_EMBED); mq_create_ext = &mbox->u.mqe.un.mq_create_ext; shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr; bf_set(lpfc_mbx_mq_create_ext_num_pages, &mq_create_ext->u.request, mq->page_count); bf_set(lpfc_mbx_mq_create_ext_async_evt_link, &mq_create_ext->u.request, 1); bf_set(lpfc_mbx_mq_create_ext_async_evt_fip, &mq_create_ext->u.request, 1); bf_set(lpfc_mbx_mq_create_ext_async_evt_group5, &mq_create_ext->u.request, 1); bf_set(lpfc_mbx_mq_create_ext_async_evt_fc, &mq_create_ext->u.request, 1); bf_set(lpfc_mbx_mq_create_ext_async_evt_sli, &mq_create_ext->u.request, 1); bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1); bf_set(lpfc_mbox_hdr_version, &shdr->request, phba->sli4_hba.pc_sli4_params.mqv); if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1) bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request, cq->queue_id); else bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context, cq->queue_id); switch (mq->entry_count) { default: lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0362 Unsupported MQ count. (%d)\n", mq->entry_count); if (mq->entry_count < 16) { status = -EINVAL; goto out; } fallthrough; /* otherwise default to smallest count */ case 16: bf_set(lpfc_mq_context_ring_size, &mq_create_ext->u.request.context, LPFC_MQ_RING_SIZE_16); break; case 32: bf_set(lpfc_mq_context_ring_size, &mq_create_ext->u.request.context, LPFC_MQ_RING_SIZE_32); break; case 64: bf_set(lpfc_mq_context_ring_size, &mq_create_ext->u.request.context, LPFC_MQ_RING_SIZE_64); break; case 128: bf_set(lpfc_mq_context_ring_size, &mq_create_ext->u.request.context, LPFC_MQ_RING_SIZE_128); break; } list_for_each_entry(dmabuf, &mq->page_list, list) { memset(dmabuf->virt, 0, hw_page_size); mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); } rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, &mq_create_ext->u.response); if (rc != MBX_SUCCESS) { lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "2795 MQ_CREATE_EXT failed with " "status x%x. Failback to MQ_CREATE.\n", rc); lpfc_mq_create_fb_init(phba, mq, mbox, cq); mq_create = &mbox->u.mqe.un.mq_create; rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr; mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id, &mq_create->u.response); } /* The IOCTL status is embedded in the mailbox subheader. */ shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); if (shdr_status || shdr_add_status || rc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2502 MQ_CREATE mailbox failed with " "status x%x add_status x%x, mbx status x%x\n", shdr_status, shdr_add_status, rc); status = -ENXIO; goto out; } if (mq->queue_id == 0xFFFF) { status = -ENXIO; goto out; } mq->type = LPFC_MQ; mq->assoc_qid = cq->queue_id; mq->subtype = subtype; mq->host_index = 0; mq->hba_index = 0; /* link the mq onto the parent cq child list */ list_add_tail(&mq->list, &cq->child_list); out: mempool_free(mbox, phba->mbox_mem_pool); return status; } /** * lpfc_wq_create - Create a Work Queue on the HBA * @phba: HBA structure that indicates port to create a queue on. * @wq: The queue structure to use to create the work queue. * @cq: The completion queue to bind this work queue to. * @subtype: The subtype of the work queue indicating its functionality. * * This function creates a work queue, as detailed in @wq, on a port, described * by @phba by sending a WQ_CREATE mailbox command to the HBA. * * The @phba struct is used to send mailbox command to HBA. The @wq struct * is used to get the entry count and entry size that are necessary to * determine the number of pages to allocate and use for this queue. The @cq * is used to indicate which completion queue to bind this work queue to. This * function will send the WQ_CREATE mailbox command to the HBA to setup the * work queue. This function is asynchronous and will wait for the mailbox * command to finish before continuing. * * On success this function will return a zero. If unable to allocate enough * memory this function will return -ENOMEM. If the queue create mailbox command * fails this function will return -ENXIO. **/ int lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq, struct lpfc_queue *cq, uint32_t subtype) { struct lpfc_mbx_wq_create *wq_create; struct lpfc_dmabuf *dmabuf; LPFC_MBOXQ_t *mbox; int rc, length, status = 0; uint32_t shdr_status, shdr_add_status; union lpfc_sli4_cfg_shdr *shdr; uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; struct dma_address *page; void __iomem *bar_memmap_p; uint32_t db_offset; uint16_t pci_barset; uint8_t dpp_barset; uint32_t dpp_offset; uint8_t wq_create_version; #ifdef CONFIG_X86 unsigned long pg_addr; #endif /* sanity check on queue memory */ if (!wq || !cq) return -ENODEV; if (!phba->sli4_hba.pc_sli4_params.supported) hw_page_size = wq->page_size; mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!mbox) return -ENOMEM; length = (sizeof(struct lpfc_mbx_wq_create) - sizeof(struct lpfc_sli4_cfg_mhdr)); lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, LPFC_MBOX_OPCODE_FCOE_WQ_CREATE, length, LPFC_SLI4_MBX_EMBED); wq_create = &mbox->u.mqe.un.wq_create; shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr; bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request, wq->page_count); bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request, cq->queue_id); /* wqv is the earliest version supported, NOT the latest */ bf_set(lpfc_mbox_hdr_version, &shdr->request, phba->sli4_hba.pc_sli4_params.wqv); if ((phba->sli4_hba.pc_sli4_params.wqsize & LPFC_WQ_SZ128_SUPPORT) || (wq->page_size > SLI4_PAGE_SIZE)) wq_create_version = LPFC_Q_CREATE_VERSION_1; else wq_create_version = LPFC_Q_CREATE_VERSION_0; switch (wq_create_version) { case LPFC_Q_CREATE_VERSION_1: bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1, wq->entry_count); bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_1); switch (wq->entry_size) { default: case 64: bf_set(lpfc_mbx_wq_create_wqe_size, &wq_create->u.request_1, LPFC_WQ_WQE_SIZE_64); break; case 128: bf_set(lpfc_mbx_wq_create_wqe_size, &wq_create->u.request_1, LPFC_WQ_WQE_SIZE_128); break; } /* Request DPP by default */ bf_set(lpfc_mbx_wq_create_dpp_req, &wq_create->u.request_1, 1); bf_set(lpfc_mbx_wq_create_page_size, &wq_create->u.request_1, (wq->page_size / SLI4_PAGE_SIZE)); page = wq_create->u.request_1.page; break; default: page = wq_create->u.request.page; break; } list_for_each_entry(dmabuf, &wq->page_list, list) { memset(dmabuf->virt, 0, hw_page_size); page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); } if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) bf_set(lpfc_mbx_wq_create_dua, &wq_create->u.request, 1); rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); /* The IOCTL status is embedded in the mailbox subheader. */ shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); if (shdr_status || shdr_add_status || rc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2503 WQ_CREATE mailbox failed with " "status x%x add_status x%x, mbx status x%x\n", shdr_status, shdr_add_status, rc); status = -ENXIO; goto out; } if (wq_create_version == LPFC_Q_CREATE_VERSION_0) wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, &wq_create->u.response); else wq->queue_id = bf_get(lpfc_mbx_wq_create_v1_q_id, &wq_create->u.response_1); if (wq->queue_id == 0xFFFF) { status = -ENXIO; goto out; } wq->db_format = LPFC_DB_LIST_FORMAT; if (wq_create_version == LPFC_Q_CREATE_VERSION_0) { if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { wq->db_format = bf_get(lpfc_mbx_wq_create_db_format, &wq_create->u.response); if ((wq->db_format != LPFC_DB_LIST_FORMAT) && (wq->db_format != LPFC_DB_RING_FORMAT)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3265 WQ[%d] doorbell format " "not supported: x%x\n", wq->queue_id, wq->db_format); status = -EINVAL; goto out; } pci_barset = bf_get(lpfc_mbx_wq_create_bar_set, &wq_create->u.response); bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); if (!bar_memmap_p) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3263 WQ[%d] failed to memmap " "pci barset:x%x\n", wq->queue_id, pci_barset); status = -ENOMEM; goto out; } db_offset = wq_create->u.response.doorbell_offset; if ((db_offset != LPFC_ULP0_WQ_DOORBELL) && (db_offset != LPFC_ULP1_WQ_DOORBELL)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3252 WQ[%d] doorbell offset " "not supported: x%x\n", wq->queue_id, db_offset); status = -EINVAL; goto out; } wq->db_regaddr = bar_memmap_p + db_offset; lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "3264 WQ[%d]: barset:x%x, offset:x%x, " "format:x%x\n", wq->queue_id, pci_barset, db_offset, wq->db_format); } else wq->db_regaddr = phba->sli4_hba.WQDBregaddr; } else { /* Check if DPP was honored by the firmware */ wq->dpp_enable = bf_get(lpfc_mbx_wq_create_dpp_rsp, &wq_create->u.response_1); if (wq->dpp_enable) { pci_barset = bf_get(lpfc_mbx_wq_create_v1_bar_set, &wq_create->u.response_1); bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); if (!bar_memmap_p) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3267 WQ[%d] failed to memmap " "pci barset:x%x\n", wq->queue_id, pci_barset); status = -ENOMEM; goto out; } db_offset = wq_create->u.response_1.doorbell_offset; wq->db_regaddr = bar_memmap_p + db_offset; wq->dpp_id = bf_get(lpfc_mbx_wq_create_dpp_id, &wq_create->u.response_1); dpp_barset = bf_get(lpfc_mbx_wq_create_dpp_bar, &wq_create->u.response_1); bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, dpp_barset); if (!bar_memmap_p) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3268 WQ[%d] failed to memmap " "pci barset:x%x\n", wq->queue_id, dpp_barset); status = -ENOMEM; goto out; } dpp_offset = wq_create->u.response_1.dpp_offset; wq->dpp_regaddr = bar_memmap_p + dpp_offset; lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "3271 WQ[%d]: barset:x%x, offset:x%x, " "dpp_id:x%x dpp_barset:x%x " "dpp_offset:x%x\n", wq->queue_id, pci_barset, db_offset, wq->dpp_id, dpp_barset, dpp_offset); #ifdef CONFIG_X86 /* Enable combined writes for DPP aperture */ pg_addr = (unsigned long)(wq->dpp_regaddr) & PAGE_MASK; rc = set_memory_wc(pg_addr, 1); if (rc) { lpfc_printf_log(phba, KERN_ERR, LOG_INIT, "3272 Cannot setup Combined " "Write on WQ[%d] - disable DPP\n", wq->queue_id); phba->cfg_enable_dpp = 0; } #else phba->cfg_enable_dpp = 0; #endif } else wq->db_regaddr = phba->sli4_hba.WQDBregaddr; } wq->pring = kzalloc(sizeof(struct lpfc_sli_ring), GFP_KERNEL); if (wq->pring == NULL) { status = -ENOMEM; goto out; } wq->type = LPFC_WQ; wq->assoc_qid = cq->queue_id; wq->subtype = subtype; wq->host_index = 0; wq->hba_index = 0; wq->notify_interval = LPFC_WQ_NOTIFY_INTRVL; /* link the wq onto the parent cq child list */ list_add_tail(&wq->list, &cq->child_list); out: mempool_free(mbox, phba->mbox_mem_pool); return status; } /** * lpfc_rq_create - Create a Receive Queue on the HBA * @phba: HBA structure that indicates port to create a queue on. * @hrq: The queue structure to use to create the header receive queue. * @drq: The queue structure to use to create the data receive queue. * @cq: The completion queue to bind this work queue to. * @subtype: The subtype of the work queue indicating its functionality. * * This function creates a receive buffer queue pair , as detailed in @hrq and * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command * to the HBA. * * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq * struct is used to get the entry count that is necessary to determine the * number of pages to use for this queue. The @cq is used to indicate which * completion queue to bind received buffers that are posted to these queues to. * This function will send the RQ_CREATE mailbox command to the HBA to setup the * receive queue pair. This function is asynchronous and will wait for the * mailbox command to finish before continuing. * * On success this function will return a zero. If unable to allocate enough * memory this function will return -ENOMEM. If the queue create mailbox command * fails this function will return -ENXIO. **/ int lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq, struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype) { struct lpfc_mbx_rq_create *rq_create; struct lpfc_dmabuf *dmabuf; LPFC_MBOXQ_t *mbox; int rc, length, status = 0; uint32_t shdr_status, shdr_add_status; union lpfc_sli4_cfg_shdr *shdr; uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; void __iomem *bar_memmap_p; uint32_t db_offset; uint16_t pci_barset; /* sanity check on queue memory */ if (!hrq || !drq || !cq) return -ENODEV; if (!phba->sli4_hba.pc_sli4_params.supported) hw_page_size = SLI4_PAGE_SIZE; if (hrq->entry_count != drq->entry_count) return -EINVAL; mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!mbox) return -ENOMEM; length = (sizeof(struct lpfc_mbx_rq_create) - sizeof(struct lpfc_sli4_cfg_mhdr)); lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, LPFC_SLI4_MBX_EMBED); rq_create = &mbox->u.mqe.un.rq_create; shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; bf_set(lpfc_mbox_hdr_version, &shdr->request, phba->sli4_hba.pc_sli4_params.rqv); if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { bf_set(lpfc_rq_context_rqe_count_1, &rq_create->u.request.context, hrq->entry_count); rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE; bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, LPFC_RQE_SIZE_8); bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, LPFC_RQ_PAGE_SIZE_4096); } else { switch (hrq->entry_count) { default: lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2535 Unsupported RQ count. (%d)\n", hrq->entry_count); if (hrq->entry_count < 512) { status = -EINVAL; goto out; } fallthrough; /* otherwise default to smallest count */ case 512: bf_set(lpfc_rq_context_rqe_count, &rq_create->u.request.context, LPFC_RQ_RING_SIZE_512); break; case 1024: bf_set(lpfc_rq_context_rqe_count, &rq_create->u.request.context, LPFC_RQ_RING_SIZE_1024); break; case 2048: bf_set(lpfc_rq_context_rqe_count, &rq_create->u.request.context, LPFC_RQ_RING_SIZE_2048); break; case 4096: bf_set(lpfc_rq_context_rqe_count, &rq_create->u.request.context, LPFC_RQ_RING_SIZE_4096); break; } bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, LPFC_HDR_BUF_SIZE); } bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, cq->queue_id); bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, hrq->page_count); list_for_each_entry(dmabuf, &hrq->page_list, list) { memset(dmabuf->virt, 0, hw_page_size); rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); } if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); /* The IOCTL status is embedded in the mailbox subheader. */ shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); if (shdr_status || shdr_add_status || rc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2504 RQ_CREATE mailbox failed with " "status x%x add_status x%x, mbx status x%x\n", shdr_status, shdr_add_status, rc); status = -ENXIO; goto out; } hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); if (hrq->queue_id == 0xFFFF) { status = -ENXIO; goto out; } if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) { hrq->db_format = bf_get(lpfc_mbx_rq_create_db_format, &rq_create->u.response); if ((hrq->db_format != LPFC_DB_LIST_FORMAT) && (hrq->db_format != LPFC_DB_RING_FORMAT)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3262 RQ [%d] doorbell format not " "supported: x%x\n", hrq->queue_id, hrq->db_format); status = -EINVAL; goto out; } pci_barset = bf_get(lpfc_mbx_rq_create_bar_set, &rq_create->u.response); bar_memmap_p = lpfc_dual_chute_pci_bar_map(phba, pci_barset); if (!bar_memmap_p) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3269 RQ[%d] failed to memmap pci " "barset:x%x\n", hrq->queue_id, pci_barset); status = -ENOMEM; goto out; } db_offset = rq_create->u.response.doorbell_offset; if ((db_offset != LPFC_ULP0_RQ_DOORBELL) && (db_offset != LPFC_ULP1_RQ_DOORBELL)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3270 RQ[%d] doorbell offset not " "supported: x%x\n", hrq->queue_id, db_offset); status = -EINVAL; goto out; } hrq->db_regaddr = bar_memmap_p + db_offset; lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "3266 RQ[qid:%d]: barset:x%x, offset:x%x, " "format:x%x\n", hrq->queue_id, pci_barset, db_offset, hrq->db_format); } else { hrq->db_format = LPFC_DB_RING_FORMAT; hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; } hrq->type = LPFC_HRQ; hrq->assoc_qid = cq->queue_id; hrq->subtype = subtype; hrq->host_index = 0; hrq->hba_index = 0; hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; /* now create the data queue */ lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, LPFC_SLI4_MBX_EMBED); bf_set(lpfc_mbox_hdr_version, &shdr->request, phba->sli4_hba.pc_sli4_params.rqv); if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) { bf_set(lpfc_rq_context_rqe_count_1, &rq_create->u.request.context, hrq->entry_count); if (subtype == LPFC_NVMET) rq_create->u.request.context.buffer_size = LPFC_NVMET_DATA_BUF_SIZE; else rq_create->u.request.context.buffer_size = LPFC_DATA_BUF_SIZE; bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, LPFC_RQE_SIZE_8); bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, (PAGE_SIZE/SLI4_PAGE_SIZE)); } else { switch (drq->entry_count) { default: lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2536 Unsupported RQ count. (%d)\n", drq->entry_count); if (drq->entry_count < 512) { status = -EINVAL; goto out; } fallthrough; /* otherwise default to smallest count */ case 512: bf_set(lpfc_rq_context_rqe_count, &rq_create->u.request.context, LPFC_RQ_RING_SIZE_512); break; case 1024: bf_set(lpfc_rq_context_rqe_count, &rq_create->u.request.context, LPFC_RQ_RING_SIZE_1024); break; case 2048: bf_set(lpfc_rq_context_rqe_count, &rq_create->u.request.context, LPFC_RQ_RING_SIZE_2048); break; case 4096: bf_set(lpfc_rq_context_rqe_count, &rq_create->u.request.context, LPFC_RQ_RING_SIZE_4096); break; } if (subtype == LPFC_NVMET) bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, LPFC_NVMET_DATA_BUF_SIZE); else bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context, LPFC_DATA_BUF_SIZE); } bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context, cq->queue_id); bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, drq->page_count); list_for_each_entry(dmabuf, &drq->page_list, list) { rq_create->u.request.page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys); rq_create->u.request.page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys); } if (phba->sli4_hba.fw_func_mode & LPFC_DUA_MODE) bf_set(lpfc_mbx_rq_create_dua, &rq_create->u.request, 1); rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); /* The IOCTL status is embedded in the mailbox subheader. */ shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr; shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); if (shdr_status || shdr_add_status || rc) { status = -ENXIO; goto out; } drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); if (drq->queue_id == 0xFFFF) { status = -ENXIO; goto out; } drq->type = LPFC_DRQ; drq->assoc_qid = cq->queue_id; drq->subtype = subtype; drq->host_index = 0; drq->hba_index = 0; drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; /* link the header and data RQs onto the parent cq child list */ list_add_tail(&hrq->list, &cq->child_list); list_add_tail(&drq->list, &cq->child_list); out: mempool_free(mbox, phba->mbox_mem_pool); return status; } /** * lpfc_mrq_create - Create MRQ Receive Queues on the HBA * @phba: HBA structure that indicates port to create a queue on. * @hrqp: The queue structure array to use to create the header receive queues. * @drqp: The queue structure array to use to create the data receive queues. * @cqp: The completion queue array to bind these receive queues to. * @subtype: Functional purpose of the queue (MBOX, IO, ELS, NVMET, etc). * * This function creates a receive buffer queue pair , as detailed in @hrq and * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command * to the HBA. * * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq * struct is used to get the entry count that is necessary to determine the * number of pages to use for this queue. The @cq is used to indicate which * completion queue to bind received buffers that are posted to these queues to. * This function will send the RQ_CREATE mailbox command to the HBA to setup the * receive queue pair. This function is asynchronous and will wait for the * mailbox command to finish before continuing. * * On success this function will return a zero. If unable to allocate enough * memory this function will return -ENOMEM. If the queue create mailbox command * fails this function will return -ENXIO. **/ int lpfc_mrq_create(struct lpfc_hba *phba, struct lpfc_queue **hrqp, struct lpfc_queue **drqp, struct lpfc_queue **cqp, uint32_t subtype) { struct lpfc_queue *hrq, *drq, *cq; struct lpfc_mbx_rq_create_v2 *rq_create; struct lpfc_dmabuf *dmabuf; LPFC_MBOXQ_t *mbox; int rc, length, alloclen, status = 0; int cnt, idx, numrq, page_idx = 0; uint32_t shdr_status, shdr_add_status; union lpfc_sli4_cfg_shdr *shdr; uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz; numrq = phba->cfg_nvmet_mrq; /* sanity check on array memory */ if (!hrqp || !drqp || !cqp || !numrq) return -ENODEV; if (!phba->sli4_hba.pc_sli4_params.supported) hw_page_size = SLI4_PAGE_SIZE; mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!mbox) return -ENOMEM; length = sizeof(struct lpfc_mbx_rq_create_v2); length += ((2 * numrq * hrqp[0]->page_count) * sizeof(struct dma_address)); alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, LPFC_MBOX_OPCODE_FCOE_RQ_CREATE, length, LPFC_SLI4_MBX_NEMBED); if (alloclen < length) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3099 Allocated DMA memory size (%d) is " "less than the requested DMA memory size " "(%d)\n", alloclen, length); status = -ENOMEM; goto out; } rq_create = mbox->sge_array->addr[0]; shdr = (union lpfc_sli4_cfg_shdr *)&rq_create->cfg_shdr; bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_2); cnt = 0; for (idx = 0; idx < numrq; idx++) { hrq = hrqp[idx]; drq = drqp[idx]; cq = cqp[idx]; /* sanity check on queue memory */ if (!hrq || !drq || !cq) { status = -ENODEV; goto out; } if (hrq->entry_count != drq->entry_count) { status = -EINVAL; goto out; } if (idx == 0) { bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request, hrq->page_count); bf_set(lpfc_mbx_rq_create_rq_cnt, &rq_create->u.request, (numrq * 2)); bf_set(lpfc_mbx_rq_create_dnb, &rq_create->u.request, 1); bf_set(lpfc_rq_context_base_cq, &rq_create->u.request.context, cq->queue_id); bf_set(lpfc_rq_context_data_size, &rq_create->u.request.context, LPFC_NVMET_DATA_BUF_SIZE); bf_set(lpfc_rq_context_hdr_size, &rq_create->u.request.context, LPFC_HDR_BUF_SIZE); bf_set(lpfc_rq_context_rqe_count_1, &rq_create->u.request.context, hrq->entry_count); bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context, LPFC_RQE_SIZE_8); bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context, (PAGE_SIZE/SLI4_PAGE_SIZE)); } rc = 0; list_for_each_entry(dmabuf, &hrq->page_list, list) { memset(dmabuf->virt, 0, hw_page_size); cnt = page_idx + dmabuf->buffer_tag; rq_create->u.request.page[cnt].addr_lo = putPaddrLow(dmabuf->phys); rq_create->u.request.page[cnt].addr_hi = putPaddrHigh(dmabuf->phys); rc++; } page_idx += rc; rc = 0; list_for_each_entry(dmabuf, &drq->page_list, list) { memset(dmabuf->virt, 0, hw_page_size); cnt = page_idx + dmabuf->buffer_tag; rq_create->u.request.page[cnt].addr_lo = putPaddrLow(dmabuf->phys); rq_create->u.request.page[cnt].addr_hi = putPaddrHigh(dmabuf->phys); rc++; } page_idx += rc; hrq->db_format = LPFC_DB_RING_FORMAT; hrq->db_regaddr = phba->sli4_hba.RQDBregaddr; hrq->type = LPFC_HRQ; hrq->assoc_qid = cq->queue_id; hrq->subtype = subtype; hrq->host_index = 0; hrq->hba_index = 0; hrq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; drq->db_format = LPFC_DB_RING_FORMAT; drq->db_regaddr = phba->sli4_hba.RQDBregaddr; drq->type = LPFC_DRQ; drq->assoc_qid = cq->queue_id; drq->subtype = subtype; drq->host_index = 0; drq->hba_index = 0; drq->notify_interval = LPFC_RQ_NOTIFY_INTRVL; list_add_tail(&hrq->list, &cq->child_list); list_add_tail(&drq->list, &cq->child_list); } rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); /* The IOCTL status is embedded in the mailbox subheader. */ shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); if (shdr_status || shdr_add_status || rc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3120 RQ_CREATE mailbox failed with " "status x%x add_status x%x, mbx status x%x\n", shdr_status, shdr_add_status, rc); status = -ENXIO; goto out; } rc = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response); if (rc == 0xFFFF) { status = -ENXIO; goto out; } /* Initialize all RQs with associated queue id */ for (idx = 0; idx < numrq; idx++) { hrq = hrqp[idx]; hrq->queue_id = rc + (2 * idx); drq = drqp[idx]; drq->queue_id = rc + (2 * idx) + 1; } out: lpfc_sli4_mbox_cmd_free(phba, mbox); return status; } /** * lpfc_eq_destroy - Destroy an event Queue on the HBA * @phba: HBA structure that indicates port to destroy a queue on. * @eq: The queue structure associated with the queue to destroy. * * This function destroys a queue, as detailed in @eq by sending an mailbox * command, specific to the type of queue, to the HBA. * * The @eq struct is used to get the queue ID of the queue to destroy. * * On success this function will return a zero. If the queue destroy mailbox * command fails this function will return -ENXIO. **/ int lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq) { LPFC_MBOXQ_t *mbox; int rc, length, status = 0; uint32_t shdr_status, shdr_add_status; union lpfc_sli4_cfg_shdr *shdr; /* sanity check on queue memory */ if (!eq) return -ENODEV; mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL); if (!mbox) return -ENOMEM; length = (sizeof(struct lpfc_mbx_eq_destroy) - sizeof(struct lpfc_sli4_cfg_mhdr)); lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, LPFC_MBOX_OPCODE_EQ_DESTROY, length, LPFC_SLI4_MBX_EMBED); bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request, eq->queue_id); mbox->vport = eq->phba->pport; mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL); /* The IOCTL status is embedded in the mailbox subheader. */ shdr = (union lpfc_sli4_cfg_shdr *) &mbox->u.mqe.un.eq_destroy.header.cfg_shdr; shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); if (shdr_status || shdr_add_status || rc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2505 EQ_DESTROY mailbox failed with " "status x%x add_status x%x, mbx status x%x\n", shdr_status, shdr_add_status, rc); status = -ENXIO; } /* Remove eq from any list */ list_del_init(&eq->list); mempool_free(mbox, eq->phba->mbox_mem_pool); return status; } /** * lpfc_cq_destroy - Destroy a Completion Queue on the HBA * @phba: HBA structure that indicates port to destroy a queue on. * @cq: The queue structure associated with the queue to destroy. * * This function destroys a queue, as detailed in @cq by sending an mailbox * command, specific to the type of queue, to the HBA. * * The @cq struct is used to get the queue ID of the queue to destroy. * * On success this function will return a zero. If the queue destroy mailbox * command fails this function will return -ENXIO. **/ int lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq) { LPFC_MBOXQ_t *mbox; int rc, length, status = 0; uint32_t shdr_status, shdr_add_status; union lpfc_sli4_cfg_shdr *shdr; /* sanity check on queue memory */ if (!cq) return -ENODEV; mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL); if (!mbox) return -ENOMEM; length = (sizeof(struct lpfc_mbx_cq_destroy) - sizeof(struct lpfc_sli4_cfg_mhdr)); lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, LPFC_MBOX_OPCODE_CQ_DESTROY, length, LPFC_SLI4_MBX_EMBED); bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request, cq->queue_id); mbox->vport = cq->phba->pport; mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL); /* The IOCTL status is embedded in the mailbox subheader. */ shdr = (union lpfc_sli4_cfg_shdr *) &mbox->u.mqe.un.wq_create.header.cfg_shdr; shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); if (shdr_status || shdr_add_status || rc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2506 CQ_DESTROY mailbox failed with " "status x%x add_status x%x, mbx status x%x\n", shdr_status, shdr_add_status, rc); status = -ENXIO; } /* Remove cq from any list */ list_del_init(&cq->list); mempool_free(mbox, cq->phba->mbox_mem_pool); return status; } /** * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA * @phba: HBA structure that indicates port to destroy a queue on. * @mq: The queue structure associated with the queue to destroy. * * This function destroys a queue, as detailed in @mq by sending an mailbox * command, specific to the type of queue, to the HBA. * * The @mq struct is used to get the queue ID of the queue to destroy. * * On success this function will return a zero. If the queue destroy mailbox * command fails this function will return -ENXIO. **/ int lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq) { LPFC_MBOXQ_t *mbox; int rc, length, status = 0; uint32_t shdr_status, shdr_add_status; union lpfc_sli4_cfg_shdr *shdr; /* sanity check on queue memory */ if (!mq) return -ENODEV; mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL); if (!mbox) return -ENOMEM; length = (sizeof(struct lpfc_mbx_mq_destroy) - sizeof(struct lpfc_sli4_cfg_mhdr)); lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, LPFC_MBOX_OPCODE_MQ_DESTROY, length, LPFC_SLI4_MBX_EMBED); bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request, mq->queue_id); mbox->vport = mq->phba->pport; mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL); /* The IOCTL status is embedded in the mailbox subheader. */ shdr = (union lpfc_sli4_cfg_shdr *) &mbox->u.mqe.un.mq_destroy.header.cfg_shdr; shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); if (shdr_status || shdr_add_status || rc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2507 MQ_DESTROY mailbox failed with " "status x%x add_status x%x, mbx status x%x\n", shdr_status, shdr_add_status, rc); status = -ENXIO; } /* Remove mq from any list */ list_del_init(&mq->list); mempool_free(mbox, mq->phba->mbox_mem_pool); return status; } /** * lpfc_wq_destroy - Destroy a Work Queue on the HBA * @phba: HBA structure that indicates port to destroy a queue on. * @wq: The queue structure associated with the queue to destroy. * * This function destroys a queue, as detailed in @wq by sending an mailbox * command, specific to the type of queue, to the HBA. * * The @wq struct is used to get the queue ID of the queue to destroy. * * On success this function will return a zero. If the queue destroy mailbox * command fails this function will return -ENXIO. **/ int lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq) { LPFC_MBOXQ_t *mbox; int rc, length, status = 0; uint32_t shdr_status, shdr_add_status; union lpfc_sli4_cfg_shdr *shdr; /* sanity check on queue memory */ if (!wq) return -ENODEV; mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL); if (!mbox) return -ENOMEM; length = (sizeof(struct lpfc_mbx_wq_destroy) - sizeof(struct lpfc_sli4_cfg_mhdr)); lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY, length, LPFC_SLI4_MBX_EMBED); bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request, wq->queue_id); mbox->vport = wq->phba->pport; mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL); shdr = (union lpfc_sli4_cfg_shdr *) &mbox->u.mqe.un.wq_destroy.header.cfg_shdr; shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); if (shdr_status || shdr_add_status || rc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2508 WQ_DESTROY mailbox failed with " "status x%x add_status x%x, mbx status x%x\n", shdr_status, shdr_add_status, rc); status = -ENXIO; } /* Remove wq from any list */ list_del_init(&wq->list); kfree(wq->pring); wq->pring = NULL; mempool_free(mbox, wq->phba->mbox_mem_pool); return status; } /** * lpfc_rq_destroy - Destroy a Receive Queue on the HBA * @phba: HBA structure that indicates port to destroy a queue on. * @hrq: The queue structure associated with the queue to destroy. * @drq: The queue structure associated with the queue to destroy. * * This function destroys a queue, as detailed in @rq by sending an mailbox * command, specific to the type of queue, to the HBA. * * The @rq struct is used to get the queue ID of the queue to destroy. * * On success this function will return a zero. If the queue destroy mailbox * command fails this function will return -ENXIO. **/ int lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq, struct lpfc_queue *drq) { LPFC_MBOXQ_t *mbox; int rc, length, status = 0; uint32_t shdr_status, shdr_add_status; union lpfc_sli4_cfg_shdr *shdr; /* sanity check on queue memory */ if (!hrq || !drq) return -ENODEV; mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL); if (!mbox) return -ENOMEM; length = (sizeof(struct lpfc_mbx_rq_destroy) - sizeof(struct lpfc_sli4_cfg_mhdr)); lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY, length, LPFC_SLI4_MBX_EMBED); bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, hrq->queue_id); mbox->vport = hrq->phba->pport; mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL); /* The IOCTL status is embedded in the mailbox subheader. */ shdr = (union lpfc_sli4_cfg_shdr *) &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); if (shdr_status || shdr_add_status || rc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2509 RQ_DESTROY mailbox failed with " "status x%x add_status x%x, mbx status x%x\n", shdr_status, shdr_add_status, rc); mempool_free(mbox, hrq->phba->mbox_mem_pool); return -ENXIO; } bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request, drq->queue_id); rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL); shdr = (union lpfc_sli4_cfg_shdr *) &mbox->u.mqe.un.rq_destroy.header.cfg_shdr; shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); if (shdr_status || shdr_add_status || rc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2510 RQ_DESTROY mailbox failed with " "status x%x add_status x%x, mbx status x%x\n", shdr_status, shdr_add_status, rc); status = -ENXIO; } list_del_init(&hrq->list); list_del_init(&drq->list); mempool_free(mbox, hrq->phba->mbox_mem_pool); return status; } /** * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA * @phba: The virtual port for which this call being executed. * @pdma_phys_addr0: Physical address of the 1st SGL page. * @pdma_phys_addr1: Physical address of the 2nd SGL page. * @xritag: the xritag that ties this io to the SGL pages. * * This routine will post the sgl pages for the IO that has the xritag * that is in the iocbq structure. The xritag is assigned during iocbq * creation and persists for as long as the driver is loaded. * if the caller has fewer than 256 scatter gather segments to map then * pdma_phys_addr1 should be 0. * If the caller needs to map more than 256 scatter gather segment then * pdma_phys_addr1 should be a valid physical address. * physical address for SGLs must be 64 byte aligned. * If you are going to map 2 SGL's then the first one must have 256 entries * the second sgl can have between 1 and 256 entries. * * Return codes: * 0 - Success * -ENXIO, -ENOMEM - Failure **/ int lpfc_sli4_post_sgl(struct lpfc_hba *phba, dma_addr_t pdma_phys_addr0, dma_addr_t pdma_phys_addr1, uint16_t xritag) { struct lpfc_mbx_post_sgl_pages *post_sgl_pages; LPFC_MBOXQ_t *mbox; int rc; uint32_t shdr_status, shdr_add_status; uint32_t mbox_tmo; union lpfc_sli4_cfg_shdr *shdr; if (xritag == NO_XRI) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0364 Invalid param:\n"); return -EINVAL; } mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!mbox) return -ENOMEM; lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, sizeof(struct lpfc_mbx_post_sgl_pages) - sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *) &mbox->u.mqe.un.post_sgl_pages; bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag); bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1); post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo = cpu_to_le32(putPaddrLow(pdma_phys_addr0)); post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi = cpu_to_le32(putPaddrHigh(pdma_phys_addr0)); post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo = cpu_to_le32(putPaddrLow(pdma_phys_addr1)); post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi = cpu_to_le32(putPaddrHigh(pdma_phys_addr1)); if (!phba->sli4_hba.intr_enable) rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); else { mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); } /* The IOCTL status is embedded in the mailbox subheader. */ shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr; shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); if (!phba->sli4_hba.intr_enable) mempool_free(mbox, phba->mbox_mem_pool); else if (rc != MBX_TIMEOUT) mempool_free(mbox, phba->mbox_mem_pool); if (shdr_status || shdr_add_status || rc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2511 POST_SGL mailbox failed with " "status x%x add_status x%x, mbx status x%x\n", shdr_status, shdr_add_status, rc); } return 0; } /** * lpfc_sli4_alloc_xri - Get an available rpi in the device's range * @phba: pointer to lpfc hba data structure. * * This routine is invoked to post rpi header templates to the * HBA consistent with the SLI-4 interface spec. This routine * posts a SLI4_PAGE_SIZE memory region to the port to hold up to * SLI4_PAGE_SIZE modulo 64 rpi context headers. * * Returns * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful * LPFC_RPI_ALLOC_ERROR if no rpis are available. **/ static uint16_t lpfc_sli4_alloc_xri(struct lpfc_hba *phba) { unsigned long xri; /* * Fetch the next logical xri. Because this index is logical, * the driver starts at 0 each time. */ spin_lock_irq(&phba->hbalock); xri = find_next_zero_bit(phba->sli4_hba.xri_bmask, phba->sli4_hba.max_cfg_param.max_xri, 0); if (xri >= phba->sli4_hba.max_cfg_param.max_xri) { spin_unlock_irq(&phba->hbalock); return NO_XRI; } else { set_bit(xri, phba->sli4_hba.xri_bmask); phba->sli4_hba.max_cfg_param.xri_used++; } spin_unlock_irq(&phba->hbalock); return xri; } /** * __lpfc_sli4_free_xri - Release an xri for reuse. * @phba: pointer to lpfc hba data structure. * @xri: xri to release. * * This routine is invoked to release an xri to the pool of * available rpis maintained by the driver. **/ static void __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) { if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) { phba->sli4_hba.max_cfg_param.xri_used--; } } /** * lpfc_sli4_free_xri - Release an xri for reuse. * @phba: pointer to lpfc hba data structure. * @xri: xri to release. * * This routine is invoked to release an xri to the pool of * available rpis maintained by the driver. **/ void lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri) { spin_lock_irq(&phba->hbalock); __lpfc_sli4_free_xri(phba, xri); spin_unlock_irq(&phba->hbalock); } /** * lpfc_sli4_next_xritag - Get an xritag for the io * @phba: Pointer to HBA context object. * * This function gets an xritag for the iocb. If there is no unused xritag * it will return 0xffff. * The function returns the allocated xritag if successful, else returns zero. * Zero is not a valid xritag. * The caller is not required to hold any lock. **/ uint16_t lpfc_sli4_next_xritag(struct lpfc_hba *phba) { uint16_t xri_index; xri_index = lpfc_sli4_alloc_xri(phba); if (xri_index == NO_XRI) lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, "2004 Failed to allocate XRI.last XRITAG is %d" " Max XRI is %d, Used XRI is %d\n", xri_index, phba->sli4_hba.max_cfg_param.max_xri, phba->sli4_hba.max_cfg_param.xri_used); return xri_index; } /** * lpfc_sli4_post_sgl_list - post a block of ELS sgls to the port. * @phba: pointer to lpfc hba data structure. * @post_sgl_list: pointer to els sgl entry list. * @post_cnt: number of els sgl entries on the list. * * This routine is invoked to post a block of driver's sgl pages to the * HBA using non-embedded mailbox command. No Lock is held. This routine * is only called when the driver is loading and after all IO has been * stopped. **/ static int lpfc_sli4_post_sgl_list(struct lpfc_hba *phba, struct list_head *post_sgl_list, int post_cnt) { struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; struct lpfc_mbx_post_uembed_sgl_page1 *sgl; struct sgl_page_pairs *sgl_pg_pairs; void *viraddr; LPFC_MBOXQ_t *mbox; uint32_t reqlen, alloclen, pg_pairs; uint32_t mbox_tmo; uint16_t xritag_start = 0; int rc = 0; uint32_t shdr_status, shdr_add_status; union lpfc_sli4_cfg_shdr *shdr; reqlen = post_cnt * sizeof(struct sgl_page_pairs) + sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); if (reqlen > SLI4_PAGE_SIZE) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2559 Block sgl registration required DMA " "size (%d) great than a page\n", reqlen); return -ENOMEM; } mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!mbox) return -ENOMEM; /* Allocate DMA memory and set up the non-embedded mailbox command */ alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, LPFC_SLI4_MBX_NEMBED); if (alloclen < reqlen) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0285 Allocated DMA memory size (%d) is " "less than the requested DMA memory " "size (%d)\n", alloclen, reqlen); lpfc_sli4_mbox_cmd_free(phba, mbox); return -ENOMEM; } /* Set up the SGL pages in the non-embedded DMA pages */ viraddr = mbox->sge_array->addr[0]; sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; sgl_pg_pairs = &sgl->sgl_pg_pairs; pg_pairs = 0; list_for_each_entry_safe(sglq_entry, sglq_next, post_sgl_list, list) { /* Set up the sge entry */ sgl_pg_pairs->sgl_pg0_addr_lo = cpu_to_le32(putPaddrLow(sglq_entry->phys)); sgl_pg_pairs->sgl_pg0_addr_hi = cpu_to_le32(putPaddrHigh(sglq_entry->phys)); sgl_pg_pairs->sgl_pg1_addr_lo = cpu_to_le32(putPaddrLow(0)); sgl_pg_pairs->sgl_pg1_addr_hi = cpu_to_le32(putPaddrHigh(0)); /* Keep the first xritag on the list */ if (pg_pairs == 0) xritag_start = sglq_entry->sli4_xritag; sgl_pg_pairs++; pg_pairs++; } /* Complete initialization and perform endian conversion. */ bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); bf_set(lpfc_post_sgl_pages_xricnt, sgl, post_cnt); sgl->word0 = cpu_to_le32(sgl->word0); if (!phba->sli4_hba.intr_enable) rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); else { mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); } shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr; shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); if (!phba->sli4_hba.intr_enable) lpfc_sli4_mbox_cmd_free(phba, mbox); else if (rc != MBX_TIMEOUT) lpfc_sli4_mbox_cmd_free(phba, mbox); if (shdr_status || shdr_add_status || rc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2513 POST_SGL_BLOCK mailbox command failed " "status x%x add_status x%x mbx status x%x\n", shdr_status, shdr_add_status, rc); rc = -ENXIO; } return rc; } /** * lpfc_sli4_post_io_sgl_block - post a block of nvme sgl list to firmware * @phba: pointer to lpfc hba data structure. * @nblist: pointer to nvme buffer list. * @count: number of scsi buffers on the list. * * This routine is invoked to post a block of @count scsi sgl pages from a * SCSI buffer list @nblist to the HBA using non-embedded mailbox command. * No Lock is held. * **/ static int lpfc_sli4_post_io_sgl_block(struct lpfc_hba *phba, struct list_head *nblist, int count) { struct lpfc_io_buf *lpfc_ncmd; struct lpfc_mbx_post_uembed_sgl_page1 *sgl; struct sgl_page_pairs *sgl_pg_pairs; void *viraddr; LPFC_MBOXQ_t *mbox; uint32_t reqlen, alloclen, pg_pairs; uint32_t mbox_tmo; uint16_t xritag_start = 0; int rc = 0; uint32_t shdr_status, shdr_add_status; dma_addr_t pdma_phys_bpl1; union lpfc_sli4_cfg_shdr *shdr; /* Calculate the requested length of the dma memory */ reqlen = count * sizeof(struct sgl_page_pairs) + sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); if (reqlen > SLI4_PAGE_SIZE) { lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, "6118 Block sgl registration required DMA " "size (%d) great than a page\n", reqlen); return -ENOMEM; } mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!mbox) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "6119 Failed to allocate mbox cmd memory\n"); return -ENOMEM; } /* Allocate DMA memory and set up the non-embedded mailbox command */ alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen, LPFC_SLI4_MBX_NEMBED); if (alloclen < reqlen) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "6120 Allocated DMA memory size (%d) is " "less than the requested DMA memory " "size (%d)\n", alloclen, reqlen); lpfc_sli4_mbox_cmd_free(phba, mbox); return -ENOMEM; } /* Get the first SGE entry from the non-embedded DMA memory */ viraddr = mbox->sge_array->addr[0]; /* Set up the SGL pages in the non-embedded DMA pages */ sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr; sgl_pg_pairs = &sgl->sgl_pg_pairs; pg_pairs = 0; list_for_each_entry(lpfc_ncmd, nblist, list) { /* Set up the sge entry */ sgl_pg_pairs->sgl_pg0_addr_lo = cpu_to_le32(putPaddrLow(lpfc_ncmd->dma_phys_sgl)); sgl_pg_pairs->sgl_pg0_addr_hi = cpu_to_le32(putPaddrHigh(lpfc_ncmd->dma_phys_sgl)); if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE) pdma_phys_bpl1 = lpfc_ncmd->dma_phys_sgl + SGL_PAGE_SIZE; else pdma_phys_bpl1 = 0; sgl_pg_pairs->sgl_pg1_addr_lo = cpu_to_le32(putPaddrLow(pdma_phys_bpl1)); sgl_pg_pairs->sgl_pg1_addr_hi = cpu_to_le32(putPaddrHigh(pdma_phys_bpl1)); /* Keep the first xritag on the list */ if (pg_pairs == 0) xritag_start = lpfc_ncmd->cur_iocbq.sli4_xritag; sgl_pg_pairs++; pg_pairs++; } bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start); bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs); /* Perform endian conversion if necessary */ sgl->word0 = cpu_to_le32(sgl->word0); if (!phba->sli4_hba.intr_enable) { rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); } else { mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); } shdr = (union lpfc_sli4_cfg_shdr *)&sgl->cfg_shdr; shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); if (!phba->sli4_hba.intr_enable) lpfc_sli4_mbox_cmd_free(phba, mbox); else if (rc != MBX_TIMEOUT) lpfc_sli4_mbox_cmd_free(phba, mbox); if (shdr_status || shdr_add_status || rc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "6125 POST_SGL_BLOCK mailbox command failed " "status x%x add_status x%x mbx status x%x\n", shdr_status, shdr_add_status, rc); rc = -ENXIO; } return rc; } /** * lpfc_sli4_post_io_sgl_list - Post blocks of nvme buffer sgls from a list * @phba: pointer to lpfc hba data structure. * @post_nblist: pointer to the nvme buffer list. * @sb_count: number of nvme buffers. * * This routine walks a list of nvme buffers that was passed in. It attempts * to construct blocks of nvme buffer sgls which contains contiguous xris and * uses the non-embedded SGL block post mailbox commands to post to the port. * For single NVME buffer sgl with non-contiguous xri, if any, it shall use * embedded SGL post mailbox command for posting. The @post_nblist passed in * must be local list, thus no lock is needed when manipulate the list. * * Returns: 0 = failure, non-zero number of successfully posted buffers. **/ int lpfc_sli4_post_io_sgl_list(struct lpfc_hba *phba, struct list_head *post_nblist, int sb_count) { struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; int status, sgl_size; int post_cnt = 0, block_cnt = 0, num_posting = 0, num_posted = 0; dma_addr_t pdma_phys_sgl1; int last_xritag = NO_XRI; int cur_xritag; LIST_HEAD(prep_nblist); LIST_HEAD(blck_nblist); LIST_HEAD(nvme_nblist); /* sanity check */ if (sb_count <= 0) return -EINVAL; sgl_size = phba->cfg_sg_dma_buf_size; list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, post_nblist, list) { list_del_init(&lpfc_ncmd->list); block_cnt++; if ((last_xritag != NO_XRI) && (lpfc_ncmd->cur_iocbq.sli4_xritag != last_xritag + 1)) { /* a hole in xri block, form a sgl posting block */ list_splice_init(&prep_nblist, &blck_nblist); post_cnt = block_cnt - 1; /* prepare list for next posting block */ list_add_tail(&lpfc_ncmd->list, &prep_nblist); block_cnt = 1; } else { /* prepare list for next posting block */ list_add_tail(&lpfc_ncmd->list, &prep_nblist); /* enough sgls for non-embed sgl mbox command */ if (block_cnt == LPFC_NEMBED_MBOX_SGL_CNT) { list_splice_init(&prep_nblist, &blck_nblist); post_cnt = block_cnt; block_cnt = 0; } } num_posting++; last_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; /* end of repost sgl list condition for NVME buffers */ if (num_posting == sb_count) { if (post_cnt == 0) { /* last sgl posting block */ list_splice_init(&prep_nblist, &blck_nblist); post_cnt = block_cnt; } else if (block_cnt == 1) { /* last single sgl with non-contiguous xri */ if (sgl_size > SGL_PAGE_SIZE) pdma_phys_sgl1 = lpfc_ncmd->dma_phys_sgl + SGL_PAGE_SIZE; else pdma_phys_sgl1 = 0; cur_xritag = lpfc_ncmd->cur_iocbq.sli4_xritag; status = lpfc_sli4_post_sgl( phba, lpfc_ncmd->dma_phys_sgl, pdma_phys_sgl1, cur_xritag); if (status) { /* Post error. Buffer unavailable. */ lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED; } else { /* Post success. Bffer available. */ lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED; lpfc_ncmd->status = IOSTAT_SUCCESS; num_posted++; } /* success, put on NVME buffer sgl list */ list_add_tail(&lpfc_ncmd->list, &nvme_nblist); } } /* continue until a nembed page worth of sgls */ if (post_cnt == 0) continue; /* post block of NVME buffer list sgls */ status = lpfc_sli4_post_io_sgl_block(phba, &blck_nblist, post_cnt); /* don't reset xirtag due to hole in xri block */ if (block_cnt == 0) last_xritag = NO_XRI; /* reset NVME buffer post count for next round of posting */ post_cnt = 0; /* put posted NVME buffer-sgl posted on NVME buffer sgl list */ while (!list_empty(&blck_nblist)) { list_remove_head(&blck_nblist, lpfc_ncmd, struct lpfc_io_buf, list); if (status) { /* Post error. Mark buffer unavailable. */ lpfc_ncmd->flags |= LPFC_SBUF_NOT_POSTED; } else { /* Post success, Mark buffer available. */ lpfc_ncmd->flags &= ~LPFC_SBUF_NOT_POSTED; lpfc_ncmd->status = IOSTAT_SUCCESS; num_posted++; } list_add_tail(&lpfc_ncmd->list, &nvme_nblist); } } /* Push NVME buffers with sgl posted to the available list */ lpfc_io_buf_replenish(phba, &nvme_nblist); return num_posted; } /** * lpfc_fc_frame_check - Check that this frame is a valid frame to handle * @phba: pointer to lpfc_hba struct that the frame was received on * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) * * This function checks the fields in the @fc_hdr to see if the FC frame is a * valid type of frame that the LPFC driver will handle. This function will * return a zero if the frame is a valid frame or a non zero value when the * frame does not pass the check. **/ static int lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr) { /* make rctl_names static to save stack space */ struct fc_vft_header *fc_vft_hdr; uint32_t *header = (uint32_t *) fc_hdr; #define FC_RCTL_MDS_DIAGS 0xF4 switch (fc_hdr->fh_r_ctl) { case FC_RCTL_DD_UNCAT: /* uncategorized information */ case FC_RCTL_DD_SOL_DATA: /* solicited data */ case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */ case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */ case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */ case FC_RCTL_DD_DATA_DESC: /* data descriptor */ case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */ case FC_RCTL_DD_CMD_STATUS: /* command status */ case FC_RCTL_ELS_REQ: /* extended link services request */ case FC_RCTL_ELS_REP: /* extended link services reply */ case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */ case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */ case FC_RCTL_BA_ABTS: /* basic link service abort */ case FC_RCTL_BA_RMC: /* remove connection */ case FC_RCTL_BA_ACC: /* basic accept */ case FC_RCTL_BA_RJT: /* basic reject */ case FC_RCTL_BA_PRMT: case FC_RCTL_ACK_1: /* acknowledge_1 */ case FC_RCTL_ACK_0: /* acknowledge_0 */ case FC_RCTL_P_RJT: /* port reject */ case FC_RCTL_F_RJT: /* fabric reject */ case FC_RCTL_P_BSY: /* port busy */ case FC_RCTL_F_BSY: /* fabric busy to data frame */ case FC_RCTL_F_BSYL: /* fabric busy to link control frame */ case FC_RCTL_LCR: /* link credit reset */ case FC_RCTL_MDS_DIAGS: /* MDS Diagnostics */ case FC_RCTL_END: /* end */ break; case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */ fc_vft_hdr = (struct fc_vft_header *)fc_hdr; fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1]; return lpfc_fc_frame_check(phba, fc_hdr); case FC_RCTL_BA_NOP: /* basic link service NOP */ default: goto drop; } switch (fc_hdr->fh_type) { case FC_TYPE_BLS: case FC_TYPE_ELS: case FC_TYPE_FCP: case FC_TYPE_CT: case FC_TYPE_NVME: break; case FC_TYPE_IP: case FC_TYPE_ILS: default: goto drop; } lpfc_printf_log(phba, KERN_INFO, LOG_ELS, "2538 Received frame rctl:x%x, type:x%x, " "frame Data:%08x %08x %08x %08x %08x %08x %08x\n", fc_hdr->fh_r_ctl, fc_hdr->fh_type, be32_to_cpu(header[0]), be32_to_cpu(header[1]), be32_to_cpu(header[2]), be32_to_cpu(header[3]), be32_to_cpu(header[4]), be32_to_cpu(header[5]), be32_to_cpu(header[6])); return 0; drop: lpfc_printf_log(phba, KERN_WARNING, LOG_ELS, "2539 Dropped frame rctl:x%x type:x%x\n", fc_hdr->fh_r_ctl, fc_hdr->fh_type); return 1; } /** * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) * * This function processes the FC header to retrieve the VFI from the VF * header, if one exists. This function will return the VFI if one exists * or 0 if no VSAN Header exists. **/ static uint32_t lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr) { struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr; if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH) return 0; return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr); } /** * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to * @phba: Pointer to the HBA structure to search for the vport on * @fc_hdr: A pointer to the FC Header data (In Big Endian Format) * @fcfi: The FC Fabric ID that the frame came from * @did: Destination ID to match against * * This function searches the @phba for a vport that matches the content of the * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function * returns the matching vport pointer or NULL if unable to match frame to a * vport. **/ static struct lpfc_vport * lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr, uint16_t fcfi, uint32_t did) { struct lpfc_vport **vports; struct lpfc_vport *vport = NULL; int i; if (did == Fabric_DID) return phba->pport; if ((phba->pport->fc_flag & FC_PT2PT) && !(phba->link_state == LPFC_HBA_READY)) return phba->pport; vports = lpfc_create_vport_work_array(phba); if (vports != NULL) { for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { if (phba->fcf.fcfi == fcfi && vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) && vports[i]->fc_myDID == did) { vport = vports[i]; break; } } } lpfc_destroy_vport_work_array(phba, vports); return vport; } /** * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp * @vport: The vport to work on. * * This function updates the receive sequence time stamp for this vport. The * receive sequence time stamp indicates the time that the last frame of the * the sequence that has been idle for the longest amount of time was received. * the driver uses this time stamp to indicate if any received sequences have * timed out. **/ static void lpfc_update_rcv_time_stamp(struct lpfc_vport *vport) { struct lpfc_dmabuf *h_buf; struct hbq_dmabuf *dmabuf = NULL; /* get the oldest sequence on the rcv list */ h_buf = list_get_first(&vport->rcv_buffer_list, struct lpfc_dmabuf, list); if (!h_buf) return; dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); vport->rcv_buffer_time_stamp = dmabuf->time_stamp; } /** * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences. * @vport: The vport that the received sequences were sent to. * * This function cleans up all outstanding received sequences. This is called * by the driver when a link event or user action invalidates all the received * sequences. **/ void lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport) { struct lpfc_dmabuf *h_buf, *hnext; struct lpfc_dmabuf *d_buf, *dnext; struct hbq_dmabuf *dmabuf = NULL; /* start with the oldest sequence on the rcv list */ list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); list_del_init(&dmabuf->hbuf.list); list_for_each_entry_safe(d_buf, dnext, &dmabuf->dbuf.list, list) { list_del_init(&d_buf->list); lpfc_in_buf_free(vport->phba, d_buf); } lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); } } /** * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences. * @vport: The vport that the received sequences were sent to. * * This function determines whether any received sequences have timed out by * first checking the vport's rcv_buffer_time_stamp. If this time_stamp * indicates that there is at least one timed out sequence this routine will * go through the received sequences one at a time from most inactive to most * active to determine which ones need to be cleaned up. Once it has determined * that a sequence needs to be cleaned up it will simply free up the resources * without sending an abort. **/ void lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport) { struct lpfc_dmabuf *h_buf, *hnext; struct lpfc_dmabuf *d_buf, *dnext; struct hbq_dmabuf *dmabuf = NULL; unsigned long timeout; int abort_count = 0; timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + vport->rcv_buffer_time_stamp); if (list_empty(&vport->rcv_buffer_list) || time_before(jiffies, timeout)) return; /* start with the oldest sequence on the rcv list */ list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) { dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); timeout = (msecs_to_jiffies(vport->phba->fc_edtov) + dmabuf->time_stamp); if (time_before(jiffies, timeout)) break; abort_count++; list_del_init(&dmabuf->hbuf.list); list_for_each_entry_safe(d_buf, dnext, &dmabuf->dbuf.list, list) { list_del_init(&d_buf->list); lpfc_in_buf_free(vport->phba, d_buf); } lpfc_in_buf_free(vport->phba, &dmabuf->dbuf); } if (abort_count) lpfc_update_rcv_time_stamp(vport); } /** * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences * @vport: pointer to a vitural port * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame * * This function searches through the existing incomplete sequences that have * been sent to this @vport. If the frame matches one of the incomplete * sequences then the dbuf in the @dmabuf is added to the list of frames that * make up that sequence. If no sequence is found that matches this frame then * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list * This function returns a pointer to the first dmabuf in the sequence list that * the frame was linked to. **/ static struct hbq_dmabuf * lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) { struct fc_frame_header *new_hdr; struct fc_frame_header *temp_hdr; struct lpfc_dmabuf *d_buf; struct lpfc_dmabuf *h_buf; struct hbq_dmabuf *seq_dmabuf = NULL; struct hbq_dmabuf *temp_dmabuf = NULL; uint8_t found = 0; INIT_LIST_HEAD(&dmabuf->dbuf.list); dmabuf->time_stamp = jiffies; new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; /* Use the hdr_buf to find the sequence that this frame belongs to */ list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { temp_hdr = (struct fc_frame_header *)h_buf->virt; if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) continue; /* found a pending sequence that matches this frame */ seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); break; } if (!seq_dmabuf) { /* * This indicates first frame received for this sequence. * Queue the buffer on the vport's rcv_buffer_list. */ list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); lpfc_update_rcv_time_stamp(vport); return dmabuf; } temp_hdr = seq_dmabuf->hbuf.virt; if (be16_to_cpu(new_hdr->fh_seq_cnt) < be16_to_cpu(temp_hdr->fh_seq_cnt)) { list_del_init(&seq_dmabuf->hbuf.list); list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list); list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); lpfc_update_rcv_time_stamp(vport); return dmabuf; } /* move this sequence to the tail to indicate a young sequence */ list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list); seq_dmabuf->time_stamp = jiffies; lpfc_update_rcv_time_stamp(vport); if (list_empty(&seq_dmabuf->dbuf.list)) { list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list); return seq_dmabuf; } /* find the correct place in the sequence to insert this frame */ d_buf = list_entry(seq_dmabuf->dbuf.list.prev, typeof(*d_buf), list); while (!found) { temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt; /* * If the frame's sequence count is greater than the frame on * the list then insert the frame right after this frame */ if (be16_to_cpu(new_hdr->fh_seq_cnt) > be16_to_cpu(temp_hdr->fh_seq_cnt)) { list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list); found = 1; break; } if (&d_buf->list == &seq_dmabuf->dbuf.list) break; d_buf = list_entry(d_buf->list.prev, typeof(*d_buf), list); } if (found) return seq_dmabuf; return NULL; } /** * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence * @vport: pointer to a vitural port * @dmabuf: pointer to a dmabuf that describes the FC sequence * * This function tries to abort from the partially assembed sequence, described * by the information from basic abbort @dmabuf. It checks to see whether such * partially assembled sequence held by the driver. If so, it shall free up all * the frames from the partially assembled sequence. * * Return * true -- if there is matching partially assembled sequence present and all * the frames freed with the sequence; * false -- if there is no matching partially assembled sequence present so * nothing got aborted in the lower layer driver **/ static bool lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) { struct fc_frame_header *new_hdr; struct fc_frame_header *temp_hdr; struct lpfc_dmabuf *d_buf, *n_buf, *h_buf; struct hbq_dmabuf *seq_dmabuf = NULL; /* Use the hdr_buf to find the sequence that matches this frame */ INIT_LIST_HEAD(&dmabuf->dbuf.list); INIT_LIST_HEAD(&dmabuf->hbuf.list); new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) { temp_hdr = (struct fc_frame_header *)h_buf->virt; if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) || (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) || (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3))) continue; /* found a pending sequence that matches this frame */ seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf); break; } /* Free up all the frames from the partially assembled sequence */ if (seq_dmabuf) { list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { list_del_init(&d_buf->list); lpfc_in_buf_free(vport->phba, d_buf); } return true; } return false; } /** * lpfc_sli4_abort_ulp_seq - Abort assembled unsol sequence from ulp * @vport: pointer to a vitural port * @dmabuf: pointer to a dmabuf that describes the FC sequence * * This function tries to abort from the assembed sequence from upper level * protocol, described by the information from basic abbort @dmabuf. It * checks to see whether such pending context exists at upper level protocol. * If so, it shall clean up the pending context. * * Return * true -- if there is matching pending context of the sequence cleaned * at ulp; * false -- if there is no matching pending context of the sequence present * at ulp. **/ static bool lpfc_sli4_abort_ulp_seq(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) { struct lpfc_hba *phba = vport->phba; int handled; /* Accepting abort at ulp with SLI4 only */ if (phba->sli_rev < LPFC_SLI_REV4) return false; /* Register all caring upper level protocols to attend abort */ handled = lpfc_ct_handle_unsol_abort(phba, dmabuf); if (handled) return true; return false; } /** * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler * @phba: Pointer to HBA context object. * @cmd_iocbq: pointer to the command iocbq structure. * @rsp_iocbq: pointer to the response iocbq structure. * * This function handles the sequence abort response iocb command complete * event. It properly releases the memory allocated to the sequence abort * accept iocb. **/ static void lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmd_iocbq, struct lpfc_iocbq *rsp_iocbq) { struct lpfc_nodelist *ndlp; if (cmd_iocbq) { ndlp = (struct lpfc_nodelist *)cmd_iocbq->context1; lpfc_nlp_put(ndlp); lpfc_sli_release_iocbq(phba, cmd_iocbq); } /* Failure means BLS ABORT RSP did not get delivered to remote node*/ if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus) lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3154 BLS ABORT RSP failed, data: x%x/x%x\n", rsp_iocbq->iocb.ulpStatus, rsp_iocbq->iocb.un.ulpWord[4]); } /** * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver. * @phba: Pointer to HBA context object. * @xri: xri id in transaction. * * This function validates the xri maps to the known range of XRIs allocated an * used by the driver. **/ uint16_t lpfc_sli4_xri_inrange(struct lpfc_hba *phba, uint16_t xri) { uint16_t i; for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) { if (xri == phba->sli4_hba.xri_ids[i]) return i; } return NO_XRI; } /** * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort * @vport: pointer to a virtual port. * @fc_hdr: pointer to a FC frame header. * @aborted: was the partially assembled receive sequence successfully aborted * * This function sends a basic response to a previous unsol sequence abort * event after aborting the sequence handling. **/ void lpfc_sli4_seq_abort_rsp(struct lpfc_vport *vport, struct fc_frame_header *fc_hdr, bool aborted) { struct lpfc_hba *phba = vport->phba; struct lpfc_iocbq *ctiocb = NULL; struct lpfc_nodelist *ndlp; uint16_t oxid, rxid, xri, lxri; uint32_t sid, fctl; IOCB_t *icmd; int rc; if (!lpfc_is_link_up(phba)) return; sid = sli4_sid_from_fc_hdr(fc_hdr); oxid = be16_to_cpu(fc_hdr->fh_ox_id); rxid = be16_to_cpu(fc_hdr->fh_rx_id); ndlp = lpfc_findnode_did(vport, sid); if (!ndlp) { ndlp = lpfc_nlp_init(vport, sid); if (!ndlp) { lpfc_printf_vlog(vport, KERN_WARNING, LOG_ELS, "1268 Failed to allocate ndlp for " "oxid:x%x SID:x%x\n", oxid, sid); return; } /* Put ndlp onto pport node list */ lpfc_enqueue_node(vport, ndlp); } /* Allocate buffer for rsp iocb */ ctiocb = lpfc_sli_get_iocbq(phba); if (!ctiocb) return; /* Extract the F_CTL field from FC_HDR */ fctl = sli4_fctl_from_fc_hdr(fc_hdr); icmd = &ctiocb->iocb; icmd->un.xseq64.bdl.bdeSize = 0; icmd->un.xseq64.bdl.ulpIoTag32 = 0; icmd->un.xseq64.w5.hcsw.Dfctl = 0; icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC; icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS; /* Fill in the rest of iocb fields */ icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX; icmd->ulpBdeCount = 0; icmd->ulpLe = 1; icmd->ulpClass = CLASS3; icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]; ctiocb->context1 = lpfc_nlp_get(ndlp); if (!ctiocb->context1) { lpfc_sli_release_iocbq(phba, ctiocb); return; } ctiocb->vport = phba->pport; ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl; ctiocb->sli4_lxritag = NO_XRI; ctiocb->sli4_xritag = NO_XRI; if (fctl & FC_FC_EX_CTX) /* Exchange responder sent the abort so we * own the oxid. */ xri = oxid; else xri = rxid; lxri = lpfc_sli4_xri_inrange(phba, xri); if (lxri != NO_XRI) lpfc_set_rrq_active(phba, ndlp, lxri, (xri == oxid) ? rxid : oxid, 0); /* For BA_ABTS from exchange responder, if the logical xri with * the oxid maps to the FCP XRI range, the port no longer has * that exchange context, send a BLS_RJT. Override the IOCB for * a BA_RJT. */ if ((fctl & FC_FC_EX_CTX) && (lxri > lpfc_sli4_get_iocb_cnt(phba))) { icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); } /* If BA_ABTS failed to abort a partially assembled receive sequence, * the driver no longer has that exchange, send a BLS_RJT. Override * the IOCB for a BA_RJT. */ if (aborted == false) { icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT; bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0); bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID); bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE); } if (fctl & FC_FC_EX_CTX) { /* ABTS sent by responder to CT exchange, construction * of BA_ACC will use OX_ID from ABTS for the XRI_TAG * field and RX_ID from ABTS for RX_ID field. */ bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP); } else { /* ABTS sent by initiator to CT exchange, construction * of BA_ACC will need to allocate a new XRI as for the * XRI_TAG field. */ bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT); } bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid); bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid); /* Xmit CT abts response on exchange */ lpfc_printf_vlog(vport, KERN_INFO, LOG_ELS, "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n", icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state); rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0); if (rc == IOCB_ERROR) { lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "2925 Failed to issue CT ABTS RSP x%x on " "xri x%x, Data x%x\n", icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state); lpfc_nlp_put(ndlp); ctiocb->context1 = NULL; lpfc_sli_release_iocbq(phba, ctiocb); } } /** * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event * @vport: Pointer to the vport on which this sequence was received * @dmabuf: pointer to a dmabuf that describes the FC sequence * * This function handles an SLI-4 unsolicited abort event. If the unsolicited * receive sequence is only partially assembed by the driver, it shall abort * the partially assembled frames for the sequence. Otherwise, if the * unsolicited receive sequence has been completely assembled and passed to * the Upper Layer Protocol (ULP), it then mark the per oxid status for the * unsolicited sequence has been aborted. After that, it will issue a basic * accept to accept the abort. **/ static void lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) { struct lpfc_hba *phba = vport->phba; struct fc_frame_header fc_hdr; uint32_t fctl; bool aborted; /* Make a copy of fc_hdr before the dmabuf being released */ memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header)); fctl = sli4_fctl_from_fc_hdr(&fc_hdr); if (fctl & FC_FC_EX_CTX) { /* ABTS by responder to exchange, no cleanup needed */ aborted = true; } else { /* ABTS by initiator to exchange, need to do cleanup */ aborted = lpfc_sli4_abort_partial_seq(vport, dmabuf); if (aborted == false) aborted = lpfc_sli4_abort_ulp_seq(vport, dmabuf); } lpfc_in_buf_free(phba, &dmabuf->dbuf); if (phba->nvmet_support) { lpfc_nvmet_rcv_unsol_abort(vport, &fc_hdr); return; } /* Respond with BA_ACC or BA_RJT accordingly */ lpfc_sli4_seq_abort_rsp(vport, &fc_hdr, aborted); } /** * lpfc_seq_complete - Indicates if a sequence is complete * @dmabuf: pointer to a dmabuf that describes the FC sequence * * This function checks the sequence, starting with the frame described by * @dmabuf, to see if all the frames associated with this sequence are present. * the frames associated with this sequence are linked to the @dmabuf using the * dbuf list. This function looks for two major things. 1) That the first frame * has a sequence count of zero. 2) There is a frame with last frame of sequence * set. 3) That there are no holes in the sequence count. The function will * return 1 when the sequence is complete, otherwise it will return 0. **/ static int lpfc_seq_complete(struct hbq_dmabuf *dmabuf) { struct fc_frame_header *hdr; struct lpfc_dmabuf *d_buf; struct hbq_dmabuf *seq_dmabuf; uint32_t fctl; int seq_count = 0; hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; /* make sure first fame of sequence has a sequence count of zero */ if (hdr->fh_seq_cnt != seq_count) return 0; fctl = (hdr->fh_f_ctl[0] << 16 | hdr->fh_f_ctl[1] << 8 | hdr->fh_f_ctl[2]); /* If last frame of sequence we can return success. */ if (fctl & FC_FC_END_SEQ) return 1; list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) { seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf); hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; /* If there is a hole in the sequence count then fail. */ if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt)) return 0; fctl = (hdr->fh_f_ctl[0] << 16 | hdr->fh_f_ctl[1] << 8 | hdr->fh_f_ctl[2]); /* If last frame of sequence we can return success. */ if (fctl & FC_FC_END_SEQ) return 1; } return 0; } /** * lpfc_prep_seq - Prep sequence for ULP processing * @vport: Pointer to the vport on which this sequence was received * @seq_dmabuf: pointer to a dmabuf that describes the FC sequence * * This function takes a sequence, described by a list of frames, and creates * a list of iocbq structures to describe the sequence. This iocbq list will be * used to issue to the generic unsolicited sequence handler. This routine * returns a pointer to the first iocbq in the list. If the function is unable * to allocate an iocbq then it throw out the received frames that were not * able to be described and return a pointer to the first iocbq. If unable to * allocate any iocbqs (including the first) this function will return NULL. **/ static struct lpfc_iocbq * lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) { struct hbq_dmabuf *hbq_buf; struct lpfc_dmabuf *d_buf, *n_buf; struct lpfc_iocbq *first_iocbq, *iocbq; struct fc_frame_header *fc_hdr; uint32_t sid; uint32_t len, tot_len; struct ulp_bde64 *pbde; fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; /* remove from receive buffer list */ list_del_init(&seq_dmabuf->hbuf.list); lpfc_update_rcv_time_stamp(vport); /* get the Remote Port's SID */ sid = sli4_sid_from_fc_hdr(fc_hdr); tot_len = 0; /* Get an iocbq struct to fill in. */ first_iocbq = lpfc_sli_get_iocbq(vport->phba); if (first_iocbq) { /* Initialize the first IOCB. */ first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0; first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS; first_iocbq->vport = vport; /* Check FC Header to see what TYPE of frame we are rcv'ing */ if (sli4_type_from_fc_hdr(fc_hdr) == FC_TYPE_ELS) { first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_ELS64_CX; first_iocbq->iocb.un.rcvels.parmRo = sli4_did_from_fc_hdr(fc_hdr); first_iocbq->iocb.ulpPU = PARM_NPIV_DID; } else first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX; first_iocbq->iocb.ulpContext = NO_XRI; first_iocbq->iocb.unsli3.rcvsli3.ox_id = be16_to_cpu(fc_hdr->fh_ox_id); /* iocbq is prepped for internal consumption. Physical vpi. */ first_iocbq->iocb.unsli3.rcvsli3.vpi = vport->phba->vpi_ids[vport->vpi]; /* put the first buffer into the first IOCBq */ tot_len = bf_get(lpfc_rcqe_length, &seq_dmabuf->cq_event.cqe.rcqe_cmpl); first_iocbq->context2 = &seq_dmabuf->dbuf; first_iocbq->context3 = NULL; first_iocbq->iocb.ulpBdeCount = 1; if (tot_len > LPFC_DATA_BUF_SIZE) first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = LPFC_DATA_BUF_SIZE; else first_iocbq->iocb.un.cont64[0].tus.f.bdeSize = tot_len; first_iocbq->iocb.un.rcvels.remoteID = sid; first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; } iocbq = first_iocbq; /* * Each IOCBq can have two Buffers assigned, so go through the list * of buffers for this sequence and save two buffers in each IOCBq */ list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) { if (!iocbq) { lpfc_in_buf_free(vport->phba, d_buf); continue; } if (!iocbq->context3) { iocbq->context3 = d_buf; iocbq->iocb.ulpBdeCount++; /* We need to get the size out of the right CQE */ hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); len = bf_get(lpfc_rcqe_length, &hbq_buf->cq_event.cqe.rcqe_cmpl); pbde = (struct ulp_bde64 *) &iocbq->iocb.unsli3.sli3Words[4]; if (len > LPFC_DATA_BUF_SIZE) pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE; else pbde->tus.f.bdeSize = len; iocbq->iocb.unsli3.rcvsli3.acc_len += len; tot_len += len; } else { iocbq = lpfc_sli_get_iocbq(vport->phba); if (!iocbq) { if (first_iocbq) { first_iocbq->iocb.ulpStatus = IOSTAT_FCP_RSP_ERROR; first_iocbq->iocb.un.ulpWord[4] = IOERR_NO_RESOURCES; } lpfc_in_buf_free(vport->phba, d_buf); continue; } /* We need to get the size out of the right CQE */ hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf); len = bf_get(lpfc_rcqe_length, &hbq_buf->cq_event.cqe.rcqe_cmpl); iocbq->context2 = d_buf; iocbq->context3 = NULL; iocbq->iocb.ulpBdeCount = 1; if (len > LPFC_DATA_BUF_SIZE) iocbq->iocb.un.cont64[0].tus.f.bdeSize = LPFC_DATA_BUF_SIZE; else iocbq->iocb.un.cont64[0].tus.f.bdeSize = len; tot_len += len; iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len; iocbq->iocb.un.rcvels.remoteID = sid; list_add_tail(&iocbq->list, &first_iocbq->list); } } /* Free the sequence's header buffer */ if (!first_iocbq) lpfc_in_buf_free(vport->phba, &seq_dmabuf->dbuf); return first_iocbq; } static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf) { struct fc_frame_header *fc_hdr; struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb; struct lpfc_hba *phba = vport->phba; fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt; iocbq = lpfc_prep_seq(vport, seq_dmabuf); if (!iocbq) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2707 Ring %d handler: Failed to allocate " "iocb Rctl x%x Type x%x received\n", LPFC_ELS_RING, fc_hdr->fh_r_ctl, fc_hdr->fh_type); return; } if (!lpfc_complete_unsol_iocb(phba, phba->sli4_hba.els_wq->pring, iocbq, fc_hdr->fh_r_ctl, fc_hdr->fh_type)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2540 Ring %d handler: unexpected Rctl " "x%x Type x%x received\n", LPFC_ELS_RING, fc_hdr->fh_r_ctl, fc_hdr->fh_type); lpfc_in_buf_free(phba, &seq_dmabuf->dbuf); } /* Free iocb created in lpfc_prep_seq */ list_for_each_entry_safe(curr_iocb, next_iocb, &iocbq->list, list) { list_del_init(&curr_iocb->list); lpfc_sli_release_iocbq(phba, curr_iocb); } lpfc_sli_release_iocbq(phba, iocbq); } static void lpfc_sli4_mds_loopback_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, struct lpfc_iocbq *rspiocb) { struct lpfc_dmabuf *pcmd = cmdiocb->context2; if (pcmd && pcmd->virt) dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); kfree(pcmd); lpfc_sli_release_iocbq(phba, cmdiocb); lpfc_drain_txq(phba); } static void lpfc_sli4_handle_mds_loopback(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf) { struct fc_frame_header *fc_hdr; struct lpfc_hba *phba = vport->phba; struct lpfc_iocbq *iocbq = NULL; union lpfc_wqe *wqe; struct lpfc_dmabuf *pcmd = NULL; uint32_t frame_len; int rc; unsigned long iflags; fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; frame_len = bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl); /* Send the received frame back */ iocbq = lpfc_sli_get_iocbq(phba); if (!iocbq) { /* Queue cq event and wakeup worker thread to process it */ spin_lock_irqsave(&phba->hbalock, iflags); list_add_tail(&dmabuf->cq_event.list, &phba->sli4_hba.sp_queue_event); phba->hba_flag |= HBA_SP_QUEUE_EVT; spin_unlock_irqrestore(&phba->hbalock, iflags); lpfc_worker_wake_up(phba); return; } /* Allocate buffer for command payload */ pcmd = kmalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); if (pcmd) pcmd->virt = dma_pool_alloc(phba->lpfc_drb_pool, GFP_KERNEL, &pcmd->phys); if (!pcmd || !pcmd->virt) goto exit; INIT_LIST_HEAD(&pcmd->list); /* copyin the payload */ memcpy(pcmd->virt, dmabuf->dbuf.virt, frame_len); /* fill in BDE's for command */ iocbq->iocb.un.xseq64.bdl.addrHigh = putPaddrHigh(pcmd->phys); iocbq->iocb.un.xseq64.bdl.addrLow = putPaddrLow(pcmd->phys); iocbq->iocb.un.xseq64.bdl.bdeFlags = BUFF_TYPE_BDE_64; iocbq->iocb.un.xseq64.bdl.bdeSize = frame_len; iocbq->context2 = pcmd; iocbq->vport = vport; iocbq->iocb_flag &= ~LPFC_FIP_ELS_ID_MASK; iocbq->iocb_flag |= LPFC_USE_FCPWQIDX; /* * Setup rest of the iocb as though it were a WQE * Build the SEND_FRAME WQE */ wqe = (union lpfc_wqe *)&iocbq->iocb; wqe->send_frame.frame_len = frame_len; wqe->send_frame.fc_hdr_wd0 = be32_to_cpu(*((uint32_t *)fc_hdr)); wqe->send_frame.fc_hdr_wd1 = be32_to_cpu(*((uint32_t *)fc_hdr + 1)); wqe->send_frame.fc_hdr_wd2 = be32_to_cpu(*((uint32_t *)fc_hdr + 2)); wqe->send_frame.fc_hdr_wd3 = be32_to_cpu(*((uint32_t *)fc_hdr + 3)); wqe->send_frame.fc_hdr_wd4 = be32_to_cpu(*((uint32_t *)fc_hdr + 4)); wqe->send_frame.fc_hdr_wd5 = be32_to_cpu(*((uint32_t *)fc_hdr + 5)); iocbq->iocb.ulpCommand = CMD_SEND_FRAME; iocbq->iocb.ulpLe = 1; iocbq->iocb_cmpl = lpfc_sli4_mds_loopback_cmpl; rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, iocbq, 0); if (rc == IOCB_ERROR) goto exit; lpfc_in_buf_free(phba, &dmabuf->dbuf); return; exit: lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, "2023 Unable to process MDS loopback frame\n"); if (pcmd && pcmd->virt) dma_pool_free(phba->lpfc_drb_pool, pcmd->virt, pcmd->phys); kfree(pcmd); if (iocbq) lpfc_sli_release_iocbq(phba, iocbq); lpfc_in_buf_free(phba, &dmabuf->dbuf); } /** * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware * @phba: Pointer to HBA context object. * @dmabuf: Pointer to a dmabuf that describes the FC sequence. * * This function is called with no lock held. This function processes all * the received buffers and gives it to upper layers when a received buffer * indicates that it is the final frame in the sequence. The interrupt * service routine processes received buffers at interrupt contexts. * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the * appropriate receive function when the final frame in a sequence is received. **/ void lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba, struct hbq_dmabuf *dmabuf) { struct hbq_dmabuf *seq_dmabuf; struct fc_frame_header *fc_hdr; struct lpfc_vport *vport; uint32_t fcfi; uint32_t did; /* Process each received buffer */ fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt; if (fc_hdr->fh_r_ctl == FC_RCTL_MDS_DIAGS || fc_hdr->fh_r_ctl == FC_RCTL_DD_UNSOL_DATA) { vport = phba->pport; /* Handle MDS Loopback frames */ if (!(phba->pport->load_flag & FC_UNLOADING)) lpfc_sli4_handle_mds_loopback(vport, dmabuf); else lpfc_in_buf_free(phba, &dmabuf->dbuf); return; } /* check to see if this a valid type of frame */ if (lpfc_fc_frame_check(phba, fc_hdr)) { lpfc_in_buf_free(phba, &dmabuf->dbuf); return; } if ((bf_get(lpfc_cqe_code, &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1)) fcfi = bf_get(lpfc_rcqe_fcf_id_v1, &dmabuf->cq_event.cqe.rcqe_cmpl); else fcfi = bf_get(lpfc_rcqe_fcf_id, &dmabuf->cq_event.cqe.rcqe_cmpl); if (fc_hdr->fh_r_ctl == 0xF4 && fc_hdr->fh_type == 0xFF) { vport = phba->pport; lpfc_printf_log(phba, KERN_INFO, LOG_SLI, "2023 MDS Loopback %d bytes\n", bf_get(lpfc_rcqe_length, &dmabuf->cq_event.cqe.rcqe_cmpl)); /* Handle MDS Loopback frames */ lpfc_sli4_handle_mds_loopback(vport, dmabuf); return; } /* d_id this frame is directed to */ did = sli4_did_from_fc_hdr(fc_hdr); vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi, did); if (!vport) { /* throw out the frame */ lpfc_in_buf_free(phba, &dmabuf->dbuf); return; } /* vport is registered unless we rcv a FLOGI directed to Fabric_DID */ if (!(vport->vpi_state & LPFC_VPI_REGISTERED) && (did != Fabric_DID)) { /* * Throw out the frame if we are not pt2pt. * The pt2pt protocol allows for discovery frames * to be received without a registered VPI. */ if (!(vport->fc_flag & FC_PT2PT) || (phba->link_state == LPFC_HBA_READY)) { lpfc_in_buf_free(phba, &dmabuf->dbuf); return; } } /* Handle the basic abort sequence (BA_ABTS) event */ if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) { lpfc_sli4_handle_unsol_abort(vport, dmabuf); return; } /* Link this frame */ seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf); if (!seq_dmabuf) { /* unable to add frame to vport - throw it out */ lpfc_in_buf_free(phba, &dmabuf->dbuf); return; } /* If not last frame in sequence continue processing frames. */ if (!lpfc_seq_complete(seq_dmabuf)) return; /* Send the complete sequence to the upper layer protocol */ lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf); } /** * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port * @phba: pointer to lpfc hba data structure. * * This routine is invoked to post rpi header templates to the * HBA consistent with the SLI-4 interface spec. This routine * posts a SLI4_PAGE_SIZE memory region to the port to hold up to * SLI4_PAGE_SIZE modulo 64 rpi context headers. * * This routine does not require any locks. It's usage is expected * to be driver load or reset recovery when the driver is * sequential. * * Return codes * 0 - successful * -EIO - The mailbox failed to complete successfully. * When this error occurs, the driver is not guaranteed * to have any rpi regions posted to the device and * must either attempt to repost the regions or take a * fatal error. **/ int lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba) { struct lpfc_rpi_hdr *rpi_page; uint32_t rc = 0; uint16_t lrpi = 0; /* SLI4 ports that support extents do not require RPI headers. */ if (!phba->sli4_hba.rpi_hdrs_in_use) goto exit; if (phba->sli4_hba.extents_in_use) return -EIO; list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { /* * Assign the rpi headers a physical rpi only if the driver * has not initialized those resources. A port reset only * needs the headers posted. */ if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) != LPFC_RPI_RSRC_RDY) rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page); if (rc != MBX_SUCCESS) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2008 Error %d posting all rpi " "headers\n", rc); rc = -EIO; break; } } exit: bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, LPFC_RPI_RSRC_RDY); return rc; } /** * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port * @phba: pointer to lpfc hba data structure. * @rpi_page: pointer to the rpi memory region. * * This routine is invoked to post a single rpi header to the * HBA consistent with the SLI-4 interface spec. This memory region * maps up to 64 rpi context regions. * * Return codes * 0 - successful * -ENOMEM - No available memory * -EIO - The mailbox failed to complete successfully. **/ int lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page) { LPFC_MBOXQ_t *mboxq; struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl; uint32_t rc = 0; uint32_t shdr_status, shdr_add_status; union lpfc_sli4_cfg_shdr *shdr; /* SLI4 ports that support extents do not require RPI headers. */ if (!phba->sli4_hba.rpi_hdrs_in_use) return rc; if (phba->sli4_hba.extents_in_use) return -EIO; /* The port is notified of the header region via a mailbox command. */ mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!mboxq) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2001 Unable to allocate memory for issuing " "SLI_CONFIG_SPECIAL mailbox command\n"); return -ENOMEM; } /* Post all rpi memory regions to the port. */ hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl; lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE, sizeof(struct lpfc_mbx_post_hdr_tmpl) - sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); /* Post the physical rpi to the port for this rpi header. */ bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl, rpi_page->start_rpi); bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt, hdr_tmpl, rpi_page->page_count); hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys); hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys); rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr; shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); mempool_free(mboxq, phba->mbox_mem_pool); if (shdr_status || shdr_add_status || rc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2514 POST_RPI_HDR mailbox failed with " "status x%x add_status x%x, mbx status x%x\n", shdr_status, shdr_add_status, rc); rc = -ENXIO; } else { /* * The next_rpi stores the next logical module-64 rpi value used * to post physical rpis in subsequent rpi postings. */ spin_lock_irq(&phba->hbalock); phba->sli4_hba.next_rpi = rpi_page->next_rpi; spin_unlock_irq(&phba->hbalock); } return rc; } /** * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range * @phba: pointer to lpfc hba data structure. * * This routine is invoked to post rpi header templates to the * HBA consistent with the SLI-4 interface spec. This routine * posts a SLI4_PAGE_SIZE memory region to the port to hold up to * SLI4_PAGE_SIZE modulo 64 rpi context headers. * * Returns * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful * LPFC_RPI_ALLOC_ERROR if no rpis are available. **/ int lpfc_sli4_alloc_rpi(struct lpfc_hba *phba) { unsigned long rpi; uint16_t max_rpi, rpi_limit; uint16_t rpi_remaining, lrpi = 0; struct lpfc_rpi_hdr *rpi_hdr; unsigned long iflag; /* * Fetch the next logical rpi. Because this index is logical, * the driver starts at 0 each time. */ spin_lock_irqsave(&phba->hbalock, iflag); max_rpi = phba->sli4_hba.max_cfg_param.max_rpi; rpi_limit = phba->sli4_hba.next_rpi; rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0); if (rpi >= rpi_limit) rpi = LPFC_RPI_ALLOC_ERROR; else { set_bit(rpi, phba->sli4_hba.rpi_bmask); phba->sli4_hba.max_cfg_param.rpi_used++; phba->sli4_hba.rpi_count++; } lpfc_printf_log(phba, KERN_INFO, LOG_NODE | LOG_DISCOVERY, "0001 Allocated rpi:x%x max:x%x lim:x%x\n", (int) rpi, max_rpi, rpi_limit); /* * Don't try to allocate more rpi header regions if the device limit * has been exhausted. */ if ((rpi == LPFC_RPI_ALLOC_ERROR) && (phba->sli4_hba.rpi_count >= max_rpi)) { spin_unlock_irqrestore(&phba->hbalock, iflag); return rpi; } /* * RPI header postings are not required for SLI4 ports capable of * extents. */ if (!phba->sli4_hba.rpi_hdrs_in_use) { spin_unlock_irqrestore(&phba->hbalock, iflag); return rpi; } /* * If the driver is running low on rpi resources, allocate another * page now. Note that the next_rpi value is used because * it represents how many are actually in use whereas max_rpi notes * how many are supported max by the device. */ rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count; spin_unlock_irqrestore(&phba->hbalock, iflag); if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) { rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); if (!rpi_hdr) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2002 Error Could not grow rpi " "count\n"); } else { lrpi = rpi_hdr->start_rpi; rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi]; lpfc_sli4_post_rpi_hdr(phba, rpi_hdr); } } return rpi; } /** * __lpfc_sli4_free_rpi - Release an rpi for reuse. * @phba: pointer to lpfc hba data structure. * @rpi: rpi to free * * This routine is invoked to release an rpi to the pool of * available rpis maintained by the driver. **/ static void __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) { /* * if the rpi value indicates a prior unreg has already * been done, skip the unreg. */ if (rpi == LPFC_RPI_ALLOC_ERROR) return; if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) { phba->sli4_hba.rpi_count--; phba->sli4_hba.max_cfg_param.rpi_used--; } else { lpfc_printf_log(phba, KERN_INFO, LOG_NODE | LOG_DISCOVERY, "2016 rpi %x not inuse\n", rpi); } } /** * lpfc_sli4_free_rpi - Release an rpi for reuse. * @phba: pointer to lpfc hba data structure. * @rpi: rpi to free * * This routine is invoked to release an rpi to the pool of * available rpis maintained by the driver. **/ void lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi) { spin_lock_irq(&phba->hbalock); __lpfc_sli4_free_rpi(phba, rpi); spin_unlock_irq(&phba->hbalock); } /** * lpfc_sli4_remove_rpis - Remove the rpi bitmask region * @phba: pointer to lpfc hba data structure. * * This routine is invoked to remove the memory region that * provided rpi via a bitmask. **/ void lpfc_sli4_remove_rpis(struct lpfc_hba *phba) { kfree(phba->sli4_hba.rpi_bmask); kfree(phba->sli4_hba.rpi_ids); bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0); } /** * lpfc_sli4_resume_rpi - Remove the rpi bitmask region * @ndlp: pointer to lpfc nodelist data structure. * @cmpl: completion call-back. * @arg: data to load as MBox 'caller buffer information' * * This routine is invoked to remove the memory region that * provided rpi via a bitmask. **/ int lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp, void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg) { LPFC_MBOXQ_t *mboxq; struct lpfc_hba *phba = ndlp->phba; int rc; /* The port is notified of the header region via a mailbox command. */ mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!mboxq) return -ENOMEM; /* If cmpl assigned, then this nlp_get pairs with * lpfc_mbx_cmpl_resume_rpi. * * Else cmpl is NULL, then this nlp_get pairs with * lpfc_sli_def_mbox_cmpl. */ if (!lpfc_nlp_get(ndlp)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2122 %s: Failed to get nlp ref\n", __func__); mempool_free(mboxq, phba->mbox_mem_pool); return -EIO; } /* Post all rpi memory regions to the port. */ lpfc_resume_rpi(mboxq, ndlp); if (cmpl) { mboxq->mbox_cmpl = cmpl; mboxq->ctx_buf = arg; } else mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl; mboxq->ctx_ndlp = ndlp; mboxq->vport = ndlp->vport; rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); if (rc == MBX_NOT_FINISHED) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2010 Resume RPI Mailbox failed " "status %d, mbxStatus x%x\n", rc, bf_get(lpfc_mqe_status, &mboxq->u.mqe)); lpfc_nlp_put(ndlp); mempool_free(mboxq, phba->mbox_mem_pool); return -EIO; } return 0; } /** * lpfc_sli4_init_vpi - Initialize a vpi with the port * @vport: Pointer to the vport for which the vpi is being initialized * * This routine is invoked to activate a vpi with the port. * * Returns: * 0 success * -Evalue otherwise **/ int lpfc_sli4_init_vpi(struct lpfc_vport *vport) { LPFC_MBOXQ_t *mboxq; int rc = 0; int retval = MBX_SUCCESS; uint32_t mbox_tmo; struct lpfc_hba *phba = vport->phba; mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!mboxq) return -ENOMEM; lpfc_init_vpi(phba, mboxq, vport->vpi); mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); if (rc != MBX_SUCCESS) { lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "2022 INIT VPI Mailbox failed " "status %d, mbxStatus x%x\n", rc, bf_get(lpfc_mqe_status, &mboxq->u.mqe)); retval = -EIO; } if (rc != MBX_TIMEOUT) mempool_free(mboxq, vport->phba->mbox_mem_pool); return retval; } /** * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler. * @phba: pointer to lpfc hba data structure. * @mboxq: Pointer to mailbox object. * * This routine is invoked to manually add a single FCF record. The caller * must pass a completely initialized FCF_Record. This routine takes * care of the nonembedded mailbox operations. **/ static void lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) { void *virt_addr; union lpfc_sli4_cfg_shdr *shdr; uint32_t shdr_status, shdr_add_status; virt_addr = mboxq->sge_array->addr[0]; /* The IOCTL status is embedded in the mailbox subheader. */ shdr = (union lpfc_sli4_cfg_shdr *) virt_addr; shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); if ((shdr_status || shdr_add_status) && (shdr_status != STATUS_FCF_IN_USE)) lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2558 ADD_FCF_RECORD mailbox failed with " "status x%x add_status x%x\n", shdr_status, shdr_add_status); lpfc_sli4_mbox_cmd_free(phba, mboxq); } /** * lpfc_sli4_add_fcf_record - Manually add an FCF Record. * @phba: pointer to lpfc hba data structure. * @fcf_record: pointer to the initialized fcf record to add. * * This routine is invoked to manually add a single FCF record. The caller * must pass a completely initialized FCF_Record. This routine takes * care of the nonembedded mailbox operations. **/ int lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record) { int rc = 0; LPFC_MBOXQ_t *mboxq; uint8_t *bytep; void *virt_addr; struct lpfc_mbx_sge sge; uint32_t alloc_len, req_len; uint32_t fcfindex; mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!mboxq) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2009 Failed to allocate mbox for ADD_FCF cmd\n"); return -ENOMEM; } req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t); /* Allocate DMA memory and set up the non-embedded mailbox command */ alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE, LPFC_MBOX_OPCODE_FCOE_ADD_FCF, req_len, LPFC_SLI4_MBX_NEMBED); if (alloc_len < req_len) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2523 Allocated DMA memory size (x%x) is " "less than the requested DMA memory " "size (x%x)\n", alloc_len, req_len); lpfc_sli4_mbox_cmd_free(phba, mboxq); return -ENOMEM; } /* * Get the first SGE entry from the non-embedded DMA memory. This * routine only uses a single SGE. */ lpfc_sli4_mbx_sge_get(mboxq, 0, &sge); virt_addr = mboxq->sge_array->addr[0]; /* * Configure the FCF record for FCFI 0. This is the driver's * hardcoded default and gets used in nonFIP mode. */ fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record); bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr); lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t)); /* * Copy the fcf_index and the FCF Record Data. The data starts after * the FCoE header plus word10. The data copy needs to be endian * correct. */ bytep += sizeof(uint32_t); lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record)); mboxq->vport = phba->pport; mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record; rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); if (rc == MBX_NOT_FINISHED) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2515 ADD_FCF_RECORD mailbox failed with " "status 0x%x\n", rc); lpfc_sli4_mbox_cmd_free(phba, mboxq); rc = -EIO; } else rc = 0; return rc; } /** * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record. * @phba: pointer to lpfc hba data structure. * @fcf_record: pointer to the fcf record to write the default data. * @fcf_index: FCF table entry index. * * This routine is invoked to build the driver's default FCF record. The * values used are hardcoded. This routine handles memory initialization. * **/ void lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record, uint16_t fcf_index) { memset(fcf_record, 0, sizeof(struct fcf_record)); fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE; fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER; fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY; bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]); bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]); bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]); bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3); bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4); bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5); bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]); bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]); bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]); bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1); bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1); bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index); bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record, LPFC_FCF_FPMA | LPFC_FCF_SPMA); /* Set the VLAN bit map */ if (phba->valid_vlan) { fcf_record->vlan_bitmap[phba->vlan_id / 8] = 1 << (phba->vlan_id % 8); } } /** * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan. * @phba: pointer to lpfc hba data structure. * @fcf_index: FCF table entry offset. * * This routine is invoked to scan the entire FCF table by reading FCF * record and processing it one at a time starting from the @fcf_index * for initial FCF discovery or fast FCF failover rediscovery. * * Return 0 if the mailbox command is submitted successfully, none 0 * otherwise. **/ int lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) { int rc = 0, error; LPFC_MBOXQ_t *mboxq; phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag; phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag; mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!mboxq) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2000 Failed to allocate mbox for " "READ_FCF cmd\n"); error = -ENOMEM; goto fail_fcf_scan; } /* Construct the read FCF record mailbox command */ rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); if (rc) { error = -EINVAL; goto fail_fcf_scan; } /* Issue the mailbox command asynchronously */ mboxq->vport = phba->pport; mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec; spin_lock_irq(&phba->hbalock); phba->hba_flag |= FCF_TS_INPROG; spin_unlock_irq(&phba->hbalock); rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); if (rc == MBX_NOT_FINISHED) error = -EIO; else { /* Reset eligible FCF count for new scan */ if (fcf_index == LPFC_FCOE_FCF_GET_FIRST) phba->fcf.eligible_fcf_cnt = 0; error = 0; } fail_fcf_scan: if (error) { if (mboxq) lpfc_sli4_mbox_cmd_free(phba, mboxq); /* FCF scan failed, clear FCF_TS_INPROG flag */ spin_lock_irq(&phba->hbalock); phba->hba_flag &= ~FCF_TS_INPROG; spin_unlock_irq(&phba->hbalock); } return error; } /** * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf. * @phba: pointer to lpfc hba data structure. * @fcf_index: FCF table entry offset. * * This routine is invoked to read an FCF record indicated by @fcf_index * and to use it for FLOGI roundrobin FCF failover. * * Return 0 if the mailbox command is submitted successfully, none 0 * otherwise. **/ int lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) { int rc = 0, error; LPFC_MBOXQ_t *mboxq; mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!mboxq) { lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, "2763 Failed to allocate mbox for " "READ_FCF cmd\n"); error = -ENOMEM; goto fail_fcf_read; } /* Construct the read FCF record mailbox command */ rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); if (rc) { error = -EINVAL; goto fail_fcf_read; } /* Issue the mailbox command asynchronously */ mboxq->vport = phba->pport; mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec; rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); if (rc == MBX_NOT_FINISHED) error = -EIO; else error = 0; fail_fcf_read: if (error && mboxq) lpfc_sli4_mbox_cmd_free(phba, mboxq); return error; } /** * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask. * @phba: pointer to lpfc hba data structure. * @fcf_index: FCF table entry offset. * * This routine is invoked to read an FCF record indicated by @fcf_index to * determine whether it's eligible for FLOGI roundrobin failover list. * * Return 0 if the mailbox command is submitted successfully, none 0 * otherwise. **/ int lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index) { int rc = 0, error; LPFC_MBOXQ_t *mboxq; mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!mboxq) { lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT, "2758 Failed to allocate mbox for " "READ_FCF cmd\n"); error = -ENOMEM; goto fail_fcf_read; } /* Construct the read FCF record mailbox command */ rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index); if (rc) { error = -EINVAL; goto fail_fcf_read; } /* Issue the mailbox command asynchronously */ mboxq->vport = phba->pport; mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec; rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT); if (rc == MBX_NOT_FINISHED) error = -EIO; else error = 0; fail_fcf_read: if (error && mboxq) lpfc_sli4_mbox_cmd_free(phba, mboxq); return error; } /** * lpfc_check_next_fcf_pri_level * @phba: pointer to the lpfc_hba struct for this port. * This routine is called from the lpfc_sli4_fcf_rr_next_index_get * routine when the rr_bmask is empty. The FCF indecies are put into the * rr_bmask based on their priority level. Starting from the highest priority * to the lowest. The most likely FCF candidate will be in the highest * priority group. When this routine is called it searches the fcf_pri list for * next lowest priority group and repopulates the rr_bmask with only those * fcf_indexes. * returns: * 1=success 0=failure **/ static int lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba) { uint16_t next_fcf_pri; uint16_t last_index; struct lpfc_fcf_pri *fcf_pri; int rc; int ret = 0; last_index = find_first_bit(phba->fcf.fcf_rr_bmask, LPFC_SLI4_FCF_TBL_INDX_MAX); lpfc_printf_log(phba, KERN_INFO, LOG_FIP, "3060 Last IDX %d\n", last_index); /* Verify the priority list has 2 or more entries */ spin_lock_irq(&phba->hbalock); if (list_empty(&phba->fcf.fcf_pri_list) || list_is_singular(&phba->fcf.fcf_pri_list)) { spin_unlock_irq(&phba->hbalock); lpfc_printf_log(phba, KERN_ERR, LOG_FIP, "3061 Last IDX %d\n", last_index); return 0; /* Empty rr list */ } spin_unlock_irq(&phba->hbalock); next_fcf_pri = 0; /* * Clear the rr_bmask and set all of the bits that are at this * priority. */ memset(phba->fcf.fcf_rr_bmask, 0, sizeof(*phba->fcf.fcf_rr_bmask)); spin_lock_irq(&phba->hbalock); list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) continue; /* * the 1st priority that has not FLOGI failed * will be the highest. */ if (!next_fcf_pri) next_fcf_pri = fcf_pri->fcf_rec.priority; spin_unlock_irq(&phba->hbalock); if (fcf_pri->fcf_rec.priority == next_fcf_pri) { rc = lpfc_sli4_fcf_rr_index_set(phba, fcf_pri->fcf_rec.fcf_index); if (rc) return 0; } spin_lock_irq(&phba->hbalock); } /* * if next_fcf_pri was not set above and the list is not empty then * we have failed flogis on all of them. So reset flogi failed * and start at the beginning. */ if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) { list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) { fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED; /* * the 1st priority that has not FLOGI failed * will be the highest. */ if (!next_fcf_pri) next_fcf_pri = fcf_pri->fcf_rec.priority; spin_unlock_irq(&phba->hbalock); if (fcf_pri->fcf_rec.priority == next_fcf_pri) { rc = lpfc_sli4_fcf_rr_index_set(phba, fcf_pri->fcf_rec.fcf_index); if (rc) return 0; } spin_lock_irq(&phba->hbalock); } } else ret = 1; spin_unlock_irq(&phba->hbalock); return ret; } /** * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index * @phba: pointer to lpfc hba data structure. * * This routine is to get the next eligible FCF record index in a round * robin fashion. If the next eligible FCF record index equals to the * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF) * shall be returned, otherwise, the next eligible FCF record's index * shall be returned. **/ uint16_t lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba) { uint16_t next_fcf_index; initial_priority: /* Search start from next bit of currently registered FCF index */ next_fcf_index = phba->fcf.current_rec.fcf_indx; next_priority: /* Determine the next fcf index to check */ next_fcf_index = (next_fcf_index + 1) % LPFC_SLI4_FCF_TBL_INDX_MAX; next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, LPFC_SLI4_FCF_TBL_INDX_MAX, next_fcf_index); /* Wrap around condition on phba->fcf.fcf_rr_bmask */ if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { /* * If we have wrapped then we need to clear the bits that * have been tested so that we can detect when we should * change the priority level. */ next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask, LPFC_SLI4_FCF_TBL_INDX_MAX, 0); } /* Check roundrobin failover list empty condition */ if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX || next_fcf_index == phba->fcf.current_rec.fcf_indx) { /* * If next fcf index is not found check if there are lower * Priority level fcf's in the fcf_priority list. * Set up the rr_bmask with all of the avaiable fcf bits * at that level and continue the selection process. */ if (lpfc_check_next_fcf_pri_level(phba)) goto initial_priority; lpfc_printf_log(phba, KERN_WARNING, LOG_FIP, "2844 No roundrobin failover FCF available\n"); return LPFC_FCOE_FCF_NEXT_NONE; } if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX && phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag & LPFC_FCF_FLOGI_FAILED) { if (list_is_singular(&phba->fcf.fcf_pri_list)) return LPFC_FCOE_FCF_NEXT_NONE; goto next_priority; } lpfc_printf_log(phba, KERN_INFO, LOG_FIP, "2845 Get next roundrobin failover FCF (x%x)\n", next_fcf_index); return next_fcf_index; } /** * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index * @phba: pointer to lpfc hba data structure. * @fcf_index: index into the FCF table to 'set' * * This routine sets the FCF record index in to the eligible bmask for * roundrobin failover search. It checks to make sure that the index * does not go beyond the range of the driver allocated bmask dimension * before setting the bit. * * Returns 0 if the index bit successfully set, otherwise, it returns * -EINVAL. **/ int lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index) { if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { lpfc_printf_log(phba, KERN_ERR, LOG_FIP, "2610 FCF (x%x) reached driver's book " "keeping dimension:x%x\n", fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); return -EINVAL; } /* Set the eligible FCF record index bmask */ set_bit(fcf_index, phba->fcf.fcf_rr_bmask); lpfc_printf_log(phba, KERN_INFO, LOG_FIP, "2790 Set FCF (x%x) to roundrobin FCF failover " "bmask\n", fcf_index); return 0; } /** * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index * @phba: pointer to lpfc hba data structure. * @fcf_index: index into the FCF table to 'clear' * * This routine clears the FCF record index from the eligible bmask for * roundrobin failover search. It checks to make sure that the index * does not go beyond the range of the driver allocated bmask dimension * before clearing the bit. **/ void lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index) { struct lpfc_fcf_pri *fcf_pri, *fcf_pri_next; if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) { lpfc_printf_log(phba, KERN_ERR, LOG_FIP, "2762 FCF (x%x) reached driver's book " "keeping dimension:x%x\n", fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX); return; } /* Clear the eligible FCF record index bmask */ spin_lock_irq(&phba->hbalock); list_for_each_entry_safe(fcf_pri, fcf_pri_next, &phba->fcf.fcf_pri_list, list) { if (fcf_pri->fcf_rec.fcf_index == fcf_index) { list_del_init(&fcf_pri->list); break; } } spin_unlock_irq(&phba->hbalock); clear_bit(fcf_index, phba->fcf.fcf_rr_bmask); lpfc_printf_log(phba, KERN_INFO, LOG_FIP, "2791 Clear FCF (x%x) from roundrobin failover " "bmask\n", fcf_index); } /** * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table * @phba: pointer to lpfc hba data structure. * @mbox: An allocated pointer to type LPFC_MBOXQ_t * * This routine is the completion routine for the rediscover FCF table mailbox * command. If the mailbox command returned failure, it will try to stop the * FCF rediscover wait timer. **/ static void lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox) { struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; uint32_t shdr_status, shdr_add_status; redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; shdr_status = bf_get(lpfc_mbox_hdr_status, &redisc_fcf->header.cfg_shdr.response); shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &redisc_fcf->header.cfg_shdr.response); if (shdr_status || shdr_add_status) { lpfc_printf_log(phba, KERN_ERR, LOG_FIP, "2746 Requesting for FCF rediscovery failed " "status x%x add_status x%x\n", shdr_status, shdr_add_status); if (phba->fcf.fcf_flag & FCF_ACVL_DISC) { spin_lock_irq(&phba->hbalock); phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; spin_unlock_irq(&phba->hbalock); /* * CVL event triggered FCF rediscover request failed, * last resort to re-try current registered FCF entry. */ lpfc_retry_pport_discovery(phba); } else { spin_lock_irq(&phba->hbalock); phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; spin_unlock_irq(&phba->hbalock); /* * DEAD FCF event triggered FCF rediscover request * failed, last resort to fail over as a link down * to FCF registration. */ lpfc_sli4_fcf_dead_failthrough(phba); } } else { lpfc_printf_log(phba, KERN_INFO, LOG_FIP, "2775 Start FCF rediscover quiescent timer\n"); /* * Start FCF rediscovery wait timer for pending FCF * before rescan FCF record table. */ lpfc_fcf_redisc_wait_start_timer(phba); } mempool_free(mbox, phba->mbox_mem_pool); } /** * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port. * @phba: pointer to lpfc hba data structure. * * This routine is invoked to request for rediscovery of the entire FCF table * by the port. **/ int lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba) { LPFC_MBOXQ_t *mbox; struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf; int rc, length; /* Cancel retry delay timers to all vports before FCF rediscover */ lpfc_cancel_all_vport_retry_delay_timer(phba); mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!mbox) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2745 Failed to allocate mbox for " "requesting FCF rediscover.\n"); return -ENOMEM; } length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) - sizeof(struct lpfc_sli4_cfg_mhdr)); lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE, LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF, length, LPFC_SLI4_MBX_EMBED); redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl; /* Set count to 0 for invalidating the entire FCF database */ bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0); /* Issue the mailbox command asynchronously */ mbox->vport = phba->pport; mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table; rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); if (rc == MBX_NOT_FINISHED) { mempool_free(mbox, phba->mbox_mem_pool); return -EIO; } return 0; } /** * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event * @phba: pointer to lpfc hba data structure. * * This function is the failover routine as a last resort to the FCF DEAD * event when driver failed to perform fast FCF failover. **/ void lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba) { uint32_t link_state; /* * Last resort as FCF DEAD event failover will treat this as * a link down, but save the link state because we don't want * it to be changed to Link Down unless it is already down. */ link_state = phba->link_state; lpfc_linkdown(phba); phba->link_state = link_state; /* Unregister FCF if no devices connected to it */ lpfc_unregister_unused_fcf(phba); } /** * lpfc_sli_get_config_region23 - Get sli3 port region 23 data. * @phba: pointer to lpfc hba data structure. * @rgn23_data: pointer to configure region 23 data. * * This function gets SLI3 port configure region 23 data through memory dump * mailbox command. When it successfully retrieves data, the size of the data * will be returned, otherwise, 0 will be returned. **/ static uint32_t lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) { LPFC_MBOXQ_t *pmb = NULL; MAILBOX_t *mb; uint32_t offset = 0; int rc; if (!rgn23_data) return 0; pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!pmb) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2600 failed to allocate mailbox memory\n"); return 0; } mb = &pmb->u.mb; do { lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23); rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); if (rc != MBX_SUCCESS) { lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "2601 failed to read config " "region 23, rc 0x%x Status 0x%x\n", rc, mb->mbxStatus); mb->un.varDmp.word_cnt = 0; } /* * dump mem may return a zero when finished or we got a * mailbox error, either way we are done. */ if (mb->un.varDmp.word_cnt == 0) break; if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset) mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset; lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, rgn23_data + offset, mb->un.varDmp.word_cnt); offset += mb->un.varDmp.word_cnt; } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE); mempool_free(pmb, phba->mbox_mem_pool); return offset; } /** * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data. * @phba: pointer to lpfc hba data structure. * @rgn23_data: pointer to configure region 23 data. * * This function gets SLI4 port configure region 23 data through memory dump * mailbox command. When it successfully retrieves data, the size of the data * will be returned, otherwise, 0 will be returned. **/ static uint32_t lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data) { LPFC_MBOXQ_t *mboxq = NULL; struct lpfc_dmabuf *mp = NULL; struct lpfc_mqe *mqe; uint32_t data_length = 0; int rc; if (!rgn23_data) return 0; mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!mboxq) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3105 failed to allocate mailbox memory\n"); return 0; } if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) goto out; mqe = &mboxq->u.mqe; mp = (struct lpfc_dmabuf *)mboxq->ctx_buf; rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); if (rc) goto out; data_length = mqe->un.mb_words[5]; if (data_length == 0) goto out; if (data_length > DMP_RGN23_SIZE) { data_length = 0; goto out; } lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length); out: mempool_free(mboxq, phba->mbox_mem_pool); if (mp) { lpfc_mbuf_free(phba, mp->virt, mp->phys); kfree(mp); } return data_length; } /** * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled. * @phba: pointer to lpfc hba data structure. * * This function read region 23 and parse TLV for port status to * decide if the user disaled the port. If the TLV indicates the * port is disabled, the hba_flag is set accordingly. **/ void lpfc_sli_read_link_ste(struct lpfc_hba *phba) { uint8_t *rgn23_data = NULL; uint32_t if_type, data_size, sub_tlv_len, tlv_offset; uint32_t offset = 0; /* Get adapter Region 23 data */ rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL); if (!rgn23_data) goto out; if (phba->sli_rev < LPFC_SLI_REV4) data_size = lpfc_sli_get_config_region23(phba, rgn23_data); else { if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); if (if_type == LPFC_SLI_INTF_IF_TYPE_0) goto out; data_size = lpfc_sli4_get_config_region23(phba, rgn23_data); } if (!data_size) goto out; /* Check the region signature first */ if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2619 Config region 23 has bad signature\n"); goto out; } offset += 4; /* Check the data structure version */ if (rgn23_data[offset] != LPFC_REGION23_VERSION) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2620 Config region 23 has bad version\n"); goto out; } offset += 4; /* Parse TLV entries in the region */ while (offset < data_size) { if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) break; /* * If the TLV is not driver specific TLV or driver id is * not linux driver id, skip the record. */ if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) || (rgn23_data[offset + 2] != LINUX_DRIVER_ID) || (rgn23_data[offset + 3] != 0)) { offset += rgn23_data[offset + 1] * 4 + 4; continue; } /* Driver found a driver specific TLV in the config region */ sub_tlv_len = rgn23_data[offset + 1] * 4; offset += 4; tlv_offset = 0; /* * Search for configured port state sub-TLV. */ while ((offset < data_size) && (tlv_offset < sub_tlv_len)) { if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) { offset += 4; tlv_offset += 4; break; } if (rgn23_data[offset] != PORT_STE_TYPE) { offset += rgn23_data[offset + 1] * 4 + 4; tlv_offset += rgn23_data[offset + 1] * 4 + 4; continue; } /* This HBA contains PORT_STE configured */ if (!rgn23_data[offset + 2]) phba->hba_flag |= LINK_DISABLED; goto out; } } out: kfree(rgn23_data); return; } /** * lpfc_log_fw_write_cmpl - logs firmware write completion status * @phba: pointer to lpfc hba data structure * @shdr_status: wr_object rsp's status field * @shdr_add_status: wr_object rsp's add_status field * @shdr_add_status_2: wr_object rsp's add_status_2 field * @shdr_change_status: wr_object rsp's change_status field * @shdr_csf: wr_object rsp's csf bit * * This routine is intended to be called after a firmware write completes. * It will log next action items to be performed by the user to instantiate * the newly downloaded firmware or reason for incompatibility. **/ static void lpfc_log_fw_write_cmpl(struct lpfc_hba *phba, u32 shdr_status, u32 shdr_add_status, u32 shdr_add_status_2, u32 shdr_change_status, u32 shdr_csf) { lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, "4198 %s: flash_id x%02x, asic_rev x%02x, " "status x%02x, add_status x%02x, add_status_2 x%02x, " "change_status x%02x, csf %01x\n", __func__, phba->sli4_hba.flash_id, phba->sli4_hba.asic_rev, shdr_status, shdr_add_status, shdr_add_status_2, shdr_change_status, shdr_csf); if (shdr_add_status == LPFC_ADD_STATUS_INCOMPAT_OBJ) { switch (shdr_add_status_2) { case LPFC_ADD_STATUS_2_INCOMPAT_FLASH: lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, "4199 Firmware write failed: " "image incompatible with flash x%02x\n", phba->sli4_hba.flash_id); break; case LPFC_ADD_STATUS_2_INCORRECT_ASIC: lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, "4200 Firmware write failed: " "image incompatible with ASIC " "architecture x%02x\n", phba->sli4_hba.asic_rev); break; default: lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI, "4210 Firmware write failed: " "add_status_2 x%02x\n", shdr_add_status_2); break; } } else if (!shdr_status && !shdr_add_status) { if (shdr_change_status == LPFC_CHANGE_STATUS_FW_RESET || shdr_change_status == LPFC_CHANGE_STATUS_PORT_MIGRATION) { if (shdr_csf) shdr_change_status = LPFC_CHANGE_STATUS_PCI_RESET; } switch (shdr_change_status) { case (LPFC_CHANGE_STATUS_PHYS_DEV_RESET): lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, "3198 Firmware write complete: System " "reboot required to instantiate\n"); break; case (LPFC_CHANGE_STATUS_FW_RESET): lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, "3199 Firmware write complete: " "Firmware reset required to " "instantiate\n"); break; case (LPFC_CHANGE_STATUS_PORT_MIGRATION): lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, "3200 Firmware write complete: Port " "Migration or PCI Reset required to " "instantiate\n"); break; case (LPFC_CHANGE_STATUS_PCI_RESET): lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI, "3201 Firmware write complete: PCI " "Reset required to instantiate\n"); break; default: break; } } } /** * lpfc_wr_object - write an object to the firmware * @phba: HBA structure that indicates port to create a queue on. * @dmabuf_list: list of dmabufs to write to the port. * @size: the total byte value of the objects to write to the port. * @offset: the current offset to be used to start the transfer. * * This routine will create a wr_object mailbox command to send to the port. * the mailbox command will be constructed using the dma buffers described in * @dmabuf_list to create a list of BDEs. This routine will fill in as many * BDEs that the imbedded mailbox can support. The @offset variable will be * used to indicate the starting offset of the transfer and will also return * the offset after the write object mailbox has completed. @size is used to * determine the end of the object and whether the eof bit should be set. * * Return 0 is successful and offset will contain the the new offset to use * for the next write. * Return negative value for error cases. **/ int lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list, uint32_t size, uint32_t *offset) { struct lpfc_mbx_wr_object *wr_object; LPFC_MBOXQ_t *mbox; int rc = 0, i = 0; int mbox_status = 0; uint32_t shdr_status, shdr_add_status, shdr_add_status_2; uint32_t shdr_change_status = 0, shdr_csf = 0; uint32_t mbox_tmo; struct lpfc_dmabuf *dmabuf; uint32_t written = 0; bool check_change_status = false; mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!mbox) return -ENOMEM; lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, LPFC_MBOX_OPCODE_WRITE_OBJECT, sizeof(struct lpfc_mbx_wr_object) - sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED); wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object; wr_object->u.request.write_offset = *offset; sprintf((uint8_t *)wr_object->u.request.object_name, "/"); wr_object->u.request.object_name[0] = cpu_to_le32(wr_object->u.request.object_name[0]); bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0); list_for_each_entry(dmabuf, dmabuf_list, list) { if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size) break; wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys); wr_object->u.request.bde[i].addrHigh = putPaddrHigh(dmabuf->phys); if (written + SLI4_PAGE_SIZE >= size) { wr_object->u.request.bde[i].tus.f.bdeSize = (size - written); written += (size - written); bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1); bf_set(lpfc_wr_object_eas, &wr_object->u.request, 1); check_change_status = true; } else { wr_object->u.request.bde[i].tus.f.bdeSize = SLI4_PAGE_SIZE; written += SLI4_PAGE_SIZE; } i++; } wr_object->u.request.bde_count = i; bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written); if (!phba->sli4_hba.intr_enable) mbox_status = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); else { mbox_tmo = lpfc_mbox_tmo_val(phba, mbox); mbox_status = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo); } /* The mbox status needs to be maintained to detect MBOX_TIMEOUT. */ rc = mbox_status; /* The IOCTL status is embedded in the mailbox subheader. */ shdr_status = bf_get(lpfc_mbox_hdr_status, &wr_object->header.cfg_shdr.response); shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &wr_object->header.cfg_shdr.response); shdr_add_status_2 = bf_get(lpfc_mbox_hdr_add_status_2, &wr_object->header.cfg_shdr.response); if (check_change_status) { shdr_change_status = bf_get(lpfc_wr_object_change_status, &wr_object->u.response); shdr_csf = bf_get(lpfc_wr_object_csf, &wr_object->u.response); } if (shdr_status || shdr_add_status || shdr_add_status_2 || rc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3025 Write Object mailbox failed with " "status x%x add_status x%x, add_status_2 x%x, " "mbx status x%x\n", shdr_status, shdr_add_status, shdr_add_status_2, rc); rc = -ENXIO; *offset = shdr_add_status; } else { *offset += wr_object->u.response.actual_write_length; } if (rc || check_change_status) lpfc_log_fw_write_cmpl(phba, shdr_status, shdr_add_status, shdr_add_status_2, shdr_change_status, shdr_csf); if (!phba->sli4_hba.intr_enable) mempool_free(mbox, phba->mbox_mem_pool); else if (mbox_status != MBX_TIMEOUT) mempool_free(mbox, phba->mbox_mem_pool); return rc; } /** * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands. * @vport: pointer to vport data structure. * * This function iterate through the mailboxq and clean up all REG_LOGIN * and REG_VPI mailbox commands associated with the vport. This function * is called when driver want to restart discovery of the vport due to * a Clear Virtual Link event. **/ void lpfc_cleanup_pending_mbox(struct lpfc_vport *vport) { struct lpfc_hba *phba = vport->phba; LPFC_MBOXQ_t *mb, *nextmb; struct lpfc_dmabuf *mp; struct lpfc_nodelist *ndlp; struct lpfc_nodelist *act_mbx_ndlp = NULL; LIST_HEAD(mbox_cmd_list); uint8_t restart_loop; /* Clean up internally queued mailbox commands with the vport */ spin_lock_irq(&phba->hbalock); list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) { if (mb->vport != vport) continue; if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && (mb->u.mb.mbxCommand != MBX_REG_VPI)) continue; list_move_tail(&mb->list, &mbox_cmd_list); } /* Clean up active mailbox command with the vport */ mb = phba->sli.mbox_active; if (mb && (mb->vport == vport)) { if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) || (mb->u.mb.mbxCommand == MBX_REG_VPI)) mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { act_mbx_ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; /* Put reference count for delayed processing */ act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp); /* Unregister the RPI when mailbox complete */ mb->mbox_flag |= LPFC_MBX_IMED_UNREG; } } /* Cleanup any mailbox completions which are not yet processed */ do { restart_loop = 0; list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) { /* * If this mailox is already processed or it is * for another vport ignore it. */ if ((mb->vport != vport) || (mb->mbox_flag & LPFC_MBX_IMED_UNREG)) continue; if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) && (mb->u.mb.mbxCommand != MBX_REG_VPI)) continue; mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; /* Unregister the RPI when mailbox complete */ mb->mbox_flag |= LPFC_MBX_IMED_UNREG; restart_loop = 1; spin_unlock_irq(&phba->hbalock); spin_lock(&ndlp->lock); ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; spin_unlock(&ndlp->lock); spin_lock_irq(&phba->hbalock); break; } } } while (restart_loop); spin_unlock_irq(&phba->hbalock); /* Release the cleaned-up mailbox commands */ while (!list_empty(&mbox_cmd_list)) { list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list); if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) { mp = (struct lpfc_dmabuf *)(mb->ctx_buf); if (mp) { __lpfc_mbuf_free(phba, mp->virt, mp->phys); kfree(mp); } mb->ctx_buf = NULL; ndlp = (struct lpfc_nodelist *)mb->ctx_ndlp; mb->ctx_ndlp = NULL; if (ndlp) { spin_lock(&ndlp->lock); ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; spin_unlock(&ndlp->lock); lpfc_nlp_put(ndlp); } } mempool_free(mb, phba->mbox_mem_pool); } /* Release the ndlp with the cleaned-up active mailbox command */ if (act_mbx_ndlp) { spin_lock(&act_mbx_ndlp->lock); act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; spin_unlock(&act_mbx_ndlp->lock); lpfc_nlp_put(act_mbx_ndlp); } } /** * lpfc_drain_txq - Drain the txq * @phba: Pointer to HBA context object. * * This function attempt to submit IOCBs on the txq * to the adapter. For SLI4 adapters, the txq contains * ELS IOCBs that have been deferred because the there * are no SGLs. This congestion can occur with large * vport counts during node discovery. **/ uint32_t lpfc_drain_txq(struct lpfc_hba *phba) { LIST_HEAD(completions); struct lpfc_sli_ring *pring; struct lpfc_iocbq *piocbq = NULL; unsigned long iflags = 0; char *fail_msg = NULL; struct lpfc_sglq *sglq; union lpfc_wqe128 wqe; uint32_t txq_cnt = 0; struct lpfc_queue *wq; if (phba->link_flag & LS_MDS_LOOPBACK) { /* MDS WQE are posted only to first WQ*/ wq = phba->sli4_hba.hdwq[0].io_wq; if (unlikely(!wq)) return 0; pring = wq->pring; } else { wq = phba->sli4_hba.els_wq; if (unlikely(!wq)) return 0; pring = lpfc_phba_elsring(phba); } if (unlikely(!pring) || list_empty(&pring->txq)) return 0; spin_lock_irqsave(&pring->ring_lock, iflags); list_for_each_entry(piocbq, &pring->txq, list) { txq_cnt++; } if (txq_cnt > pring->txq_max) pring->txq_max = txq_cnt; spin_unlock_irqrestore(&pring->ring_lock, iflags); while (!list_empty(&pring->txq)) { spin_lock_irqsave(&pring->ring_lock, iflags); piocbq = lpfc_sli_ringtx_get(phba, pring); if (!piocbq) { spin_unlock_irqrestore(&pring->ring_lock, iflags); lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2823 txq empty and txq_cnt is %d\n ", txq_cnt); break; } sglq = __lpfc_sli_get_els_sglq(phba, piocbq); if (!sglq) { __lpfc_sli_ringtx_put(phba, pring, piocbq); spin_unlock_irqrestore(&pring->ring_lock, iflags); break; } txq_cnt--; /* The xri and iocb resources secured, * attempt to issue request */ piocbq->sli4_lxritag = sglq->sli4_lxritag; piocbq->sli4_xritag = sglq->sli4_xritag; if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq)) fail_msg = "to convert bpl to sgl"; else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe)) fail_msg = "to convert iocb to wqe"; else if (lpfc_sli4_wq_put(wq, &wqe)) fail_msg = " - Wq is full"; else lpfc_sli_ringtxcmpl_put(phba, pring, piocbq); if (fail_msg) { /* Failed means we can't issue and need to cancel */ lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2822 IOCB failed %s iotag 0x%x " "xri 0x%x\n", fail_msg, piocbq->iotag, piocbq->sli4_xritag); list_add_tail(&piocbq->list, &completions); fail_msg = NULL; } spin_unlock_irqrestore(&pring->ring_lock, iflags); } /* Cancel all the IOCBs that cannot be issued */ lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED); return txq_cnt; } /** * lpfc_wqe_bpl2sgl - Convert the bpl/bde to a sgl. * @phba: Pointer to HBA context object. * @pwqeq: Pointer to command WQE. * @sglq: Pointer to the scatter gather queue object. * * This routine converts the bpl or bde that is in the WQE * to a sgl list for the sli4 hardware. The physical address * of the bpl/bde is converted back to a virtual address. * If the WQE contains a BPL then the list of BDE's is * converted to sli4_sge's. If the WQE contains a single * BDE then it is converted to a single sli_sge. * The WQE is still in cpu endianness so the contents of * the bpl can be used without byte swapping. * * Returns valid XRI = Success, NO_XRI = Failure. */ static uint16_t lpfc_wqe_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeq, struct lpfc_sglq *sglq) { uint16_t xritag = NO_XRI; struct ulp_bde64 *bpl = NULL; struct ulp_bde64 bde; struct sli4_sge *sgl = NULL; struct lpfc_dmabuf *dmabuf; union lpfc_wqe128 *wqe; int numBdes = 0; int i = 0; uint32_t offset = 0; /* accumulated offset in the sg request list */ int inbound = 0; /* number of sg reply entries inbound from firmware */ uint32_t cmd; if (!pwqeq || !sglq) return xritag; sgl = (struct sli4_sge *)sglq->sgl; wqe = &pwqeq->wqe; pwqeq->iocb.ulpIoTag = pwqeq->iotag; cmd = bf_get(wqe_cmnd, &wqe->generic.wqe_com); if (cmd == CMD_XMIT_BLS_RSP64_WQE) return sglq->sli4_xritag; numBdes = pwqeq->rsvd2; if (numBdes) { /* The addrHigh and addrLow fields within the WQE * have not been byteswapped yet so there is no * need to swap them back. */ if (pwqeq->context3) dmabuf = (struct lpfc_dmabuf *)pwqeq->context3; else return xritag; bpl = (struct ulp_bde64 *)dmabuf->virt; if (!bpl) return xritag; for (i = 0; i < numBdes; i++) { /* Should already be byte swapped. */ sgl->addr_hi = bpl->addrHigh; sgl->addr_lo = bpl->addrLow; sgl->word2 = le32_to_cpu(sgl->word2); if ((i+1) == numBdes) bf_set(lpfc_sli4_sge_last, sgl, 1); else bf_set(lpfc_sli4_sge_last, sgl, 0); /* swap the size field back to the cpu so we * can assign it to the sgl. */ bde.tus.w = le32_to_cpu(bpl->tus.w); sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize); /* The offsets in the sgl need to be accumulated * separately for the request and reply lists. * The request is always first, the reply follows. */ switch (cmd) { case CMD_GEN_REQUEST64_WQE: /* add up the reply sg entries */ if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I) inbound++; /* first inbound? reset the offset */ if (inbound == 1) offset = 0; bf_set(lpfc_sli4_sge_offset, sgl, offset); bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DATA); offset += bde.tus.f.bdeSize; break; case CMD_FCP_TRSP64_WQE: bf_set(lpfc_sli4_sge_offset, sgl, 0); bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DATA); break; case CMD_FCP_TSEND64_WQE: case CMD_FCP_TRECEIVE64_WQE: bf_set(lpfc_sli4_sge_type, sgl, bpl->tus.f.bdeFlags); if (i < 3) offset = 0; else offset += bde.tus.f.bdeSize; bf_set(lpfc_sli4_sge_offset, sgl, offset); break; } sgl->word2 = cpu_to_le32(sgl->word2); bpl++; sgl++; } } else if (wqe->gen_req.bde.tus.f.bdeFlags == BUFF_TYPE_BDE_64) { /* The addrHigh and addrLow fields of the BDE have not * been byteswapped yet so they need to be swapped * before putting them in the sgl. */ sgl->addr_hi = cpu_to_le32(wqe->gen_req.bde.addrHigh); sgl->addr_lo = cpu_to_le32(wqe->gen_req.bde.addrLow); sgl->word2 = le32_to_cpu(sgl->word2); bf_set(lpfc_sli4_sge_last, sgl, 1); sgl->word2 = cpu_to_le32(sgl->word2); sgl->sge_len = cpu_to_le32(wqe->gen_req.bde.tus.f.bdeSize); } return sglq->sli4_xritag; } /** * lpfc_sli4_issue_wqe - Issue an SLI4 Work Queue Entry (WQE) * @phba: Pointer to HBA context object. * @qp: Pointer to HDW queue. * @pwqe: Pointer to command WQE. **/ int lpfc_sli4_issue_wqe(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, struct lpfc_iocbq *pwqe) { union lpfc_wqe128 *wqe = &pwqe->wqe; struct lpfc_async_xchg_ctx *ctxp; struct lpfc_queue *wq; struct lpfc_sglq *sglq; struct lpfc_sli_ring *pring; unsigned long iflags; uint32_t ret = 0; /* NVME_LS and NVME_LS ABTS requests. */ if (pwqe->iocb_flag & LPFC_IO_NVME_LS) { pring = phba->sli4_hba.nvmels_wq->pring; lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, qp, wq_access); sglq = __lpfc_sli_get_els_sglq(phba, pwqe); if (!sglq) { spin_unlock_irqrestore(&pring->ring_lock, iflags); return WQE_BUSY; } pwqe->sli4_lxritag = sglq->sli4_lxritag; pwqe->sli4_xritag = sglq->sli4_xritag; if (lpfc_wqe_bpl2sgl(phba, pwqe, sglq) == NO_XRI) { spin_unlock_irqrestore(&pring->ring_lock, iflags); return WQE_ERROR; } bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, pwqe->sli4_xritag); ret = lpfc_sli4_wq_put(phba->sli4_hba.nvmels_wq, wqe); if (ret) { spin_unlock_irqrestore(&pring->ring_lock, iflags); return ret; } lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); spin_unlock_irqrestore(&pring->ring_lock, iflags); lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); return 0; } /* NVME_FCREQ and NVME_ABTS requests */ if (pwqe->iocb_flag & (LPFC_IO_NVME | LPFC_IO_FCP | LPFC_IO_CMF)) { /* Get the IO distribution (hba_wqidx) for WQ assignment. */ wq = qp->io_wq; pring = wq->pring; bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, qp, wq_access); ret = lpfc_sli4_wq_put(wq, wqe); if (ret) { spin_unlock_irqrestore(&pring->ring_lock, iflags); return ret; } lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); spin_unlock_irqrestore(&pring->ring_lock, iflags); lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); return 0; } /* NVMET requests */ if (pwqe->iocb_flag & LPFC_IO_NVMET) { /* Get the IO distribution (hba_wqidx) for WQ assignment. */ wq = qp->io_wq; pring = wq->pring; ctxp = pwqe->context2; sglq = ctxp->ctxbuf->sglq; if (pwqe->sli4_xritag == NO_XRI) { pwqe->sli4_lxritag = sglq->sli4_lxritag; pwqe->sli4_xritag = sglq->sli4_xritag; } bf_set(wqe_xri_tag, &pwqe->wqe.xmit_bls_rsp.wqe_com, pwqe->sli4_xritag); bf_set(wqe_cqid, &wqe->generic.wqe_com, qp->io_cq_map); lpfc_qp_spin_lock_irqsave(&pring->ring_lock, iflags, qp, wq_access); ret = lpfc_sli4_wq_put(wq, wqe); if (ret) { spin_unlock_irqrestore(&pring->ring_lock, iflags); return ret; } lpfc_sli_ringtxcmpl_put(phba, pring, pwqe); spin_unlock_irqrestore(&pring->ring_lock, iflags); lpfc_sli4_poll_eq(qp->hba_eq, LPFC_POLL_FASTPATH); return 0; } return WQE_ERROR; } /** * lpfc_sli4_issue_abort_iotag - SLI-4 WQE init & issue for the Abort * @phba: Pointer to HBA context object. * @cmdiocb: Pointer to driver command iocb object. * @cmpl: completion function. * * Fill the appropriate fields for the abort WQE and call * internal routine lpfc_sli4_issue_wqe to send the WQE * This function is called with hbalock held and no ring_lock held. * * RETURNS 0 - SUCCESS **/ int lpfc_sli4_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb, void *cmpl) { struct lpfc_vport *vport = cmdiocb->vport; struct lpfc_iocbq *abtsiocb = NULL; union lpfc_wqe128 *abtswqe; struct lpfc_io_buf *lpfc_cmd; int retval = IOCB_ERROR; u16 xritag = cmdiocb->sli4_xritag; /* * The scsi command can not be in txq and it is in flight because the * pCmd is still pointing at the SCSI command we have to abort. There * is no need to search the txcmplq. Just send an abort to the FW. */ abtsiocb = __lpfc_sli_get_iocbq(phba); if (!abtsiocb) return WQE_NORESOURCE; /* Indicate the IO is being aborted by the driver. */ cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED; abtswqe = &abtsiocb->wqe; memset(abtswqe, 0, sizeof(*abtswqe)); if (!lpfc_is_link_up(phba)) bf_set(abort_cmd_ia, &abtswqe->abort_cmd, 1); bf_set(abort_cmd_criteria, &abtswqe->abort_cmd, T_XRI_TAG); abtswqe->abort_cmd.rsrvd5 = 0; abtswqe->abort_cmd.wqe_com.abort_tag = xritag; bf_set(wqe_reqtag, &abtswqe->abort_cmd.wqe_com, abtsiocb->iotag); bf_set(wqe_cmnd, &abtswqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); bf_set(wqe_xri_tag, &abtswqe->generic.wqe_com, 0); bf_set(wqe_qosd, &abtswqe->abort_cmd.wqe_com, 1); bf_set(wqe_lenloc, &abtswqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); bf_set(wqe_cmd_type, &abtswqe->abort_cmd.wqe_com, OTHER_COMMAND); /* ABTS WQE must go to the same WQ as the WQE to be aborted */ abtsiocb->hba_wqidx = cmdiocb->hba_wqidx; abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX; if (cmdiocb->iocb_flag & LPFC_IO_FCP) abtsiocb->iocb_flag |= LPFC_IO_FCP; if (cmdiocb->iocb_flag & LPFC_IO_NVME) abtsiocb->iocb_flag |= LPFC_IO_NVME; if (cmdiocb->iocb_flag & LPFC_IO_FOF) abtsiocb->iocb_flag |= LPFC_IO_FOF; abtsiocb->vport = vport; abtsiocb->wqe_cmpl = cmpl; lpfc_cmd = container_of(cmdiocb, struct lpfc_io_buf, cur_iocbq); retval = lpfc_sli4_issue_wqe(phba, lpfc_cmd->hdwq, abtsiocb); lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI | LOG_NVME_ABTS | LOG_FCP, "0359 Abort xri x%x, original iotag x%x, " "abort cmd iotag x%x retval x%x\n", xritag, cmdiocb->iotag, abtsiocb->iotag, retval); if (retval) { cmdiocb->iocb_flag &= ~LPFC_DRIVER_ABORTED; __lpfc_sli_release_iocbq(phba, abtsiocb); } return retval; } #ifdef LPFC_MXP_STAT /** * lpfc_snapshot_mxp - Snapshot pbl, pvt and busy count * @phba: pointer to lpfc hba data structure. * @hwqid: belong to which HWQ. * * The purpose of this routine is to take a snapshot of pbl, pvt and busy count * 15 seconds after a test case is running. * * The user should call lpfc_debugfs_multixripools_write before running a test * case to clear stat_snapshot_taken. Then the user starts a test case. During * test case is running, stat_snapshot_taken is incremented by 1 every time when * this routine is called from heartbeat timer. When stat_snapshot_taken is * equal to LPFC_MXP_SNAPSHOT_TAKEN, a snapshot is taken. **/ void lpfc_snapshot_mxp(struct lpfc_hba *phba, u32 hwqid) { struct lpfc_sli4_hdw_queue *qp; struct lpfc_multixri_pool *multixri_pool; struct lpfc_pvt_pool *pvt_pool; struct lpfc_pbl_pool *pbl_pool; u32 txcmplq_cnt; qp = &phba->sli4_hba.hdwq[hwqid]; multixri_pool = qp->p_multixri_pool; if (!multixri_pool) return; if (multixri_pool->stat_snapshot_taken == LPFC_MXP_SNAPSHOT_TAKEN) { pvt_pool = &qp->p_multixri_pool->pvt_pool; pbl_pool = &qp->p_multixri_pool->pbl_pool; txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; multixri_pool->stat_pbl_count = pbl_pool->count; multixri_pool->stat_pvt_count = pvt_pool->count; multixri_pool->stat_busy_count = txcmplq_cnt; } multixri_pool->stat_snapshot_taken++; } #endif /** * lpfc_adjust_pvt_pool_count - Adjust private pool count * @phba: pointer to lpfc hba data structure. * @hwqid: belong to which HWQ. * * This routine moves some XRIs from private to public pool when private pool * is not busy. **/ void lpfc_adjust_pvt_pool_count(struct lpfc_hba *phba, u32 hwqid) { struct lpfc_multixri_pool *multixri_pool; u32 io_req_count; u32 prev_io_req_count; multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; if (!multixri_pool) return; io_req_count = multixri_pool->io_req_count; prev_io_req_count = multixri_pool->prev_io_req_count; if (prev_io_req_count != io_req_count) { /* Private pool is busy */ multixri_pool->prev_io_req_count = io_req_count; } else { /* Private pool is not busy. * Move XRIs from private to public pool. */ lpfc_move_xri_pvt_to_pbl(phba, hwqid); } } /** * lpfc_adjust_high_watermark - Adjust high watermark * @phba: pointer to lpfc hba data structure. * @hwqid: belong to which HWQ. * * This routine sets high watermark as number of outstanding XRIs, * but make sure the new value is between xri_limit/2 and xri_limit. **/ void lpfc_adjust_high_watermark(struct lpfc_hba *phba, u32 hwqid) { u32 new_watermark; u32 watermark_max; u32 watermark_min; u32 xri_limit; u32 txcmplq_cnt; u32 abts_io_bufs; struct lpfc_multixri_pool *multixri_pool; struct lpfc_sli4_hdw_queue *qp; qp = &phba->sli4_hba.hdwq[hwqid]; multixri_pool = qp->p_multixri_pool; if (!multixri_pool) return; xri_limit = multixri_pool->xri_limit; watermark_max = xri_limit; watermark_min = xri_limit / 2; txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; abts_io_bufs = qp->abts_scsi_io_bufs; abts_io_bufs += qp->abts_nvme_io_bufs; new_watermark = txcmplq_cnt + abts_io_bufs; new_watermark = min(watermark_max, new_watermark); new_watermark = max(watermark_min, new_watermark); multixri_pool->pvt_pool.high_watermark = new_watermark; #ifdef LPFC_MXP_STAT multixri_pool->stat_max_hwm = max(multixri_pool->stat_max_hwm, new_watermark); #endif } /** * lpfc_move_xri_pvt_to_pbl - Move some XRIs from private to public pool * @phba: pointer to lpfc hba data structure. * @hwqid: belong to which HWQ. * * This routine is called from hearbeat timer when pvt_pool is idle. * All free XRIs are moved from private to public pool on hwqid with 2 steps. * The first step moves (all - low_watermark) amount of XRIs. * The second step moves the rest of XRIs. **/ void lpfc_move_xri_pvt_to_pbl(struct lpfc_hba *phba, u32 hwqid) { struct lpfc_pbl_pool *pbl_pool; struct lpfc_pvt_pool *pvt_pool; struct lpfc_sli4_hdw_queue *qp; struct lpfc_io_buf *lpfc_ncmd; struct lpfc_io_buf *lpfc_ncmd_next; unsigned long iflag; struct list_head tmp_list; u32 tmp_count; qp = &phba->sli4_hba.hdwq[hwqid]; pbl_pool = &qp->p_multixri_pool->pbl_pool; pvt_pool = &qp->p_multixri_pool->pvt_pool; tmp_count = 0; lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, mv_to_pub_pool); lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_from_pvt_pool); if (pvt_pool->count > pvt_pool->low_watermark) { /* Step 1: move (all - low_watermark) from pvt_pool * to pbl_pool */ /* Move low watermark of bufs from pvt_pool to tmp_list */ INIT_LIST_HEAD(&tmp_list); list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, &pvt_pool->list, list) { list_move_tail(&lpfc_ncmd->list, &tmp_list); tmp_count++; if (tmp_count >= pvt_pool->low_watermark) break; } /* Move all bufs from pvt_pool to pbl_pool */ list_splice_init(&pvt_pool->list, &pbl_pool->list); /* Move all bufs from tmp_list to pvt_pool */ list_splice(&tmp_list, &pvt_pool->list); pbl_pool->count += (pvt_pool->count - tmp_count); pvt_pool->count = tmp_count; } else { /* Step 2: move the rest from pvt_pool to pbl_pool */ list_splice_init(&pvt_pool->list, &pbl_pool->list); pbl_pool->count += pvt_pool->count; pvt_pool->count = 0; } spin_unlock(&pvt_pool->lock); spin_unlock_irqrestore(&pbl_pool->lock, iflag); } /** * _lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool * @phba: pointer to lpfc hba data structure * @qp: pointer to HDW queue * @pbl_pool: specified public free XRI pool * @pvt_pool: specified private free XRI pool * @count: number of XRIs to move * * This routine tries to move some free common bufs from the specified pbl_pool * to the specified pvt_pool. It might move less than count XRIs if there's not * enough in public pool. * * Return: * true - if XRIs are successfully moved from the specified pbl_pool to the * specified pvt_pool * false - if the specified pbl_pool is empty or locked by someone else **/ static bool _lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, struct lpfc_pbl_pool *pbl_pool, struct lpfc_pvt_pool *pvt_pool, u32 count) { struct lpfc_io_buf *lpfc_ncmd; struct lpfc_io_buf *lpfc_ncmd_next; unsigned long iflag; int ret; ret = spin_trylock_irqsave(&pbl_pool->lock, iflag); if (ret) { if (pbl_pool->count) { /* Move a batch of XRIs from public to private pool */ lpfc_qp_spin_lock(&pvt_pool->lock, qp, mv_to_pvt_pool); list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, &pbl_pool->list, list) { list_move_tail(&lpfc_ncmd->list, &pvt_pool->list); pvt_pool->count++; pbl_pool->count--; count--; if (count == 0) break; } spin_unlock(&pvt_pool->lock); spin_unlock_irqrestore(&pbl_pool->lock, iflag); return true; } spin_unlock_irqrestore(&pbl_pool->lock, iflag); } return false; } /** * lpfc_move_xri_pbl_to_pvt - Move some XRIs from public to private pool * @phba: pointer to lpfc hba data structure. * @hwqid: belong to which HWQ. * @count: number of XRIs to move * * This routine tries to find some free common bufs in one of public pools with * Round Robin method. The search always starts from local hwqid, then the next * HWQ which was found last time (rrb_next_hwqid). Once a public pool is found, * a batch of free common bufs are moved to private pool on hwqid. * It might move less than count XRIs if there's not enough in public pool. **/ void lpfc_move_xri_pbl_to_pvt(struct lpfc_hba *phba, u32 hwqid, u32 count) { struct lpfc_multixri_pool *multixri_pool; struct lpfc_multixri_pool *next_multixri_pool; struct lpfc_pvt_pool *pvt_pool; struct lpfc_pbl_pool *pbl_pool; struct lpfc_sli4_hdw_queue *qp; u32 next_hwqid; u32 hwq_count; int ret; qp = &phba->sli4_hba.hdwq[hwqid]; multixri_pool = qp->p_multixri_pool; pvt_pool = &multixri_pool->pvt_pool; pbl_pool = &multixri_pool->pbl_pool; /* Check if local pbl_pool is available */ ret = _lpfc_move_xri_pbl_to_pvt(phba, qp, pbl_pool, pvt_pool, count); if (ret) { #ifdef LPFC_MXP_STAT multixri_pool->local_pbl_hit_count++; #endif return; } hwq_count = phba->cfg_hdw_queue; /* Get the next hwqid which was found last time */ next_hwqid = multixri_pool->rrb_next_hwqid; do { /* Go to next hwq */ next_hwqid = (next_hwqid + 1) % hwq_count; next_multixri_pool = phba->sli4_hba.hdwq[next_hwqid].p_multixri_pool; pbl_pool = &next_multixri_pool->pbl_pool; /* Check if the public free xri pool is available */ ret = _lpfc_move_xri_pbl_to_pvt( phba, qp, pbl_pool, pvt_pool, count); /* Exit while-loop if success or all hwqid are checked */ } while (!ret && next_hwqid != multixri_pool->rrb_next_hwqid); /* Starting point for the next time */ multixri_pool->rrb_next_hwqid = next_hwqid; if (!ret) { /* stats: all public pools are empty*/ multixri_pool->pbl_empty_count++; } #ifdef LPFC_MXP_STAT if (ret) { if (next_hwqid == hwqid) multixri_pool->local_pbl_hit_count++; else multixri_pool->other_pbl_hit_count++; } #endif } /** * lpfc_keep_pvt_pool_above_lowwm - Keep pvt_pool above low watermark * @phba: pointer to lpfc hba data structure. * @hwqid: belong to which HWQ. * * This routine get a batch of XRIs from pbl_pool if pvt_pool is less than * low watermark. **/ void lpfc_keep_pvt_pool_above_lowwm(struct lpfc_hba *phba, u32 hwqid) { struct lpfc_multixri_pool *multixri_pool; struct lpfc_pvt_pool *pvt_pool; multixri_pool = phba->sli4_hba.hdwq[hwqid].p_multixri_pool; pvt_pool = &multixri_pool->pvt_pool; if (pvt_pool->count < pvt_pool->low_watermark) lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); } /** * lpfc_release_io_buf - Return one IO buf back to free pool * @phba: pointer to lpfc hba data structure. * @lpfc_ncmd: IO buf to be returned. * @qp: belong to which HWQ. * * This routine returns one IO buf back to free pool. If this is an urgent IO, * the IO buf is returned to expedite pool. If cfg_xri_rebalancing==1, * the IO buf is returned to pbl_pool or pvt_pool based on watermark and * xri_limit. If cfg_xri_rebalancing==0, the IO buf is returned to * lpfc_io_buf_list_put. **/ void lpfc_release_io_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd, struct lpfc_sli4_hdw_queue *qp) { unsigned long iflag; struct lpfc_pbl_pool *pbl_pool; struct lpfc_pvt_pool *pvt_pool; struct lpfc_epd_pool *epd_pool; u32 txcmplq_cnt; u32 xri_owned; u32 xri_limit; u32 abts_io_bufs; /* MUST zero fields if buffer is reused by another protocol */ lpfc_ncmd->nvmeCmd = NULL; lpfc_ncmd->cur_iocbq.wqe_cmpl = NULL; lpfc_ncmd->cur_iocbq.iocb_cmpl = NULL; if (phba->cfg_xpsgl && !phba->nvmet_support && !list_empty(&lpfc_ncmd->dma_sgl_xtra_list)) lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); if (!list_empty(&lpfc_ncmd->dma_cmd_rsp_list)) lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); if (phba->cfg_xri_rebalancing) { if (lpfc_ncmd->expedite) { /* Return to expedite pool */ epd_pool = &phba->epd_pool; spin_lock_irqsave(&epd_pool->lock, iflag); list_add_tail(&lpfc_ncmd->list, &epd_pool->list); epd_pool->count++; spin_unlock_irqrestore(&epd_pool->lock, iflag); return; } /* Avoid invalid access if an IO sneaks in and is being rejected * just _after_ xri pools are destroyed in lpfc_offline. * Nothing much can be done at this point. */ if (!qp->p_multixri_pool) return; pbl_pool = &qp->p_multixri_pool->pbl_pool; pvt_pool = &qp->p_multixri_pool->pvt_pool; txcmplq_cnt = qp->io_wq->pring->txcmplq_cnt; abts_io_bufs = qp->abts_scsi_io_bufs; abts_io_bufs += qp->abts_nvme_io_bufs; xri_owned = pvt_pool->count + txcmplq_cnt + abts_io_bufs; xri_limit = qp->p_multixri_pool->xri_limit; #ifdef LPFC_MXP_STAT if (xri_owned <= xri_limit) qp->p_multixri_pool->below_limit_count++; else qp->p_multixri_pool->above_limit_count++; #endif /* XRI goes to either public or private free xri pool * based on watermark and xri_limit */ if ((pvt_pool->count < pvt_pool->low_watermark) || (xri_owned < xri_limit && pvt_pool->count < pvt_pool->high_watermark)) { lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, free_pvt_pool); list_add_tail(&lpfc_ncmd->list, &pvt_pool->list); pvt_pool->count++; spin_unlock_irqrestore(&pvt_pool->lock, iflag); } else { lpfc_qp_spin_lock_irqsave(&pbl_pool->lock, iflag, qp, free_pub_pool); list_add_tail(&lpfc_ncmd->list, &pbl_pool->list); pbl_pool->count++; spin_unlock_irqrestore(&pbl_pool->lock, iflag); } } else { lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag, qp, free_xri); list_add_tail(&lpfc_ncmd->list, &qp->lpfc_io_buf_list_put); qp->put_io_bufs++; spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag); } } /** * lpfc_get_io_buf_from_private_pool - Get one free IO buf from private pool * @phba: pointer to lpfc hba data structure. * @qp: pointer to HDW queue * @pvt_pool: pointer to private pool data structure. * @ndlp: pointer to lpfc nodelist data structure. * * This routine tries to get one free IO buf from private pool. * * Return: * pointer to one free IO buf - if private pool is not empty * NULL - if private pool is empty **/ static struct lpfc_io_buf * lpfc_get_io_buf_from_private_pool(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *qp, struct lpfc_pvt_pool *pvt_pool, struct lpfc_nodelist *ndlp) { struct lpfc_io_buf *lpfc_ncmd; struct lpfc_io_buf *lpfc_ncmd_next; unsigned long iflag; lpfc_qp_spin_lock_irqsave(&pvt_pool->lock, iflag, qp, alloc_pvt_pool); list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, &pvt_pool->list, list) { if (lpfc_test_rrq_active( phba, ndlp, lpfc_ncmd->cur_iocbq.sli4_lxritag)) continue; list_del(&lpfc_ncmd->list); pvt_pool->count--; spin_unlock_irqrestore(&pvt_pool->lock, iflag); return lpfc_ncmd; } spin_unlock_irqrestore(&pvt_pool->lock, iflag); return NULL; } /** * lpfc_get_io_buf_from_expedite_pool - Get one free IO buf from expedite pool * @phba: pointer to lpfc hba data structure. * * This routine tries to get one free IO buf from expedite pool. * * Return: * pointer to one free IO buf - if expedite pool is not empty * NULL - if expedite pool is empty **/ static struct lpfc_io_buf * lpfc_get_io_buf_from_expedite_pool(struct lpfc_hba *phba) { struct lpfc_io_buf *lpfc_ncmd = NULL, *iter; struct lpfc_io_buf *lpfc_ncmd_next; unsigned long iflag; struct lpfc_epd_pool *epd_pool; epd_pool = &phba->epd_pool; spin_lock_irqsave(&epd_pool->lock, iflag); if (epd_pool->count > 0) { list_for_each_entry_safe(iter, lpfc_ncmd_next, &epd_pool->list, list) { list_del(&iter->list); epd_pool->count--; lpfc_ncmd = iter; break; } } spin_unlock_irqrestore(&epd_pool->lock, iflag); return lpfc_ncmd; } /** * lpfc_get_io_buf_from_multixri_pools - Get one free IO bufs * @phba: pointer to lpfc hba data structure. * @ndlp: pointer to lpfc nodelist data structure. * @hwqid: belong to which HWQ * @expedite: 1 means this request is urgent. * * This routine will do the following actions and then return a pointer to * one free IO buf. * * 1. If private free xri count is empty, move some XRIs from public to * private pool. * 2. Get one XRI from private free xri pool. * 3. If we fail to get one from pvt_pool and this is an expedite request, * get one free xri from expedite pool. * * Note: ndlp is only used on SCSI side for RRQ testing. * The caller should pass NULL for ndlp on NVME side. * * Return: * pointer to one free IO buf - if private pool is not empty * NULL - if private pool is empty **/ static struct lpfc_io_buf * lpfc_get_io_buf_from_multixri_pools(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int hwqid, int expedite) { struct lpfc_sli4_hdw_queue *qp; struct lpfc_multixri_pool *multixri_pool; struct lpfc_pvt_pool *pvt_pool; struct lpfc_io_buf *lpfc_ncmd; qp = &phba->sli4_hba.hdwq[hwqid]; lpfc_ncmd = NULL; if (!qp) { lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_NVME_ABTS | LOG_FCP, "5556 NULL qp for hwqid x%x\n", hwqid); return lpfc_ncmd; } multixri_pool = qp->p_multixri_pool; if (!multixri_pool) { lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_NVME_ABTS | LOG_FCP, "5557 NULL multixri for hwqid x%x\n", hwqid); return lpfc_ncmd; } pvt_pool = &multixri_pool->pvt_pool; if (!pvt_pool) { lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_NVME_ABTS | LOG_FCP, "5558 NULL pvt_pool for hwqid x%x\n", hwqid); return lpfc_ncmd; } multixri_pool->io_req_count++; /* If pvt_pool is empty, move some XRIs from public to private pool */ if (pvt_pool->count == 0) lpfc_move_xri_pbl_to_pvt(phba, hwqid, XRI_BATCH); /* Get one XRI from private free xri pool */ lpfc_ncmd = lpfc_get_io_buf_from_private_pool(phba, qp, pvt_pool, ndlp); if (lpfc_ncmd) { lpfc_ncmd->hdwq = qp; lpfc_ncmd->hdwq_no = hwqid; } else if (expedite) { /* If we fail to get one from pvt_pool and this is an expedite * request, get one free xri from expedite pool. */ lpfc_ncmd = lpfc_get_io_buf_from_expedite_pool(phba); } return lpfc_ncmd; } static inline struct lpfc_io_buf * lpfc_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, int idx) { struct lpfc_sli4_hdw_queue *qp; struct lpfc_io_buf *lpfc_cmd, *lpfc_cmd_next; qp = &phba->sli4_hba.hdwq[idx]; list_for_each_entry_safe(lpfc_cmd, lpfc_cmd_next, &qp->lpfc_io_buf_list_get, list) { if (lpfc_test_rrq_active(phba, ndlp, lpfc_cmd->cur_iocbq.sli4_lxritag)) continue; if (lpfc_cmd->flags & LPFC_SBUF_NOT_POSTED) continue; list_del_init(&lpfc_cmd->list); qp->get_io_bufs--; lpfc_cmd->hdwq = qp; lpfc_cmd->hdwq_no = idx; return lpfc_cmd; } return NULL; } /** * lpfc_get_io_buf - Get one IO buffer from free pool * @phba: The HBA for which this call is being executed. * @ndlp: pointer to lpfc nodelist data structure. * @hwqid: belong to which HWQ * @expedite: 1 means this request is urgent. * * This routine gets one IO buffer from free pool. If cfg_xri_rebalancing==1, * removes a IO buffer from multiXRI pools. If cfg_xri_rebalancing==0, removes * a IO buffer from head of @hdwq io_buf_list and returns to caller. * * Note: ndlp is only used on SCSI side for RRQ testing. * The caller should pass NULL for ndlp on NVME side. * * Return codes: * NULL - Error * Pointer to lpfc_io_buf - Success **/ struct lpfc_io_buf *lpfc_get_io_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp, u32 hwqid, int expedite) { struct lpfc_sli4_hdw_queue *qp; unsigned long iflag; struct lpfc_io_buf *lpfc_cmd; qp = &phba->sli4_hba.hdwq[hwqid]; lpfc_cmd = NULL; if (!qp) { lpfc_printf_log(phba, KERN_WARNING, LOG_SLI | LOG_NVME_ABTS | LOG_FCP, "5555 NULL qp for hwqid x%x\n", hwqid); return lpfc_cmd; } if (phba->cfg_xri_rebalancing) lpfc_cmd = lpfc_get_io_buf_from_multixri_pools( phba, ndlp, hwqid, expedite); else { lpfc_qp_spin_lock_irqsave(&qp->io_buf_list_get_lock, iflag, qp, alloc_xri_get); if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite) lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); if (!lpfc_cmd) { lpfc_qp_spin_lock(&qp->io_buf_list_put_lock, qp, alloc_xri_put); list_splice(&qp->lpfc_io_buf_list_put, &qp->lpfc_io_buf_list_get); qp->get_io_bufs += qp->put_io_bufs; INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); qp->put_io_bufs = 0; spin_unlock(&qp->io_buf_list_put_lock); if (qp->get_io_bufs > LPFC_NVME_EXPEDITE_XRICNT || expedite) lpfc_cmd = lpfc_io_buf(phba, ndlp, hwqid); } spin_unlock_irqrestore(&qp->io_buf_list_get_lock, iflag); } return lpfc_cmd; } /** * lpfc_read_object - Retrieve object data from HBA * @phba: The HBA for which this call is being executed. * @rdobject: Pathname of object data we want to read. * @datap: Pointer to where data will be copied to. * @datasz: size of data area * * This routine is limited to object sizes of LPFC_BPL_SIZE (1024) or less. * The data will be truncated if datasz is not large enough. * Version 1 is not supported with Embedded mbox cmd, so we must use version 0. * Returns the actual bytes read from the object. */ int lpfc_read_object(struct lpfc_hba *phba, char *rdobject, uint32_t *datap, uint32_t datasz) { struct lpfc_mbx_read_object *read_object; LPFC_MBOXQ_t *mbox; int rc, length, eof, j, byte_cnt = 0; uint32_t shdr_status, shdr_add_status; union lpfc_sli4_cfg_shdr *shdr; struct lpfc_dmabuf *pcmd; u32 rd_object_name[LPFC_MBX_OBJECT_NAME_LEN_DW] = {0}; mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!mbox) return -ENOMEM; length = (sizeof(struct lpfc_mbx_read_object) - sizeof(struct lpfc_sli4_cfg_mhdr)); lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON, LPFC_MBOX_OPCODE_READ_OBJECT, length, LPFC_SLI4_MBX_EMBED); read_object = &mbox->u.mqe.un.read_object; shdr = (union lpfc_sli4_cfg_shdr *)&read_object->header.cfg_shdr; bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_Q_CREATE_VERSION_0); bf_set(lpfc_mbx_rd_object_rlen, &read_object->u.request, datasz); read_object->u.request.rd_object_offset = 0; read_object->u.request.rd_object_cnt = 1; memset((void *)read_object->u.request.rd_object_name, 0, LPFC_OBJ_NAME_SZ); scnprintf((char *)rd_object_name, sizeof(rd_object_name), rdobject); for (j = 0; j < strlen(rdobject); j++) read_object->u.request.rd_object_name[j] = cpu_to_le32(rd_object_name[j]); pcmd = kmalloc(sizeof(*pcmd), GFP_KERNEL); if (pcmd) pcmd->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &pcmd->phys); if (!pcmd || !pcmd->virt) { kfree(pcmd); mempool_free(mbox, phba->mbox_mem_pool); return -ENOMEM; } memset((void *)pcmd->virt, 0, LPFC_BPL_SIZE); read_object->u.request.rd_object_hbuf[0].pa_lo = putPaddrLow(pcmd->phys); read_object->u.request.rd_object_hbuf[0].pa_hi = putPaddrHigh(pcmd->phys); read_object->u.request.rd_object_hbuf[0].length = LPFC_BPL_SIZE; mbox->vport = phba->pport; mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; mbox->ctx_buf = NULL; mbox->ctx_ndlp = NULL; rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL); shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); if (shdr_status == STATUS_FAILED && shdr_add_status == ADD_STATUS_INVALID_OBJECT_NAME) { lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, "4674 No port cfg file in FW.\n"); byte_cnt = -ENOENT; } else if (shdr_status || shdr_add_status || rc) { lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_CGN_MGMT, "2625 READ_OBJECT mailbox failed with " "status x%x add_status x%x, mbx status x%x\n", shdr_status, shdr_add_status, rc); byte_cnt = -ENXIO; } else { /* Success */ length = read_object->u.response.rd_object_actual_rlen; eof = bf_get(lpfc_mbx_rd_object_eof, &read_object->u.response); lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_CGN_MGMT, "2626 READ_OBJECT Success len %d:%d, EOF %d\n", length, datasz, eof); /* Detect the port config file exists but is empty */ if (!length && eof) { byte_cnt = 0; goto exit; } byte_cnt = length; lpfc_sli_pcimem_bcopy(pcmd->virt, datap, byte_cnt); } exit: lpfc_mbuf_free(phba, pcmd->virt, pcmd->phys); kfree(pcmd); mempool_free(mbox, phba->mbox_mem_pool); return byte_cnt; } /** * lpfc_get_sgl_per_hdwq - Get one SGL chunk from hdwq's pool * @phba: The HBA for which this call is being executed. * @lpfc_buf: IO buf structure to append the SGL chunk * * This routine gets one SGL chunk buffer from hdwq's SGL chunk pool, * and will allocate an SGL chunk if the pool is empty. * * Return codes: * NULL - Error * Pointer to sli4_hybrid_sgl - Success **/ struct sli4_hybrid_sgl * lpfc_get_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) { struct sli4_hybrid_sgl *list_entry = NULL; struct sli4_hybrid_sgl *tmp = NULL; struct sli4_hybrid_sgl *allocated_sgl = NULL; struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; struct list_head *buf_list = &hdwq->sgl_list; unsigned long iflags; spin_lock_irqsave(&hdwq->hdwq_lock, iflags); if (likely(!list_empty(buf_list))) { /* break off 1 chunk from the sgl_list */ list_for_each_entry_safe(list_entry, tmp, buf_list, list_node) { list_move_tail(&list_entry->list_node, &lpfc_buf->dma_sgl_xtra_list); break; } } else { /* allocate more */ spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, cpu_to_node(hdwq->io_wq->chann)); if (!tmp) { lpfc_printf_log(phba, KERN_INFO, LOG_SLI, "8353 error kmalloc memory for HDWQ " "%d %s\n", lpfc_buf->hdwq_no, __func__); return NULL; } tmp->dma_sgl = dma_pool_alloc(phba->lpfc_sg_dma_buf_pool, GFP_ATOMIC, &tmp->dma_phys_sgl); if (!tmp->dma_sgl) { lpfc_printf_log(phba, KERN_INFO, LOG_SLI, "8354 error pool_alloc memory for HDWQ " "%d %s\n", lpfc_buf->hdwq_no, __func__); kfree(tmp); return NULL; } spin_lock_irqsave(&hdwq->hdwq_lock, iflags); list_add_tail(&tmp->list_node, &lpfc_buf->dma_sgl_xtra_list); } allocated_sgl = list_last_entry(&lpfc_buf->dma_sgl_xtra_list, struct sli4_hybrid_sgl, list_node); spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); return allocated_sgl; } /** * lpfc_put_sgl_per_hdwq - Put one SGL chunk into hdwq pool * @phba: The HBA for which this call is being executed. * @lpfc_buf: IO buf structure with the SGL chunk * * This routine puts one SGL chunk buffer into hdwq's SGL chunk pool. * * Return codes: * 0 - Success * -EINVAL - Error **/ int lpfc_put_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) { int rc = 0; struct sli4_hybrid_sgl *list_entry = NULL; struct sli4_hybrid_sgl *tmp = NULL; struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; struct list_head *buf_list = &hdwq->sgl_list; unsigned long iflags; spin_lock_irqsave(&hdwq->hdwq_lock, iflags); if (likely(!list_empty(&lpfc_buf->dma_sgl_xtra_list))) { list_for_each_entry_safe(list_entry, tmp, &lpfc_buf->dma_sgl_xtra_list, list_node) { list_move_tail(&list_entry->list_node, buf_list); } } else { rc = -EINVAL; } spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); return rc; } /** * lpfc_free_sgl_per_hdwq - Free all SGL chunks of hdwq pool * @phba: phba object * @hdwq: hdwq to cleanup sgl buff resources on * * This routine frees all SGL chunks of hdwq SGL chunk pool. * * Return codes: * None **/ void lpfc_free_sgl_per_hdwq(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *hdwq) { struct list_head *buf_list = &hdwq->sgl_list; struct sli4_hybrid_sgl *list_entry = NULL; struct sli4_hybrid_sgl *tmp = NULL; unsigned long iflags; spin_lock_irqsave(&hdwq->hdwq_lock, iflags); /* Free sgl pool */ list_for_each_entry_safe(list_entry, tmp, buf_list, list_node) { dma_pool_free(phba->lpfc_sg_dma_buf_pool, list_entry->dma_sgl, list_entry->dma_phys_sgl); list_del(&list_entry->list_node); kfree(list_entry); } spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); } /** * lpfc_get_cmd_rsp_buf_per_hdwq - Get one CMD/RSP buffer from hdwq * @phba: The HBA for which this call is being executed. * @lpfc_buf: IO buf structure to attach the CMD/RSP buffer * * This routine gets one CMD/RSP buffer from hdwq's CMD/RSP pool, * and will allocate an CMD/RSP buffer if the pool is empty. * * Return codes: * NULL - Error * Pointer to fcp_cmd_rsp_buf - Success **/ struct fcp_cmd_rsp_buf * lpfc_get_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) { struct fcp_cmd_rsp_buf *list_entry = NULL; struct fcp_cmd_rsp_buf *tmp = NULL; struct fcp_cmd_rsp_buf *allocated_buf = NULL; struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; unsigned long iflags; spin_lock_irqsave(&hdwq->hdwq_lock, iflags); if (likely(!list_empty(buf_list))) { /* break off 1 chunk from the list */ list_for_each_entry_safe(list_entry, tmp, buf_list, list_node) { list_move_tail(&list_entry->list_node, &lpfc_buf->dma_cmd_rsp_list); break; } } else { /* allocate more */ spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); tmp = kmalloc_node(sizeof(*tmp), GFP_ATOMIC, cpu_to_node(hdwq->io_wq->chann)); if (!tmp) { lpfc_printf_log(phba, KERN_INFO, LOG_SLI, "8355 error kmalloc memory for HDWQ " "%d %s\n", lpfc_buf->hdwq_no, __func__); return NULL; } tmp->fcp_cmnd = dma_pool_alloc(phba->lpfc_cmd_rsp_buf_pool, GFP_ATOMIC, &tmp->fcp_cmd_rsp_dma_handle); if (!tmp->fcp_cmnd) { lpfc_printf_log(phba, KERN_INFO, LOG_SLI, "8356 error pool_alloc memory for HDWQ " "%d %s\n", lpfc_buf->hdwq_no, __func__); kfree(tmp); return NULL; } tmp->fcp_rsp = (struct fcp_rsp *)((uint8_t *)tmp->fcp_cmnd + sizeof(struct fcp_cmnd)); spin_lock_irqsave(&hdwq->hdwq_lock, iflags); list_add_tail(&tmp->list_node, &lpfc_buf->dma_cmd_rsp_list); } allocated_buf = list_last_entry(&lpfc_buf->dma_cmd_rsp_list, struct fcp_cmd_rsp_buf, list_node); spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); return allocated_buf; } /** * lpfc_put_cmd_rsp_buf_per_hdwq - Put one CMD/RSP buffer into hdwq pool * @phba: The HBA for which this call is being executed. * @lpfc_buf: IO buf structure with the CMD/RSP buf * * This routine puts one CMD/RSP buffer into executing CPU's CMD/RSP pool. * * Return codes: * 0 - Success * -EINVAL - Error **/ int lpfc_put_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_buf) { int rc = 0; struct fcp_cmd_rsp_buf *list_entry = NULL; struct fcp_cmd_rsp_buf *tmp = NULL; struct lpfc_sli4_hdw_queue *hdwq = lpfc_buf->hdwq; struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; unsigned long iflags; spin_lock_irqsave(&hdwq->hdwq_lock, iflags); if (likely(!list_empty(&lpfc_buf->dma_cmd_rsp_list))) { list_for_each_entry_safe(list_entry, tmp, &lpfc_buf->dma_cmd_rsp_list, list_node) { list_move_tail(&list_entry->list_node, buf_list); } } else { rc = -EINVAL; } spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); return rc; } /** * lpfc_free_cmd_rsp_buf_per_hdwq - Free all CMD/RSP chunks of hdwq pool * @phba: phba object * @hdwq: hdwq to cleanup cmd rsp buff resources on * * This routine frees all CMD/RSP buffers of hdwq's CMD/RSP buf pool. * * Return codes: * None **/ void lpfc_free_cmd_rsp_buf_per_hdwq(struct lpfc_hba *phba, struct lpfc_sli4_hdw_queue *hdwq) { struct list_head *buf_list = &hdwq->cmd_rsp_buf_list; struct fcp_cmd_rsp_buf *list_entry = NULL; struct fcp_cmd_rsp_buf *tmp = NULL; unsigned long iflags; spin_lock_irqsave(&hdwq->hdwq_lock, iflags); /* Free cmd_rsp buf pool */ list_for_each_entry_safe(list_entry, tmp, buf_list, list_node) { dma_pool_free(phba->lpfc_cmd_rsp_buf_pool, list_entry->fcp_cmnd, list_entry->fcp_cmd_rsp_dma_handle); list_del(&list_entry->list_node); kfree(list_entry); } spin_unlock_irqrestore(&hdwq->hdwq_lock, iflags); }