// SPDX-License-Identifier: GPL-2.0 // Copyright (c) 2017 Cadence // Cadence PCIe host controller driver. // Author: Cyrille Pitchen #include #include #include #include #include #include #include "pcie-cadence.h" #define LINK_RETRAIN_TIMEOUT HZ static u64 bar_max_size[] = { [RP_BAR0] = _ULL(128 * SZ_2G), [RP_BAR1] = SZ_2G, [RP_NO_BAR] = _BITULL(63), }; static u8 bar_aperture_mask[] = { [RP_BAR0] = 0x1F, [RP_BAR1] = 0xF, }; void __iomem *cdns_pci_map_bus(struct pci_bus *bus, unsigned int devfn, int where) { struct pci_host_bridge *bridge = pci_find_host_bridge(bus); struct cdns_pcie_rc *rc = pci_host_bridge_priv(bridge); struct cdns_pcie *pcie = &rc->pcie; unsigned int busn = bus->number; u32 addr0, desc0; if (pci_is_root_bus(bus)) { /* * Only the root port (devfn == 0) is connected to this bus. * All other PCI devices are behind some bridge hence on another * bus. */ if (devfn) return NULL; return pcie->reg_base + (where & 0xfff); } /* Check that the link is up */ if (!(cdns_pcie_readl(pcie, CDNS_PCIE_LM_BASE) & 0x1)) return NULL; /* Clear AXI link-down status */ cdns_pcie_writel(pcie, CDNS_PCIE_AT_LINKDOWN, 0x0); /* Update Output registers for AXI region 0. */ addr0 = CDNS_PCIE_AT_OB_REGION_PCI_ADDR0_NBITS(12) | CDNS_PCIE_AT_OB_REGION_PCI_ADDR0_DEVFN(devfn) | CDNS_PCIE_AT_OB_REGION_PCI_ADDR0_BUS(busn); cdns_pcie_writel(pcie, CDNS_PCIE_AT_OB_REGION_PCI_ADDR0(0), addr0); /* Configuration Type 0 or Type 1 access. */ desc0 = CDNS_PCIE_AT_OB_REGION_DESC0_HARDCODED_RID | CDNS_PCIE_AT_OB_REGION_DESC0_DEVFN(0); /* * The bus number was already set once for all in desc1 by * cdns_pcie_host_init_address_translation(). */ if (busn == bridge->busnr + 1) desc0 |= CDNS_PCIE_AT_OB_REGION_DESC0_TYPE_CONF_TYPE0; else desc0 |= CDNS_PCIE_AT_OB_REGION_DESC0_TYPE_CONF_TYPE1; cdns_pcie_writel(pcie, CDNS_PCIE_AT_OB_REGION_DESC0(0), desc0); return rc->cfg_base + (where & 0xfff); } static struct pci_ops cdns_pcie_host_ops = { .map_bus = cdns_pci_map_bus, .read = pci_generic_config_read, .write = pci_generic_config_write, }; static int cdns_pcie_host_training_complete(struct cdns_pcie *pcie) { u32 pcie_cap_off = CDNS_PCIE_RP_CAP_OFFSET; unsigned long end_jiffies; u16 lnk_stat; /* Wait for link training to complete. Exit after timeout. */ end_jiffies = jiffies + LINK_RETRAIN_TIMEOUT; do { lnk_stat = cdns_pcie_rp_readw(pcie, pcie_cap_off + PCI_EXP_LNKSTA); if (!(lnk_stat & PCI_EXP_LNKSTA_LT)) break; usleep_range(0, 1000); } while (time_before(jiffies, end_jiffies)); if (!(lnk_stat & PCI_EXP_LNKSTA_LT)) return 0; return -ETIMEDOUT; } static int cdns_pcie_host_wait_for_link(struct cdns_pcie *pcie) { struct device *dev = pcie->dev; int retries; /* Check if the link is up or not */ for (retries = 0; retries < LINK_WAIT_MAX_RETRIES; retries++) { if (cdns_pcie_link_up(pcie)) { dev_info(dev, "Link up\n"); return 0; } usleep_range(LINK_WAIT_USLEEP_MIN, LINK_WAIT_USLEEP_MAX); } return -ETIMEDOUT; } static int cdns_pcie_retrain(struct cdns_pcie *pcie) { u32 lnk_cap_sls, pcie_cap_off = CDNS_PCIE_RP_CAP_OFFSET; u16 lnk_stat, lnk_ctl; int ret = 0; /* * Set retrain bit if current speed is 2.5 GB/s, * but the PCIe root port support is > 2.5 GB/s. */ lnk_cap_sls = cdns_pcie_readl(pcie, (CDNS_PCIE_RP_BASE + pcie_cap_off + PCI_EXP_LNKCAP)); if ((lnk_cap_sls & PCI_EXP_LNKCAP_SLS) <= PCI_EXP_LNKCAP_SLS_2_5GB) return ret; lnk_stat = cdns_pcie_rp_readw(pcie, pcie_cap_off + PCI_EXP_LNKSTA); if ((lnk_stat & PCI_EXP_LNKSTA_CLS) == PCI_EXP_LNKSTA_CLS_2_5GB) { lnk_ctl = cdns_pcie_rp_readw(pcie, pcie_cap_off + PCI_EXP_LNKCTL); lnk_ctl |= PCI_EXP_LNKCTL_RL; cdns_pcie_rp_writew(pcie, pcie_cap_off + PCI_EXP_LNKCTL, lnk_ctl); ret = cdns_pcie_host_training_complete(pcie); if (ret) return ret; ret = cdns_pcie_host_wait_for_link(pcie); } return ret; } static int cdns_pcie_host_start_link(struct cdns_pcie_rc *rc) { struct cdns_pcie *pcie = &rc->pcie; int ret; ret = cdns_pcie_host_wait_for_link(pcie); /* * Retrain link for Gen2 training defect * if quirk flag is set. */ if (!ret && rc->quirk_retrain_flag) ret = cdns_pcie_retrain(pcie); return ret; } static int cdns_pcie_host_init_root_port(struct cdns_pcie_rc *rc) { struct cdns_pcie *pcie = &rc->pcie; u32 value, ctrl; u32 id; /* * Set the root complex BAR configuration register: * - disable both BAR0 and BAR1. * - enable Prefetchable Memory Base and Limit registers in type 1 * config space (64 bits). * - enable IO Base and Limit registers in type 1 config * space (32 bits). */ ctrl = CDNS_PCIE_LM_BAR_CFG_CTRL_DISABLED; value = CDNS_PCIE_LM_RC_BAR_CFG_BAR0_CTRL(ctrl) | CDNS_PCIE_LM_RC_BAR_CFG_BAR1_CTRL(ctrl) | CDNS_PCIE_LM_RC_BAR_CFG_PREFETCH_MEM_ENABLE | CDNS_PCIE_LM_RC_BAR_CFG_PREFETCH_MEM_64BITS | CDNS_PCIE_LM_RC_BAR_CFG_IO_ENABLE | CDNS_PCIE_LM_RC_BAR_CFG_IO_32BITS; cdns_pcie_writel(pcie, CDNS_PCIE_LM_RC_BAR_CFG, value); /* Set root port configuration space */ if (rc->vendor_id != 0xffff) { id = CDNS_PCIE_LM_ID_VENDOR(rc->vendor_id) | CDNS_PCIE_LM_ID_SUBSYS(rc->vendor_id); cdns_pcie_writel(pcie, CDNS_PCIE_LM_ID, id); } if (rc->device_id != 0xffff) cdns_pcie_rp_writew(pcie, PCI_DEVICE_ID, rc->device_id); cdns_pcie_rp_writeb(pcie, PCI_CLASS_REVISION, 0); cdns_pcie_rp_writeb(pcie, PCI_CLASS_PROG, 0); cdns_pcie_rp_writew(pcie, PCI_CLASS_DEVICE, PCI_CLASS_BRIDGE_PCI); return 0; } static int cdns_pcie_host_bar_ib_config(struct cdns_pcie_rc *rc, enum cdns_pcie_rp_bar bar, u64 cpu_addr, u64 size, unsigned long flags) { struct cdns_pcie *pcie = &rc->pcie; u32 addr0, addr1, aperture, value; if (!rc->avail_ib_bar[bar]) return -EBUSY; rc->avail_ib_bar[bar] = false; aperture = ilog2(size); addr0 = CDNS_PCIE_AT_IB_RP_BAR_ADDR0_NBITS(aperture) | (lower_32_bits(cpu_addr) & GENMASK(31, 8)); addr1 = upper_32_bits(cpu_addr); cdns_pcie_writel(pcie, CDNS_PCIE_AT_IB_RP_BAR_ADDR0(bar), addr0); cdns_pcie_writel(pcie, CDNS_PCIE_AT_IB_RP_BAR_ADDR1(bar), addr1); if (bar == RP_NO_BAR) return 0; value = cdns_pcie_readl(pcie, CDNS_PCIE_LM_RC_BAR_CFG); value &= ~(LM_RC_BAR_CFG_CTRL_MEM_64BITS(bar) | LM_RC_BAR_CFG_CTRL_PREF_MEM_64BITS(bar) | LM_RC_BAR_CFG_CTRL_MEM_32BITS(bar) | LM_RC_BAR_CFG_CTRL_PREF_MEM_32BITS(bar) | LM_RC_BAR_CFG_APERTURE(bar, bar_aperture_mask[bar] + 2)); if (size + cpu_addr >= SZ_4G) { if (!(flags & IORESOURCE_PREFETCH)) value |= LM_RC_BAR_CFG_CTRL_MEM_64BITS(bar); value |= LM_RC_BAR_CFG_CTRL_PREF_MEM_64BITS(bar); } else { if (!(flags & IORESOURCE_PREFETCH)) value |= LM_RC_BAR_CFG_CTRL_MEM_32BITS(bar); value |= LM_RC_BAR_CFG_CTRL_PREF_MEM_32BITS(bar); } value |= LM_RC_BAR_CFG_APERTURE(bar, aperture); cdns_pcie_writel(pcie, CDNS_PCIE_LM_RC_BAR_CFG, value); return 0; } static enum cdns_pcie_rp_bar cdns_pcie_host_find_min_bar(struct cdns_pcie_rc *rc, u64 size) { enum cdns_pcie_rp_bar bar, sel_bar; sel_bar = RP_BAR_UNDEFINED; for (bar = RP_BAR0; bar <= RP_NO_BAR; bar++) { if (!rc->avail_ib_bar[bar]) continue; if (size <= bar_max_size[bar]) { if (sel_bar == RP_BAR_UNDEFINED) { sel_bar = bar; continue; } if (bar_max_size[bar] < bar_max_size[sel_bar]) sel_bar = bar; } } return sel_bar; } static enum cdns_pcie_rp_bar cdns_pcie_host_find_max_bar(struct cdns_pcie_rc *rc, u64 size) { enum cdns_pcie_rp_bar bar, sel_bar; sel_bar = RP_BAR_UNDEFINED; for (bar = RP_BAR0; bar <= RP_NO_BAR; bar++) { if (!rc->avail_ib_bar[bar]) continue; if (size >= bar_max_size[bar]) { if (sel_bar == RP_BAR_UNDEFINED) { sel_bar = bar; continue; } if (bar_max_size[bar] > bar_max_size[sel_bar]) sel_bar = bar; } } return sel_bar; } static int cdns_pcie_host_bar_config(struct cdns_pcie_rc *rc, struct resource_entry *entry) { u64 cpu_addr, pci_addr, size, winsize; struct cdns_pcie *pcie = &rc->pcie; struct device *dev = pcie->dev; enum cdns_pcie_rp_bar bar; unsigned long flags; int ret; cpu_addr = entry->res->start; pci_addr = entry->res->start - entry->offset; flags = entry->res->flags; size = resource_size(entry->res); if (entry->offset) { dev_err(dev, "PCI addr: %llx must be equal to CPU addr: %llx\n", pci_addr, cpu_addr); return -EINVAL; } while (size > 0) { /* * Try to find a minimum BAR whose size is greater than * or equal to the remaining resource_entry size. This will * fail if the size of each of the available BARs is less than * the remaining resource_entry size. * If a minimum BAR is found, IB ATU will be configured and * exited. */ bar = cdns_pcie_host_find_min_bar(rc, size); if (bar != RP_BAR_UNDEFINED) { ret = cdns_pcie_host_bar_ib_config(rc, bar, cpu_addr, size, flags); if (ret) dev_err(dev, "IB BAR: %d config failed\n", bar); return ret; } /* * If the control reaches here, it would mean the remaining * resource_entry size cannot be fitted in a single BAR. So we * find a maximum BAR whose size is less than or equal to the * remaining resource_entry size and split the resource entry * so that part of resource entry is fitted inside the maximum * BAR. The remaining size would be fitted during the next * iteration of the loop. * If a maximum BAR is not found, there is no way we can fit * this resource_entry, so we error out. */ bar = cdns_pcie_host_find_max_bar(rc, size); if (bar == RP_BAR_UNDEFINED) { dev_err(dev, "No free BAR to map cpu_addr %llx\n", cpu_addr); return -EINVAL; } winsize = bar_max_size[bar]; ret = cdns_pcie_host_bar_ib_config(rc, bar, cpu_addr, winsize, flags); if (ret) { dev_err(dev, "IB BAR: %d config failed\n", bar); return ret; } size -= winsize; cpu_addr += winsize; } return 0; } static int cdns_pcie_host_dma_ranges_cmp(void *priv, const struct list_head *a, const struct list_head *b) { struct resource_entry *entry1, *entry2; entry1 = container_of(a, struct resource_entry, node); entry2 = container_of(b, struct resource_entry, node); return resource_size(entry2->res) - resource_size(entry1->res); } static int cdns_pcie_host_map_dma_ranges(struct cdns_pcie_rc *rc) { struct cdns_pcie *pcie = &rc->pcie; struct device *dev = pcie->dev; struct device_node *np = dev->of_node; struct pci_host_bridge *bridge; struct resource_entry *entry; u32 no_bar_nbits = 32; int err; bridge = pci_host_bridge_from_priv(rc); if (!bridge) return -ENOMEM; if (list_empty(&bridge->dma_ranges)) { of_property_read_u32(np, "cdns,no-bar-match-nbits", &no_bar_nbits); err = cdns_pcie_host_bar_ib_config(rc, RP_NO_BAR, 0x0, (u64)1 << no_bar_nbits, 0); if (err) dev_err(dev, "IB BAR: %d config failed\n", RP_NO_BAR); return err; } list_sort(NULL, &bridge->dma_ranges, cdns_pcie_host_dma_ranges_cmp); resource_list_for_each_entry(entry, &bridge->dma_ranges) { err = cdns_pcie_host_bar_config(rc, entry); if (err) { dev_err(dev, "Fail to configure IB using dma-ranges\n"); return err; } } return 0; } static int cdns_pcie_host_init_address_translation(struct cdns_pcie_rc *rc) { struct cdns_pcie *pcie = &rc->pcie; struct pci_host_bridge *bridge = pci_host_bridge_from_priv(rc); struct resource *cfg_res = rc->cfg_res; struct resource_entry *entry; u64 cpu_addr = cfg_res->start; u32 addr0, addr1, desc1; int r, busnr = 0; entry = resource_list_first_type(&bridge->windows, IORESOURCE_BUS); if (entry) busnr = entry->res->start; /* * Reserve region 0 for PCI configure space accesses: * OB_REGION_PCI_ADDR0 and OB_REGION_DESC0 are updated dynamically by * cdns_pci_map_bus(), other region registers are set here once for all. */ addr1 = 0; /* Should be programmed to zero. */ desc1 = CDNS_PCIE_AT_OB_REGION_DESC1_BUS(busnr); cdns_pcie_writel(pcie, CDNS_PCIE_AT_OB_REGION_PCI_ADDR1(0), addr1); cdns_pcie_writel(pcie, CDNS_PCIE_AT_OB_REGION_DESC1(0), desc1); if (pcie->ops->cpu_addr_fixup) cpu_addr = pcie->ops->cpu_addr_fixup(pcie, cpu_addr); addr0 = CDNS_PCIE_AT_OB_REGION_CPU_ADDR0_NBITS(12) | (lower_32_bits(cpu_addr) & GENMASK(31, 8)); addr1 = upper_32_bits(cpu_addr); cdns_pcie_writel(pcie, CDNS_PCIE_AT_OB_REGION_CPU_ADDR0(0), addr0); cdns_pcie_writel(pcie, CDNS_PCIE_AT_OB_REGION_CPU_ADDR1(0), addr1); r = 1; resource_list_for_each_entry(entry, &bridge->windows) { struct resource *res = entry->res; u64 pci_addr = res->start - entry->offset; if (resource_type(res) == IORESOURCE_IO) cdns_pcie_set_outbound_region(pcie, busnr, 0, r, true, pci_pio_to_address(res->start), pci_addr, resource_size(res)); else cdns_pcie_set_outbound_region(pcie, busnr, 0, r, false, res->start, pci_addr, resource_size(res)); r++; } return cdns_pcie_host_map_dma_ranges(rc); } static int cdns_pcie_host_init(struct device *dev, struct cdns_pcie_rc *rc) { int err; err = cdns_pcie_host_init_root_port(rc); if (err) return err; return cdns_pcie_host_init_address_translation(rc); } int cdns_pcie_host_setup(struct cdns_pcie_rc *rc) { struct device *dev = rc->pcie.dev; struct platform_device *pdev = to_platform_device(dev); struct device_node *np = dev->of_node; struct pci_host_bridge *bridge; enum cdns_pcie_rp_bar bar; struct cdns_pcie *pcie; struct resource *res; int ret; bridge = pci_host_bridge_from_priv(rc); if (!bridge) return -ENOMEM; pcie = &rc->pcie; pcie->is_rc = true; rc->vendor_id = 0xffff; of_property_read_u32(np, "vendor-id", &rc->vendor_id); rc->device_id = 0xffff; of_property_read_u32(np, "device-id", &rc->device_id); pcie->reg_base = devm_platform_ioremap_resource_byname(pdev, "reg"); if (IS_ERR(pcie->reg_base)) { dev_err(dev, "missing \"reg\"\n"); return PTR_ERR(pcie->reg_base); } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cfg"); rc->cfg_base = devm_pci_remap_cfg_resource(dev, res); if (IS_ERR(rc->cfg_base)) return PTR_ERR(rc->cfg_base); rc->cfg_res = res; if (rc->quirk_detect_quiet_flag) cdns_pcie_detect_quiet_min_delay_set(&rc->pcie); ret = cdns_pcie_start_link(pcie); if (ret) { dev_err(dev, "Failed to start link\n"); return ret; } ret = cdns_pcie_host_start_link(rc); if (ret) dev_dbg(dev, "PCIe link never came up\n"); for (bar = RP_BAR0; bar <= RP_NO_BAR; bar++) rc->avail_ib_bar[bar] = true; ret = cdns_pcie_host_init(dev, rc); if (ret) return ret; if (!bridge->ops) bridge->ops = &cdns_pcie_host_ops; ret = pci_host_probe(bridge); if (ret < 0) goto err_init; return 0; err_init: pm_runtime_put_sync(dev); return ret; }