// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2007-2010 Advanced Micro Devices, Inc. * Author: Joerg Roedel * Leo Duran */ #define pr_fmt(fmt) "AMD-Vi: " fmt #define dev_fmt(fmt) pr_fmt(fmt) #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "amd_iommu.h" #include "../irq_remapping.h" #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28)) #define LOOP_TIMEOUT 100000 /* IO virtual address start page frame number */ #define IOVA_START_PFN (1) #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT) /* Reserved IOVA ranges */ #define MSI_RANGE_START (0xfee00000) #define MSI_RANGE_END (0xfeefffff) #define HT_RANGE_START (0xfd00000000ULL) #define HT_RANGE_END (0xffffffffffULL) #define DEFAULT_PGTABLE_LEVEL PAGE_MODE_3_LEVEL static DEFINE_SPINLOCK(pd_bitmap_lock); /* List of all available dev_data structures */ static LLIST_HEAD(dev_data_list); LIST_HEAD(ioapic_map); LIST_HEAD(hpet_map); LIST_HEAD(acpihid_map); /* * Domain for untranslated devices - only allocated * if iommu=pt passed on kernel cmd line. */ const struct iommu_ops amd_iommu_ops; static ATOMIC_NOTIFIER_HEAD(ppr_notifier); int amd_iommu_max_glx_val = -1; /* * general struct to manage commands send to an IOMMU */ struct iommu_cmd { u32 data[4]; }; struct kmem_cache *amd_iommu_irq_cache; static void detach_device(struct device *dev); /**************************************************************************** * * Helper functions * ****************************************************************************/ static inline u16 get_pci_device_id(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); return pci_dev_id(pdev); } static inline int get_acpihid_device_id(struct device *dev, struct acpihid_map_entry **entry) { struct acpi_device *adev = ACPI_COMPANION(dev); struct acpihid_map_entry *p; if (!adev) return -ENODEV; list_for_each_entry(p, &acpihid_map, list) { if (acpi_dev_hid_uid_match(adev, p->hid, p->uid[0] ? p->uid : NULL)) { if (entry) *entry = p; return p->devid; } } return -EINVAL; } static inline int get_device_id(struct device *dev) { int devid; if (dev_is_pci(dev)) devid = get_pci_device_id(dev); else devid = get_acpihid_device_id(dev, NULL); return devid; } static struct protection_domain *to_pdomain(struct iommu_domain *dom) { return container_of(dom, struct protection_domain, domain); } static struct iommu_dev_data *alloc_dev_data(u16 devid) { struct iommu_dev_data *dev_data; dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL); if (!dev_data) return NULL; spin_lock_init(&dev_data->lock); dev_data->devid = devid; ratelimit_default_init(&dev_data->rs); llist_add(&dev_data->dev_data_list, &dev_data_list); return dev_data; } static struct iommu_dev_data *search_dev_data(u16 devid) { struct iommu_dev_data *dev_data; struct llist_node *node; if (llist_empty(&dev_data_list)) return NULL; node = dev_data_list.first; llist_for_each_entry(dev_data, node, dev_data_list) { if (dev_data->devid == devid) return dev_data; } return NULL; } static int clone_alias(struct pci_dev *pdev, u16 alias, void *data) { u16 devid = pci_dev_id(pdev); if (devid == alias) return 0; amd_iommu_rlookup_table[alias] = amd_iommu_rlookup_table[devid]; memcpy(amd_iommu_dev_table[alias].data, amd_iommu_dev_table[devid].data, sizeof(amd_iommu_dev_table[alias].data)); return 0; } static void clone_aliases(struct pci_dev *pdev) { if (!pdev) return; /* * The IVRS alias stored in the alias table may not be * part of the PCI DMA aliases if it's bus differs * from the original device. */ clone_alias(pdev, amd_iommu_alias_table[pci_dev_id(pdev)], NULL); pci_for_each_dma_alias(pdev, clone_alias, NULL); } static struct pci_dev *setup_aliases(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); u16 ivrs_alias; /* For ACPI HID devices, there are no aliases */ if (!dev_is_pci(dev)) return NULL; /* * Add the IVRS alias to the pci aliases if it is on the same * bus. The IVRS table may know about a quirk that we don't. */ ivrs_alias = amd_iommu_alias_table[pci_dev_id(pdev)]; if (ivrs_alias != pci_dev_id(pdev) && PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1); clone_aliases(pdev); return pdev; } static struct iommu_dev_data *find_dev_data(u16 devid) { struct iommu_dev_data *dev_data; struct amd_iommu *iommu = amd_iommu_rlookup_table[devid]; dev_data = search_dev_data(devid); if (dev_data == NULL) { dev_data = alloc_dev_data(devid); if (!dev_data) return NULL; if (translation_pre_enabled(iommu)) dev_data->defer_attach = true; } return dev_data; } /* * Find or create an IOMMU group for a acpihid device. */ static struct iommu_group *acpihid_device_group(struct device *dev) { struct acpihid_map_entry *p, *entry = NULL; int devid; devid = get_acpihid_device_id(dev, &entry); if (devid < 0) return ERR_PTR(devid); list_for_each_entry(p, &acpihid_map, list) { if ((devid == p->devid) && p->group) entry->group = p->group; } if (!entry->group) entry->group = generic_device_group(dev); else iommu_group_ref_get(entry->group); return entry->group; } static bool pci_iommuv2_capable(struct pci_dev *pdev) { static const int caps[] = { PCI_EXT_CAP_ID_PRI, PCI_EXT_CAP_ID_PASID, }; int i, pos; if (!pci_ats_supported(pdev)) return false; for (i = 0; i < 2; ++i) { pos = pci_find_ext_capability(pdev, caps[i]); if (pos == 0) return false; } return true; } /* * This function checks if the driver got a valid device from the caller to * avoid dereferencing invalid pointers. */ static bool check_device(struct device *dev) { int devid; if (!dev) return false; devid = get_device_id(dev); if (devid < 0) return false; /* Out of our scope? */ if (devid > amd_iommu_last_bdf) return false; if (amd_iommu_rlookup_table[devid] == NULL) return false; return true; } static int iommu_init_device(struct device *dev) { struct iommu_dev_data *dev_data; int devid; if (dev_iommu_priv_get(dev)) return 0; devid = get_device_id(dev); if (devid < 0) return devid; dev_data = find_dev_data(devid); if (!dev_data) return -ENOMEM; dev_data->pdev = setup_aliases(dev); /* * By default we use passthrough mode for IOMMUv2 capable device. * But if amd_iommu=force_isolation is set (e.g. to debug DMA to * invalid address), we ignore the capability for the device so * it'll be forced to go into translation mode. */ if ((iommu_default_passthrough() || !amd_iommu_force_isolation) && dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) { struct amd_iommu *iommu; iommu = amd_iommu_rlookup_table[dev_data->devid]; dev_data->iommu_v2 = iommu->is_iommu_v2; } dev_iommu_priv_set(dev, dev_data); return 0; } static void iommu_ignore_device(struct device *dev) { int devid; devid = get_device_id(dev); if (devid < 0) return; amd_iommu_rlookup_table[devid] = NULL; memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry)); setup_aliases(dev); } static void amd_iommu_uninit_device(struct device *dev) { struct iommu_dev_data *dev_data; dev_data = dev_iommu_priv_get(dev); if (!dev_data) return; if (dev_data->domain) detach_device(dev); dev_iommu_priv_set(dev, NULL); /* * We keep dev_data around for unplugged devices and reuse it when the * device is re-plugged - not doing so would introduce a ton of races. */ } /**************************************************************************** * * Interrupt handling functions * ****************************************************************************/ static void dump_dte_entry(u16 devid) { int i; for (i = 0; i < 4; ++i) pr_err("DTE[%d]: %016llx\n", i, amd_iommu_dev_table[devid].data[i]); } static void dump_command(unsigned long phys_addr) { struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr); int i; for (i = 0; i < 4; ++i) pr_err("CMD[%d]: %08x\n", i, cmd->data[i]); } static void amd_iommu_report_rmp_hw_error(volatile u32 *event) { struct iommu_dev_data *dev_data = NULL; int devid, vmg_tag, flags; struct pci_dev *pdev; u64 spa; devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK; vmg_tag = (event[1]) & 0xFFFF; flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK; spa = ((u64)event[3] << 32) | (event[2] & 0xFFFFFFF8); pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid), devid & 0xff); if (pdev) dev_data = dev_iommu_priv_get(&pdev->dev); if (dev_data) { if (__ratelimit(&dev_data->rs)) { pci_err(pdev, "Event logged [RMP_HW_ERROR vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n", vmg_tag, spa, flags); } } else { pr_err_ratelimited("Event logged [RMP_HW_ERROR device=%02x:%02x.%x, vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n", PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), vmg_tag, spa, flags); } if (pdev) pci_dev_put(pdev); } static void amd_iommu_report_rmp_fault(volatile u32 *event) { struct iommu_dev_data *dev_data = NULL; int devid, flags_rmp, vmg_tag, flags; struct pci_dev *pdev; u64 gpa; devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK; flags_rmp = (event[0] >> EVENT_FLAGS_SHIFT) & 0xFF; vmg_tag = (event[1]) & 0xFFFF; flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK; gpa = ((u64)event[3] << 32) | event[2]; pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid), devid & 0xff); if (pdev) dev_data = dev_iommu_priv_get(&pdev->dev); if (dev_data) { if (__ratelimit(&dev_data->rs)) { pci_err(pdev, "Event logged [RMP_PAGE_FAULT vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n", vmg_tag, gpa, flags_rmp, flags); } } else { pr_err_ratelimited("Event logged [RMP_PAGE_FAULT device=%02x:%02x.%x, vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n", PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), vmg_tag, gpa, flags_rmp, flags); } if (pdev) pci_dev_put(pdev); } static void amd_iommu_report_page_fault(u16 devid, u16 domain_id, u64 address, int flags) { struct iommu_dev_data *dev_data = NULL; struct pci_dev *pdev; pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid), devid & 0xff); if (pdev) dev_data = dev_iommu_priv_get(&pdev->dev); if (dev_data) { if (__ratelimit(&dev_data->rs)) { pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n", domain_id, address, flags); } } else { pr_err_ratelimited("Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n", PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), domain_id, address, flags); } if (pdev) pci_dev_put(pdev); } static void iommu_print_event(struct amd_iommu *iommu, void *__evt) { struct device *dev = iommu->iommu.dev; int type, devid, flags, tag; volatile u32 *event = __evt; int count = 0; u64 address; u32 pasid; retry: type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK; devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK; pasid = (event[0] & EVENT_DOMID_MASK_HI) | (event[1] & EVENT_DOMID_MASK_LO); flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK; address = (u64)(((u64)event[3]) << 32) | event[2]; if (type == 0) { /* Did we hit the erratum? */ if (++count == LOOP_TIMEOUT) { pr_err("No event written to event log\n"); return; } udelay(1); goto retry; } if (type == EVENT_TYPE_IO_FAULT) { amd_iommu_report_page_fault(devid, pasid, address, flags); return; } switch (type) { case EVENT_TYPE_ILL_DEV: dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n", PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), pasid, address, flags); dump_dte_entry(devid); break; case EVENT_TYPE_DEV_TAB_ERR: dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x " "address=0x%llx flags=0x%04x]\n", PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), address, flags); break; case EVENT_TYPE_PAGE_TAB_ERR: dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n", PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), pasid, address, flags); break; case EVENT_TYPE_ILL_CMD: dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address); dump_command(address); break; case EVENT_TYPE_CMD_HARD_ERR: dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n", address, flags); break; case EVENT_TYPE_IOTLB_INV_TO: dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%02x:%02x.%x address=0x%llx]\n", PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), address); break; case EVENT_TYPE_INV_DEV_REQ: dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n", PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), pasid, address, flags); break; case EVENT_TYPE_RMP_FAULT: amd_iommu_report_rmp_fault(event); break; case EVENT_TYPE_RMP_HW_ERR: amd_iommu_report_rmp_hw_error(event); break; case EVENT_TYPE_INV_PPR_REQ: pasid = PPR_PASID(*((u64 *)__evt)); tag = event[1] & 0x03FF; dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n", PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid), pasid, address, flags, tag); break; default: dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n", event[0], event[1], event[2], event[3]); } memset(__evt, 0, 4 * sizeof(u32)); } static void iommu_poll_events(struct amd_iommu *iommu) { u32 head, tail; head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET); while (head != tail) { iommu_print_event(iommu, iommu->evt_buf + head); head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE; } writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); } static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw) { struct amd_iommu_fault fault; if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) { pr_err_ratelimited("Unknown PPR request received\n"); return; } fault.address = raw[1]; fault.pasid = PPR_PASID(raw[0]); fault.device_id = PPR_DEVID(raw[0]); fault.tag = PPR_TAG(raw[0]); fault.flags = PPR_FLAGS(raw[0]); atomic_notifier_call_chain(&ppr_notifier, 0, &fault); } static void iommu_poll_ppr_log(struct amd_iommu *iommu) { u32 head, tail; if (iommu->ppr_log == NULL) return; head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET); while (head != tail) { volatile u64 *raw; u64 entry[2]; int i; raw = (u64 *)(iommu->ppr_log + head); /* * Hardware bug: Interrupt may arrive before the entry is * written to memory. If this happens we need to wait for the * entry to arrive. */ for (i = 0; i < LOOP_TIMEOUT; ++i) { if (PPR_REQ_TYPE(raw[0]) != 0) break; udelay(1); } /* Avoid memcpy function-call overhead */ entry[0] = raw[0]; entry[1] = raw[1]; /* * To detect the hardware bug we need to clear the entry * back to zero. */ raw[0] = raw[1] = 0UL; /* Update head pointer of hardware ring-buffer */ head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE; writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); /* Handle PPR entry */ iommu_handle_ppr_entry(iommu, entry); /* Refresh ring-buffer information */ head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET); } } #ifdef CONFIG_IRQ_REMAP static int (*iommu_ga_log_notifier)(u32); int amd_iommu_register_ga_log_notifier(int (*notifier)(u32)) { iommu_ga_log_notifier = notifier; return 0; } EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier); static void iommu_poll_ga_log(struct amd_iommu *iommu) { u32 head, tail, cnt = 0; if (iommu->ga_log == NULL) return; head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET); tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET); while (head != tail) { volatile u64 *raw; u64 log_entry; raw = (u64 *)(iommu->ga_log + head); cnt++; /* Avoid memcpy function-call overhead */ log_entry = *raw; /* Update head pointer of hardware ring-buffer */ head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE; writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET); /* Handle GA entry */ switch (GA_REQ_TYPE(log_entry)) { case GA_GUEST_NR: if (!iommu_ga_log_notifier) break; pr_debug("%s: devid=%#x, ga_tag=%#x\n", __func__, GA_DEVID(log_entry), GA_TAG(log_entry)); if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0) pr_err("GA log notifier failed.\n"); break; default: break; } } } static void amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) { if (!irq_remapping_enabled || !dev_is_pci(dev) || pci_dev_has_special_msi_domain(to_pci_dev(dev))) return; dev_set_msi_domain(dev, iommu->msi_domain); } #else /* CONFIG_IRQ_REMAP */ static inline void amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) { } #endif /* !CONFIG_IRQ_REMAP */ #define AMD_IOMMU_INT_MASK \ (MMIO_STATUS_EVT_OVERFLOW_INT_MASK | \ MMIO_STATUS_EVT_INT_MASK | \ MMIO_STATUS_PPR_INT_MASK | \ MMIO_STATUS_GALOG_INT_MASK) irqreturn_t amd_iommu_int_thread(int irq, void *data) { struct amd_iommu *iommu = (struct amd_iommu *) data; u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET); while (status & AMD_IOMMU_INT_MASK) { /* Enable interrupt sources again */ writel(AMD_IOMMU_INT_MASK, iommu->mmio_base + MMIO_STATUS_OFFSET); if (status & MMIO_STATUS_EVT_INT_MASK) { pr_devel("Processing IOMMU Event Log\n"); iommu_poll_events(iommu); } if (status & MMIO_STATUS_PPR_INT_MASK) { pr_devel("Processing IOMMU PPR Log\n"); iommu_poll_ppr_log(iommu); } #ifdef CONFIG_IRQ_REMAP if (status & MMIO_STATUS_GALOG_INT_MASK) { pr_devel("Processing IOMMU GA Log\n"); iommu_poll_ga_log(iommu); } #endif if (status & MMIO_STATUS_EVT_OVERFLOW_INT_MASK) { pr_info_ratelimited("IOMMU event log overflow\n"); amd_iommu_restart_event_logging(iommu); } /* * Hardware bug: ERBT1312 * When re-enabling interrupt (by writing 1 * to clear the bit), the hardware might also try to set * the interrupt bit in the event status register. * In this scenario, the bit will be set, and disable * subsequent interrupts. * * Workaround: The IOMMU driver should read back the * status register and check if the interrupt bits are cleared. * If not, driver will need to go through the interrupt handler * again and re-clear the bits */ status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET); } return IRQ_HANDLED; } irqreturn_t amd_iommu_int_handler(int irq, void *data) { return IRQ_WAKE_THREAD; } /**************************************************************************** * * IOMMU command queuing functions * ****************************************************************************/ static int wait_on_sem(struct amd_iommu *iommu, u64 data) { int i = 0; while (*iommu->cmd_sem != data && i < LOOP_TIMEOUT) { udelay(1); i += 1; } if (i == LOOP_TIMEOUT) { pr_alert("Completion-Wait loop timed out\n"); return -EIO; } return 0; } static void copy_cmd_to_buffer(struct amd_iommu *iommu, struct iommu_cmd *cmd) { u8 *target; u32 tail; /* Copy command to buffer */ tail = iommu->cmd_buf_tail; target = iommu->cmd_buf + tail; memcpy(target, cmd, sizeof(*cmd)); tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE; iommu->cmd_buf_tail = tail; /* Tell the IOMMU about it */ writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET); } static void build_completion_wait(struct iommu_cmd *cmd, struct amd_iommu *iommu, u64 data) { u64 paddr = iommu_virt_to_phys((void *)iommu->cmd_sem); memset(cmd, 0, sizeof(*cmd)); cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK; cmd->data[1] = upper_32_bits(paddr); cmd->data[2] = lower_32_bits(data); cmd->data[3] = upper_32_bits(data); CMD_SET_TYPE(cmd, CMD_COMPL_WAIT); } static void build_inv_dte(struct iommu_cmd *cmd, u16 devid) { memset(cmd, 0, sizeof(*cmd)); cmd->data[0] = devid; CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY); } /* * Builds an invalidation address which is suitable for one page or multiple * pages. Sets the size bit (S) as needed is more than one page is flushed. */ static inline u64 build_inv_address(u64 address, size_t size) { u64 pages, end, msb_diff; pages = iommu_num_pages(address, size, PAGE_SIZE); if (pages == 1) return address & PAGE_MASK; end = address + size - 1; /* * msb_diff would hold the index of the most significant bit that * flipped between the start and end. */ msb_diff = fls64(end ^ address) - 1; /* * Bits 63:52 are sign extended. If for some reason bit 51 is different * between the start and the end, invalidate everything. */ if (unlikely(msb_diff > 51)) { address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS; } else { /* * The msb-bit must be clear on the address. Just set all the * lower bits. */ address |= (1ull << msb_diff) - 1; } /* Clear bits 11:0 */ address &= PAGE_MASK; /* Set the size bit - we flush more than one 4kb page */ return address | CMD_INV_IOMMU_PAGES_SIZE_MASK; } static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address, size_t size, u16 domid, int pde) { u64 inv_address = build_inv_address(address, size); memset(cmd, 0, sizeof(*cmd)); cmd->data[1] |= domid; cmd->data[2] = lower_32_bits(inv_address); cmd->data[3] = upper_32_bits(inv_address); CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES); if (pde) /* PDE bit - we want to flush everything, not only the PTEs */ cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK; } static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep, u64 address, size_t size) { u64 inv_address = build_inv_address(address, size); memset(cmd, 0, sizeof(*cmd)); cmd->data[0] = devid; cmd->data[0] |= (qdep & 0xff) << 24; cmd->data[1] = devid; cmd->data[2] = lower_32_bits(inv_address); cmd->data[3] = upper_32_bits(inv_address); CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES); } static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, u32 pasid, u64 address, bool size) { memset(cmd, 0, sizeof(*cmd)); address &= ~(0xfffULL); cmd->data[0] = pasid; cmd->data[1] = domid; cmd->data[2] = lower_32_bits(address); cmd->data[3] = upper_32_bits(address); cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK; cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK; if (size) cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES); } static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, u32 pasid, int qdep, u64 address, bool size) { memset(cmd, 0, sizeof(*cmd)); address &= ~(0xfffULL); cmd->data[0] = devid; cmd->data[0] |= ((pasid >> 8) & 0xff) << 16; cmd->data[0] |= (qdep & 0xff) << 24; cmd->data[1] = devid; cmd->data[1] |= (pasid & 0xff) << 16; cmd->data[2] = lower_32_bits(address); cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK; cmd->data[3] = upper_32_bits(address); if (size) cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES); } static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, u32 pasid, int status, int tag, bool gn) { memset(cmd, 0, sizeof(*cmd)); cmd->data[0] = devid; if (gn) { cmd->data[1] = pasid; cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK; } cmd->data[3] = tag & 0x1ff; cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT; CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR); } static void build_inv_all(struct iommu_cmd *cmd) { memset(cmd, 0, sizeof(*cmd)); CMD_SET_TYPE(cmd, CMD_INV_ALL); } static void build_inv_irt(struct iommu_cmd *cmd, u16 devid) { memset(cmd, 0, sizeof(*cmd)); cmd->data[0] = devid; CMD_SET_TYPE(cmd, CMD_INV_IRT); } /* * Writes the command to the IOMMUs command buffer and informs the * hardware about the new command. */ static int __iommu_queue_command_sync(struct amd_iommu *iommu, struct iommu_cmd *cmd, bool sync) { unsigned int count = 0; u32 left, next_tail; next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE; again: left = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE; if (left <= 0x20) { /* Skip udelay() the first time around */ if (count++) { if (count == LOOP_TIMEOUT) { pr_err("Command buffer timeout\n"); return -EIO; } udelay(1); } /* Update head and recheck remaining space */ iommu->cmd_buf_head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET); goto again; } copy_cmd_to_buffer(iommu, cmd); /* Do we need to make sure all commands are processed? */ iommu->need_sync = sync; return 0; } static int iommu_queue_command_sync(struct amd_iommu *iommu, struct iommu_cmd *cmd, bool sync) { unsigned long flags; int ret; raw_spin_lock_irqsave(&iommu->lock, flags); ret = __iommu_queue_command_sync(iommu, cmd, sync); raw_spin_unlock_irqrestore(&iommu->lock, flags); return ret; } static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd) { return iommu_queue_command_sync(iommu, cmd, true); } /* * This function queues a completion wait command into the command * buffer of an IOMMU */ static int iommu_completion_wait(struct amd_iommu *iommu) { struct iommu_cmd cmd; unsigned long flags; int ret; u64 data; if (!iommu->need_sync) return 0; raw_spin_lock_irqsave(&iommu->lock, flags); data = ++iommu->cmd_sem_val; build_completion_wait(&cmd, iommu, data); ret = __iommu_queue_command_sync(iommu, &cmd, false); if (ret) goto out_unlock; ret = wait_on_sem(iommu, data); out_unlock: raw_spin_unlock_irqrestore(&iommu->lock, flags); return ret; } static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid) { struct iommu_cmd cmd; build_inv_dte(&cmd, devid); return iommu_queue_command(iommu, &cmd); } static void amd_iommu_flush_dte_all(struct amd_iommu *iommu) { u32 devid; for (devid = 0; devid <= 0xffff; ++devid) iommu_flush_dte(iommu, devid); iommu_completion_wait(iommu); } /* * This function uses heavy locking and may disable irqs for some time. But * this is no issue because it is only called during resume. */ static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu) { u32 dom_id; for (dom_id = 0; dom_id <= 0xffff; ++dom_id) { struct iommu_cmd cmd; build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, dom_id, 1); iommu_queue_command(iommu, &cmd); } iommu_completion_wait(iommu); } static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id) { struct iommu_cmd cmd; build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, dom_id, 1); iommu_queue_command(iommu, &cmd); iommu_completion_wait(iommu); } static void amd_iommu_flush_all(struct amd_iommu *iommu) { struct iommu_cmd cmd; build_inv_all(&cmd); iommu_queue_command(iommu, &cmd); iommu_completion_wait(iommu); } static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid) { struct iommu_cmd cmd; build_inv_irt(&cmd, devid); iommu_queue_command(iommu, &cmd); } static void amd_iommu_flush_irt_all(struct amd_iommu *iommu) { u32 devid; for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++) iommu_flush_irt(iommu, devid); iommu_completion_wait(iommu); } void iommu_flush_all_caches(struct amd_iommu *iommu) { if (iommu_feature(iommu, FEATURE_IA)) { amd_iommu_flush_all(iommu); } else { amd_iommu_flush_dte_all(iommu); amd_iommu_flush_irt_all(iommu); amd_iommu_flush_tlb_all(iommu); } } /* * Command send function for flushing on-device TLB */ static int device_flush_iotlb(struct iommu_dev_data *dev_data, u64 address, size_t size) { struct amd_iommu *iommu; struct iommu_cmd cmd; int qdep; qdep = dev_data->ats.qdep; iommu = amd_iommu_rlookup_table[dev_data->devid]; build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size); return iommu_queue_command(iommu, &cmd); } static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data) { struct amd_iommu *iommu = data; return iommu_flush_dte(iommu, alias); } /* * Command send function for invalidating a device table entry */ static int device_flush_dte(struct iommu_dev_data *dev_data) { struct amd_iommu *iommu; u16 alias; int ret; iommu = amd_iommu_rlookup_table[dev_data->devid]; if (dev_data->pdev) ret = pci_for_each_dma_alias(dev_data->pdev, device_flush_dte_alias, iommu); else ret = iommu_flush_dte(iommu, dev_data->devid); if (ret) return ret; alias = amd_iommu_alias_table[dev_data->devid]; if (alias != dev_data->devid) { ret = iommu_flush_dte(iommu, alias); if (ret) return ret; } if (dev_data->ats.enabled) ret = device_flush_iotlb(dev_data, 0, ~0UL); return ret; } /* * TLB invalidation function which is called from the mapping functions. * It invalidates a single PTE if the range to flush is within a single * page. Otherwise it flushes the whole TLB of the IOMMU. */ static void __domain_flush_pages(struct protection_domain *domain, u64 address, size_t size, int pde) { struct iommu_dev_data *dev_data; struct iommu_cmd cmd; int ret = 0, i; build_inv_iommu_pages(&cmd, address, size, domain->id, pde); for (i = 0; i < amd_iommu_get_num_iommus(); ++i) { if (!domain->dev_iommu[i]) continue; /* * Devices of this domain are behind this IOMMU * We need a TLB flush */ ret |= iommu_queue_command(amd_iommus[i], &cmd); } list_for_each_entry(dev_data, &domain->dev_list, list) { if (!dev_data->ats.enabled) continue; ret |= device_flush_iotlb(dev_data, address, size); } WARN_ON(ret); } static void domain_flush_pages(struct protection_domain *domain, u64 address, size_t size, int pde) { if (likely(!amd_iommu_np_cache)) { __domain_flush_pages(domain, address, size, pde); return; } /* * When NpCache is on, we infer that we run in a VM and use a vIOMMU. * In such setups it is best to avoid flushes of ranges which are not * naturally aligned, since it would lead to flushes of unmodified * PTEs. Such flushes would require the hypervisor to do more work than * necessary. Therefore, perform repeated flushes of aligned ranges * until you cover the range. Each iteration flushes the smaller * between the natural alignment of the address that we flush and the * greatest naturally aligned region that fits in the range. */ while (size != 0) { int addr_alignment = __ffs(address); int size_alignment = __fls(size); int min_alignment; size_t flush_size; /* * size is always non-zero, but address might be zero, causing * addr_alignment to be negative. As the casting of the * argument in __ffs(address) to long might trim the high bits * of the address on x86-32, cast to long when doing the check. */ if (likely((unsigned long)address != 0)) min_alignment = min(addr_alignment, size_alignment); else min_alignment = size_alignment; flush_size = 1ul << min_alignment; __domain_flush_pages(domain, address, flush_size, pde); address += flush_size; size -= flush_size; } } /* Flush the whole IO/TLB for a given protection domain - including PDE */ void amd_iommu_domain_flush_tlb_pde(struct protection_domain *domain) { domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1); } void amd_iommu_domain_flush_complete(struct protection_domain *domain) { int i; for (i = 0; i < amd_iommu_get_num_iommus(); ++i) { if (domain && !domain->dev_iommu[i]) continue; /* * Devices of this domain are behind this IOMMU * We need to wait for completion of all commands. */ iommu_completion_wait(amd_iommus[i]); } } /* Flush the not present cache if it exists */ static void domain_flush_np_cache(struct protection_domain *domain, dma_addr_t iova, size_t size) { if (unlikely(amd_iommu_np_cache)) { unsigned long flags; spin_lock_irqsave(&domain->lock, flags); domain_flush_pages(domain, iova, size, 1); amd_iommu_domain_flush_complete(domain); spin_unlock_irqrestore(&domain->lock, flags); } } /* * This function flushes the DTEs for all devices in domain */ static void domain_flush_devices(struct protection_domain *domain) { struct iommu_dev_data *dev_data; list_for_each_entry(dev_data, &domain->dev_list, list) device_flush_dte(dev_data); } /**************************************************************************** * * The next functions belong to the domain allocation. A domain is * allocated for every IOMMU as the default domain. If device isolation * is enabled, every device get its own domain. The most important thing * about domains is the page table mapping the DMA address space they * contain. * ****************************************************************************/ static u16 domain_id_alloc(void) { int id; spin_lock(&pd_bitmap_lock); id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID); BUG_ON(id == 0); if (id > 0 && id < MAX_DOMAIN_ID) __set_bit(id, amd_iommu_pd_alloc_bitmap); else id = 0; spin_unlock(&pd_bitmap_lock); return id; } static void domain_id_free(int id) { spin_lock(&pd_bitmap_lock); if (id > 0 && id < MAX_DOMAIN_ID) __clear_bit(id, amd_iommu_pd_alloc_bitmap); spin_unlock(&pd_bitmap_lock); } static void free_gcr3_tbl_level1(u64 *tbl) { u64 *ptr; int i; for (i = 0; i < 512; ++i) { if (!(tbl[i] & GCR3_VALID)) continue; ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK); free_page((unsigned long)ptr); } } static void free_gcr3_tbl_level2(u64 *tbl) { u64 *ptr; int i; for (i = 0; i < 512; ++i) { if (!(tbl[i] & GCR3_VALID)) continue; ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK); free_gcr3_tbl_level1(ptr); } } static void free_gcr3_table(struct protection_domain *domain) { if (domain->glx == 2) free_gcr3_tbl_level2(domain->gcr3_tbl); else if (domain->glx == 1) free_gcr3_tbl_level1(domain->gcr3_tbl); else BUG_ON(domain->glx != 0); free_page((unsigned long)domain->gcr3_tbl); } static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats, bool ppr) { u64 pte_root = 0; u64 flags = 0; u32 old_domid; if (domain->iop.mode != PAGE_MODE_NONE) pte_root = iommu_virt_to_phys(domain->iop.root); pte_root |= (domain->iop.mode & DEV_ENTRY_MODE_MASK) << DEV_ENTRY_MODE_SHIFT; pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV; flags = amd_iommu_dev_table[devid].data[1]; if (ats) flags |= DTE_FLAG_IOTLB; if (ppr) { struct amd_iommu *iommu = amd_iommu_rlookup_table[devid]; if (iommu_feature(iommu, FEATURE_EPHSUP)) pte_root |= 1ULL << DEV_ENTRY_PPR; } if (domain->flags & PD_IOMMUV2_MASK) { u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl); u64 glx = domain->glx; u64 tmp; pte_root |= DTE_FLAG_GV; pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT; /* First mask out possible old values for GCR3 table */ tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B; flags &= ~tmp; tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C; flags &= ~tmp; /* Encode GCR3 table into DTE */ tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A; pte_root |= tmp; tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B; flags |= tmp; tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C; flags |= tmp; } flags &= ~DEV_DOMID_MASK; flags |= domain->id; old_domid = amd_iommu_dev_table[devid].data[1] & DEV_DOMID_MASK; amd_iommu_dev_table[devid].data[1] = flags; amd_iommu_dev_table[devid].data[0] = pte_root; /* * A kdump kernel might be replacing a domain ID that was copied from * the previous kernel--if so, it needs to flush the translation cache * entries for the old domain ID that is being overwritten */ if (old_domid) { struct amd_iommu *iommu = amd_iommu_rlookup_table[devid]; amd_iommu_flush_tlb_domid(iommu, old_domid); } } static void clear_dte_entry(u16 devid) { /* remove entry from the device table seen by the hardware */ amd_iommu_dev_table[devid].data[0] = DTE_FLAG_V | DTE_FLAG_TV; amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK; amd_iommu_apply_erratum_63(devid); } static void do_attach(struct iommu_dev_data *dev_data, struct protection_domain *domain) { struct amd_iommu *iommu; bool ats; iommu = amd_iommu_rlookup_table[dev_data->devid]; ats = dev_data->ats.enabled; /* Update data structures */ dev_data->domain = domain; list_add(&dev_data->list, &domain->dev_list); /* Do reference counting */ domain->dev_iommu[iommu->index] += 1; domain->dev_cnt += 1; /* Update device table */ set_dte_entry(dev_data->devid, domain, ats, dev_data->iommu_v2); clone_aliases(dev_data->pdev); device_flush_dte(dev_data); } static void do_detach(struct iommu_dev_data *dev_data) { struct protection_domain *domain = dev_data->domain; struct amd_iommu *iommu; iommu = amd_iommu_rlookup_table[dev_data->devid]; /* Update data structures */ dev_data->domain = NULL; list_del(&dev_data->list); clear_dte_entry(dev_data->devid); clone_aliases(dev_data->pdev); /* Flush the DTE entry */ device_flush_dte(dev_data); /* Flush IOTLB */ amd_iommu_domain_flush_tlb_pde(domain); /* Wait for the flushes to finish */ amd_iommu_domain_flush_complete(domain); /* decrease reference counters - needs to happen after the flushes */ domain->dev_iommu[iommu->index] -= 1; domain->dev_cnt -= 1; } static void pdev_iommuv2_disable(struct pci_dev *pdev) { pci_disable_ats(pdev); pci_disable_pri(pdev); pci_disable_pasid(pdev); } static int pdev_iommuv2_enable(struct pci_dev *pdev) { int ret; /* Only allow access to user-accessible pages */ ret = pci_enable_pasid(pdev, 0); if (ret) return ret; /* First reset the PRI state of the device */ ret = pci_reset_pri(pdev); if (ret) goto out_err_pasid; /* Enable PRI */ /* FIXME: Hardcode number of outstanding requests for now */ ret = pci_enable_pri(pdev, 32); if (ret) goto out_err_pasid; ret = pci_enable_ats(pdev, PAGE_SHIFT); if (ret) goto out_err_pri; return 0; out_err_pri: pci_disable_pri(pdev); out_err_pasid: pci_disable_pasid(pdev); return ret; } /* * If a device is not yet associated with a domain, this function makes the * device visible in the domain */ static int attach_device(struct device *dev, struct protection_domain *domain) { struct iommu_dev_data *dev_data; struct pci_dev *pdev; unsigned long flags; int ret; spin_lock_irqsave(&domain->lock, flags); dev_data = dev_iommu_priv_get(dev); spin_lock(&dev_data->lock); ret = -EBUSY; if (dev_data->domain != NULL) goto out; if (!dev_is_pci(dev)) goto skip_ats_check; pdev = to_pci_dev(dev); if (domain->flags & PD_IOMMUV2_MASK) { struct iommu_domain *def_domain = iommu_get_dma_domain(dev); ret = -EINVAL; if (def_domain->type != IOMMU_DOMAIN_IDENTITY) goto out; if (dev_data->iommu_v2) { if (pdev_iommuv2_enable(pdev) != 0) goto out; dev_data->ats.enabled = true; dev_data->ats.qdep = pci_ats_queue_depth(pdev); dev_data->pri_tlp = pci_prg_resp_pasid_required(pdev); } } else if (amd_iommu_iotlb_sup && pci_enable_ats(pdev, PAGE_SHIFT) == 0) { dev_data->ats.enabled = true; dev_data->ats.qdep = pci_ats_queue_depth(pdev); } skip_ats_check: ret = 0; do_attach(dev_data, domain); /* * We might boot into a crash-kernel here. The crashed kernel * left the caches in the IOMMU dirty. So we have to flush * here to evict all dirty stuff. */ amd_iommu_domain_flush_tlb_pde(domain); amd_iommu_domain_flush_complete(domain); out: spin_unlock(&dev_data->lock); spin_unlock_irqrestore(&domain->lock, flags); return ret; } /* * Removes a device from a protection domain (with devtable_lock held) */ static void detach_device(struct device *dev) { struct protection_domain *domain; struct iommu_dev_data *dev_data; unsigned long flags; dev_data = dev_iommu_priv_get(dev); domain = dev_data->domain; spin_lock_irqsave(&domain->lock, flags); spin_lock(&dev_data->lock); /* * First check if the device is still attached. It might already * be detached from its domain because the generic * iommu_detach_group code detached it and we try again here in * our alias handling. */ if (WARN_ON(!dev_data->domain)) goto out; do_detach(dev_data); if (!dev_is_pci(dev)) goto out; if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2) pdev_iommuv2_disable(to_pci_dev(dev)); else if (dev_data->ats.enabled) pci_disable_ats(to_pci_dev(dev)); dev_data->ats.enabled = false; out: spin_unlock(&dev_data->lock); spin_unlock_irqrestore(&domain->lock, flags); } static struct iommu_device *amd_iommu_probe_device(struct device *dev) { struct iommu_device *iommu_dev; struct amd_iommu *iommu; int ret, devid; if (!check_device(dev)) return ERR_PTR(-ENODEV); devid = get_device_id(dev); iommu = amd_iommu_rlookup_table[devid]; if (dev_iommu_priv_get(dev)) return &iommu->iommu; ret = iommu_init_device(dev); if (ret) { if (ret != -ENOTSUPP) dev_err(dev, "Failed to initialize - trying to proceed anyway\n"); iommu_dev = ERR_PTR(ret); iommu_ignore_device(dev); } else { amd_iommu_set_pci_msi_domain(dev, iommu); iommu_dev = &iommu->iommu; } iommu_completion_wait(iommu); return iommu_dev; } static void amd_iommu_probe_finalize(struct device *dev) { /* Domains are initialized for this device - have a look what we ended up with */ set_dma_ops(dev, NULL); iommu_setup_dma_ops(dev, 0, U64_MAX); } static void amd_iommu_release_device(struct device *dev) { int devid = get_device_id(dev); struct amd_iommu *iommu; if (!check_device(dev)) return; iommu = amd_iommu_rlookup_table[devid]; amd_iommu_uninit_device(dev); iommu_completion_wait(iommu); } static struct iommu_group *amd_iommu_device_group(struct device *dev) { if (dev_is_pci(dev)) return pci_device_group(dev); return acpihid_device_group(dev); } /***************************************************************************** * * The next functions belong to the dma_ops mapping/unmapping code. * *****************************************************************************/ static void update_device_table(struct protection_domain *domain) { struct iommu_dev_data *dev_data; list_for_each_entry(dev_data, &domain->dev_list, list) { set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled, dev_data->iommu_v2); clone_aliases(dev_data->pdev); } } void amd_iommu_update_and_flush_device_table(struct protection_domain *domain) { update_device_table(domain); domain_flush_devices(domain); } void amd_iommu_domain_update(struct protection_domain *domain) { /* Update device table */ amd_iommu_update_and_flush_device_table(domain); /* Flush domain TLB(s) and wait for completion */ amd_iommu_domain_flush_tlb_pde(domain); amd_iommu_domain_flush_complete(domain); } int __init amd_iommu_init_api(void) { int err; err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops); if (err) return err; #ifdef CONFIG_ARM_AMBA err = bus_set_iommu(&amba_bustype, &amd_iommu_ops); if (err) return err; #endif err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops); if (err) return err; return 0; } /***************************************************************************** * * The following functions belong to the exported interface of AMD IOMMU * * This interface allows access to lower level functions of the IOMMU * like protection domain handling and assignement of devices to domains * which is not possible with the dma_ops interface. * *****************************************************************************/ static void cleanup_domain(struct protection_domain *domain) { struct iommu_dev_data *entry; unsigned long flags; spin_lock_irqsave(&domain->lock, flags); while (!list_empty(&domain->dev_list)) { entry = list_first_entry(&domain->dev_list, struct iommu_dev_data, list); BUG_ON(!entry->domain); do_detach(entry); } spin_unlock_irqrestore(&domain->lock, flags); } static void protection_domain_free(struct protection_domain *domain) { if (!domain) return; if (domain->id) domain_id_free(domain->id); if (domain->iop.pgtbl_cfg.tlb) free_io_pgtable_ops(&domain->iop.iop.ops); kfree(domain); } static int protection_domain_init_v1(struct protection_domain *domain, int mode) { u64 *pt_root = NULL; BUG_ON(mode < PAGE_MODE_NONE || mode > PAGE_MODE_6_LEVEL); spin_lock_init(&domain->lock); domain->id = domain_id_alloc(); if (!domain->id) return -ENOMEM; INIT_LIST_HEAD(&domain->dev_list); if (mode != PAGE_MODE_NONE) { pt_root = (void *)get_zeroed_page(GFP_KERNEL); if (!pt_root) return -ENOMEM; } amd_iommu_domain_set_pgtable(domain, pt_root, mode); return 0; } static struct protection_domain *protection_domain_alloc(unsigned int type) { struct io_pgtable_ops *pgtbl_ops; struct protection_domain *domain; int pgtable = amd_iommu_pgtable; int mode = DEFAULT_PGTABLE_LEVEL; int ret; domain = kzalloc(sizeof(*domain), GFP_KERNEL); if (!domain) return NULL; /* * Force IOMMU v1 page table when iommu=pt and * when allocating domain for pass-through devices. */ if (type == IOMMU_DOMAIN_IDENTITY) { pgtable = AMD_IOMMU_V1; mode = PAGE_MODE_NONE; } else if (type == IOMMU_DOMAIN_UNMANAGED) { pgtable = AMD_IOMMU_V1; } switch (pgtable) { case AMD_IOMMU_V1: ret = protection_domain_init_v1(domain, mode); break; default: ret = -EINVAL; } if (ret) goto out_err; pgtbl_ops = alloc_io_pgtable_ops(pgtable, &domain->iop.pgtbl_cfg, domain); if (!pgtbl_ops) goto out_err; return domain; out_err: kfree(domain); return NULL; } static struct iommu_domain *amd_iommu_domain_alloc(unsigned type) { struct protection_domain *domain; domain = protection_domain_alloc(type); if (!domain) return NULL; domain->domain.geometry.aperture_start = 0; domain->domain.geometry.aperture_end = ~0ULL; domain->domain.geometry.force_aperture = true; return &domain->domain; } static void amd_iommu_domain_free(struct iommu_domain *dom) { struct protection_domain *domain; domain = to_pdomain(dom); if (domain->dev_cnt > 0) cleanup_domain(domain); BUG_ON(domain->dev_cnt != 0); if (!dom) return; if (domain->flags & PD_IOMMUV2_MASK) free_gcr3_table(domain); protection_domain_free(domain); } static void amd_iommu_detach_device(struct iommu_domain *dom, struct device *dev) { struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev); int devid = get_device_id(dev); struct amd_iommu *iommu; if (!check_device(dev)) return; if (dev_data->domain != NULL) detach_device(dev); iommu = amd_iommu_rlookup_table[devid]; if (!iommu) return; #ifdef CONFIG_IRQ_REMAP if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) && (dom->type == IOMMU_DOMAIN_UNMANAGED)) dev_data->use_vapic = 0; #endif iommu_completion_wait(iommu); } static int amd_iommu_attach_device(struct iommu_domain *dom, struct device *dev) { struct protection_domain *domain = to_pdomain(dom); struct iommu_dev_data *dev_data; struct amd_iommu *iommu; int ret; if (!check_device(dev)) return -EINVAL; dev_data = dev_iommu_priv_get(dev); dev_data->defer_attach = false; iommu = amd_iommu_rlookup_table[dev_data->devid]; if (!iommu) return -EINVAL; if (dev_data->domain) detach_device(dev); ret = attach_device(dev, domain); #ifdef CONFIG_IRQ_REMAP if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) { if (dom->type == IOMMU_DOMAIN_UNMANAGED) dev_data->use_vapic = 1; else dev_data->use_vapic = 0; } #endif iommu_completion_wait(iommu); return ret; } static void amd_iommu_iotlb_sync_map(struct iommu_domain *dom, unsigned long iova, size_t size) { struct protection_domain *domain = to_pdomain(dom); struct io_pgtable_ops *ops = &domain->iop.iop.ops; if (ops->map) domain_flush_np_cache(domain, iova, size); } static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova, phys_addr_t paddr, size_t page_size, int iommu_prot, gfp_t gfp) { struct protection_domain *domain = to_pdomain(dom); struct io_pgtable_ops *ops = &domain->iop.iop.ops; int prot = 0; int ret = -EINVAL; if ((amd_iommu_pgtable == AMD_IOMMU_V1) && (domain->iop.mode == PAGE_MODE_NONE)) return -EINVAL; if (iommu_prot & IOMMU_READ) prot |= IOMMU_PROT_IR; if (iommu_prot & IOMMU_WRITE) prot |= IOMMU_PROT_IW; if (ops->map) ret = ops->map(ops, iova, paddr, page_size, prot, gfp); return ret; } static void amd_iommu_iotlb_gather_add_page(struct iommu_domain *domain, struct iommu_iotlb_gather *gather, unsigned long iova, size_t size) { /* * AMD's IOMMU can flush as many pages as necessary in a single flush. * Unless we run in a virtual machine, which can be inferred according * to whether "non-present cache" is on, it is probably best to prefer * (potentially) too extensive TLB flushing (i.e., more misses) over * mutliple TLB flushes (i.e., more flushes). For virtual machines the * hypervisor needs to synchronize the host IOMMU PTEs with those of * the guest, and the trade-off is different: unnecessary TLB flushes * should be avoided. */ if (amd_iommu_np_cache && iommu_iotlb_gather_is_disjoint(gather, iova, size)) iommu_iotlb_sync(domain, gather); iommu_iotlb_gather_add_range(gather, iova, size); } static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova, size_t page_size, struct iommu_iotlb_gather *gather) { struct protection_domain *domain = to_pdomain(dom); struct io_pgtable_ops *ops = &domain->iop.iop.ops; size_t r; if ((amd_iommu_pgtable == AMD_IOMMU_V1) && (domain->iop.mode == PAGE_MODE_NONE)) return 0; r = (ops->unmap) ? ops->unmap(ops, iova, page_size, gather) : 0; amd_iommu_iotlb_gather_add_page(dom, gather, iova, page_size); return r; } static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom, dma_addr_t iova) { struct protection_domain *domain = to_pdomain(dom); struct io_pgtable_ops *ops = &domain->iop.iop.ops; return ops->iova_to_phys(ops, iova); } static bool amd_iommu_capable(enum iommu_cap cap) { switch (cap) { case IOMMU_CAP_CACHE_COHERENCY: return true; case IOMMU_CAP_INTR_REMAP: return (irq_remapping_enabled == 1); case IOMMU_CAP_NOEXEC: return false; default: break; } return false; } static void amd_iommu_get_resv_regions(struct device *dev, struct list_head *head) { struct iommu_resv_region *region; struct unity_map_entry *entry; int devid; devid = get_device_id(dev); if (devid < 0) return; list_for_each_entry(entry, &amd_iommu_unity_map, list) { int type, prot = 0; size_t length; if (devid < entry->devid_start || devid > entry->devid_end) continue; type = IOMMU_RESV_DIRECT; length = entry->address_end - entry->address_start; if (entry->prot & IOMMU_PROT_IR) prot |= IOMMU_READ; if (entry->prot & IOMMU_PROT_IW) prot |= IOMMU_WRITE; if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE) /* Exclusion range */ type = IOMMU_RESV_RESERVED; region = iommu_alloc_resv_region(entry->address_start, length, prot, type); if (!region) { dev_err(dev, "Out of memory allocating dm-regions\n"); return; } list_add_tail(®ion->list, head); } region = iommu_alloc_resv_region(MSI_RANGE_START, MSI_RANGE_END - MSI_RANGE_START + 1, 0, IOMMU_RESV_MSI); if (!region) return; list_add_tail(®ion->list, head); region = iommu_alloc_resv_region(HT_RANGE_START, HT_RANGE_END - HT_RANGE_START + 1, 0, IOMMU_RESV_RESERVED); if (!region) return; list_add_tail(®ion->list, head); } bool amd_iommu_is_attach_deferred(struct iommu_domain *domain, struct device *dev) { struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev); return dev_data->defer_attach; } EXPORT_SYMBOL_GPL(amd_iommu_is_attach_deferred); static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain) { struct protection_domain *dom = to_pdomain(domain); unsigned long flags; spin_lock_irqsave(&dom->lock, flags); amd_iommu_domain_flush_tlb_pde(dom); amd_iommu_domain_flush_complete(dom); spin_unlock_irqrestore(&dom->lock, flags); } static void amd_iommu_iotlb_sync(struct iommu_domain *domain, struct iommu_iotlb_gather *gather) { struct protection_domain *dom = to_pdomain(domain); unsigned long flags; spin_lock_irqsave(&dom->lock, flags); domain_flush_pages(dom, gather->start, gather->end - gather->start + 1, 1); amd_iommu_domain_flush_complete(dom); spin_unlock_irqrestore(&dom->lock, flags); } static int amd_iommu_def_domain_type(struct device *dev) { struct iommu_dev_data *dev_data; dev_data = dev_iommu_priv_get(dev); if (!dev_data) return 0; /* * Do not identity map IOMMUv2 capable devices when memory encryption is * active, because some of those devices (AMD GPUs) don't have the * encryption bit in their DMA-mask and require remapping. */ if (!mem_encrypt_active() && dev_data->iommu_v2) return IOMMU_DOMAIN_IDENTITY; return 0; } const struct iommu_ops amd_iommu_ops = { .capable = amd_iommu_capable, .domain_alloc = amd_iommu_domain_alloc, .domain_free = amd_iommu_domain_free, .attach_dev = amd_iommu_attach_device, .detach_dev = amd_iommu_detach_device, .map = amd_iommu_map, .iotlb_sync_map = amd_iommu_iotlb_sync_map, .unmap = amd_iommu_unmap, .iova_to_phys = amd_iommu_iova_to_phys, .probe_device = amd_iommu_probe_device, .release_device = amd_iommu_release_device, .probe_finalize = amd_iommu_probe_finalize, .device_group = amd_iommu_device_group, .get_resv_regions = amd_iommu_get_resv_regions, .put_resv_regions = generic_iommu_put_resv_regions, .is_attach_deferred = amd_iommu_is_attach_deferred, .pgsize_bitmap = AMD_IOMMU_PGSIZES, .flush_iotlb_all = amd_iommu_flush_iotlb_all, .iotlb_sync = amd_iommu_iotlb_sync, .def_domain_type = amd_iommu_def_domain_type, }; /***************************************************************************** * * The next functions do a basic initialization of IOMMU for pass through * mode * * In passthrough mode the IOMMU is initialized and enabled but not used for * DMA-API translation. * *****************************************************************************/ /* IOMMUv2 specific functions */ int amd_iommu_register_ppr_notifier(struct notifier_block *nb) { return atomic_notifier_chain_register(&ppr_notifier, nb); } EXPORT_SYMBOL(amd_iommu_register_ppr_notifier); int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb) { return atomic_notifier_chain_unregister(&ppr_notifier, nb); } EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier); void amd_iommu_domain_direct_map(struct iommu_domain *dom) { struct protection_domain *domain = to_pdomain(dom); unsigned long flags; spin_lock_irqsave(&domain->lock, flags); if (domain->iop.pgtbl_cfg.tlb) free_io_pgtable_ops(&domain->iop.iop.ops); spin_unlock_irqrestore(&domain->lock, flags); } EXPORT_SYMBOL(amd_iommu_domain_direct_map); int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids) { struct protection_domain *domain = to_pdomain(dom); unsigned long flags; int levels, ret; /* Number of GCR3 table levels required */ for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9) levels += 1; if (levels > amd_iommu_max_glx_val) return -EINVAL; spin_lock_irqsave(&domain->lock, flags); /* * Save us all sanity checks whether devices already in the * domain support IOMMUv2. Just force that the domain has no * devices attached when it is switched into IOMMUv2 mode. */ ret = -EBUSY; if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK) goto out; ret = -ENOMEM; domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC); if (domain->gcr3_tbl == NULL) goto out; domain->glx = levels; domain->flags |= PD_IOMMUV2_MASK; amd_iommu_domain_update(domain); ret = 0; out: spin_unlock_irqrestore(&domain->lock, flags); return ret; } EXPORT_SYMBOL(amd_iommu_domain_enable_v2); static int __flush_pasid(struct protection_domain *domain, u32 pasid, u64 address, bool size) { struct iommu_dev_data *dev_data; struct iommu_cmd cmd; int i, ret; if (!(domain->flags & PD_IOMMUV2_MASK)) return -EINVAL; build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size); /* * IOMMU TLB needs to be flushed before Device TLB to * prevent device TLB refill from IOMMU TLB */ for (i = 0; i < amd_iommu_get_num_iommus(); ++i) { if (domain->dev_iommu[i] == 0) continue; ret = iommu_queue_command(amd_iommus[i], &cmd); if (ret != 0) goto out; } /* Wait until IOMMU TLB flushes are complete */ amd_iommu_domain_flush_complete(domain); /* Now flush device TLBs */ list_for_each_entry(dev_data, &domain->dev_list, list) { struct amd_iommu *iommu; int qdep; /* There might be non-IOMMUv2 capable devices in an IOMMUv2 * domain. */ if (!dev_data->ats.enabled) continue; qdep = dev_data->ats.qdep; iommu = amd_iommu_rlookup_table[dev_data->devid]; build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid, qdep, address, size); ret = iommu_queue_command(iommu, &cmd); if (ret != 0) goto out; } /* Wait until all device TLBs are flushed */ amd_iommu_domain_flush_complete(domain); ret = 0; out: return ret; } static int __amd_iommu_flush_page(struct protection_domain *domain, u32 pasid, u64 address) { return __flush_pasid(domain, pasid, address, false); } int amd_iommu_flush_page(struct iommu_domain *dom, u32 pasid, u64 address) { struct protection_domain *domain = to_pdomain(dom); unsigned long flags; int ret; spin_lock_irqsave(&domain->lock, flags); ret = __amd_iommu_flush_page(domain, pasid, address); spin_unlock_irqrestore(&domain->lock, flags); return ret; } EXPORT_SYMBOL(amd_iommu_flush_page); static int __amd_iommu_flush_tlb(struct protection_domain *domain, u32 pasid) { return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, true); } int amd_iommu_flush_tlb(struct iommu_domain *dom, u32 pasid) { struct protection_domain *domain = to_pdomain(dom); unsigned long flags; int ret; spin_lock_irqsave(&domain->lock, flags); ret = __amd_iommu_flush_tlb(domain, pasid); spin_unlock_irqrestore(&domain->lock, flags); return ret; } EXPORT_SYMBOL(amd_iommu_flush_tlb); static u64 *__get_gcr3_pte(u64 *root, int level, u32 pasid, bool alloc) { int index; u64 *pte; while (true) { index = (pasid >> (9 * level)) & 0x1ff; pte = &root[index]; if (level == 0) break; if (!(*pte & GCR3_VALID)) { if (!alloc) return NULL; root = (void *)get_zeroed_page(GFP_ATOMIC); if (root == NULL) return NULL; *pte = iommu_virt_to_phys(root) | GCR3_VALID; } root = iommu_phys_to_virt(*pte & PAGE_MASK); level -= 1; } return pte; } static int __set_gcr3(struct protection_domain *domain, u32 pasid, unsigned long cr3) { u64 *pte; if (domain->iop.mode != PAGE_MODE_NONE) return -EINVAL; pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true); if (pte == NULL) return -ENOMEM; *pte = (cr3 & PAGE_MASK) | GCR3_VALID; return __amd_iommu_flush_tlb(domain, pasid); } static int __clear_gcr3(struct protection_domain *domain, u32 pasid) { u64 *pte; if (domain->iop.mode != PAGE_MODE_NONE) return -EINVAL; pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false); if (pte == NULL) return 0; *pte = 0; return __amd_iommu_flush_tlb(domain, pasid); } int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, u32 pasid, unsigned long cr3) { struct protection_domain *domain = to_pdomain(dom); unsigned long flags; int ret; spin_lock_irqsave(&domain->lock, flags); ret = __set_gcr3(domain, pasid, cr3); spin_unlock_irqrestore(&domain->lock, flags); return ret; } EXPORT_SYMBOL(amd_iommu_domain_set_gcr3); int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, u32 pasid) { struct protection_domain *domain = to_pdomain(dom); unsigned long flags; int ret; spin_lock_irqsave(&domain->lock, flags); ret = __clear_gcr3(domain, pasid); spin_unlock_irqrestore(&domain->lock, flags); return ret; } EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3); int amd_iommu_complete_ppr(struct pci_dev *pdev, u32 pasid, int status, int tag) { struct iommu_dev_data *dev_data; struct amd_iommu *iommu; struct iommu_cmd cmd; dev_data = dev_iommu_priv_get(&pdev->dev); iommu = amd_iommu_rlookup_table[dev_data->devid]; build_complete_ppr(&cmd, dev_data->devid, pasid, status, tag, dev_data->pri_tlp); return iommu_queue_command(iommu, &cmd); } EXPORT_SYMBOL(amd_iommu_complete_ppr); int amd_iommu_device_info(struct pci_dev *pdev, struct amd_iommu_device_info *info) { int max_pasids; int pos; if (pdev == NULL || info == NULL) return -EINVAL; if (!amd_iommu_v2_supported()) return -EINVAL; memset(info, 0, sizeof(*info)); if (pci_ats_supported(pdev)) info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP; pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI); if (pos) info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP; pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID); if (pos) { int features; max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1)); max_pasids = min(max_pasids, (1 << 20)); info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP; info->max_pasids = min(pci_max_pasids(pdev), max_pasids); features = pci_pasid_features(pdev); if (features & PCI_PASID_CAP_EXEC) info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP; if (features & PCI_PASID_CAP_PRIV) info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP; } return 0; } EXPORT_SYMBOL(amd_iommu_device_info); #ifdef CONFIG_IRQ_REMAP /***************************************************************************** * * Interrupt Remapping Implementation * *****************************************************************************/ static struct irq_chip amd_ir_chip; static DEFINE_SPINLOCK(iommu_table_lock); static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table) { u64 dte; dte = amd_iommu_dev_table[devid].data[2]; dte &= ~DTE_IRQ_PHYS_ADDR_MASK; dte |= iommu_virt_to_phys(table->table); dte |= DTE_IRQ_REMAP_INTCTL; dte |= DTE_INTTABLEN; dte |= DTE_IRQ_REMAP_ENABLE; amd_iommu_dev_table[devid].data[2] = dte; } static struct irq_remap_table *get_irq_table(u16 devid) { struct irq_remap_table *table; if (WARN_ONCE(!amd_iommu_rlookup_table[devid], "%s: no iommu for devid %x\n", __func__, devid)) return NULL; table = irq_lookup_table[devid]; if (WARN_ONCE(!table, "%s: no table for devid %x\n", __func__, devid)) return NULL; return table; } static struct irq_remap_table *__alloc_irq_table(void) { struct irq_remap_table *table; table = kzalloc(sizeof(*table), GFP_KERNEL); if (!table) return NULL; table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL); if (!table->table) { kfree(table); return NULL; } raw_spin_lock_init(&table->lock); if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir)) memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32)); else memset(table->table, 0, (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2))); return table; } static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid, struct irq_remap_table *table) { irq_lookup_table[devid] = table; set_dte_irq_entry(devid, table); iommu_flush_dte(iommu, devid); } static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias, void *data) { struct irq_remap_table *table = data; irq_lookup_table[alias] = table; set_dte_irq_entry(alias, table); iommu_flush_dte(amd_iommu_rlookup_table[alias], alias); return 0; } static struct irq_remap_table *alloc_irq_table(u16 devid, struct pci_dev *pdev) { struct irq_remap_table *table = NULL; struct irq_remap_table *new_table = NULL; struct amd_iommu *iommu; unsigned long flags; u16 alias; spin_lock_irqsave(&iommu_table_lock, flags); iommu = amd_iommu_rlookup_table[devid]; if (!iommu) goto out_unlock; table = irq_lookup_table[devid]; if (table) goto out_unlock; alias = amd_iommu_alias_table[devid]; table = irq_lookup_table[alias]; if (table) { set_remap_table_entry(iommu, devid, table); goto out_wait; } spin_unlock_irqrestore(&iommu_table_lock, flags); /* Nothing there yet, allocate new irq remapping table */ new_table = __alloc_irq_table(); if (!new_table) return NULL; spin_lock_irqsave(&iommu_table_lock, flags); table = irq_lookup_table[devid]; if (table) goto out_unlock; table = irq_lookup_table[alias]; if (table) { set_remap_table_entry(iommu, devid, table); goto out_wait; } table = new_table; new_table = NULL; if (pdev) pci_for_each_dma_alias(pdev, set_remap_table_entry_alias, table); else set_remap_table_entry(iommu, devid, table); if (devid != alias) set_remap_table_entry(iommu, alias, table); out_wait: iommu_completion_wait(iommu); out_unlock: spin_unlock_irqrestore(&iommu_table_lock, flags); if (new_table) { kmem_cache_free(amd_iommu_irq_cache, new_table->table); kfree(new_table); } return table; } static int alloc_irq_index(u16 devid, int count, bool align, struct pci_dev *pdev) { struct irq_remap_table *table; int index, c, alignment = 1; unsigned long flags; struct amd_iommu *iommu = amd_iommu_rlookup_table[devid]; if (!iommu) return -ENODEV; table = alloc_irq_table(devid, pdev); if (!table) return -ENODEV; if (align) alignment = roundup_pow_of_two(count); raw_spin_lock_irqsave(&table->lock, flags); /* Scan table for free entries */ for (index = ALIGN(table->min_index, alignment), c = 0; index < MAX_IRQS_PER_TABLE;) { if (!iommu->irte_ops->is_allocated(table, index)) { c += 1; } else { c = 0; index = ALIGN(index + 1, alignment); continue; } if (c == count) { for (; c != 0; --c) iommu->irte_ops->set_allocated(table, index - c + 1); index -= count - 1; goto out; } index++; } index = -ENOSPC; out: raw_spin_unlock_irqrestore(&table->lock, flags); return index; } static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte, struct amd_ir_data *data) { bool ret; struct irq_remap_table *table; struct amd_iommu *iommu; unsigned long flags; struct irte_ga *entry; iommu = amd_iommu_rlookup_table[devid]; if (iommu == NULL) return -EINVAL; table = get_irq_table(devid); if (!table) return -ENOMEM; raw_spin_lock_irqsave(&table->lock, flags); entry = (struct irte_ga *)table->table; entry = &entry[index]; ret = cmpxchg_double(&entry->lo.val, &entry->hi.val, entry->lo.val, entry->hi.val, irte->lo.val, irte->hi.val); /* * We use cmpxchg16 to atomically update the 128-bit IRTE, * and it cannot be updated by the hardware or other processors * behind us, so the return value of cmpxchg16 should be the * same as the old value. */ WARN_ON(!ret); if (data) data->ref = entry; raw_spin_unlock_irqrestore(&table->lock, flags); iommu_flush_irt(iommu, devid); iommu_completion_wait(iommu); return 0; } static int modify_irte(u16 devid, int index, union irte *irte) { struct irq_remap_table *table; struct amd_iommu *iommu; unsigned long flags; iommu = amd_iommu_rlookup_table[devid]; if (iommu == NULL) return -EINVAL; table = get_irq_table(devid); if (!table) return -ENOMEM; raw_spin_lock_irqsave(&table->lock, flags); table->table[index] = irte->val; raw_spin_unlock_irqrestore(&table->lock, flags); iommu_flush_irt(iommu, devid); iommu_completion_wait(iommu); return 0; } static void free_irte(u16 devid, int index) { struct irq_remap_table *table; struct amd_iommu *iommu; unsigned long flags; iommu = amd_iommu_rlookup_table[devid]; if (iommu == NULL) return; table = get_irq_table(devid); if (!table) return; raw_spin_lock_irqsave(&table->lock, flags); iommu->irte_ops->clear_allocated(table, index); raw_spin_unlock_irqrestore(&table->lock, flags); iommu_flush_irt(iommu, devid); iommu_completion_wait(iommu); } static void irte_prepare(void *entry, u32 delivery_mode, bool dest_mode, u8 vector, u32 dest_apicid, int devid) { union irte *irte = (union irte *) entry; irte->val = 0; irte->fields.vector = vector; irte->fields.int_type = delivery_mode; irte->fields.destination = dest_apicid; irte->fields.dm = dest_mode; irte->fields.valid = 1; } static void irte_ga_prepare(void *entry, u32 delivery_mode, bool dest_mode, u8 vector, u32 dest_apicid, int devid) { struct irte_ga *irte = (struct irte_ga *) entry; irte->lo.val = 0; irte->hi.val = 0; irte->lo.fields_remap.int_type = delivery_mode; irte->lo.fields_remap.dm = dest_mode; irte->hi.fields.vector = vector; irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid); irte->hi.fields.destination = APICID_TO_IRTE_DEST_HI(dest_apicid); irte->lo.fields_remap.valid = 1; } static void irte_activate(void *entry, u16 devid, u16 index) { union irte *irte = (union irte *) entry; irte->fields.valid = 1; modify_irte(devid, index, irte); } static void irte_ga_activate(void *entry, u16 devid, u16 index) { struct irte_ga *irte = (struct irte_ga *) entry; irte->lo.fields_remap.valid = 1; modify_irte_ga(devid, index, irte, NULL); } static void irte_deactivate(void *entry, u16 devid, u16 index) { union irte *irte = (union irte *) entry; irte->fields.valid = 0; modify_irte(devid, index, irte); } static void irte_ga_deactivate(void *entry, u16 devid, u16 index) { struct irte_ga *irte = (struct irte_ga *) entry; irte->lo.fields_remap.valid = 0; modify_irte_ga(devid, index, irte, NULL); } static void irte_set_affinity(void *entry, u16 devid, u16 index, u8 vector, u32 dest_apicid) { union irte *irte = (union irte *) entry; irte->fields.vector = vector; irte->fields.destination = dest_apicid; modify_irte(devid, index, irte); } static void irte_ga_set_affinity(void *entry, u16 devid, u16 index, u8 vector, u32 dest_apicid) { struct irte_ga *irte = (struct irte_ga *) entry; if (!irte->lo.fields_remap.guest_mode) { irte->hi.fields.vector = vector; irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid); irte->hi.fields.destination = APICID_TO_IRTE_DEST_HI(dest_apicid); modify_irte_ga(devid, index, irte, NULL); } } #define IRTE_ALLOCATED (~1U) static void irte_set_allocated(struct irq_remap_table *table, int index) { table->table[index] = IRTE_ALLOCATED; } static void irte_ga_set_allocated(struct irq_remap_table *table, int index) { struct irte_ga *ptr = (struct irte_ga *)table->table; struct irte_ga *irte = &ptr[index]; memset(&irte->lo.val, 0, sizeof(u64)); memset(&irte->hi.val, 0, sizeof(u64)); irte->hi.fields.vector = 0xff; } static bool irte_is_allocated(struct irq_remap_table *table, int index) { union irte *ptr = (union irte *)table->table; union irte *irte = &ptr[index]; return irte->val != 0; } static bool irte_ga_is_allocated(struct irq_remap_table *table, int index) { struct irte_ga *ptr = (struct irte_ga *)table->table; struct irte_ga *irte = &ptr[index]; return irte->hi.fields.vector != 0; } static void irte_clear_allocated(struct irq_remap_table *table, int index) { table->table[index] = 0; } static void irte_ga_clear_allocated(struct irq_remap_table *table, int index) { struct irte_ga *ptr = (struct irte_ga *)table->table; struct irte_ga *irte = &ptr[index]; memset(&irte->lo.val, 0, sizeof(u64)); memset(&irte->hi.val, 0, sizeof(u64)); } static int get_devid(struct irq_alloc_info *info) { switch (info->type) { case X86_IRQ_ALLOC_TYPE_IOAPIC: return get_ioapic_devid(info->devid); case X86_IRQ_ALLOC_TYPE_HPET: return get_hpet_devid(info->devid); case X86_IRQ_ALLOC_TYPE_PCI_MSI: case X86_IRQ_ALLOC_TYPE_PCI_MSIX: return get_device_id(msi_desc_to_dev(info->desc)); default: WARN_ON_ONCE(1); return -1; } } struct irq_remap_ops amd_iommu_irq_ops = { .prepare = amd_iommu_prepare, .enable = amd_iommu_enable, .disable = amd_iommu_disable, .reenable = amd_iommu_reenable, .enable_faulting = amd_iommu_enable_faulting, }; static void fill_msi_msg(struct msi_msg *msg, u32 index) { msg->data = index; msg->address_lo = 0; msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW; msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH; } static void irq_remapping_prepare_irte(struct amd_ir_data *data, struct irq_cfg *irq_cfg, struct irq_alloc_info *info, int devid, int index, int sub_handle) { struct irq_2_irte *irte_info = &data->irq_2_irte; struct amd_iommu *iommu = amd_iommu_rlookup_table[devid]; if (!iommu) return; data->irq_2_irte.devid = devid; data->irq_2_irte.index = index + sub_handle; iommu->irte_ops->prepare(data->entry, apic->delivery_mode, apic->dest_mode_logical, irq_cfg->vector, irq_cfg->dest_apicid, devid); switch (info->type) { case X86_IRQ_ALLOC_TYPE_IOAPIC: case X86_IRQ_ALLOC_TYPE_HPET: case X86_IRQ_ALLOC_TYPE_PCI_MSI: case X86_IRQ_ALLOC_TYPE_PCI_MSIX: fill_msi_msg(&data->msi_entry, irte_info->index); break; default: BUG_ON(1); break; } } struct amd_irte_ops irte_32_ops = { .prepare = irte_prepare, .activate = irte_activate, .deactivate = irte_deactivate, .set_affinity = irte_set_affinity, .set_allocated = irte_set_allocated, .is_allocated = irte_is_allocated, .clear_allocated = irte_clear_allocated, }; struct amd_irte_ops irte_128_ops = { .prepare = irte_ga_prepare, .activate = irte_ga_activate, .deactivate = irte_ga_deactivate, .set_affinity = irte_ga_set_affinity, .set_allocated = irte_ga_set_allocated, .is_allocated = irte_ga_is_allocated, .clear_allocated = irte_ga_clear_allocated, }; static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs, void *arg) { struct irq_alloc_info *info = arg; struct irq_data *irq_data; struct amd_ir_data *data = NULL; struct irq_cfg *cfg; int i, ret, devid; int index; if (!info) return -EINVAL; if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSIX) return -EINVAL; /* * With IRQ remapping enabled, don't need contiguous CPU vectors * to support multiple MSI interrupts. */ if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI) info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS; devid = get_devid(info); if (devid < 0) return -EINVAL; ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg); if (ret < 0) return ret; if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) { struct irq_remap_table *table; struct amd_iommu *iommu; table = alloc_irq_table(devid, NULL); if (table) { if (!table->min_index) { /* * Keep the first 32 indexes free for IOAPIC * interrupts. */ table->min_index = 32; iommu = amd_iommu_rlookup_table[devid]; for (i = 0; i < 32; ++i) iommu->irte_ops->set_allocated(table, i); } WARN_ON(table->min_index != 32); index = info->ioapic.pin; } else { index = -ENOMEM; } } else if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI || info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX) { bool align = (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI); index = alloc_irq_index(devid, nr_irqs, align, msi_desc_to_pci_dev(info->desc)); } else { index = alloc_irq_index(devid, nr_irqs, false, NULL); } if (index < 0) { pr_warn("Failed to allocate IRTE\n"); ret = index; goto out_free_parent; } for (i = 0; i < nr_irqs; i++) { irq_data = irq_domain_get_irq_data(domain, virq + i); cfg = irq_data ? irqd_cfg(irq_data) : NULL; if (!cfg) { ret = -EINVAL; goto out_free_data; } ret = -ENOMEM; data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) goto out_free_data; if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir)) data->entry = kzalloc(sizeof(union irte), GFP_KERNEL); else data->entry = kzalloc(sizeof(struct irte_ga), GFP_KERNEL); if (!data->entry) { kfree(data); goto out_free_data; } irq_data->hwirq = (devid << 16) + i; irq_data->chip_data = data; irq_data->chip = &amd_ir_chip; irq_remapping_prepare_irte(data, cfg, info, devid, index, i); irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT); } return 0; out_free_data: for (i--; i >= 0; i--) { irq_data = irq_domain_get_irq_data(domain, virq + i); if (irq_data) kfree(irq_data->chip_data); } for (i = 0; i < nr_irqs; i++) free_irte(devid, index + i); out_free_parent: irq_domain_free_irqs_common(domain, virq, nr_irqs); return ret; } static void irq_remapping_free(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs) { struct irq_2_irte *irte_info; struct irq_data *irq_data; struct amd_ir_data *data; int i; for (i = 0; i < nr_irqs; i++) { irq_data = irq_domain_get_irq_data(domain, virq + i); if (irq_data && irq_data->chip_data) { data = irq_data->chip_data; irte_info = &data->irq_2_irte; free_irte(irte_info->devid, irte_info->index); kfree(data->entry); kfree(data); } } irq_domain_free_irqs_common(domain, virq, nr_irqs); } static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu, struct amd_ir_data *ir_data, struct irq_2_irte *irte_info, struct irq_cfg *cfg); static int irq_remapping_activate(struct irq_domain *domain, struct irq_data *irq_data, bool reserve) { struct amd_ir_data *data = irq_data->chip_data; struct irq_2_irte *irte_info = &data->irq_2_irte; struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid]; struct irq_cfg *cfg = irqd_cfg(irq_data); if (!iommu) return 0; iommu->irte_ops->activate(data->entry, irte_info->devid, irte_info->index); amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg); return 0; } static void irq_remapping_deactivate(struct irq_domain *domain, struct irq_data *irq_data) { struct amd_ir_data *data = irq_data->chip_data; struct irq_2_irte *irte_info = &data->irq_2_irte; struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid]; if (iommu) iommu->irte_ops->deactivate(data->entry, irte_info->devid, irte_info->index); } static int irq_remapping_select(struct irq_domain *d, struct irq_fwspec *fwspec, enum irq_domain_bus_token bus_token) { struct amd_iommu *iommu; int devid = -1; if (!amd_iommu_irq_remap) return 0; if (x86_fwspec_is_ioapic(fwspec)) devid = get_ioapic_devid(fwspec->param[0]); else if (x86_fwspec_is_hpet(fwspec)) devid = get_hpet_devid(fwspec->param[0]); if (devid < 0) return 0; iommu = amd_iommu_rlookup_table[devid]; return iommu && iommu->ir_domain == d; } static const struct irq_domain_ops amd_ir_domain_ops = { .select = irq_remapping_select, .alloc = irq_remapping_alloc, .free = irq_remapping_free, .activate = irq_remapping_activate, .deactivate = irq_remapping_deactivate, }; int amd_iommu_activate_guest_mode(void *data) { struct amd_ir_data *ir_data = (struct amd_ir_data *)data; struct irte_ga *entry = (struct irte_ga *) ir_data->entry; u64 valid; if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || !entry) return 0; valid = entry->lo.fields_vapic.valid; entry->lo.val = 0; entry->hi.val = 0; entry->lo.fields_vapic.valid = valid; entry->lo.fields_vapic.guest_mode = 1; entry->lo.fields_vapic.ga_log_intr = 1; entry->hi.fields.ga_root_ptr = ir_data->ga_root_ptr; entry->hi.fields.vector = ir_data->ga_vector; entry->lo.fields_vapic.ga_tag = ir_data->ga_tag; return modify_irte_ga(ir_data->irq_2_irte.devid, ir_data->irq_2_irte.index, entry, ir_data); } EXPORT_SYMBOL(amd_iommu_activate_guest_mode); int amd_iommu_deactivate_guest_mode(void *data) { struct amd_ir_data *ir_data = (struct amd_ir_data *)data; struct irte_ga *entry = (struct irte_ga *) ir_data->entry; struct irq_cfg *cfg = ir_data->cfg; u64 valid; if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || !entry || !entry->lo.fields_vapic.guest_mode) return 0; valid = entry->lo.fields_remap.valid; entry->lo.val = 0; entry->hi.val = 0; entry->lo.fields_remap.valid = valid; entry->lo.fields_remap.dm = apic->dest_mode_logical; entry->lo.fields_remap.int_type = apic->delivery_mode; entry->hi.fields.vector = cfg->vector; entry->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(cfg->dest_apicid); entry->hi.fields.destination = APICID_TO_IRTE_DEST_HI(cfg->dest_apicid); return modify_irte_ga(ir_data->irq_2_irte.devid, ir_data->irq_2_irte.index, entry, ir_data); } EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode); static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info) { int ret; struct amd_iommu *iommu; struct amd_iommu_pi_data *pi_data = vcpu_info; struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data; struct amd_ir_data *ir_data = data->chip_data; struct irq_2_irte *irte_info = &ir_data->irq_2_irte; struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid); /* Note: * This device has never been set up for guest mode. * we should not modify the IRTE */ if (!dev_data || !dev_data->use_vapic) return 0; ir_data->cfg = irqd_cfg(data); pi_data->ir_data = ir_data; /* Note: * SVM tries to set up for VAPIC mode, but we are in * legacy mode. So, we force legacy mode instead. */ if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) { pr_debug("%s: Fall back to using intr legacy remap\n", __func__); pi_data->is_guest_mode = false; } iommu = amd_iommu_rlookup_table[irte_info->devid]; if (iommu == NULL) return -EINVAL; pi_data->prev_ga_tag = ir_data->cached_ga_tag; if (pi_data->is_guest_mode) { ir_data->ga_root_ptr = (pi_data->base >> 12); ir_data->ga_vector = vcpu_pi_info->vector; ir_data->ga_tag = pi_data->ga_tag; ret = amd_iommu_activate_guest_mode(ir_data); if (!ret) ir_data->cached_ga_tag = pi_data->ga_tag; } else { ret = amd_iommu_deactivate_guest_mode(ir_data); /* * This communicates the ga_tag back to the caller * so that it can do all the necessary clean up. */ if (!ret) ir_data->cached_ga_tag = 0; } return ret; } static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu, struct amd_ir_data *ir_data, struct irq_2_irte *irte_info, struct irq_cfg *cfg) { /* * Atomically updates the IRTE with the new destination, vector * and flushes the interrupt entry cache. */ iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid, irte_info->index, cfg->vector, cfg->dest_apicid); } static int amd_ir_set_affinity(struct irq_data *data, const struct cpumask *mask, bool force) { struct amd_ir_data *ir_data = data->chip_data; struct irq_2_irte *irte_info = &ir_data->irq_2_irte; struct irq_cfg *cfg = irqd_cfg(data); struct irq_data *parent = data->parent_data; struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid]; int ret; if (!iommu) return -ENODEV; ret = parent->chip->irq_set_affinity(parent, mask, force); if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE) return ret; amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg); /* * After this point, all the interrupts will start arriving * at the new destination. So, time to cleanup the previous * vector allocation. */ send_cleanup_vector(cfg); return IRQ_SET_MASK_OK_DONE; } static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg) { struct amd_ir_data *ir_data = irq_data->chip_data; *msg = ir_data->msi_entry; } static struct irq_chip amd_ir_chip = { .name = "AMD-IR", .irq_ack = apic_ack_irq, .irq_set_affinity = amd_ir_set_affinity, .irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity, .irq_compose_msi_msg = ir_compose_msi_msg, }; int amd_iommu_create_irq_domain(struct amd_iommu *iommu) { struct fwnode_handle *fn; fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index); if (!fn) return -ENOMEM; iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu); if (!iommu->ir_domain) { irq_domain_free_fwnode(fn); return -ENOMEM; } iommu->ir_domain->parent = arch_get_ir_parent_domain(); iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain, "AMD-IR-MSI", iommu->index); return 0; } int amd_iommu_update_ga(int cpu, bool is_run, void *data) { unsigned long flags; struct amd_iommu *iommu; struct irq_remap_table *table; struct amd_ir_data *ir_data = (struct amd_ir_data *)data; int devid = ir_data->irq_2_irte.devid; struct irte_ga *entry = (struct irte_ga *) ir_data->entry; struct irte_ga *ref = (struct irte_ga *) ir_data->ref; if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || !ref || !entry || !entry->lo.fields_vapic.guest_mode) return 0; iommu = amd_iommu_rlookup_table[devid]; if (!iommu) return -ENODEV; table = get_irq_table(devid); if (!table) return -ENODEV; raw_spin_lock_irqsave(&table->lock, flags); if (ref->lo.fields_vapic.guest_mode) { if (cpu >= 0) { ref->lo.fields_vapic.destination = APICID_TO_IRTE_DEST_LO(cpu); ref->hi.fields.destination = APICID_TO_IRTE_DEST_HI(cpu); } ref->lo.fields_vapic.is_run = is_run; barrier(); } raw_spin_unlock_irqrestore(&table->lock, flags); iommu_flush_irt(iommu, devid); iommu_completion_wait(iommu); return 0; } EXPORT_SYMBOL(amd_iommu_update_ga); #endif