// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2012 Samsung Electronics Co.Ltd * Authors: * Eunchul Kim * Jinyoung Jeon * Sangmin Lee */ #include #include #include #include #include #include #include #include #include #include #include #include "exynos_drm_drv.h" #include "exynos_drm_ipp.h" #include "regs-gsc.h" /* * GSC stands for General SCaler and * supports image scaler/rotator and input/output DMA operations. * input DMA reads image data from the memory. * output DMA writes image data to memory. * GSC supports image rotation and image effect functions. */ #define GSC_MAX_CLOCKS 8 #define GSC_MAX_SRC 4 #define GSC_MAX_DST 16 #define GSC_RESET_TIMEOUT 50 #define GSC_BUF_STOP 1 #define GSC_BUF_START 2 #define GSC_REG_SZ 16 #define GSC_WIDTH_ITU_709 1280 #define GSC_SC_UP_MAX_RATIO 65536 #define GSC_SC_DOWN_RATIO_7_8 74898 #define GSC_SC_DOWN_RATIO_6_8 87381 #define GSC_SC_DOWN_RATIO_5_8 104857 #define GSC_SC_DOWN_RATIO_4_8 131072 #define GSC_SC_DOWN_RATIO_3_8 174762 #define GSC_SC_DOWN_RATIO_2_8 262144 #define GSC_CROP_MAX 8192 #define GSC_CROP_MIN 32 #define GSC_SCALE_MAX 4224 #define GSC_SCALE_MIN 32 #define GSC_COEF_RATIO 7 #define GSC_COEF_PHASE 9 #define GSC_COEF_ATTR 16 #define GSC_COEF_H_8T 8 #define GSC_COEF_V_4T 4 #define GSC_COEF_DEPTH 3 #define GSC_AUTOSUSPEND_DELAY 2000 #define get_gsc_context(dev) dev_get_drvdata(dev) #define gsc_read(offset) readl(ctx->regs + (offset)) #define gsc_write(cfg, offset) writel(cfg, ctx->regs + (offset)) /* * A structure of scaler. * * @range: narrow, wide. * @pre_shfactor: pre sclaer shift factor. * @pre_hratio: horizontal ratio of the prescaler. * @pre_vratio: vertical ratio of the prescaler. * @main_hratio: the main scaler's horizontal ratio. * @main_vratio: the main scaler's vertical ratio. */ struct gsc_scaler { bool range; u32 pre_shfactor; u32 pre_hratio; u32 pre_vratio; unsigned long main_hratio; unsigned long main_vratio; }; /* * A structure of gsc context. * * @regs: memory mapped io registers. * @gsc_clk: gsc gate clock. * @sc: scaler infomations. * @id: gsc id. * @irq: irq number. * @rotation: supports rotation of src. */ struct gsc_context { struct exynos_drm_ipp ipp; struct drm_device *drm_dev; void *dma_priv; struct device *dev; struct exynos_drm_ipp_task *task; struct exynos_drm_ipp_formats *formats; unsigned int num_formats; void __iomem *regs; const char **clk_names; struct clk *clocks[GSC_MAX_CLOCKS]; int num_clocks; struct gsc_scaler sc; int id; int irq; bool rotation; }; /** * struct gsc_driverdata - per device type driver data for init time. * * @limits: picture size limits array * @num_limits: number of items in the aforementioned array * @clk_names: names of clocks needed by this variant * @num_clocks: the number of clocks needed by this variant */ struct gsc_driverdata { const struct drm_exynos_ipp_limit *limits; int num_limits; const char *clk_names[GSC_MAX_CLOCKS]; int num_clocks; }; /* 8-tap Filter Coefficient */ static const int h_coef_8t[GSC_COEF_RATIO][GSC_COEF_ATTR][GSC_COEF_H_8T] = { { /* Ratio <= 65536 (~8:8) */ { 0, 0, 0, 128, 0, 0, 0, 0 }, { -1, 2, -6, 127, 7, -2, 1, 0 }, { -1, 4, -12, 125, 16, -5, 1, 0 }, { -1, 5, -15, 120, 25, -8, 2, 0 }, { -1, 6, -18, 114, 35, -10, 3, -1 }, { -1, 6, -20, 107, 46, -13, 4, -1 }, { -2, 7, -21, 99, 57, -16, 5, -1 }, { -1, 6, -20, 89, 68, -18, 5, -1 }, { -1, 6, -20, 79, 79, -20, 6, -1 }, { -1, 5, -18, 68, 89, -20, 6, -1 }, { -1, 5, -16, 57, 99, -21, 7, -2 }, { -1, 4, -13, 46, 107, -20, 6, -1 }, { -1, 3, -10, 35, 114, -18, 6, -1 }, { 0, 2, -8, 25, 120, -15, 5, -1 }, { 0, 1, -5, 16, 125, -12, 4, -1 }, { 0, 1, -2, 7, 127, -6, 2, -1 } }, { /* 65536 < Ratio <= 74898 (~8:7) */ { 3, -8, 14, 111, 13, -8, 3, 0 }, { 2, -6, 7, 112, 21, -10, 3, -1 }, { 2, -4, 1, 110, 28, -12, 4, -1 }, { 1, -2, -3, 106, 36, -13, 4, -1 }, { 1, -1, -7, 103, 44, -15, 4, -1 }, { 1, 1, -11, 97, 53, -16, 4, -1 }, { 0, 2, -13, 91, 61, -16, 4, -1 }, { 0, 3, -15, 85, 69, -17, 4, -1 }, { 0, 3, -16, 77, 77, -16, 3, 0 }, { -1, 4, -17, 69, 85, -15, 3, 0 }, { -1, 4, -16, 61, 91, -13, 2, 0 }, { -1, 4, -16, 53, 97, -11, 1, 1 }, { -1, 4, -15, 44, 103, -7, -1, 1 }, { -1, 4, -13, 36, 106, -3, -2, 1 }, { -1, 4, -12, 28, 110, 1, -4, 2 }, { -1, 3, -10, 21, 112, 7, -6, 2 } }, { /* 74898 < Ratio <= 87381 (~8:6) */ { 2, -11, 25, 96, 25, -11, 2, 0 }, { 2, -10, 19, 96, 31, -12, 2, 0 }, { 2, -9, 14, 94, 37, -12, 2, 0 }, { 2, -8, 10, 92, 43, -12, 1, 0 }, { 2, -7, 5, 90, 49, -12, 1, 0 }, { 2, -5, 1, 86, 55, -12, 0, 1 }, { 2, -4, -2, 82, 61, -11, -1, 1 }, { 1, -3, -5, 77, 67, -9, -1, 1 }, { 1, -2, -7, 72, 72, -7, -2, 1 }, { 1, -1, -9, 67, 77, -5, -3, 1 }, { 1, -1, -11, 61, 82, -2, -4, 2 }, { 1, 0, -12, 55, 86, 1, -5, 2 }, { 0, 1, -12, 49, 90, 5, -7, 2 }, { 0, 1, -12, 43, 92, 10, -8, 2 }, { 0, 2, -12, 37, 94, 14, -9, 2 }, { 0, 2, -12, 31, 96, 19, -10, 2 } }, { /* 87381 < Ratio <= 104857 (~8:5) */ { -1, -8, 33, 80, 33, -8, -1, 0 }, { -1, -8, 28, 80, 37, -7, -2, 1 }, { 0, -8, 24, 79, 41, -7, -2, 1 }, { 0, -8, 20, 78, 46, -6, -3, 1 }, { 0, -8, 16, 76, 50, -4, -3, 1 }, { 0, -7, 13, 74, 54, -3, -4, 1 }, { 1, -7, 10, 71, 58, -1, -5, 1 }, { 1, -6, 6, 68, 62, 1, -5, 1 }, { 1, -6, 4, 65, 65, 4, -6, 1 }, { 1, -5, 1, 62, 68, 6, -6, 1 }, { 1, -5, -1, 58, 71, 10, -7, 1 }, { 1, -4, -3, 54, 74, 13, -7, 0 }, { 1, -3, -4, 50, 76, 16, -8, 0 }, { 1, -3, -6, 46, 78, 20, -8, 0 }, { 1, -2, -7, 41, 79, 24, -8, 0 }, { 1, -2, -7, 37, 80, 28, -8, -1 } }, { /* 104857 < Ratio <= 131072 (~8:4) */ { -3, 0, 35, 64, 35, 0, -3, 0 }, { -3, -1, 32, 64, 38, 1, -3, 0 }, { -2, -2, 29, 63, 41, 2, -3, 0 }, { -2, -3, 27, 63, 43, 4, -4, 0 }, { -2, -3, 24, 61, 46, 6, -4, 0 }, { -2, -3, 21, 60, 49, 7, -4, 0 }, { -1, -4, 19, 59, 51, 9, -4, -1 }, { -1, -4, 16, 57, 53, 12, -4, -1 }, { -1, -4, 14, 55, 55, 14, -4, -1 }, { -1, -4, 12, 53, 57, 16, -4, -1 }, { -1, -4, 9, 51, 59, 19, -4, -1 }, { 0, -4, 7, 49, 60, 21, -3, -2 }, { 0, -4, 6, 46, 61, 24, -3, -2 }, { 0, -4, 4, 43, 63, 27, -3, -2 }, { 0, -3, 2, 41, 63, 29, -2, -2 }, { 0, -3, 1, 38, 64, 32, -1, -3 } }, { /* 131072 < Ratio <= 174762 (~8:3) */ { -1, 8, 33, 48, 33, 8, -1, 0 }, { -1, 7, 31, 49, 35, 9, -1, -1 }, { -1, 6, 30, 49, 36, 10, -1, -1 }, { -1, 5, 28, 48, 38, 12, -1, -1 }, { -1, 4, 26, 48, 39, 13, 0, -1 }, { -1, 3, 24, 47, 41, 15, 0, -1 }, { -1, 2, 23, 47, 42, 16, 0, -1 }, { -1, 2, 21, 45, 43, 18, 1, -1 }, { -1, 1, 19, 45, 45, 19, 1, -1 }, { -1, 1, 18, 43, 45, 21, 2, -1 }, { -1, 0, 16, 42, 47, 23, 2, -1 }, { -1, 0, 15, 41, 47, 24, 3, -1 }, { -1, 0, 13, 39, 48, 26, 4, -1 }, { -1, -1, 12, 38, 48, 28, 5, -1 }, { -1, -1, 10, 36, 49, 30, 6, -1 }, { -1, -1, 9, 35, 49, 31, 7, -1 } }, { /* 174762 < Ratio <= 262144 (~8:2) */ { 2, 13, 30, 38, 30, 13, 2, 0 }, { 2, 12, 29, 38, 30, 14, 3, 0 }, { 2, 11, 28, 38, 31, 15, 3, 0 }, { 2, 10, 26, 38, 32, 16, 4, 0 }, { 1, 10, 26, 37, 33, 17, 4, 0 }, { 1, 9, 24, 37, 34, 18, 5, 0 }, { 1, 8, 24, 37, 34, 19, 5, 0 }, { 1, 7, 22, 36, 35, 20, 6, 1 }, { 1, 6, 21, 36, 36, 21, 6, 1 }, { 1, 6, 20, 35, 36, 22, 7, 1 }, { 0, 5, 19, 34, 37, 24, 8, 1 }, { 0, 5, 18, 34, 37, 24, 9, 1 }, { 0, 4, 17, 33, 37, 26, 10, 1 }, { 0, 4, 16, 32, 38, 26, 10, 2 }, { 0, 3, 15, 31, 38, 28, 11, 2 }, { 0, 3, 14, 30, 38, 29, 12, 2 } } }; /* 4-tap Filter Coefficient */ static const int v_coef_4t[GSC_COEF_RATIO][GSC_COEF_ATTR][GSC_COEF_V_4T] = { { /* Ratio <= 65536 (~8:8) */ { 0, 128, 0, 0 }, { -4, 127, 5, 0 }, { -6, 124, 11, -1 }, { -8, 118, 19, -1 }, { -8, 111, 27, -2 }, { -8, 102, 37, -3 }, { -8, 92, 48, -4 }, { -7, 81, 59, -5 }, { -6, 70, 70, -6 }, { -5, 59, 81, -7 }, { -4, 48, 92, -8 }, { -3, 37, 102, -8 }, { -2, 27, 111, -8 }, { -1, 19, 118, -8 }, { -1, 11, 124, -6 }, { 0, 5, 127, -4 } }, { /* 65536 < Ratio <= 74898 (~8:7) */ { 8, 112, 8, 0 }, { 4, 111, 14, -1 }, { 1, 109, 20, -2 }, { -2, 105, 27, -2 }, { -3, 100, 34, -3 }, { -5, 93, 43, -3 }, { -5, 86, 51, -4 }, { -5, 77, 60, -4 }, { -5, 69, 69, -5 }, { -4, 60, 77, -5 }, { -4, 51, 86, -5 }, { -3, 43, 93, -5 }, { -3, 34, 100, -3 }, { -2, 27, 105, -2 }, { -2, 20, 109, 1 }, { -1, 14, 111, 4 } }, { /* 74898 < Ratio <= 87381 (~8:6) */ { 16, 96, 16, 0 }, { 12, 97, 21, -2 }, { 8, 96, 26, -2 }, { 5, 93, 32, -2 }, { 2, 89, 39, -2 }, { 0, 84, 46, -2 }, { -1, 79, 53, -3 }, { -2, 73, 59, -2 }, { -2, 66, 66, -2 }, { -2, 59, 73, -2 }, { -3, 53, 79, -1 }, { -2, 46, 84, 0 }, { -2, 39, 89, 2 }, { -2, 32, 93, 5 }, { -2, 26, 96, 8 }, { -2, 21, 97, 12 } }, { /* 87381 < Ratio <= 104857 (~8:5) */ { 22, 84, 22, 0 }, { 18, 85, 26, -1 }, { 14, 84, 31, -1 }, { 11, 82, 36, -1 }, { 8, 79, 42, -1 }, { 6, 76, 47, -1 }, { 4, 72, 52, 0 }, { 2, 68, 58, 0 }, { 1, 63, 63, 1 }, { 0, 58, 68, 2 }, { 0, 52, 72, 4 }, { -1, 47, 76, 6 }, { -1, 42, 79, 8 }, { -1, 36, 82, 11 }, { -1, 31, 84, 14 }, { -1, 26, 85, 18 } }, { /* 104857 < Ratio <= 131072 (~8:4) */ { 26, 76, 26, 0 }, { 22, 76, 30, 0 }, { 19, 75, 34, 0 }, { 16, 73, 38, 1 }, { 13, 71, 43, 1 }, { 10, 69, 47, 2 }, { 8, 66, 51, 3 }, { 6, 63, 55, 4 }, { 5, 59, 59, 5 }, { 4, 55, 63, 6 }, { 3, 51, 66, 8 }, { 2, 47, 69, 10 }, { 1, 43, 71, 13 }, { 1, 38, 73, 16 }, { 0, 34, 75, 19 }, { 0, 30, 76, 22 } }, { /* 131072 < Ratio <= 174762 (~8:3) */ { 29, 70, 29, 0 }, { 26, 68, 32, 2 }, { 23, 67, 36, 2 }, { 20, 66, 39, 3 }, { 17, 65, 43, 3 }, { 15, 63, 46, 4 }, { 12, 61, 50, 5 }, { 10, 58, 53, 7 }, { 8, 56, 56, 8 }, { 7, 53, 58, 10 }, { 5, 50, 61, 12 }, { 4, 46, 63, 15 }, { 3, 43, 65, 17 }, { 3, 39, 66, 20 }, { 2, 36, 67, 23 }, { 2, 32, 68, 26 } }, { /* 174762 < Ratio <= 262144 (~8:2) */ { 32, 64, 32, 0 }, { 28, 63, 34, 3 }, { 25, 62, 37, 4 }, { 22, 62, 40, 4 }, { 19, 61, 43, 5 }, { 17, 59, 46, 6 }, { 15, 58, 48, 7 }, { 13, 55, 51, 9 }, { 11, 53, 53, 11 }, { 9, 51, 55, 13 }, { 7, 48, 58, 15 }, { 6, 46, 59, 17 }, { 5, 43, 61, 19 }, { 4, 40, 62, 22 }, { 4, 37, 62, 25 }, { 3, 34, 63, 28 } } }; static int gsc_sw_reset(struct gsc_context *ctx) { u32 cfg; int count = GSC_RESET_TIMEOUT; /* s/w reset */ cfg = (GSC_SW_RESET_SRESET); gsc_write(cfg, GSC_SW_RESET); /* wait s/w reset complete */ while (count--) { cfg = gsc_read(GSC_SW_RESET); if (!cfg) break; usleep_range(1000, 2000); } if (cfg) { DRM_DEV_ERROR(ctx->dev, "failed to reset gsc h/w.\n"); return -EBUSY; } /* reset sequence */ cfg = gsc_read(GSC_IN_BASE_ADDR_Y_MASK); cfg |= (GSC_IN_BASE_ADDR_MASK | GSC_IN_BASE_ADDR_PINGPONG(0)); gsc_write(cfg, GSC_IN_BASE_ADDR_Y_MASK); gsc_write(cfg, GSC_IN_BASE_ADDR_CB_MASK); gsc_write(cfg, GSC_IN_BASE_ADDR_CR_MASK); cfg = gsc_read(GSC_OUT_BASE_ADDR_Y_MASK); cfg |= (GSC_OUT_BASE_ADDR_MASK | GSC_OUT_BASE_ADDR_PINGPONG(0)); gsc_write(cfg, GSC_OUT_BASE_ADDR_Y_MASK); gsc_write(cfg, GSC_OUT_BASE_ADDR_CB_MASK); gsc_write(cfg, GSC_OUT_BASE_ADDR_CR_MASK); return 0; } static void gsc_handle_irq(struct gsc_context *ctx, bool enable, bool overflow, bool done) { u32 cfg; DRM_DEV_DEBUG_KMS(ctx->dev, "enable[%d]overflow[%d]level[%d]\n", enable, overflow, done); cfg = gsc_read(GSC_IRQ); cfg |= (GSC_IRQ_OR_MASK | GSC_IRQ_FRMDONE_MASK); if (enable) cfg |= GSC_IRQ_ENABLE; else cfg &= ~GSC_IRQ_ENABLE; if (overflow) cfg &= ~GSC_IRQ_OR_MASK; else cfg |= GSC_IRQ_OR_MASK; if (done) cfg &= ~GSC_IRQ_FRMDONE_MASK; else cfg |= GSC_IRQ_FRMDONE_MASK; gsc_write(cfg, GSC_IRQ); } static void gsc_src_set_fmt(struct gsc_context *ctx, u32 fmt, bool tiled) { u32 cfg; DRM_DEV_DEBUG_KMS(ctx->dev, "fmt[0x%x]\n", fmt); cfg = gsc_read(GSC_IN_CON); cfg &= ~(GSC_IN_RGB_TYPE_MASK | GSC_IN_YUV422_1P_ORDER_MASK | GSC_IN_CHROMA_ORDER_MASK | GSC_IN_FORMAT_MASK | GSC_IN_TILE_TYPE_MASK | GSC_IN_TILE_MODE | GSC_IN_CHROM_STRIDE_SEL_MASK | GSC_IN_RB_SWAP_MASK); switch (fmt) { case DRM_FORMAT_RGB565: cfg |= GSC_IN_RGB565; break; case DRM_FORMAT_XRGB8888: case DRM_FORMAT_ARGB8888: cfg |= GSC_IN_XRGB8888; break; case DRM_FORMAT_BGRX8888: cfg |= (GSC_IN_XRGB8888 | GSC_IN_RB_SWAP); break; case DRM_FORMAT_YUYV: cfg |= (GSC_IN_YUV422_1P | GSC_IN_YUV422_1P_ORDER_LSB_Y | GSC_IN_CHROMA_ORDER_CBCR); break; case DRM_FORMAT_YVYU: cfg |= (GSC_IN_YUV422_1P | GSC_IN_YUV422_1P_ORDER_LSB_Y | GSC_IN_CHROMA_ORDER_CRCB); break; case DRM_FORMAT_UYVY: cfg |= (GSC_IN_YUV422_1P | GSC_IN_YUV422_1P_OEDER_LSB_C | GSC_IN_CHROMA_ORDER_CBCR); break; case DRM_FORMAT_VYUY: cfg |= (GSC_IN_YUV422_1P | GSC_IN_YUV422_1P_OEDER_LSB_C | GSC_IN_CHROMA_ORDER_CRCB); break; case DRM_FORMAT_NV21: cfg |= (GSC_IN_CHROMA_ORDER_CRCB | GSC_IN_YUV420_2P); break; case DRM_FORMAT_NV61: cfg |= (GSC_IN_CHROMA_ORDER_CRCB | GSC_IN_YUV422_2P); break; case DRM_FORMAT_YUV422: cfg |= GSC_IN_YUV422_3P; break; case DRM_FORMAT_YUV420: cfg |= (GSC_IN_CHROMA_ORDER_CBCR | GSC_IN_YUV420_3P); break; case DRM_FORMAT_YVU420: cfg |= (GSC_IN_CHROMA_ORDER_CRCB | GSC_IN_YUV420_3P); break; case DRM_FORMAT_NV12: cfg |= (GSC_IN_CHROMA_ORDER_CBCR | GSC_IN_YUV420_2P); break; case DRM_FORMAT_NV16: cfg |= (GSC_IN_CHROMA_ORDER_CBCR | GSC_IN_YUV422_2P); break; } if (tiled) cfg |= (GSC_IN_TILE_C_16x8 | GSC_IN_TILE_MODE); gsc_write(cfg, GSC_IN_CON); } static void gsc_src_set_transf(struct gsc_context *ctx, unsigned int rotation) { unsigned int degree = rotation & DRM_MODE_ROTATE_MASK; u32 cfg; cfg = gsc_read(GSC_IN_CON); cfg &= ~GSC_IN_ROT_MASK; switch (degree) { case DRM_MODE_ROTATE_0: if (rotation & DRM_MODE_REFLECT_X) cfg |= GSC_IN_ROT_XFLIP; if (rotation & DRM_MODE_REFLECT_Y) cfg |= GSC_IN_ROT_YFLIP; break; case DRM_MODE_ROTATE_90: cfg |= GSC_IN_ROT_90; if (rotation & DRM_MODE_REFLECT_X) cfg |= GSC_IN_ROT_XFLIP; if (rotation & DRM_MODE_REFLECT_Y) cfg |= GSC_IN_ROT_YFLIP; break; case DRM_MODE_ROTATE_180: cfg |= GSC_IN_ROT_180; if (rotation & DRM_MODE_REFLECT_X) cfg &= ~GSC_IN_ROT_XFLIP; if (rotation & DRM_MODE_REFLECT_Y) cfg &= ~GSC_IN_ROT_YFLIP; break; case DRM_MODE_ROTATE_270: cfg |= GSC_IN_ROT_270; if (rotation & DRM_MODE_REFLECT_X) cfg &= ~GSC_IN_ROT_XFLIP; if (rotation & DRM_MODE_REFLECT_Y) cfg &= ~GSC_IN_ROT_YFLIP; break; } gsc_write(cfg, GSC_IN_CON); ctx->rotation = (cfg & GSC_IN_ROT_90) ? 1 : 0; } static void gsc_src_set_size(struct gsc_context *ctx, struct exynos_drm_ipp_buffer *buf) { struct gsc_scaler *sc = &ctx->sc; u32 cfg; /* pixel offset */ cfg = (GSC_SRCIMG_OFFSET_X(buf->rect.x) | GSC_SRCIMG_OFFSET_Y(buf->rect.y)); gsc_write(cfg, GSC_SRCIMG_OFFSET); /* cropped size */ cfg = (GSC_CROPPED_WIDTH(buf->rect.w) | GSC_CROPPED_HEIGHT(buf->rect.h)); gsc_write(cfg, GSC_CROPPED_SIZE); /* original size */ cfg = gsc_read(GSC_SRCIMG_SIZE); cfg &= ~(GSC_SRCIMG_HEIGHT_MASK | GSC_SRCIMG_WIDTH_MASK); cfg |= (GSC_SRCIMG_WIDTH(buf->buf.pitch[0] / buf->format->cpp[0]) | GSC_SRCIMG_HEIGHT(buf->buf.height)); gsc_write(cfg, GSC_SRCIMG_SIZE); cfg = gsc_read(GSC_IN_CON); cfg &= ~GSC_IN_RGB_TYPE_MASK; if (buf->rect.w >= GSC_WIDTH_ITU_709) if (sc->range) cfg |= GSC_IN_RGB_HD_WIDE; else cfg |= GSC_IN_RGB_HD_NARROW; else if (sc->range) cfg |= GSC_IN_RGB_SD_WIDE; else cfg |= GSC_IN_RGB_SD_NARROW; gsc_write(cfg, GSC_IN_CON); } static void gsc_src_set_buf_seq(struct gsc_context *ctx, u32 buf_id, bool enqueue) { bool masked = !enqueue; u32 cfg; u32 mask = 0x00000001 << buf_id; /* mask register set */ cfg = gsc_read(GSC_IN_BASE_ADDR_Y_MASK); /* sequence id */ cfg &= ~mask; cfg |= masked << buf_id; gsc_write(cfg, GSC_IN_BASE_ADDR_Y_MASK); gsc_write(cfg, GSC_IN_BASE_ADDR_CB_MASK); gsc_write(cfg, GSC_IN_BASE_ADDR_CR_MASK); } static void gsc_src_set_addr(struct gsc_context *ctx, u32 buf_id, struct exynos_drm_ipp_buffer *buf) { /* address register set */ gsc_write(buf->dma_addr[0], GSC_IN_BASE_ADDR_Y(buf_id)); gsc_write(buf->dma_addr[1], GSC_IN_BASE_ADDR_CB(buf_id)); gsc_write(buf->dma_addr[2], GSC_IN_BASE_ADDR_CR(buf_id)); gsc_src_set_buf_seq(ctx, buf_id, true); } static void gsc_dst_set_fmt(struct gsc_context *ctx, u32 fmt, bool tiled) { u32 cfg; DRM_DEV_DEBUG_KMS(ctx->dev, "fmt[0x%x]\n", fmt); cfg = gsc_read(GSC_OUT_CON); cfg &= ~(GSC_OUT_RGB_TYPE_MASK | GSC_OUT_YUV422_1P_ORDER_MASK | GSC_OUT_CHROMA_ORDER_MASK | GSC_OUT_FORMAT_MASK | GSC_OUT_CHROM_STRIDE_SEL_MASK | GSC_OUT_RB_SWAP_MASK | GSC_OUT_GLOBAL_ALPHA_MASK); switch (fmt) { case DRM_FORMAT_RGB565: cfg |= GSC_OUT_RGB565; break; case DRM_FORMAT_ARGB8888: case DRM_FORMAT_XRGB8888: cfg |= (GSC_OUT_XRGB8888 | GSC_OUT_GLOBAL_ALPHA(0xff)); break; case DRM_FORMAT_BGRX8888: cfg |= (GSC_OUT_XRGB8888 | GSC_OUT_RB_SWAP); break; case DRM_FORMAT_YUYV: cfg |= (GSC_OUT_YUV422_1P | GSC_OUT_YUV422_1P_ORDER_LSB_Y | GSC_OUT_CHROMA_ORDER_CBCR); break; case DRM_FORMAT_YVYU: cfg |= (GSC_OUT_YUV422_1P | GSC_OUT_YUV422_1P_ORDER_LSB_Y | GSC_OUT_CHROMA_ORDER_CRCB); break; case DRM_FORMAT_UYVY: cfg |= (GSC_OUT_YUV422_1P | GSC_OUT_YUV422_1P_OEDER_LSB_C | GSC_OUT_CHROMA_ORDER_CBCR); break; case DRM_FORMAT_VYUY: cfg |= (GSC_OUT_YUV422_1P | GSC_OUT_YUV422_1P_OEDER_LSB_C | GSC_OUT_CHROMA_ORDER_CRCB); break; case DRM_FORMAT_NV21: cfg |= (GSC_OUT_CHROMA_ORDER_CRCB | GSC_OUT_YUV420_2P); break; case DRM_FORMAT_NV61: cfg |= (GSC_OUT_CHROMA_ORDER_CRCB | GSC_OUT_YUV422_2P); break; case DRM_FORMAT_YUV422: cfg |= GSC_OUT_YUV422_3P; break; case DRM_FORMAT_YUV420: cfg |= (GSC_OUT_CHROMA_ORDER_CBCR | GSC_OUT_YUV420_3P); break; case DRM_FORMAT_YVU420: cfg |= (GSC_OUT_CHROMA_ORDER_CRCB | GSC_OUT_YUV420_3P); break; case DRM_FORMAT_NV12: cfg |= (GSC_OUT_CHROMA_ORDER_CBCR | GSC_OUT_YUV420_2P); break; case DRM_FORMAT_NV16: cfg |= (GSC_OUT_CHROMA_ORDER_CBCR | GSC_OUT_YUV422_2P); break; } if (tiled) cfg |= (GSC_IN_TILE_C_16x8 | GSC_OUT_TILE_MODE); gsc_write(cfg, GSC_OUT_CON); } static int gsc_get_ratio_shift(struct gsc_context *ctx, u32 src, u32 dst, u32 *ratio) { DRM_DEV_DEBUG_KMS(ctx->dev, "src[%d]dst[%d]\n", src, dst); if (src >= dst * 8) { DRM_DEV_ERROR(ctx->dev, "failed to make ratio and shift.\n"); return -EINVAL; } else if (src >= dst * 4) *ratio = 4; else if (src >= dst * 2) *ratio = 2; else *ratio = 1; return 0; } static void gsc_get_prescaler_shfactor(u32 hratio, u32 vratio, u32 *shfactor) { if (hratio == 4 && vratio == 4) *shfactor = 4; else if ((hratio == 4 && vratio == 2) || (hratio == 2 && vratio == 4)) *shfactor = 3; else if ((hratio == 4 && vratio == 1) || (hratio == 1 && vratio == 4) || (hratio == 2 && vratio == 2)) *shfactor = 2; else if (hratio == 1 && vratio == 1) *shfactor = 0; else *shfactor = 1; } static int gsc_set_prescaler(struct gsc_context *ctx, struct gsc_scaler *sc, struct drm_exynos_ipp_task_rect *src, struct drm_exynos_ipp_task_rect *dst) { u32 cfg; u32 src_w, src_h, dst_w, dst_h; int ret = 0; src_w = src->w; src_h = src->h; if (ctx->rotation) { dst_w = dst->h; dst_h = dst->w; } else { dst_w = dst->w; dst_h = dst->h; } ret = gsc_get_ratio_shift(ctx, src_w, dst_w, &sc->pre_hratio); if (ret) { DRM_DEV_ERROR(ctx->dev, "failed to get ratio horizontal.\n"); return ret; } ret = gsc_get_ratio_shift(ctx, src_h, dst_h, &sc->pre_vratio); if (ret) { DRM_DEV_ERROR(ctx->dev, "failed to get ratio vertical.\n"); return ret; } DRM_DEV_DEBUG_KMS(ctx->dev, "pre_hratio[%d]pre_vratio[%d]\n", sc->pre_hratio, sc->pre_vratio); sc->main_hratio = (src_w << 16) / dst_w; sc->main_vratio = (src_h << 16) / dst_h; DRM_DEV_DEBUG_KMS(ctx->dev, "main_hratio[%ld]main_vratio[%ld]\n", sc->main_hratio, sc->main_vratio); gsc_get_prescaler_shfactor(sc->pre_hratio, sc->pre_vratio, &sc->pre_shfactor); DRM_DEV_DEBUG_KMS(ctx->dev, "pre_shfactor[%d]\n", sc->pre_shfactor); cfg = (GSC_PRESC_SHFACTOR(sc->pre_shfactor) | GSC_PRESC_H_RATIO(sc->pre_hratio) | GSC_PRESC_V_RATIO(sc->pre_vratio)); gsc_write(cfg, GSC_PRE_SCALE_RATIO); return ret; } static void gsc_set_h_coef(struct gsc_context *ctx, unsigned long main_hratio) { int i, j, k, sc_ratio; if (main_hratio <= GSC_SC_UP_MAX_RATIO) sc_ratio = 0; else if (main_hratio <= GSC_SC_DOWN_RATIO_7_8) sc_ratio = 1; else if (main_hratio <= GSC_SC_DOWN_RATIO_6_8) sc_ratio = 2; else if (main_hratio <= GSC_SC_DOWN_RATIO_5_8) sc_ratio = 3; else if (main_hratio <= GSC_SC_DOWN_RATIO_4_8) sc_ratio = 4; else if (main_hratio <= GSC_SC_DOWN_RATIO_3_8) sc_ratio = 5; else sc_ratio = 6; for (i = 0; i < GSC_COEF_PHASE; i++) for (j = 0; j < GSC_COEF_H_8T; j++) for (k = 0; k < GSC_COEF_DEPTH; k++) gsc_write(h_coef_8t[sc_ratio][i][j], GSC_HCOEF(i, j, k)); } static void gsc_set_v_coef(struct gsc_context *ctx, unsigned long main_vratio) { int i, j, k, sc_ratio; if (main_vratio <= GSC_SC_UP_MAX_RATIO) sc_ratio = 0; else if (main_vratio <= GSC_SC_DOWN_RATIO_7_8) sc_ratio = 1; else if (main_vratio <= GSC_SC_DOWN_RATIO_6_8) sc_ratio = 2; else if (main_vratio <= GSC_SC_DOWN_RATIO_5_8) sc_ratio = 3; else if (main_vratio <= GSC_SC_DOWN_RATIO_4_8) sc_ratio = 4; else if (main_vratio <= GSC_SC_DOWN_RATIO_3_8) sc_ratio = 5; else sc_ratio = 6; for (i = 0; i < GSC_COEF_PHASE; i++) for (j = 0; j < GSC_COEF_V_4T; j++) for (k = 0; k < GSC_COEF_DEPTH; k++) gsc_write(v_coef_4t[sc_ratio][i][j], GSC_VCOEF(i, j, k)); } static void gsc_set_scaler(struct gsc_context *ctx, struct gsc_scaler *sc) { u32 cfg; DRM_DEV_DEBUG_KMS(ctx->dev, "main_hratio[%ld]main_vratio[%ld]\n", sc->main_hratio, sc->main_vratio); gsc_set_h_coef(ctx, sc->main_hratio); cfg = GSC_MAIN_H_RATIO_VALUE(sc->main_hratio); gsc_write(cfg, GSC_MAIN_H_RATIO); gsc_set_v_coef(ctx, sc->main_vratio); cfg = GSC_MAIN_V_RATIO_VALUE(sc->main_vratio); gsc_write(cfg, GSC_MAIN_V_RATIO); } static void gsc_dst_set_size(struct gsc_context *ctx, struct exynos_drm_ipp_buffer *buf) { struct gsc_scaler *sc = &ctx->sc; u32 cfg; /* pixel offset */ cfg = (GSC_DSTIMG_OFFSET_X(buf->rect.x) | GSC_DSTIMG_OFFSET_Y(buf->rect.y)); gsc_write(cfg, GSC_DSTIMG_OFFSET); /* scaled size */ if (ctx->rotation) cfg = (GSC_SCALED_WIDTH(buf->rect.h) | GSC_SCALED_HEIGHT(buf->rect.w)); else cfg = (GSC_SCALED_WIDTH(buf->rect.w) | GSC_SCALED_HEIGHT(buf->rect.h)); gsc_write(cfg, GSC_SCALED_SIZE); /* original size */ cfg = gsc_read(GSC_DSTIMG_SIZE); cfg &= ~(GSC_DSTIMG_HEIGHT_MASK | GSC_DSTIMG_WIDTH_MASK); cfg |= GSC_DSTIMG_WIDTH(buf->buf.pitch[0] / buf->format->cpp[0]) | GSC_DSTIMG_HEIGHT(buf->buf.height); gsc_write(cfg, GSC_DSTIMG_SIZE); cfg = gsc_read(GSC_OUT_CON); cfg &= ~GSC_OUT_RGB_TYPE_MASK; if (buf->rect.w >= GSC_WIDTH_ITU_709) if (sc->range) cfg |= GSC_OUT_RGB_HD_WIDE; else cfg |= GSC_OUT_RGB_HD_NARROW; else if (sc->range) cfg |= GSC_OUT_RGB_SD_WIDE; else cfg |= GSC_OUT_RGB_SD_NARROW; gsc_write(cfg, GSC_OUT_CON); } static int gsc_dst_get_buf_seq(struct gsc_context *ctx) { u32 cfg, i, buf_num = GSC_REG_SZ; u32 mask = 0x00000001; cfg = gsc_read(GSC_OUT_BASE_ADDR_Y_MASK); for (i = 0; i < GSC_REG_SZ; i++) if (cfg & (mask << i)) buf_num--; DRM_DEV_DEBUG_KMS(ctx->dev, "buf_num[%d]\n", buf_num); return buf_num; } static void gsc_dst_set_buf_seq(struct gsc_context *ctx, u32 buf_id, bool enqueue) { bool masked = !enqueue; u32 cfg; u32 mask = 0x00000001 << buf_id; /* mask register set */ cfg = gsc_read(GSC_OUT_BASE_ADDR_Y_MASK); /* sequence id */ cfg &= ~mask; cfg |= masked << buf_id; gsc_write(cfg, GSC_OUT_BASE_ADDR_Y_MASK); gsc_write(cfg, GSC_OUT_BASE_ADDR_CB_MASK); gsc_write(cfg, GSC_OUT_BASE_ADDR_CR_MASK); /* interrupt enable */ if (enqueue && gsc_dst_get_buf_seq(ctx) >= GSC_BUF_START) gsc_handle_irq(ctx, true, false, true); /* interrupt disable */ if (!enqueue && gsc_dst_get_buf_seq(ctx) <= GSC_BUF_STOP) gsc_handle_irq(ctx, false, false, true); } static void gsc_dst_set_addr(struct gsc_context *ctx, u32 buf_id, struct exynos_drm_ipp_buffer *buf) { /* address register set */ gsc_write(buf->dma_addr[0], GSC_OUT_BASE_ADDR_Y(buf_id)); gsc_write(buf->dma_addr[1], GSC_OUT_BASE_ADDR_CB(buf_id)); gsc_write(buf->dma_addr[2], GSC_OUT_BASE_ADDR_CR(buf_id)); gsc_dst_set_buf_seq(ctx, buf_id, true); } static int gsc_get_src_buf_index(struct gsc_context *ctx) { u32 cfg, curr_index, i; u32 buf_id = GSC_MAX_SRC; DRM_DEV_DEBUG_KMS(ctx->dev, "gsc id[%d]\n", ctx->id); cfg = gsc_read(GSC_IN_BASE_ADDR_Y_MASK); curr_index = GSC_IN_CURR_GET_INDEX(cfg); for (i = curr_index; i < GSC_MAX_SRC; i++) { if (!((cfg >> i) & 0x1)) { buf_id = i; break; } } DRM_DEV_DEBUG_KMS(ctx->dev, "cfg[0x%x]curr_index[%d]buf_id[%d]\n", cfg, curr_index, buf_id); if (buf_id == GSC_MAX_SRC) { DRM_DEV_ERROR(ctx->dev, "failed to get in buffer index.\n"); return -EINVAL; } gsc_src_set_buf_seq(ctx, buf_id, false); return buf_id; } static int gsc_get_dst_buf_index(struct gsc_context *ctx) { u32 cfg, curr_index, i; u32 buf_id = GSC_MAX_DST; DRM_DEV_DEBUG_KMS(ctx->dev, "gsc id[%d]\n", ctx->id); cfg = gsc_read(GSC_OUT_BASE_ADDR_Y_MASK); curr_index = GSC_OUT_CURR_GET_INDEX(cfg); for (i = curr_index; i < GSC_MAX_DST; i++) { if (!((cfg >> i) & 0x1)) { buf_id = i; break; } } if (buf_id == GSC_MAX_DST) { DRM_DEV_ERROR(ctx->dev, "failed to get out buffer index.\n"); return -EINVAL; } gsc_dst_set_buf_seq(ctx, buf_id, false); DRM_DEV_DEBUG_KMS(ctx->dev, "cfg[0x%x]curr_index[%d]buf_id[%d]\n", cfg, curr_index, buf_id); return buf_id; } static irqreturn_t gsc_irq_handler(int irq, void *dev_id) { struct gsc_context *ctx = dev_id; u32 status; int err = 0; DRM_DEV_DEBUG_KMS(ctx->dev, "gsc id[%d]\n", ctx->id); status = gsc_read(GSC_IRQ); if (status & GSC_IRQ_STATUS_OR_IRQ) { dev_err(ctx->dev, "occurred overflow at %d, status 0x%x.\n", ctx->id, status); err = -EINVAL; } if (status & GSC_IRQ_STATUS_OR_FRM_DONE) { int src_buf_id, dst_buf_id; dev_dbg(ctx->dev, "occurred frame done at %d, status 0x%x.\n", ctx->id, status); src_buf_id = gsc_get_src_buf_index(ctx); dst_buf_id = gsc_get_dst_buf_index(ctx); DRM_DEV_DEBUG_KMS(ctx->dev, "buf_id_src[%d]buf_id_dst[%d]\n", src_buf_id, dst_buf_id); if (src_buf_id < 0 || dst_buf_id < 0) err = -EINVAL; } if (ctx->task) { struct exynos_drm_ipp_task *task = ctx->task; ctx->task = NULL; pm_runtime_mark_last_busy(ctx->dev); pm_runtime_put_autosuspend(ctx->dev); exynos_drm_ipp_task_done(task, err); } return IRQ_HANDLED; } static int gsc_reset(struct gsc_context *ctx) { struct gsc_scaler *sc = &ctx->sc; int ret; /* reset h/w block */ ret = gsc_sw_reset(ctx); if (ret < 0) { dev_err(ctx->dev, "failed to reset hardware.\n"); return ret; } /* scaler setting */ memset(&ctx->sc, 0x0, sizeof(ctx->sc)); sc->range = true; return 0; } static void gsc_start(struct gsc_context *ctx) { u32 cfg; gsc_handle_irq(ctx, true, false, true); /* enable one shot */ cfg = gsc_read(GSC_ENABLE); cfg &= ~(GSC_ENABLE_ON_CLEAR_MASK | GSC_ENABLE_CLK_GATE_MODE_MASK); cfg |= GSC_ENABLE_ON_CLEAR_ONESHOT; gsc_write(cfg, GSC_ENABLE); /* src dma memory */ cfg = gsc_read(GSC_IN_CON); cfg &= ~(GSC_IN_PATH_MASK | GSC_IN_LOCAL_SEL_MASK); cfg |= GSC_IN_PATH_MEMORY; gsc_write(cfg, GSC_IN_CON); /* dst dma memory */ cfg = gsc_read(GSC_OUT_CON); cfg |= GSC_OUT_PATH_MEMORY; gsc_write(cfg, GSC_OUT_CON); gsc_set_scaler(ctx, &ctx->sc); cfg = gsc_read(GSC_ENABLE); cfg |= GSC_ENABLE_ON; gsc_write(cfg, GSC_ENABLE); } static int gsc_commit(struct exynos_drm_ipp *ipp, struct exynos_drm_ipp_task *task) { struct gsc_context *ctx = container_of(ipp, struct gsc_context, ipp); int ret; ret = pm_runtime_resume_and_get(ctx->dev); if (ret < 0) { dev_err(ctx->dev, "failed to enable GScaler device.\n"); return ret; } ctx->task = task; ret = gsc_reset(ctx); if (ret) { pm_runtime_put_autosuspend(ctx->dev); ctx->task = NULL; return ret; } gsc_src_set_fmt(ctx, task->src.buf.fourcc, task->src.buf.modifier); gsc_src_set_transf(ctx, task->transform.rotation); gsc_src_set_size(ctx, &task->src); gsc_src_set_addr(ctx, 0, &task->src); gsc_dst_set_fmt(ctx, task->dst.buf.fourcc, task->dst.buf.modifier); gsc_dst_set_size(ctx, &task->dst); gsc_dst_set_addr(ctx, 0, &task->dst); gsc_set_prescaler(ctx, &ctx->sc, &task->src.rect, &task->dst.rect); gsc_start(ctx); return 0; } static void gsc_abort(struct exynos_drm_ipp *ipp, struct exynos_drm_ipp_task *task) { struct gsc_context *ctx = container_of(ipp, struct gsc_context, ipp); gsc_reset(ctx); if (ctx->task) { struct exynos_drm_ipp_task *task = ctx->task; ctx->task = NULL; pm_runtime_mark_last_busy(ctx->dev); pm_runtime_put_autosuspend(ctx->dev); exynos_drm_ipp_task_done(task, -EIO); } } static struct exynos_drm_ipp_funcs ipp_funcs = { .commit = gsc_commit, .abort = gsc_abort, }; static int gsc_bind(struct device *dev, struct device *master, void *data) { struct gsc_context *ctx = dev_get_drvdata(dev); struct drm_device *drm_dev = data; struct exynos_drm_ipp *ipp = &ctx->ipp; ctx->drm_dev = drm_dev; ctx->drm_dev = drm_dev; exynos_drm_register_dma(drm_dev, dev, &ctx->dma_priv); exynos_drm_ipp_register(dev, ipp, &ipp_funcs, DRM_EXYNOS_IPP_CAP_CROP | DRM_EXYNOS_IPP_CAP_ROTATE | DRM_EXYNOS_IPP_CAP_SCALE | DRM_EXYNOS_IPP_CAP_CONVERT, ctx->formats, ctx->num_formats, "gsc"); dev_info(dev, "The exynos gscaler has been probed successfully\n"); return 0; } static void gsc_unbind(struct device *dev, struct device *master, void *data) { struct gsc_context *ctx = dev_get_drvdata(dev); struct drm_device *drm_dev = data; struct exynos_drm_ipp *ipp = &ctx->ipp; exynos_drm_ipp_unregister(dev, ipp); exynos_drm_unregister_dma(drm_dev, dev, &ctx->dma_priv); } static const struct component_ops gsc_component_ops = { .bind = gsc_bind, .unbind = gsc_unbind, }; static const unsigned int gsc_formats[] = { DRM_FORMAT_ARGB8888, DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB565, DRM_FORMAT_BGRX8888, DRM_FORMAT_NV12, DRM_FORMAT_NV16, DRM_FORMAT_NV21, DRM_FORMAT_NV61, DRM_FORMAT_UYVY, DRM_FORMAT_VYUY, DRM_FORMAT_YUYV, DRM_FORMAT_YVYU, DRM_FORMAT_YUV420, DRM_FORMAT_YVU420, DRM_FORMAT_YUV422, }; static const unsigned int gsc_tiled_formats[] = { DRM_FORMAT_NV12, DRM_FORMAT_NV21, }; static int gsc_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct gsc_driverdata *driver_data; struct exynos_drm_ipp_formats *formats; struct gsc_context *ctx; struct resource *res; int num_formats, ret, i, j; ctx = devm_kzalloc(dev, sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; driver_data = (struct gsc_driverdata *)of_device_get_match_data(dev); ctx->dev = dev; ctx->num_clocks = driver_data->num_clocks; ctx->clk_names = driver_data->clk_names; /* construct formats/limits array */ num_formats = ARRAY_SIZE(gsc_formats) + ARRAY_SIZE(gsc_tiled_formats); formats = devm_kcalloc(dev, num_formats, sizeof(*formats), GFP_KERNEL); if (!formats) return -ENOMEM; /* linear formats */ for (i = 0; i < ARRAY_SIZE(gsc_formats); i++) { formats[i].fourcc = gsc_formats[i]; formats[i].type = DRM_EXYNOS_IPP_FORMAT_SOURCE | DRM_EXYNOS_IPP_FORMAT_DESTINATION; formats[i].limits = driver_data->limits; formats[i].num_limits = driver_data->num_limits; } /* tiled formats */ for (j = i, i = 0; i < ARRAY_SIZE(gsc_tiled_formats); j++, i++) { formats[j].fourcc = gsc_tiled_formats[i]; formats[j].modifier = DRM_FORMAT_MOD_SAMSUNG_16_16_TILE; formats[j].type = DRM_EXYNOS_IPP_FORMAT_SOURCE | DRM_EXYNOS_IPP_FORMAT_DESTINATION; formats[j].limits = driver_data->limits; formats[j].num_limits = driver_data->num_limits; } ctx->formats = formats; ctx->num_formats = num_formats; /* clock control */ for (i = 0; i < ctx->num_clocks; i++) { ctx->clocks[i] = devm_clk_get(dev, ctx->clk_names[i]); if (IS_ERR(ctx->clocks[i])) { dev_err(dev, "failed to get clock: %s\n", ctx->clk_names[i]); return PTR_ERR(ctx->clocks[i]); } } ctx->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(ctx->regs)) return PTR_ERR(ctx->regs); /* resource irq */ res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); if (!res) { dev_err(dev, "failed to request irq resource.\n"); return -ENOENT; } ctx->irq = res->start; ret = devm_request_irq(dev, ctx->irq, gsc_irq_handler, 0, dev_name(dev), ctx); if (ret < 0) { dev_err(dev, "failed to request irq.\n"); return ret; } /* context initailization */ ctx->id = pdev->id; platform_set_drvdata(pdev, ctx); pm_runtime_use_autosuspend(dev); pm_runtime_set_autosuspend_delay(dev, GSC_AUTOSUSPEND_DELAY); pm_runtime_enable(dev); ret = component_add(dev, &gsc_component_ops); if (ret) goto err_pm_dis; dev_info(dev, "drm gsc registered successfully.\n"); return 0; err_pm_dis: pm_runtime_dont_use_autosuspend(dev); pm_runtime_disable(dev); return ret; } static int gsc_remove(struct platform_device *pdev) { struct device *dev = &pdev->dev; component_del(dev, &gsc_component_ops); pm_runtime_dont_use_autosuspend(dev); pm_runtime_disable(dev); return 0; } static int __maybe_unused gsc_runtime_suspend(struct device *dev) { struct gsc_context *ctx = get_gsc_context(dev); int i; DRM_DEV_DEBUG_KMS(dev, "id[%d]\n", ctx->id); for (i = ctx->num_clocks - 1; i >= 0; i--) clk_disable_unprepare(ctx->clocks[i]); return 0; } static int __maybe_unused gsc_runtime_resume(struct device *dev) { struct gsc_context *ctx = get_gsc_context(dev); int i, ret; DRM_DEV_DEBUG_KMS(dev, "id[%d]\n", ctx->id); for (i = 0; i < ctx->num_clocks; i++) { ret = clk_prepare_enable(ctx->clocks[i]); if (ret) { while (--i >= 0) clk_disable_unprepare(ctx->clocks[i]); return ret; } } return 0; } static const struct dev_pm_ops gsc_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume) SET_RUNTIME_PM_OPS(gsc_runtime_suspend, gsc_runtime_resume, NULL) }; static const struct drm_exynos_ipp_limit gsc_5250_limits[] = { { IPP_SIZE_LIMIT(BUFFER, .h = { 32, 4800, 8 }, .v = { 16, 3344, 8 }) }, { IPP_SIZE_LIMIT(AREA, .h = { 16, 4800, 2 }, .v = { 8, 3344, 2 }) }, { IPP_SIZE_LIMIT(ROTATED, .h = { 32, 2048 }, .v = { 16, 2048 }) }, { IPP_SCALE_LIMIT(.h = { (1 << 16) / 16, (1 << 16) * 8 }, .v = { (1 << 16) / 16, (1 << 16) * 8 }) }, }; static const struct drm_exynos_ipp_limit gsc_5420_limits[] = { { IPP_SIZE_LIMIT(BUFFER, .h = { 32, 4800, 8 }, .v = { 16, 3344, 8 }) }, { IPP_SIZE_LIMIT(AREA, .h = { 16, 4800, 2 }, .v = { 8, 3344, 2 }) }, { IPP_SIZE_LIMIT(ROTATED, .h = { 16, 2016 }, .v = { 8, 2016 }) }, { IPP_SCALE_LIMIT(.h = { (1 << 16) / 16, (1 << 16) * 8 }, .v = { (1 << 16) / 16, (1 << 16) * 8 }) }, }; static const struct drm_exynos_ipp_limit gsc_5433_limits[] = { { IPP_SIZE_LIMIT(BUFFER, .h = { 32, 8191, 16 }, .v = { 16, 8191, 2 }) }, { IPP_SIZE_LIMIT(AREA, .h = { 16, 4800, 1 }, .v = { 8, 3344, 1 }) }, { IPP_SIZE_LIMIT(ROTATED, .h = { 32, 2047 }, .v = { 8, 8191 }) }, { IPP_SCALE_LIMIT(.h = { (1 << 16) / 16, (1 << 16) * 8 }, .v = { (1 << 16) / 16, (1 << 16) * 8 }) }, }; static struct gsc_driverdata gsc_exynos5250_drvdata = { .clk_names = {"gscl"}, .num_clocks = 1, .limits = gsc_5250_limits, .num_limits = ARRAY_SIZE(gsc_5250_limits), }; static struct gsc_driverdata gsc_exynos5420_drvdata = { .clk_names = {"gscl"}, .num_clocks = 1, .limits = gsc_5420_limits, .num_limits = ARRAY_SIZE(gsc_5420_limits), }; static struct gsc_driverdata gsc_exynos5433_drvdata = { .clk_names = {"pclk", "aclk", "aclk_xiu", "aclk_gsclbend"}, .num_clocks = 4, .limits = gsc_5433_limits, .num_limits = ARRAY_SIZE(gsc_5433_limits), }; static const struct of_device_id exynos_drm_gsc_of_match[] = { { .compatible = "samsung,exynos5-gsc", .data = &gsc_exynos5250_drvdata, }, { .compatible = "samsung,exynos5250-gsc", .data = &gsc_exynos5250_drvdata, }, { .compatible = "samsung,exynos5420-gsc", .data = &gsc_exynos5420_drvdata, }, { .compatible = "samsung,exynos5433-gsc", .data = &gsc_exynos5433_drvdata, }, { }, }; MODULE_DEVICE_TABLE(of, exynos_drm_gsc_of_match); struct platform_driver gsc_driver = { .probe = gsc_probe, .remove = gsc_remove, .driver = { .name = "exynos-drm-gsc", .owner = THIS_MODULE, .pm = &gsc_pm_ops, .of_match_table = of_match_ptr(exynos_drm_gsc_of_match), }, };