// SPDX-License-Identifier: GPL-2.0 /* * sun8i-ss-core.c - hardware cryptographic offloader for * Allwinner A80/A83T SoC * * Copyright (C) 2015-2019 Corentin Labbe * * Core file which registers crypto algorithms supported by the SecuritySystem * * You could find a link for the datasheet in Documentation/arm/sunxi.rst */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "sun8i-ss.h" static const struct ss_variant ss_a80_variant = { .alg_cipher = { SS_ALG_AES, SS_ALG_DES, SS_ALG_3DES, }, .alg_hash = { SS_ID_NOTSUPP, SS_ID_NOTSUPP, SS_ID_NOTSUPP, SS_ID_NOTSUPP, }, .op_mode = { SS_OP_ECB, SS_OP_CBC, }, .ss_clks = { { "bus", 0, 300 * 1000 * 1000 }, { "mod", 0, 300 * 1000 * 1000 }, } }; static const struct ss_variant ss_a83t_variant = { .alg_cipher = { SS_ALG_AES, SS_ALG_DES, SS_ALG_3DES, }, .alg_hash = { SS_ALG_MD5, SS_ALG_SHA1, SS_ALG_SHA224, SS_ALG_SHA256, }, .op_mode = { SS_OP_ECB, SS_OP_CBC, }, .ss_clks = { { "bus", 0, 300 * 1000 * 1000 }, { "mod", 0, 300 * 1000 * 1000 }, } }; /* * sun8i_ss_get_engine_number() get the next channel slot * This is a simple round-robin way of getting the next channel */ int sun8i_ss_get_engine_number(struct sun8i_ss_dev *ss) { return atomic_inc_return(&ss->flow) % MAXFLOW; } int sun8i_ss_run_task(struct sun8i_ss_dev *ss, struct sun8i_cipher_req_ctx *rctx, const char *name) { int flow = rctx->flow; unsigned int ivlen = rctx->ivlen; u32 v = SS_START; int i; #ifdef CONFIG_CRYPTO_DEV_SUN8I_SS_DEBUG ss->flows[flow].stat_req++; #endif /* choose between stream0/stream1 */ if (flow) v |= SS_FLOW1; else v |= SS_FLOW0; v |= rctx->op_mode; v |= rctx->method; if (rctx->op_dir) v |= SS_DECRYPTION; switch (rctx->keylen) { case 128 / 8: v |= SS_AES_128BITS << 7; break; case 192 / 8: v |= SS_AES_192BITS << 7; break; case 256 / 8: v |= SS_AES_256BITS << 7; break; } for (i = 0; i < MAX_SG; i++) { if (!rctx->t_dst[i].addr) break; mutex_lock(&ss->mlock); writel(rctx->p_key, ss->base + SS_KEY_ADR_REG); if (ivlen) { if (rctx->op_dir == SS_ENCRYPTION) { if (i == 0) writel(rctx->p_iv[0], ss->base + SS_IV_ADR_REG); else writel(rctx->t_dst[i - 1].addr + rctx->t_dst[i - 1].len * 4 - ivlen, ss->base + SS_IV_ADR_REG); } else { writel(rctx->p_iv[i], ss->base + SS_IV_ADR_REG); } } dev_dbg(ss->dev, "Processing SG %d on flow %d %s ctl=%x %d to %d method=%x opmode=%x opdir=%x srclen=%d\n", i, flow, name, v, rctx->t_src[i].len, rctx->t_dst[i].len, rctx->method, rctx->op_mode, rctx->op_dir, rctx->t_src[i].len); writel(rctx->t_src[i].addr, ss->base + SS_SRC_ADR_REG); writel(rctx->t_dst[i].addr, ss->base + SS_DST_ADR_REG); writel(rctx->t_src[i].len, ss->base + SS_LEN_ADR_REG); reinit_completion(&ss->flows[flow].complete); ss->flows[flow].status = 0; wmb(); writel(v, ss->base + SS_CTL_REG); mutex_unlock(&ss->mlock); wait_for_completion_interruptible_timeout(&ss->flows[flow].complete, msecs_to_jiffies(2000)); if (ss->flows[flow].status == 0) { dev_err(ss->dev, "DMA timeout for %s\n", name); return -EFAULT; } } return 0; } static irqreturn_t ss_irq_handler(int irq, void *data) { struct sun8i_ss_dev *ss = (struct sun8i_ss_dev *)data; int flow = 0; u32 p; p = readl(ss->base + SS_INT_STA_REG); for (flow = 0; flow < MAXFLOW; flow++) { if (p & (BIT(flow))) { writel(BIT(flow), ss->base + SS_INT_STA_REG); ss->flows[flow].status = 1; complete(&ss->flows[flow].complete); } } return IRQ_HANDLED; } static struct sun8i_ss_alg_template ss_algs[] = { { .type = CRYPTO_ALG_TYPE_SKCIPHER, .ss_algo_id = SS_ID_CIPHER_AES, .ss_blockmode = SS_ID_OP_CBC, .alg.skcipher = { .base = { .cra_name = "cbc(aes)", .cra_driver_name = "cbc-aes-sun8i-ss", .cra_priority = 400, .cra_blocksize = AES_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_NEED_FALLBACK, .cra_ctxsize = sizeof(struct sun8i_cipher_tfm_ctx), .cra_module = THIS_MODULE, .cra_alignmask = 0xf, .cra_init = sun8i_ss_cipher_init, .cra_exit = sun8i_ss_cipher_exit, }, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = sun8i_ss_aes_setkey, .encrypt = sun8i_ss_skencrypt, .decrypt = sun8i_ss_skdecrypt, } }, { .type = CRYPTO_ALG_TYPE_SKCIPHER, .ss_algo_id = SS_ID_CIPHER_AES, .ss_blockmode = SS_ID_OP_ECB, .alg.skcipher = { .base = { .cra_name = "ecb(aes)", .cra_driver_name = "ecb-aes-sun8i-ss", .cra_priority = 400, .cra_blocksize = AES_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_NEED_FALLBACK, .cra_ctxsize = sizeof(struct sun8i_cipher_tfm_ctx), .cra_module = THIS_MODULE, .cra_alignmask = 0xf, .cra_init = sun8i_ss_cipher_init, .cra_exit = sun8i_ss_cipher_exit, }, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = sun8i_ss_aes_setkey, .encrypt = sun8i_ss_skencrypt, .decrypt = sun8i_ss_skdecrypt, } }, { .type = CRYPTO_ALG_TYPE_SKCIPHER, .ss_algo_id = SS_ID_CIPHER_DES3, .ss_blockmode = SS_ID_OP_CBC, .alg.skcipher = { .base = { .cra_name = "cbc(des3_ede)", .cra_driver_name = "cbc-des3-sun8i-ss", .cra_priority = 400, .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_NEED_FALLBACK, .cra_ctxsize = sizeof(struct sun8i_cipher_tfm_ctx), .cra_module = THIS_MODULE, .cra_alignmask = 0xf, .cra_init = sun8i_ss_cipher_init, .cra_exit = sun8i_ss_cipher_exit, }, .min_keysize = DES3_EDE_KEY_SIZE, .max_keysize = DES3_EDE_KEY_SIZE, .ivsize = DES3_EDE_BLOCK_SIZE, .setkey = sun8i_ss_des3_setkey, .encrypt = sun8i_ss_skencrypt, .decrypt = sun8i_ss_skdecrypt, } }, { .type = CRYPTO_ALG_TYPE_SKCIPHER, .ss_algo_id = SS_ID_CIPHER_DES3, .ss_blockmode = SS_ID_OP_ECB, .alg.skcipher = { .base = { .cra_name = "ecb(des3_ede)", .cra_driver_name = "ecb-des3-sun8i-ss", .cra_priority = 400, .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY | CRYPTO_ALG_NEED_FALLBACK, .cra_ctxsize = sizeof(struct sun8i_cipher_tfm_ctx), .cra_module = THIS_MODULE, .cra_alignmask = 0xf, .cra_init = sun8i_ss_cipher_init, .cra_exit = sun8i_ss_cipher_exit, }, .min_keysize = DES3_EDE_KEY_SIZE, .max_keysize = DES3_EDE_KEY_SIZE, .setkey = sun8i_ss_des3_setkey, .encrypt = sun8i_ss_skencrypt, .decrypt = sun8i_ss_skdecrypt, } }, #ifdef CONFIG_CRYPTO_DEV_SUN8I_SS_PRNG { .type = CRYPTO_ALG_TYPE_RNG, .alg.rng = { .base = { .cra_name = "stdrng", .cra_driver_name = "sun8i-ss-prng", .cra_priority = 300, .cra_ctxsize = sizeof(struct sun8i_ss_rng_tfm_ctx), .cra_module = THIS_MODULE, .cra_init = sun8i_ss_prng_init, .cra_exit = sun8i_ss_prng_exit, }, .generate = sun8i_ss_prng_generate, .seed = sun8i_ss_prng_seed, .seedsize = PRNG_SEED_SIZE, } }, #endif #ifdef CONFIG_CRYPTO_DEV_SUN8I_SS_HASH { .type = CRYPTO_ALG_TYPE_AHASH, .ss_algo_id = SS_ID_HASH_MD5, .alg.hash = { .init = sun8i_ss_hash_init, .update = sun8i_ss_hash_update, .final = sun8i_ss_hash_final, .finup = sun8i_ss_hash_finup, .digest = sun8i_ss_hash_digest, .export = sun8i_ss_hash_export, .import = sun8i_ss_hash_import, .halg = { .digestsize = MD5_DIGEST_SIZE, .statesize = sizeof(struct md5_state), .base = { .cra_name = "md5", .cra_driver_name = "md5-sun8i-ss", .cra_priority = 300, .cra_alignmask = 3, .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = MD5_HMAC_BLOCK_SIZE, .cra_ctxsize = sizeof(struct sun8i_ss_hash_tfm_ctx), .cra_module = THIS_MODULE, .cra_init = sun8i_ss_hash_crainit, .cra_exit = sun8i_ss_hash_craexit, } } } }, { .type = CRYPTO_ALG_TYPE_AHASH, .ss_algo_id = SS_ID_HASH_SHA1, .alg.hash = { .init = sun8i_ss_hash_init, .update = sun8i_ss_hash_update, .final = sun8i_ss_hash_final, .finup = sun8i_ss_hash_finup, .digest = sun8i_ss_hash_digest, .export = sun8i_ss_hash_export, .import = sun8i_ss_hash_import, .halg = { .digestsize = SHA1_DIGEST_SIZE, .statesize = sizeof(struct sha1_state), .base = { .cra_name = "sha1", .cra_driver_name = "sha1-sun8i-ss", .cra_priority = 300, .cra_alignmask = 3, .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_ctxsize = sizeof(struct sun8i_ss_hash_tfm_ctx), .cra_module = THIS_MODULE, .cra_init = sun8i_ss_hash_crainit, .cra_exit = sun8i_ss_hash_craexit, } } } }, { .type = CRYPTO_ALG_TYPE_AHASH, .ss_algo_id = SS_ID_HASH_SHA224, .alg.hash = { .init = sun8i_ss_hash_init, .update = sun8i_ss_hash_update, .final = sun8i_ss_hash_final, .finup = sun8i_ss_hash_finup, .digest = sun8i_ss_hash_digest, .export = sun8i_ss_hash_export, .import = sun8i_ss_hash_import, .halg = { .digestsize = SHA224_DIGEST_SIZE, .statesize = sizeof(struct sha256_state), .base = { .cra_name = "sha224", .cra_driver_name = "sha224-sun8i-ss", .cra_priority = 300, .cra_alignmask = 3, .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SHA224_BLOCK_SIZE, .cra_ctxsize = sizeof(struct sun8i_ss_hash_tfm_ctx), .cra_module = THIS_MODULE, .cra_init = sun8i_ss_hash_crainit, .cra_exit = sun8i_ss_hash_craexit, } } } }, { .type = CRYPTO_ALG_TYPE_AHASH, .ss_algo_id = SS_ID_HASH_SHA256, .alg.hash = { .init = sun8i_ss_hash_init, .update = sun8i_ss_hash_update, .final = sun8i_ss_hash_final, .finup = sun8i_ss_hash_finup, .digest = sun8i_ss_hash_digest, .export = sun8i_ss_hash_export, .import = sun8i_ss_hash_import, .halg = { .digestsize = SHA256_DIGEST_SIZE, .statesize = sizeof(struct sha256_state), .base = { .cra_name = "sha256", .cra_driver_name = "sha256-sun8i-ss", .cra_priority = 300, .cra_alignmask = 3, .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SHA256_BLOCK_SIZE, .cra_ctxsize = sizeof(struct sun8i_ss_hash_tfm_ctx), .cra_module = THIS_MODULE, .cra_init = sun8i_ss_hash_crainit, .cra_exit = sun8i_ss_hash_craexit, } } } }, #endif }; #ifdef CONFIG_CRYPTO_DEV_SUN8I_SS_DEBUG static int sun8i_ss_debugfs_show(struct seq_file *seq, void *v) { struct sun8i_ss_dev *ss = seq->private; unsigned int i; for (i = 0; i < MAXFLOW; i++) seq_printf(seq, "Channel %d: nreq %lu\n", i, ss->flows[i].stat_req); for (i = 0; i < ARRAY_SIZE(ss_algs); i++) { if (!ss_algs[i].ss) continue; switch (ss_algs[i].type) { case CRYPTO_ALG_TYPE_SKCIPHER: seq_printf(seq, "%s %s reqs=%lu fallback=%lu\n", ss_algs[i].alg.skcipher.base.cra_driver_name, ss_algs[i].alg.skcipher.base.cra_name, ss_algs[i].stat_req, ss_algs[i].stat_fb); break; case CRYPTO_ALG_TYPE_RNG: seq_printf(seq, "%s %s reqs=%lu tsize=%lu\n", ss_algs[i].alg.rng.base.cra_driver_name, ss_algs[i].alg.rng.base.cra_name, ss_algs[i].stat_req, ss_algs[i].stat_bytes); break; case CRYPTO_ALG_TYPE_AHASH: seq_printf(seq, "%s %s reqs=%lu fallback=%lu\n", ss_algs[i].alg.hash.halg.base.cra_driver_name, ss_algs[i].alg.hash.halg.base.cra_name, ss_algs[i].stat_req, ss_algs[i].stat_fb); break; } } return 0; } DEFINE_SHOW_ATTRIBUTE(sun8i_ss_debugfs); #endif static void sun8i_ss_free_flows(struct sun8i_ss_dev *ss, int i) { while (i >= 0) { crypto_engine_exit(ss->flows[i].engine); i--; } } /* * Allocate the flow list structure */ static int allocate_flows(struct sun8i_ss_dev *ss) { int i, j, err; ss->flows = devm_kcalloc(ss->dev, MAXFLOW, sizeof(struct sun8i_ss_flow), GFP_KERNEL); if (!ss->flows) return -ENOMEM; for (i = 0; i < MAXFLOW; i++) { init_completion(&ss->flows[i].complete); ss->flows[i].biv = devm_kmalloc(ss->dev, AES_BLOCK_SIZE, GFP_KERNEL | GFP_DMA); if (!ss->flows[i].biv) { err = -ENOMEM; goto error_engine; } for (j = 0; j < MAX_SG; j++) { ss->flows[i].iv[j] = devm_kmalloc(ss->dev, AES_BLOCK_SIZE, GFP_KERNEL | GFP_DMA); if (!ss->flows[i].iv[j]) { err = -ENOMEM; goto error_engine; } } /* the padding could be up to two block. */ ss->flows[i].pad = devm_kmalloc(ss->dev, SHA256_BLOCK_SIZE * 2, GFP_KERNEL | GFP_DMA); if (!ss->flows[i].pad) { err = -ENOMEM; goto error_engine; } ss->flows[i].result = devm_kmalloc(ss->dev, SHA256_DIGEST_SIZE, GFP_KERNEL | GFP_DMA); if (!ss->flows[i].result) { err = -ENOMEM; goto error_engine; } ss->flows[i].engine = crypto_engine_alloc_init(ss->dev, true); if (!ss->flows[i].engine) { dev_err(ss->dev, "Cannot allocate engine\n"); i--; err = -ENOMEM; goto error_engine; } err = crypto_engine_start(ss->flows[i].engine); if (err) { dev_err(ss->dev, "Cannot start engine\n"); goto error_engine; } } return 0; error_engine: sun8i_ss_free_flows(ss, i); return err; } /* * Power management strategy: The device is suspended unless a TFM exists for * one of the algorithms proposed by this driver. */ static int sun8i_ss_pm_suspend(struct device *dev) { struct sun8i_ss_dev *ss = dev_get_drvdata(dev); int i; reset_control_assert(ss->reset); for (i = 0; i < SS_MAX_CLOCKS; i++) clk_disable_unprepare(ss->ssclks[i]); return 0; } static int sun8i_ss_pm_resume(struct device *dev) { struct sun8i_ss_dev *ss = dev_get_drvdata(dev); int err, i; for (i = 0; i < SS_MAX_CLOCKS; i++) { if (!ss->variant->ss_clks[i].name) continue; err = clk_prepare_enable(ss->ssclks[i]); if (err) { dev_err(ss->dev, "Cannot prepare_enable %s\n", ss->variant->ss_clks[i].name); goto error; } } err = reset_control_deassert(ss->reset); if (err) { dev_err(ss->dev, "Cannot deassert reset control\n"); goto error; } /* enable interrupts for all flows */ writel(BIT(0) | BIT(1), ss->base + SS_INT_CTL_REG); return 0; error: sun8i_ss_pm_suspend(dev); return err; } static const struct dev_pm_ops sun8i_ss_pm_ops = { SET_RUNTIME_PM_OPS(sun8i_ss_pm_suspend, sun8i_ss_pm_resume, NULL) }; static int sun8i_ss_pm_init(struct sun8i_ss_dev *ss) { int err; pm_runtime_use_autosuspend(ss->dev); pm_runtime_set_autosuspend_delay(ss->dev, 2000); err = pm_runtime_set_suspended(ss->dev); if (err) return err; pm_runtime_enable(ss->dev); return err; } static void sun8i_ss_pm_exit(struct sun8i_ss_dev *ss) { pm_runtime_disable(ss->dev); } static int sun8i_ss_register_algs(struct sun8i_ss_dev *ss) { int ss_method, err, id; unsigned int i; for (i = 0; i < ARRAY_SIZE(ss_algs); i++) { ss_algs[i].ss = ss; switch (ss_algs[i].type) { case CRYPTO_ALG_TYPE_SKCIPHER: id = ss_algs[i].ss_algo_id; ss_method = ss->variant->alg_cipher[id]; if (ss_method == SS_ID_NOTSUPP) { dev_info(ss->dev, "DEBUG: Algo of %s not supported\n", ss_algs[i].alg.skcipher.base.cra_name); ss_algs[i].ss = NULL; break; } id = ss_algs[i].ss_blockmode; ss_method = ss->variant->op_mode[id]; if (ss_method == SS_ID_NOTSUPP) { dev_info(ss->dev, "DEBUG: Blockmode of %s not supported\n", ss_algs[i].alg.skcipher.base.cra_name); ss_algs[i].ss = NULL; break; } dev_info(ss->dev, "DEBUG: Register %s\n", ss_algs[i].alg.skcipher.base.cra_name); err = crypto_register_skcipher(&ss_algs[i].alg.skcipher); if (err) { dev_err(ss->dev, "Fail to register %s\n", ss_algs[i].alg.skcipher.base.cra_name); ss_algs[i].ss = NULL; return err; } break; case CRYPTO_ALG_TYPE_RNG: err = crypto_register_rng(&ss_algs[i].alg.rng); if (err) { dev_err(ss->dev, "Fail to register %s\n", ss_algs[i].alg.rng.base.cra_name); ss_algs[i].ss = NULL; } break; case CRYPTO_ALG_TYPE_AHASH: id = ss_algs[i].ss_algo_id; ss_method = ss->variant->alg_hash[id]; if (ss_method == SS_ID_NOTSUPP) { dev_info(ss->dev, "DEBUG: Algo of %s not supported\n", ss_algs[i].alg.hash.halg.base.cra_name); ss_algs[i].ss = NULL; break; } dev_info(ss->dev, "Register %s\n", ss_algs[i].alg.hash.halg.base.cra_name); err = crypto_register_ahash(&ss_algs[i].alg.hash); if (err) { dev_err(ss->dev, "ERROR: Fail to register %s\n", ss_algs[i].alg.hash.halg.base.cra_name); ss_algs[i].ss = NULL; return err; } break; default: ss_algs[i].ss = NULL; dev_err(ss->dev, "ERROR: tried to register an unknown algo\n"); } } return 0; } static void sun8i_ss_unregister_algs(struct sun8i_ss_dev *ss) { unsigned int i; for (i = 0; i < ARRAY_SIZE(ss_algs); i++) { if (!ss_algs[i].ss) continue; switch (ss_algs[i].type) { case CRYPTO_ALG_TYPE_SKCIPHER: dev_info(ss->dev, "Unregister %d %s\n", i, ss_algs[i].alg.skcipher.base.cra_name); crypto_unregister_skcipher(&ss_algs[i].alg.skcipher); break; case CRYPTO_ALG_TYPE_RNG: dev_info(ss->dev, "Unregister %d %s\n", i, ss_algs[i].alg.rng.base.cra_name); crypto_unregister_rng(&ss_algs[i].alg.rng); break; case CRYPTO_ALG_TYPE_AHASH: dev_info(ss->dev, "Unregister %d %s\n", i, ss_algs[i].alg.hash.halg.base.cra_name); crypto_unregister_ahash(&ss_algs[i].alg.hash); break; } } } static int sun8i_ss_get_clks(struct sun8i_ss_dev *ss) { unsigned long cr; int err, i; for (i = 0; i < SS_MAX_CLOCKS; i++) { if (!ss->variant->ss_clks[i].name) continue; ss->ssclks[i] = devm_clk_get(ss->dev, ss->variant->ss_clks[i].name); if (IS_ERR(ss->ssclks[i])) { err = PTR_ERR(ss->ssclks[i]); dev_err(ss->dev, "Cannot get %s SS clock err=%d\n", ss->variant->ss_clks[i].name, err); return err; } cr = clk_get_rate(ss->ssclks[i]); if (!cr) return -EINVAL; if (ss->variant->ss_clks[i].freq > 0 && cr != ss->variant->ss_clks[i].freq) { dev_info(ss->dev, "Set %s clock to %lu (%lu Mhz) from %lu (%lu Mhz)\n", ss->variant->ss_clks[i].name, ss->variant->ss_clks[i].freq, ss->variant->ss_clks[i].freq / 1000000, cr, cr / 1000000); err = clk_set_rate(ss->ssclks[i], ss->variant->ss_clks[i].freq); if (err) dev_err(ss->dev, "Fail to set %s clk speed to %lu hz\n", ss->variant->ss_clks[i].name, ss->variant->ss_clks[i].freq); } if (ss->variant->ss_clks[i].max_freq > 0 && cr > ss->variant->ss_clks[i].max_freq) dev_warn(ss->dev, "Frequency for %s (%lu hz) is higher than datasheet's recommendation (%lu hz)", ss->variant->ss_clks[i].name, cr, ss->variant->ss_clks[i].max_freq); } return 0; } static int sun8i_ss_probe(struct platform_device *pdev) { struct sun8i_ss_dev *ss; int err, irq; u32 v; ss = devm_kzalloc(&pdev->dev, sizeof(*ss), GFP_KERNEL); if (!ss) return -ENOMEM; ss->dev = &pdev->dev; platform_set_drvdata(pdev, ss); ss->variant = of_device_get_match_data(&pdev->dev); if (!ss->variant) { dev_err(&pdev->dev, "Missing Crypto Engine variant\n"); return -EINVAL; } ss->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(ss->base)) return PTR_ERR(ss->base); err = sun8i_ss_get_clks(ss); if (err) return err; irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; ss->reset = devm_reset_control_get(&pdev->dev, NULL); if (IS_ERR(ss->reset)) return dev_err_probe(&pdev->dev, PTR_ERR(ss->reset), "No reset control found\n"); mutex_init(&ss->mlock); err = allocate_flows(ss); if (err) return err; err = sun8i_ss_pm_init(ss); if (err) goto error_pm; err = devm_request_irq(&pdev->dev, irq, ss_irq_handler, 0, "sun8i-ss", ss); if (err) { dev_err(ss->dev, "Cannot request SecuritySystem IRQ (err=%d)\n", err); goto error_irq; } err = sun8i_ss_register_algs(ss); if (err) goto error_alg; err = pm_runtime_resume_and_get(ss->dev); if (err < 0) goto error_alg; v = readl(ss->base + SS_CTL_REG); v >>= SS_DIE_ID_SHIFT; v &= SS_DIE_ID_MASK; dev_info(&pdev->dev, "Security System Die ID %x\n", v); pm_runtime_put_sync(ss->dev); #ifdef CONFIG_CRYPTO_DEV_SUN8I_SS_DEBUG /* Ignore error of debugfs */ ss->dbgfs_dir = debugfs_create_dir("sun8i-ss", NULL); ss->dbgfs_stats = debugfs_create_file("stats", 0444, ss->dbgfs_dir, ss, &sun8i_ss_debugfs_fops); #endif return 0; error_alg: sun8i_ss_unregister_algs(ss); error_irq: sun8i_ss_pm_exit(ss); error_pm: sun8i_ss_free_flows(ss, MAXFLOW - 1); return err; } static int sun8i_ss_remove(struct platform_device *pdev) { struct sun8i_ss_dev *ss = platform_get_drvdata(pdev); sun8i_ss_unregister_algs(ss); #ifdef CONFIG_CRYPTO_DEV_SUN8I_SS_DEBUG debugfs_remove_recursive(ss->dbgfs_dir); #endif sun8i_ss_free_flows(ss, MAXFLOW - 1); sun8i_ss_pm_exit(ss); return 0; } static const struct of_device_id sun8i_ss_crypto_of_match_table[] = { { .compatible = "allwinner,sun8i-a83t-crypto", .data = &ss_a83t_variant }, { .compatible = "allwinner,sun9i-a80-crypto", .data = &ss_a80_variant }, {} }; MODULE_DEVICE_TABLE(of, sun8i_ss_crypto_of_match_table); static struct platform_driver sun8i_ss_driver = { .probe = sun8i_ss_probe, .remove = sun8i_ss_remove, .driver = { .name = "sun8i-ss", .pm = &sun8i_ss_pm_ops, .of_match_table = sun8i_ss_crypto_of_match_table, }, }; module_platform_driver(sun8i_ss_driver); MODULE_DESCRIPTION("Allwinner SecuritySystem cryptographic offloader"); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Corentin Labbe ");