// SPDX-License-Identifier: GPL-2.0-only /* * Driver for IMS Passenger Control Unit Devices * * Copyright (C) 2013 The IMS Company */ #include #include #include #include #include #include #include #include #include #include #include #include #include #define IMS_PCU_KEYMAP_LEN 32 struct ims_pcu_buttons { struct input_dev *input; char name[32]; char phys[32]; unsigned short keymap[IMS_PCU_KEYMAP_LEN]; }; struct ims_pcu_gamepad { struct input_dev *input; char name[32]; char phys[32]; }; struct ims_pcu_backlight { struct led_classdev cdev; char name[32]; }; #define IMS_PCU_PART_NUMBER_LEN 15 #define IMS_PCU_SERIAL_NUMBER_LEN 8 #define IMS_PCU_DOM_LEN 8 #define IMS_PCU_FW_VERSION_LEN 16 #define IMS_PCU_BL_VERSION_LEN 16 #define IMS_PCU_BL_RESET_REASON_LEN (2 + 1) #define IMS_PCU_PCU_B_DEVICE_ID 5 #define IMS_PCU_BUF_SIZE 128 struct ims_pcu { struct usb_device *udev; struct device *dev; /* control interface's device, used for logging */ unsigned int device_no; bool bootloader_mode; char part_number[IMS_PCU_PART_NUMBER_LEN]; char serial_number[IMS_PCU_SERIAL_NUMBER_LEN]; char date_of_manufacturing[IMS_PCU_DOM_LEN]; char fw_version[IMS_PCU_FW_VERSION_LEN]; char bl_version[IMS_PCU_BL_VERSION_LEN]; char reset_reason[IMS_PCU_BL_RESET_REASON_LEN]; int update_firmware_status; u8 device_id; u8 ofn_reg_addr; struct usb_interface *ctrl_intf; struct usb_endpoint_descriptor *ep_ctrl; struct urb *urb_ctrl; u8 *urb_ctrl_buf; dma_addr_t ctrl_dma; size_t max_ctrl_size; struct usb_interface *data_intf; struct usb_endpoint_descriptor *ep_in; struct urb *urb_in; u8 *urb_in_buf; dma_addr_t read_dma; size_t max_in_size; struct usb_endpoint_descriptor *ep_out; u8 *urb_out_buf; size_t max_out_size; u8 read_buf[IMS_PCU_BUF_SIZE]; u8 read_pos; u8 check_sum; bool have_stx; bool have_dle; u8 cmd_buf[IMS_PCU_BUF_SIZE]; u8 ack_id; u8 expected_response; u8 cmd_buf_len; struct completion cmd_done; struct mutex cmd_mutex; u32 fw_start_addr; u32 fw_end_addr; struct completion async_firmware_done; struct ims_pcu_buttons buttons; struct ims_pcu_gamepad *gamepad; struct ims_pcu_backlight backlight; bool setup_complete; /* Input and LED devices have been created */ }; /********************************************************************* * Buttons Input device support * *********************************************************************/ static const unsigned short ims_pcu_keymap_1[] = { [1] = KEY_ATTENDANT_OFF, [2] = KEY_ATTENDANT_ON, [3] = KEY_LIGHTS_TOGGLE, [4] = KEY_VOLUMEUP, [5] = KEY_VOLUMEDOWN, [6] = KEY_INFO, }; static const unsigned short ims_pcu_keymap_2[] = { [4] = KEY_VOLUMEUP, [5] = KEY_VOLUMEDOWN, [6] = KEY_INFO, }; static const unsigned short ims_pcu_keymap_3[] = { [1] = KEY_HOMEPAGE, [2] = KEY_ATTENDANT_TOGGLE, [3] = KEY_LIGHTS_TOGGLE, [4] = KEY_VOLUMEUP, [5] = KEY_VOLUMEDOWN, [6] = KEY_DISPLAYTOGGLE, [18] = KEY_PLAYPAUSE, }; static const unsigned short ims_pcu_keymap_4[] = { [1] = KEY_ATTENDANT_OFF, [2] = KEY_ATTENDANT_ON, [3] = KEY_LIGHTS_TOGGLE, [4] = KEY_VOLUMEUP, [5] = KEY_VOLUMEDOWN, [6] = KEY_INFO, [18] = KEY_PLAYPAUSE, }; static const unsigned short ims_pcu_keymap_5[] = { [1] = KEY_ATTENDANT_OFF, [2] = KEY_ATTENDANT_ON, [3] = KEY_LIGHTS_TOGGLE, }; struct ims_pcu_device_info { const unsigned short *keymap; size_t keymap_len; bool has_gamepad; }; #define IMS_PCU_DEVINFO(_n, _gamepad) \ [_n] = { \ .keymap = ims_pcu_keymap_##_n, \ .keymap_len = ARRAY_SIZE(ims_pcu_keymap_##_n), \ .has_gamepad = _gamepad, \ } static const struct ims_pcu_device_info ims_pcu_device_info[] = { IMS_PCU_DEVINFO(1, true), IMS_PCU_DEVINFO(2, true), IMS_PCU_DEVINFO(3, true), IMS_PCU_DEVINFO(4, true), IMS_PCU_DEVINFO(5, false), }; static void ims_pcu_buttons_report(struct ims_pcu *pcu, u32 data) { struct ims_pcu_buttons *buttons = &pcu->buttons; struct input_dev *input = buttons->input; int i; for (i = 0; i < 32; i++) { unsigned short keycode = buttons->keymap[i]; if (keycode != KEY_RESERVED) input_report_key(input, keycode, data & (1UL << i)); } input_sync(input); } static int ims_pcu_setup_buttons(struct ims_pcu *pcu, const unsigned short *keymap, size_t keymap_len) { struct ims_pcu_buttons *buttons = &pcu->buttons; struct input_dev *input; int i; int error; input = input_allocate_device(); if (!input) { dev_err(pcu->dev, "Not enough memory for input input device\n"); return -ENOMEM; } snprintf(buttons->name, sizeof(buttons->name), "IMS PCU#%d Button Interface", pcu->device_no); usb_make_path(pcu->udev, buttons->phys, sizeof(buttons->phys)); strlcat(buttons->phys, "/input0", sizeof(buttons->phys)); memcpy(buttons->keymap, keymap, sizeof(*keymap) * keymap_len); input->name = buttons->name; input->phys = buttons->phys; usb_to_input_id(pcu->udev, &input->id); input->dev.parent = &pcu->ctrl_intf->dev; input->keycode = buttons->keymap; input->keycodemax = ARRAY_SIZE(buttons->keymap); input->keycodesize = sizeof(buttons->keymap[0]); __set_bit(EV_KEY, input->evbit); for (i = 0; i < IMS_PCU_KEYMAP_LEN; i++) __set_bit(buttons->keymap[i], input->keybit); __clear_bit(KEY_RESERVED, input->keybit); error = input_register_device(input); if (error) { dev_err(pcu->dev, "Failed to register buttons input device: %d\n", error); input_free_device(input); return error; } buttons->input = input; return 0; } static void ims_pcu_destroy_buttons(struct ims_pcu *pcu) { struct ims_pcu_buttons *buttons = &pcu->buttons; input_unregister_device(buttons->input); } /********************************************************************* * Gamepad Input device support * *********************************************************************/ static void ims_pcu_gamepad_report(struct ims_pcu *pcu, u32 data) { struct ims_pcu_gamepad *gamepad = pcu->gamepad; struct input_dev *input = gamepad->input; int x, y; x = !!(data & (1 << 14)) - !!(data & (1 << 13)); y = !!(data & (1 << 12)) - !!(data & (1 << 11)); input_report_abs(input, ABS_X, x); input_report_abs(input, ABS_Y, y); input_report_key(input, BTN_A, data & (1 << 7)); input_report_key(input, BTN_B, data & (1 << 8)); input_report_key(input, BTN_X, data & (1 << 9)); input_report_key(input, BTN_Y, data & (1 << 10)); input_report_key(input, BTN_START, data & (1 << 15)); input_report_key(input, BTN_SELECT, data & (1 << 16)); input_sync(input); } static int ims_pcu_setup_gamepad(struct ims_pcu *pcu) { struct ims_pcu_gamepad *gamepad; struct input_dev *input; int error; gamepad = kzalloc(sizeof(struct ims_pcu_gamepad), GFP_KERNEL); input = input_allocate_device(); if (!gamepad || !input) { dev_err(pcu->dev, "Not enough memory for gamepad device\n"); error = -ENOMEM; goto err_free_mem; } gamepad->input = input; snprintf(gamepad->name, sizeof(gamepad->name), "IMS PCU#%d Gamepad Interface", pcu->device_no); usb_make_path(pcu->udev, gamepad->phys, sizeof(gamepad->phys)); strlcat(gamepad->phys, "/input1", sizeof(gamepad->phys)); input->name = gamepad->name; input->phys = gamepad->phys; usb_to_input_id(pcu->udev, &input->id); input->dev.parent = &pcu->ctrl_intf->dev; __set_bit(EV_KEY, input->evbit); __set_bit(BTN_A, input->keybit); __set_bit(BTN_B, input->keybit); __set_bit(BTN_X, input->keybit); __set_bit(BTN_Y, input->keybit); __set_bit(BTN_START, input->keybit); __set_bit(BTN_SELECT, input->keybit); __set_bit(EV_ABS, input->evbit); input_set_abs_params(input, ABS_X, -1, 1, 0, 0); input_set_abs_params(input, ABS_Y, -1, 1, 0, 0); error = input_register_device(input); if (error) { dev_err(pcu->dev, "Failed to register gamepad input device: %d\n", error); goto err_free_mem; } pcu->gamepad = gamepad; return 0; err_free_mem: input_free_device(input); kfree(gamepad); return error; } static void ims_pcu_destroy_gamepad(struct ims_pcu *pcu) { struct ims_pcu_gamepad *gamepad = pcu->gamepad; input_unregister_device(gamepad->input); kfree(gamepad); } /********************************************************************* * PCU Communication protocol handling * *********************************************************************/ #define IMS_PCU_PROTOCOL_STX 0x02 #define IMS_PCU_PROTOCOL_ETX 0x03 #define IMS_PCU_PROTOCOL_DLE 0x10 /* PCU commands */ #define IMS_PCU_CMD_STATUS 0xa0 #define IMS_PCU_CMD_PCU_RESET 0xa1 #define IMS_PCU_CMD_RESET_REASON 0xa2 #define IMS_PCU_CMD_SEND_BUTTONS 0xa3 #define IMS_PCU_CMD_JUMP_TO_BTLDR 0xa4 #define IMS_PCU_CMD_GET_INFO 0xa5 #define IMS_PCU_CMD_SET_BRIGHTNESS 0xa6 #define IMS_PCU_CMD_EEPROM 0xa7 #define IMS_PCU_CMD_GET_FW_VERSION 0xa8 #define IMS_PCU_CMD_GET_BL_VERSION 0xa9 #define IMS_PCU_CMD_SET_INFO 0xab #define IMS_PCU_CMD_GET_BRIGHTNESS 0xac #define IMS_PCU_CMD_GET_DEVICE_ID 0xae #define IMS_PCU_CMD_SPECIAL_INFO 0xb0 #define IMS_PCU_CMD_BOOTLOADER 0xb1 /* Pass data to bootloader */ #define IMS_PCU_CMD_OFN_SET_CONFIG 0xb3 #define IMS_PCU_CMD_OFN_GET_CONFIG 0xb4 /* PCU responses */ #define IMS_PCU_RSP_STATUS 0xc0 #define IMS_PCU_RSP_PCU_RESET 0 /* Originally 0xc1 */ #define IMS_PCU_RSP_RESET_REASON 0xc2 #define IMS_PCU_RSP_SEND_BUTTONS 0xc3 #define IMS_PCU_RSP_JUMP_TO_BTLDR 0 /* Originally 0xc4 */ #define IMS_PCU_RSP_GET_INFO 0xc5 #define IMS_PCU_RSP_SET_BRIGHTNESS 0xc6 #define IMS_PCU_RSP_EEPROM 0xc7 #define IMS_PCU_RSP_GET_FW_VERSION 0xc8 #define IMS_PCU_RSP_GET_BL_VERSION 0xc9 #define IMS_PCU_RSP_SET_INFO 0xcb #define IMS_PCU_RSP_GET_BRIGHTNESS 0xcc #define IMS_PCU_RSP_CMD_INVALID 0xcd #define IMS_PCU_RSP_GET_DEVICE_ID 0xce #define IMS_PCU_RSP_SPECIAL_INFO 0xd0 #define IMS_PCU_RSP_BOOTLOADER 0xd1 /* Bootloader response */ #define IMS_PCU_RSP_OFN_SET_CONFIG 0xd2 #define IMS_PCU_RSP_OFN_GET_CONFIG 0xd3 #define IMS_PCU_RSP_EVNT_BUTTONS 0xe0 /* Unsolicited, button state */ #define IMS_PCU_GAMEPAD_MASK 0x0001ff80UL /* Bits 7 through 16 */ #define IMS_PCU_MIN_PACKET_LEN 3 #define IMS_PCU_DATA_OFFSET 2 #define IMS_PCU_CMD_WRITE_TIMEOUT 100 /* msec */ #define IMS_PCU_CMD_RESPONSE_TIMEOUT 500 /* msec */ static void ims_pcu_report_events(struct ims_pcu *pcu) { u32 data = get_unaligned_be32(&pcu->read_buf[3]); ims_pcu_buttons_report(pcu, data & ~IMS_PCU_GAMEPAD_MASK); if (pcu->gamepad) ims_pcu_gamepad_report(pcu, data); } static void ims_pcu_handle_response(struct ims_pcu *pcu) { switch (pcu->read_buf[0]) { case IMS_PCU_RSP_EVNT_BUTTONS: if (likely(pcu->setup_complete)) ims_pcu_report_events(pcu); break; default: /* * See if we got command completion. * If both the sequence and response code match save * the data and signal completion. */ if (pcu->read_buf[0] == pcu->expected_response && pcu->read_buf[1] == pcu->ack_id - 1) { memcpy(pcu->cmd_buf, pcu->read_buf, pcu->read_pos); pcu->cmd_buf_len = pcu->read_pos; complete(&pcu->cmd_done); } break; } } static void ims_pcu_process_data(struct ims_pcu *pcu, struct urb *urb) { int i; for (i = 0; i < urb->actual_length; i++) { u8 data = pcu->urb_in_buf[i]; /* Skip everything until we get Start Xmit */ if (!pcu->have_stx && data != IMS_PCU_PROTOCOL_STX) continue; if (pcu->have_dle) { pcu->have_dle = false; pcu->read_buf[pcu->read_pos++] = data; pcu->check_sum += data; continue; } switch (data) { case IMS_PCU_PROTOCOL_STX: if (pcu->have_stx) dev_warn(pcu->dev, "Unexpected STX at byte %d, discarding old data\n", pcu->read_pos); pcu->have_stx = true; pcu->have_dle = false; pcu->read_pos = 0; pcu->check_sum = 0; break; case IMS_PCU_PROTOCOL_DLE: pcu->have_dle = true; break; case IMS_PCU_PROTOCOL_ETX: if (pcu->read_pos < IMS_PCU_MIN_PACKET_LEN) { dev_warn(pcu->dev, "Short packet received (%d bytes), ignoring\n", pcu->read_pos); } else if (pcu->check_sum != 0) { dev_warn(pcu->dev, "Invalid checksum in packet (%d bytes), ignoring\n", pcu->read_pos); } else { ims_pcu_handle_response(pcu); } pcu->have_stx = false; pcu->have_dle = false; pcu->read_pos = 0; break; default: pcu->read_buf[pcu->read_pos++] = data; pcu->check_sum += data; break; } } } static bool ims_pcu_byte_needs_escape(u8 byte) { return byte == IMS_PCU_PROTOCOL_STX || byte == IMS_PCU_PROTOCOL_ETX || byte == IMS_PCU_PROTOCOL_DLE; } static int ims_pcu_send_cmd_chunk(struct ims_pcu *pcu, u8 command, int chunk, int len) { int error; error = usb_bulk_msg(pcu->udev, usb_sndbulkpipe(pcu->udev, pcu->ep_out->bEndpointAddress), pcu->urb_out_buf, len, NULL, IMS_PCU_CMD_WRITE_TIMEOUT); if (error < 0) { dev_dbg(pcu->dev, "Sending 0x%02x command failed at chunk %d: %d\n", command, chunk, error); return error; } return 0; } static int ims_pcu_send_command(struct ims_pcu *pcu, u8 command, const u8 *data, int len) { int count = 0; int chunk = 0; int delta; int i; int error; u8 csum = 0; u8 ack_id; pcu->urb_out_buf[count++] = IMS_PCU_PROTOCOL_STX; /* We know the command need not be escaped */ pcu->urb_out_buf[count++] = command; csum += command; ack_id = pcu->ack_id++; if (ack_id == 0xff) ack_id = pcu->ack_id++; if (ims_pcu_byte_needs_escape(ack_id)) pcu->urb_out_buf[count++] = IMS_PCU_PROTOCOL_DLE; pcu->urb_out_buf[count++] = ack_id; csum += ack_id; for (i = 0; i < len; i++) { delta = ims_pcu_byte_needs_escape(data[i]) ? 2 : 1; if (count + delta >= pcu->max_out_size) { error = ims_pcu_send_cmd_chunk(pcu, command, ++chunk, count); if (error) return error; count = 0; } if (delta == 2) pcu->urb_out_buf[count++] = IMS_PCU_PROTOCOL_DLE; pcu->urb_out_buf[count++] = data[i]; csum += data[i]; } csum = 1 + ~csum; delta = ims_pcu_byte_needs_escape(csum) ? 3 : 2; if (count + delta >= pcu->max_out_size) { error = ims_pcu_send_cmd_chunk(pcu, command, ++chunk, count); if (error) return error; count = 0; } if (delta == 3) pcu->urb_out_buf[count++] = IMS_PCU_PROTOCOL_DLE; pcu->urb_out_buf[count++] = csum; pcu->urb_out_buf[count++] = IMS_PCU_PROTOCOL_ETX; return ims_pcu_send_cmd_chunk(pcu, command, ++chunk, count); } static int __ims_pcu_execute_command(struct ims_pcu *pcu, u8 command, const void *data, size_t len, u8 expected_response, int response_time) { int error; pcu->expected_response = expected_response; init_completion(&pcu->cmd_done); error = ims_pcu_send_command(pcu, command, data, len); if (error) return error; if (expected_response && !wait_for_completion_timeout(&pcu->cmd_done, msecs_to_jiffies(response_time))) { dev_dbg(pcu->dev, "Command 0x%02x timed out\n", command); return -ETIMEDOUT; } return 0; } #define ims_pcu_execute_command(pcu, code, data, len) \ __ims_pcu_execute_command(pcu, \ IMS_PCU_CMD_##code, data, len, \ IMS_PCU_RSP_##code, \ IMS_PCU_CMD_RESPONSE_TIMEOUT) #define ims_pcu_execute_query(pcu, code) \ ims_pcu_execute_command(pcu, code, NULL, 0) /* Bootloader commands */ #define IMS_PCU_BL_CMD_QUERY_DEVICE 0xa1 #define IMS_PCU_BL_CMD_UNLOCK_CONFIG 0xa2 #define IMS_PCU_BL_CMD_ERASE_APP 0xa3 #define IMS_PCU_BL_CMD_PROGRAM_DEVICE 0xa4 #define IMS_PCU_BL_CMD_PROGRAM_COMPLETE 0xa5 #define IMS_PCU_BL_CMD_READ_APP 0xa6 #define IMS_PCU_BL_CMD_RESET_DEVICE 0xa7 #define IMS_PCU_BL_CMD_LAUNCH_APP 0xa8 /* Bootloader commands */ #define IMS_PCU_BL_RSP_QUERY_DEVICE 0xc1 #define IMS_PCU_BL_RSP_UNLOCK_CONFIG 0xc2 #define IMS_PCU_BL_RSP_ERASE_APP 0xc3 #define IMS_PCU_BL_RSP_PROGRAM_DEVICE 0xc4 #define IMS_PCU_BL_RSP_PROGRAM_COMPLETE 0xc5 #define IMS_PCU_BL_RSP_READ_APP 0xc6 #define IMS_PCU_BL_RSP_RESET_DEVICE 0 /* originally 0xa7 */ #define IMS_PCU_BL_RSP_LAUNCH_APP 0 /* originally 0xa8 */ #define IMS_PCU_BL_DATA_OFFSET 3 static int __ims_pcu_execute_bl_command(struct ims_pcu *pcu, u8 command, const void *data, size_t len, u8 expected_response, int response_time) { int error; pcu->cmd_buf[0] = command; if (data) memcpy(&pcu->cmd_buf[1], data, len); error = __ims_pcu_execute_command(pcu, IMS_PCU_CMD_BOOTLOADER, pcu->cmd_buf, len + 1, expected_response ? IMS_PCU_RSP_BOOTLOADER : 0, response_time); if (error) { dev_err(pcu->dev, "Failure when sending 0x%02x command to bootloader, error: %d\n", pcu->cmd_buf[0], error); return error; } if (expected_response && pcu->cmd_buf[2] != expected_response) { dev_err(pcu->dev, "Unexpected response from bootloader: 0x%02x, wanted 0x%02x\n", pcu->cmd_buf[2], expected_response); return -EINVAL; } return 0; } #define ims_pcu_execute_bl_command(pcu, code, data, len, timeout) \ __ims_pcu_execute_bl_command(pcu, \ IMS_PCU_BL_CMD_##code, data, len, \ IMS_PCU_BL_RSP_##code, timeout) \ #define IMS_PCU_INFO_PART_OFFSET 2 #define IMS_PCU_INFO_DOM_OFFSET 17 #define IMS_PCU_INFO_SERIAL_OFFSET 25 #define IMS_PCU_SET_INFO_SIZE 31 static int ims_pcu_get_info(struct ims_pcu *pcu) { int error; error = ims_pcu_execute_query(pcu, GET_INFO); if (error) { dev_err(pcu->dev, "GET_INFO command failed, error: %d\n", error); return error; } memcpy(pcu->part_number, &pcu->cmd_buf[IMS_PCU_INFO_PART_OFFSET], sizeof(pcu->part_number)); memcpy(pcu->date_of_manufacturing, &pcu->cmd_buf[IMS_PCU_INFO_DOM_OFFSET], sizeof(pcu->date_of_manufacturing)); memcpy(pcu->serial_number, &pcu->cmd_buf[IMS_PCU_INFO_SERIAL_OFFSET], sizeof(pcu->serial_number)); return 0; } static int ims_pcu_set_info(struct ims_pcu *pcu) { int error; memcpy(&pcu->cmd_buf[IMS_PCU_INFO_PART_OFFSET], pcu->part_number, sizeof(pcu->part_number)); memcpy(&pcu->cmd_buf[IMS_PCU_INFO_DOM_OFFSET], pcu->date_of_manufacturing, sizeof(pcu->date_of_manufacturing)); memcpy(&pcu->cmd_buf[IMS_PCU_INFO_SERIAL_OFFSET], pcu->serial_number, sizeof(pcu->serial_number)); error = ims_pcu_execute_command(pcu, SET_INFO, &pcu->cmd_buf[IMS_PCU_DATA_OFFSET], IMS_PCU_SET_INFO_SIZE); if (error) { dev_err(pcu->dev, "Failed to update device information, error: %d\n", error); return error; } return 0; } static int ims_pcu_switch_to_bootloader(struct ims_pcu *pcu) { int error; /* Execute jump to the bootoloader */ error = ims_pcu_execute_command(pcu, JUMP_TO_BTLDR, NULL, 0); if (error) { dev_err(pcu->dev, "Failure when sending JUMP TO BOOLTLOADER command, error: %d\n", error); return error; } return 0; } /********************************************************************* * Firmware Update handling * *********************************************************************/ #define IMS_PCU_FIRMWARE_NAME "imspcu.fw" struct ims_pcu_flash_fmt { __le32 addr; u8 len; u8 data[]; }; static unsigned int ims_pcu_count_fw_records(const struct firmware *fw) { const struct ihex_binrec *rec = (const struct ihex_binrec *)fw->data; unsigned int count = 0; while (rec) { count++; rec = ihex_next_binrec(rec); } return count; } static int ims_pcu_verify_block(struct ims_pcu *pcu, u32 addr, u8 len, const u8 *data) { struct ims_pcu_flash_fmt *fragment; int error; fragment = (void *)&pcu->cmd_buf[1]; put_unaligned_le32(addr, &fragment->addr); fragment->len = len; error = ims_pcu_execute_bl_command(pcu, READ_APP, NULL, 5, IMS_PCU_CMD_RESPONSE_TIMEOUT); if (error) { dev_err(pcu->dev, "Failed to retrieve block at 0x%08x, len %d, error: %d\n", addr, len, error); return error; } fragment = (void *)&pcu->cmd_buf[IMS_PCU_BL_DATA_OFFSET]; if (get_unaligned_le32(&fragment->addr) != addr || fragment->len != len) { dev_err(pcu->dev, "Wrong block when retrieving 0x%08x (0x%08x), len %d (%d)\n", addr, get_unaligned_le32(&fragment->addr), len, fragment->len); return -EINVAL; } if (memcmp(fragment->data, data, len)) { dev_err(pcu->dev, "Mismatch in block at 0x%08x, len %d\n", addr, len); return -EINVAL; } return 0; } static int ims_pcu_flash_firmware(struct ims_pcu *pcu, const struct firmware *fw, unsigned int n_fw_records) { const struct ihex_binrec *rec = (const struct ihex_binrec *)fw->data; struct ims_pcu_flash_fmt *fragment; unsigned int count = 0; u32 addr; u8 len; int error; error = ims_pcu_execute_bl_command(pcu, ERASE_APP, NULL, 0, 2000); if (error) { dev_err(pcu->dev, "Failed to erase application image, error: %d\n", error); return error; } while (rec) { /* * The firmware format is messed up for some reason. * The address twice that of what is needed for some * reason and we end up overwriting half of the data * with the next record. */ addr = be32_to_cpu(rec->addr) / 2; len = be16_to_cpu(rec->len); fragment = (void *)&pcu->cmd_buf[1]; put_unaligned_le32(addr, &fragment->addr); fragment->len = len; memcpy(fragment->data, rec->data, len); error = ims_pcu_execute_bl_command(pcu, PROGRAM_DEVICE, NULL, len + 5, IMS_PCU_CMD_RESPONSE_TIMEOUT); if (error) { dev_err(pcu->dev, "Failed to write block at 0x%08x, len %d, error: %d\n", addr, len, error); return error; } if (addr >= pcu->fw_start_addr && addr < pcu->fw_end_addr) { error = ims_pcu_verify_block(pcu, addr, len, rec->data); if (error) return error; } count++; pcu->update_firmware_status = (count * 100) / n_fw_records; rec = ihex_next_binrec(rec); } error = ims_pcu_execute_bl_command(pcu, PROGRAM_COMPLETE, NULL, 0, 2000); if (error) dev_err(pcu->dev, "Failed to send PROGRAM_COMPLETE, error: %d\n", error); return 0; } static int ims_pcu_handle_firmware_update(struct ims_pcu *pcu, const struct firmware *fw) { unsigned int n_fw_records; int retval; dev_info(pcu->dev, "Updating firmware %s, size: %zu\n", IMS_PCU_FIRMWARE_NAME, fw->size); n_fw_records = ims_pcu_count_fw_records(fw); retval = ims_pcu_flash_firmware(pcu, fw, n_fw_records); if (retval) goto out; retval = ims_pcu_execute_bl_command(pcu, LAUNCH_APP, NULL, 0, 0); if (retval) dev_err(pcu->dev, "Failed to start application image, error: %d\n", retval); out: pcu->update_firmware_status = retval; sysfs_notify(&pcu->dev->kobj, NULL, "update_firmware_status"); return retval; } static void ims_pcu_process_async_firmware(const struct firmware *fw, void *context) { struct ims_pcu *pcu = context; int error; if (!fw) { dev_err(pcu->dev, "Failed to get firmware %s\n", IMS_PCU_FIRMWARE_NAME); goto out; } error = ihex_validate_fw(fw); if (error) { dev_err(pcu->dev, "Firmware %s is invalid\n", IMS_PCU_FIRMWARE_NAME); goto out; } mutex_lock(&pcu->cmd_mutex); ims_pcu_handle_firmware_update(pcu, fw); mutex_unlock(&pcu->cmd_mutex); release_firmware(fw); out: complete(&pcu->async_firmware_done); } /********************************************************************* * Backlight LED device support * *********************************************************************/ #define IMS_PCU_MAX_BRIGHTNESS 31998 static int ims_pcu_backlight_set_brightness(struct led_classdev *cdev, enum led_brightness value) { struct ims_pcu_backlight *backlight = container_of(cdev, struct ims_pcu_backlight, cdev); struct ims_pcu *pcu = container_of(backlight, struct ims_pcu, backlight); __le16 br_val = cpu_to_le16(value); int error; mutex_lock(&pcu->cmd_mutex); error = ims_pcu_execute_command(pcu, SET_BRIGHTNESS, &br_val, sizeof(br_val)); if (error && error != -ENODEV) dev_warn(pcu->dev, "Failed to set desired brightness %u, error: %d\n", value, error); mutex_unlock(&pcu->cmd_mutex); return error; } static enum led_brightness ims_pcu_backlight_get_brightness(struct led_classdev *cdev) { struct ims_pcu_backlight *backlight = container_of(cdev, struct ims_pcu_backlight, cdev); struct ims_pcu *pcu = container_of(backlight, struct ims_pcu, backlight); int brightness; int error; mutex_lock(&pcu->cmd_mutex); error = ims_pcu_execute_query(pcu, GET_BRIGHTNESS); if (error) { dev_warn(pcu->dev, "Failed to get current brightness, error: %d\n", error); /* Assume the LED is OFF */ brightness = LED_OFF; } else { brightness = get_unaligned_le16(&pcu->cmd_buf[IMS_PCU_DATA_OFFSET]); } mutex_unlock(&pcu->cmd_mutex); return brightness; } static int ims_pcu_setup_backlight(struct ims_pcu *pcu) { struct ims_pcu_backlight *backlight = &pcu->backlight; int error; snprintf(backlight->name, sizeof(backlight->name), "pcu%d::kbd_backlight", pcu->device_no); backlight->cdev.name = backlight->name; backlight->cdev.max_brightness = IMS_PCU_MAX_BRIGHTNESS; backlight->cdev.brightness_get = ims_pcu_backlight_get_brightness; backlight->cdev.brightness_set_blocking = ims_pcu_backlight_set_brightness; error = led_classdev_register(pcu->dev, &backlight->cdev); if (error) { dev_err(pcu->dev, "Failed to register backlight LED device, error: %d\n", error); return error; } return 0; } static void ims_pcu_destroy_backlight(struct ims_pcu *pcu) { struct ims_pcu_backlight *backlight = &pcu->backlight; led_classdev_unregister(&backlight->cdev); } /********************************************************************* * Sysfs attributes handling * *********************************************************************/ struct ims_pcu_attribute { struct device_attribute dattr; size_t field_offset; int field_length; }; static ssize_t ims_pcu_attribute_show(struct device *dev, struct device_attribute *dattr, char *buf) { struct usb_interface *intf = to_usb_interface(dev); struct ims_pcu *pcu = usb_get_intfdata(intf); struct ims_pcu_attribute *attr = container_of(dattr, struct ims_pcu_attribute, dattr); char *field = (char *)pcu + attr->field_offset; return scnprintf(buf, PAGE_SIZE, "%.*s\n", attr->field_length, field); } static ssize_t ims_pcu_attribute_store(struct device *dev, struct device_attribute *dattr, const char *buf, size_t count) { struct usb_interface *intf = to_usb_interface(dev); struct ims_pcu *pcu = usb_get_intfdata(intf); struct ims_pcu_attribute *attr = container_of(dattr, struct ims_pcu_attribute, dattr); char *field = (char *)pcu + attr->field_offset; size_t data_len; int error; if (count > attr->field_length) return -EINVAL; data_len = strnlen(buf, attr->field_length); if (data_len > attr->field_length) return -EINVAL; error = mutex_lock_interruptible(&pcu->cmd_mutex); if (error) return error; memset(field, 0, attr->field_length); memcpy(field, buf, data_len); error = ims_pcu_set_info(pcu); /* * Even if update failed, let's fetch the info again as we just * clobbered one of the fields. */ ims_pcu_get_info(pcu); mutex_unlock(&pcu->cmd_mutex); return error < 0 ? error : count; } #define IMS_PCU_ATTR(_field, _mode) \ struct ims_pcu_attribute ims_pcu_attr_##_field = { \ .dattr = __ATTR(_field, _mode, \ ims_pcu_attribute_show, \ ims_pcu_attribute_store), \ .field_offset = offsetof(struct ims_pcu, _field), \ .field_length = sizeof(((struct ims_pcu *)NULL)->_field), \ } #define IMS_PCU_RO_ATTR(_field) \ IMS_PCU_ATTR(_field, S_IRUGO) #define IMS_PCU_RW_ATTR(_field) \ IMS_PCU_ATTR(_field, S_IRUGO | S_IWUSR) static IMS_PCU_RW_ATTR(part_number); static IMS_PCU_RW_ATTR(serial_number); static IMS_PCU_RW_ATTR(date_of_manufacturing); static IMS_PCU_RO_ATTR(fw_version); static IMS_PCU_RO_ATTR(bl_version); static IMS_PCU_RO_ATTR(reset_reason); static ssize_t ims_pcu_reset_device(struct device *dev, struct device_attribute *dattr, const char *buf, size_t count) { static const u8 reset_byte = 1; struct usb_interface *intf = to_usb_interface(dev); struct ims_pcu *pcu = usb_get_intfdata(intf); int value; int error; error = kstrtoint(buf, 0, &value); if (error) return error; if (value != 1) return -EINVAL; dev_info(pcu->dev, "Attempting to reset device\n"); error = ims_pcu_execute_command(pcu, PCU_RESET, &reset_byte, 1); if (error) { dev_info(pcu->dev, "Failed to reset device, error: %d\n", error); return error; } return count; } static DEVICE_ATTR(reset_device, S_IWUSR, NULL, ims_pcu_reset_device); static ssize_t ims_pcu_update_firmware_store(struct device *dev, struct device_attribute *dattr, const char *buf, size_t count) { struct usb_interface *intf = to_usb_interface(dev); struct ims_pcu *pcu = usb_get_intfdata(intf); const struct firmware *fw = NULL; int value; int error; error = kstrtoint(buf, 0, &value); if (error) return error; if (value != 1) return -EINVAL; error = mutex_lock_interruptible(&pcu->cmd_mutex); if (error) return error; error = request_ihex_firmware(&fw, IMS_PCU_FIRMWARE_NAME, pcu->dev); if (error) { dev_err(pcu->dev, "Failed to request firmware %s, error: %d\n", IMS_PCU_FIRMWARE_NAME, error); goto out; } /* * If we are already in bootloader mode we can proceed with * flashing the firmware. * * If we are in application mode, then we need to switch into * bootloader mode, which will cause the device to disconnect * and reconnect as different device. */ if (pcu->bootloader_mode) error = ims_pcu_handle_firmware_update(pcu, fw); else error = ims_pcu_switch_to_bootloader(pcu); release_firmware(fw); out: mutex_unlock(&pcu->cmd_mutex); return error ?: count; } static DEVICE_ATTR(update_firmware, S_IWUSR, NULL, ims_pcu_update_firmware_store); static ssize_t ims_pcu_update_firmware_status_show(struct device *dev, struct device_attribute *dattr, char *buf) { struct usb_interface *intf = to_usb_interface(dev); struct ims_pcu *pcu = usb_get_intfdata(intf); return scnprintf(buf, PAGE_SIZE, "%d\n", pcu->update_firmware_status); } static DEVICE_ATTR(update_firmware_status, S_IRUGO, ims_pcu_update_firmware_status_show, NULL); static struct attribute *ims_pcu_attrs[] = { &ims_pcu_attr_part_number.dattr.attr, &ims_pcu_attr_serial_number.dattr.attr, &ims_pcu_attr_date_of_manufacturing.dattr.attr, &ims_pcu_attr_fw_version.dattr.attr, &ims_pcu_attr_bl_version.dattr.attr, &ims_pcu_attr_reset_reason.dattr.attr, &dev_attr_reset_device.attr, &dev_attr_update_firmware.attr, &dev_attr_update_firmware_status.attr, NULL }; static umode_t ims_pcu_is_attr_visible(struct kobject *kobj, struct attribute *attr, int n) { struct device *dev = kobj_to_dev(kobj); struct usb_interface *intf = to_usb_interface(dev); struct ims_pcu *pcu = usb_get_intfdata(intf); umode_t mode = attr->mode; if (pcu->bootloader_mode) { if (attr != &dev_attr_update_firmware_status.attr && attr != &dev_attr_update_firmware.attr && attr != &dev_attr_reset_device.attr) { mode = 0; } } else { if (attr == &dev_attr_update_firmware_status.attr) mode = 0; } return mode; } static const struct attribute_group ims_pcu_attr_group = { .is_visible = ims_pcu_is_attr_visible, .attrs = ims_pcu_attrs, }; /* Support for a separate OFN attribute group */ #define OFN_REG_RESULT_OFFSET 2 static int ims_pcu_read_ofn_config(struct ims_pcu *pcu, u8 addr, u8 *data) { int error; s16 result; error = ims_pcu_execute_command(pcu, OFN_GET_CONFIG, &addr, sizeof(addr)); if (error) return error; result = (s16)get_unaligned_le16(pcu->cmd_buf + OFN_REG_RESULT_OFFSET); if (result < 0) return -EIO; /* We only need LSB */ *data = pcu->cmd_buf[OFN_REG_RESULT_OFFSET]; return 0; } static int ims_pcu_write_ofn_config(struct ims_pcu *pcu, u8 addr, u8 data) { u8 buffer[] = { addr, data }; int error; s16 result; error = ims_pcu_execute_command(pcu, OFN_SET_CONFIG, &buffer, sizeof(buffer)); if (error) return error; result = (s16)get_unaligned_le16(pcu->cmd_buf + OFN_REG_RESULT_OFFSET); if (result < 0) return -EIO; return 0; } static ssize_t ims_pcu_ofn_reg_data_show(struct device *dev, struct device_attribute *dattr, char *buf) { struct usb_interface *intf = to_usb_interface(dev); struct ims_pcu *pcu = usb_get_intfdata(intf); int error; u8 data; mutex_lock(&pcu->cmd_mutex); error = ims_pcu_read_ofn_config(pcu, pcu->ofn_reg_addr, &data); mutex_unlock(&pcu->cmd_mutex); if (error) return error; return scnprintf(buf, PAGE_SIZE, "%x\n", data); } static ssize_t ims_pcu_ofn_reg_data_store(struct device *dev, struct device_attribute *dattr, const char *buf, size_t count) { struct usb_interface *intf = to_usb_interface(dev); struct ims_pcu *pcu = usb_get_intfdata(intf); int error; u8 value; error = kstrtou8(buf, 0, &value); if (error) return error; mutex_lock(&pcu->cmd_mutex); error = ims_pcu_write_ofn_config(pcu, pcu->ofn_reg_addr, value); mutex_unlock(&pcu->cmd_mutex); return error ?: count; } static DEVICE_ATTR(reg_data, S_IRUGO | S_IWUSR, ims_pcu_ofn_reg_data_show, ims_pcu_ofn_reg_data_store); static ssize_t ims_pcu_ofn_reg_addr_show(struct device *dev, struct device_attribute *dattr, char *buf) { struct usb_interface *intf = to_usb_interface(dev); struct ims_pcu *pcu = usb_get_intfdata(intf); int error; mutex_lock(&pcu->cmd_mutex); error = scnprintf(buf, PAGE_SIZE, "%x\n", pcu->ofn_reg_addr); mutex_unlock(&pcu->cmd_mutex); return error; } static ssize_t ims_pcu_ofn_reg_addr_store(struct device *dev, struct device_attribute *dattr, const char *buf, size_t count) { struct usb_interface *intf = to_usb_interface(dev); struct ims_pcu *pcu = usb_get_intfdata(intf); int error; u8 value; error = kstrtou8(buf, 0, &value); if (error) return error; mutex_lock(&pcu->cmd_mutex); pcu->ofn_reg_addr = value; mutex_unlock(&pcu->cmd_mutex); return count; } static DEVICE_ATTR(reg_addr, S_IRUGO | S_IWUSR, ims_pcu_ofn_reg_addr_show, ims_pcu_ofn_reg_addr_store); struct ims_pcu_ofn_bit_attribute { struct device_attribute dattr; u8 addr; u8 nr; }; static ssize_t ims_pcu_ofn_bit_show(struct device *dev, struct device_attribute *dattr, char *buf) { struct usb_interface *intf = to_usb_interface(dev); struct ims_pcu *pcu = usb_get_intfdata(intf); struct ims_pcu_ofn_bit_attribute *attr = container_of(dattr, struct ims_pcu_ofn_bit_attribute, dattr); int error; u8 data; mutex_lock(&pcu->cmd_mutex); error = ims_pcu_read_ofn_config(pcu, attr->addr, &data); mutex_unlock(&pcu->cmd_mutex); if (error) return error; return scnprintf(buf, PAGE_SIZE, "%d\n", !!(data & (1 << attr->nr))); } static ssize_t ims_pcu_ofn_bit_store(struct device *dev, struct device_attribute *dattr, const char *buf, size_t count) { struct usb_interface *intf = to_usb_interface(dev); struct ims_pcu *pcu = usb_get_intfdata(intf); struct ims_pcu_ofn_bit_attribute *attr = container_of(dattr, struct ims_pcu_ofn_bit_attribute, dattr); int error; int value; u8 data; error = kstrtoint(buf, 0, &value); if (error) return error; if (value > 1) return -EINVAL; mutex_lock(&pcu->cmd_mutex); error = ims_pcu_read_ofn_config(pcu, attr->addr, &data); if (!error) { if (value) data |= 1U << attr->nr; else data &= ~(1U << attr->nr); error = ims_pcu_write_ofn_config(pcu, attr->addr, data); } mutex_unlock(&pcu->cmd_mutex); return error ?: count; } #define IMS_PCU_OFN_BIT_ATTR(_field, _addr, _nr) \ struct ims_pcu_ofn_bit_attribute ims_pcu_ofn_attr_##_field = { \ .dattr = __ATTR(_field, S_IWUSR | S_IRUGO, \ ims_pcu_ofn_bit_show, ims_pcu_ofn_bit_store), \ .addr = _addr, \ .nr = _nr, \ } static IMS_PCU_OFN_BIT_ATTR(engine_enable, 0x60, 7); static IMS_PCU_OFN_BIT_ATTR(speed_enable, 0x60, 6); static IMS_PCU_OFN_BIT_ATTR(assert_enable, 0x60, 5); static IMS_PCU_OFN_BIT_ATTR(xyquant_enable, 0x60, 4); static IMS_PCU_OFN_BIT_ATTR(xyscale_enable, 0x60, 1); static IMS_PCU_OFN_BIT_ATTR(scale_x2, 0x63, 6); static IMS_PCU_OFN_BIT_ATTR(scale_y2, 0x63, 7); static struct attribute *ims_pcu_ofn_attrs[] = { &dev_attr_reg_data.attr, &dev_attr_reg_addr.attr, &ims_pcu_ofn_attr_engine_enable.dattr.attr, &ims_pcu_ofn_attr_speed_enable.dattr.attr, &ims_pcu_ofn_attr_assert_enable.dattr.attr, &ims_pcu_ofn_attr_xyquant_enable.dattr.attr, &ims_pcu_ofn_attr_xyscale_enable.dattr.attr, &ims_pcu_ofn_attr_scale_x2.dattr.attr, &ims_pcu_ofn_attr_scale_y2.dattr.attr, NULL }; static const struct attribute_group ims_pcu_ofn_attr_group = { .name = "ofn", .attrs = ims_pcu_ofn_attrs, }; static void ims_pcu_irq(struct urb *urb) { struct ims_pcu *pcu = urb->context; int retval, status; status = urb->status; switch (status) { case 0: /* success */ break; case -ECONNRESET: case -ENOENT: case -ESHUTDOWN: /* this urb is terminated, clean up */ dev_dbg(pcu->dev, "%s - urb shutting down with status: %d\n", __func__, status); return; default: dev_dbg(pcu->dev, "%s - nonzero urb status received: %d\n", __func__, status); goto exit; } dev_dbg(pcu->dev, "%s: received %d: %*ph\n", __func__, urb->actual_length, urb->actual_length, pcu->urb_in_buf); if (urb == pcu->urb_in) ims_pcu_process_data(pcu, urb); exit: retval = usb_submit_urb(urb, GFP_ATOMIC); if (retval && retval != -ENODEV) dev_err(pcu->dev, "%s - usb_submit_urb failed with result %d\n", __func__, retval); } static int ims_pcu_buffers_alloc(struct ims_pcu *pcu) { int error; pcu->urb_in_buf = usb_alloc_coherent(pcu->udev, pcu->max_in_size, GFP_KERNEL, &pcu->read_dma); if (!pcu->urb_in_buf) { dev_err(pcu->dev, "Failed to allocate memory for read buffer\n"); return -ENOMEM; } pcu->urb_in = usb_alloc_urb(0, GFP_KERNEL); if (!pcu->urb_in) { dev_err(pcu->dev, "Failed to allocate input URB\n"); error = -ENOMEM; goto err_free_urb_in_buf; } pcu->urb_in->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; pcu->urb_in->transfer_dma = pcu->read_dma; usb_fill_bulk_urb(pcu->urb_in, pcu->udev, usb_rcvbulkpipe(pcu->udev, pcu->ep_in->bEndpointAddress), pcu->urb_in_buf, pcu->max_in_size, ims_pcu_irq, pcu); /* * We are using usb_bulk_msg() for sending so there is no point * in allocating memory with usb_alloc_coherent(). */ pcu->urb_out_buf = kmalloc(pcu->max_out_size, GFP_KERNEL); if (!pcu->urb_out_buf) { dev_err(pcu->dev, "Failed to allocate memory for write buffer\n"); error = -ENOMEM; goto err_free_in_urb; } pcu->urb_ctrl_buf = usb_alloc_coherent(pcu->udev, pcu->max_ctrl_size, GFP_KERNEL, &pcu->ctrl_dma); if (!pcu->urb_ctrl_buf) { dev_err(pcu->dev, "Failed to allocate memory for read buffer\n"); error = -ENOMEM; goto err_free_urb_out_buf; } pcu->urb_ctrl = usb_alloc_urb(0, GFP_KERNEL); if (!pcu->urb_ctrl) { dev_err(pcu->dev, "Failed to allocate input URB\n"); error = -ENOMEM; goto err_free_urb_ctrl_buf; } pcu->urb_ctrl->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; pcu->urb_ctrl->transfer_dma = pcu->ctrl_dma; usb_fill_int_urb(pcu->urb_ctrl, pcu->udev, usb_rcvintpipe(pcu->udev, pcu->ep_ctrl->bEndpointAddress), pcu->urb_ctrl_buf, pcu->max_ctrl_size, ims_pcu_irq, pcu, pcu->ep_ctrl->bInterval); return 0; err_free_urb_ctrl_buf: usb_free_coherent(pcu->udev, pcu->max_ctrl_size, pcu->urb_ctrl_buf, pcu->ctrl_dma); err_free_urb_out_buf: kfree(pcu->urb_out_buf); err_free_in_urb: usb_free_urb(pcu->urb_in); err_free_urb_in_buf: usb_free_coherent(pcu->udev, pcu->max_in_size, pcu->urb_in_buf, pcu->read_dma); return error; } static void ims_pcu_buffers_free(struct ims_pcu *pcu) { usb_kill_urb(pcu->urb_in); usb_free_urb(pcu->urb_in); usb_free_coherent(pcu->udev, pcu->max_out_size, pcu->urb_in_buf, pcu->read_dma); kfree(pcu->urb_out_buf); usb_kill_urb(pcu->urb_ctrl); usb_free_urb(pcu->urb_ctrl); usb_free_coherent(pcu->udev, pcu->max_ctrl_size, pcu->urb_ctrl_buf, pcu->ctrl_dma); } static const struct usb_cdc_union_desc * ims_pcu_get_cdc_union_desc(struct usb_interface *intf) { const void *buf = intf->altsetting->extra; size_t buflen = intf->altsetting->extralen; struct usb_cdc_union_desc *union_desc; if (!buf) { dev_err(&intf->dev, "Missing descriptor data\n"); return NULL; } if (!buflen) { dev_err(&intf->dev, "Zero length descriptor\n"); return NULL; } while (buflen >= sizeof(*union_desc)) { union_desc = (struct usb_cdc_union_desc *)buf; if (union_desc->bLength > buflen) { dev_err(&intf->dev, "Too large descriptor\n"); return NULL; } if (union_desc->bDescriptorType == USB_DT_CS_INTERFACE && union_desc->bDescriptorSubType == USB_CDC_UNION_TYPE) { dev_dbg(&intf->dev, "Found union header\n"); if (union_desc->bLength >= sizeof(*union_desc)) return union_desc; dev_err(&intf->dev, "Union descriptor too short (%d vs %zd)\n", union_desc->bLength, sizeof(*union_desc)); return NULL; } buflen -= union_desc->bLength; buf += union_desc->bLength; } dev_err(&intf->dev, "Missing CDC union descriptor\n"); return NULL; } static int ims_pcu_parse_cdc_data(struct usb_interface *intf, struct ims_pcu *pcu) { const struct usb_cdc_union_desc *union_desc; struct usb_host_interface *alt; union_desc = ims_pcu_get_cdc_union_desc(intf); if (!union_desc) return -EINVAL; pcu->ctrl_intf = usb_ifnum_to_if(pcu->udev, union_desc->bMasterInterface0); if (!pcu->ctrl_intf) return -EINVAL; alt = pcu->ctrl_intf->cur_altsetting; if (alt->desc.bNumEndpoints < 1) return -ENODEV; pcu->ep_ctrl = &alt->endpoint[0].desc; pcu->max_ctrl_size = usb_endpoint_maxp(pcu->ep_ctrl); pcu->data_intf = usb_ifnum_to_if(pcu->udev, union_desc->bSlaveInterface0); if (!pcu->data_intf) return -EINVAL; alt = pcu->data_intf->cur_altsetting; if (alt->desc.bNumEndpoints != 2) { dev_err(pcu->dev, "Incorrect number of endpoints on data interface (%d)\n", alt->desc.bNumEndpoints); return -EINVAL; } pcu->ep_out = &alt->endpoint[0].desc; if (!usb_endpoint_is_bulk_out(pcu->ep_out)) { dev_err(pcu->dev, "First endpoint on data interface is not BULK OUT\n"); return -EINVAL; } pcu->max_out_size = usb_endpoint_maxp(pcu->ep_out); if (pcu->max_out_size < 8) { dev_err(pcu->dev, "Max OUT packet size is too small (%zd)\n", pcu->max_out_size); return -EINVAL; } pcu->ep_in = &alt->endpoint[1].desc; if (!usb_endpoint_is_bulk_in(pcu->ep_in)) { dev_err(pcu->dev, "Second endpoint on data interface is not BULK IN\n"); return -EINVAL; } pcu->max_in_size = usb_endpoint_maxp(pcu->ep_in); if (pcu->max_in_size < 8) { dev_err(pcu->dev, "Max IN packet size is too small (%zd)\n", pcu->max_in_size); return -EINVAL; } return 0; } static int ims_pcu_start_io(struct ims_pcu *pcu) { int error; error = usb_submit_urb(pcu->urb_ctrl, GFP_KERNEL); if (error) { dev_err(pcu->dev, "Failed to start control IO - usb_submit_urb failed with result: %d\n", error); return -EIO; } error = usb_submit_urb(pcu->urb_in, GFP_KERNEL); if (error) { dev_err(pcu->dev, "Failed to start IO - usb_submit_urb failed with result: %d\n", error); usb_kill_urb(pcu->urb_ctrl); return -EIO; } return 0; } static void ims_pcu_stop_io(struct ims_pcu *pcu) { usb_kill_urb(pcu->urb_in); usb_kill_urb(pcu->urb_ctrl); } static int ims_pcu_line_setup(struct ims_pcu *pcu) { struct usb_host_interface *interface = pcu->ctrl_intf->cur_altsetting; struct usb_cdc_line_coding *line = (void *)pcu->cmd_buf; int error; memset(line, 0, sizeof(*line)); line->dwDTERate = cpu_to_le32(57600); line->bDataBits = 8; error = usb_control_msg(pcu->udev, usb_sndctrlpipe(pcu->udev, 0), USB_CDC_REQ_SET_LINE_CODING, USB_TYPE_CLASS | USB_RECIP_INTERFACE, 0, interface->desc.bInterfaceNumber, line, sizeof(struct usb_cdc_line_coding), 5000); if (error < 0) { dev_err(pcu->dev, "Failed to set line coding, error: %d\n", error); return error; } error = usb_control_msg(pcu->udev, usb_sndctrlpipe(pcu->udev, 0), USB_CDC_REQ_SET_CONTROL_LINE_STATE, USB_TYPE_CLASS | USB_RECIP_INTERFACE, 0x03, interface->desc.bInterfaceNumber, NULL, 0, 5000); if (error < 0) { dev_err(pcu->dev, "Failed to set line state, error: %d\n", error); return error; } return 0; } static int ims_pcu_get_device_info(struct ims_pcu *pcu) { int error; error = ims_pcu_get_info(pcu); if (error) return error; error = ims_pcu_execute_query(pcu, GET_FW_VERSION); if (error) { dev_err(pcu->dev, "GET_FW_VERSION command failed, error: %d\n", error); return error; } snprintf(pcu->fw_version, sizeof(pcu->fw_version), "%02d%02d%02d%02d.%c%c", pcu->cmd_buf[2], pcu->cmd_buf[3], pcu->cmd_buf[4], pcu->cmd_buf[5], pcu->cmd_buf[6], pcu->cmd_buf[7]); error = ims_pcu_execute_query(pcu, GET_BL_VERSION); if (error) { dev_err(pcu->dev, "GET_BL_VERSION command failed, error: %d\n", error); return error; } snprintf(pcu->bl_version, sizeof(pcu->bl_version), "%02d%02d%02d%02d.%c%c", pcu->cmd_buf[2], pcu->cmd_buf[3], pcu->cmd_buf[4], pcu->cmd_buf[5], pcu->cmd_buf[6], pcu->cmd_buf[7]); error = ims_pcu_execute_query(pcu, RESET_REASON); if (error) { dev_err(pcu->dev, "RESET_REASON command failed, error: %d\n", error); return error; } snprintf(pcu->reset_reason, sizeof(pcu->reset_reason), "%02x", pcu->cmd_buf[IMS_PCU_DATA_OFFSET]); dev_dbg(pcu->dev, "P/N: %s, MD: %s, S/N: %s, FW: %s, BL: %s, RR: %s\n", pcu->part_number, pcu->date_of_manufacturing, pcu->serial_number, pcu->fw_version, pcu->bl_version, pcu->reset_reason); return 0; } static int ims_pcu_identify_type(struct ims_pcu *pcu, u8 *device_id) { int error; error = ims_pcu_execute_query(pcu, GET_DEVICE_ID); if (error) { dev_err(pcu->dev, "GET_DEVICE_ID command failed, error: %d\n", error); return error; } *device_id = pcu->cmd_buf[IMS_PCU_DATA_OFFSET]; dev_dbg(pcu->dev, "Detected device ID: %d\n", *device_id); return 0; } static int ims_pcu_init_application_mode(struct ims_pcu *pcu) { static atomic_t device_no = ATOMIC_INIT(-1); const struct ims_pcu_device_info *info; int error; error = ims_pcu_get_device_info(pcu); if (error) { /* Device does not respond to basic queries, hopeless */ return error; } error = ims_pcu_identify_type(pcu, &pcu->device_id); if (error) { dev_err(pcu->dev, "Failed to identify device, error: %d\n", error); /* * Do not signal error, but do not create input nor * backlight devices either, let userspace figure this * out (flash a new firmware?). */ return 0; } if (pcu->device_id >= ARRAY_SIZE(ims_pcu_device_info) || !ims_pcu_device_info[pcu->device_id].keymap) { dev_err(pcu->dev, "Device ID %d is not valid\n", pcu->device_id); /* Same as above, punt to userspace */ return 0; } /* Device appears to be operable, complete initialization */ pcu->device_no = atomic_inc_return(&device_no); /* * PCU-B devices, both GEN_1 and GEN_2 do not have OFN sensor */ if (pcu->device_id != IMS_PCU_PCU_B_DEVICE_ID) { error = sysfs_create_group(&pcu->dev->kobj, &ims_pcu_ofn_attr_group); if (error) return error; } error = ims_pcu_setup_backlight(pcu); if (error) return error; info = &ims_pcu_device_info[pcu->device_id]; error = ims_pcu_setup_buttons(pcu, info->keymap, info->keymap_len); if (error) goto err_destroy_backlight; if (info->has_gamepad) { error = ims_pcu_setup_gamepad(pcu); if (error) goto err_destroy_buttons; } pcu->setup_complete = true; return 0; err_destroy_buttons: ims_pcu_destroy_buttons(pcu); err_destroy_backlight: ims_pcu_destroy_backlight(pcu); return error; } static void ims_pcu_destroy_application_mode(struct ims_pcu *pcu) { if (pcu->setup_complete) { pcu->setup_complete = false; mb(); /* make sure flag setting is not reordered */ if (pcu->gamepad) ims_pcu_destroy_gamepad(pcu); ims_pcu_destroy_buttons(pcu); ims_pcu_destroy_backlight(pcu); if (pcu->device_id != IMS_PCU_PCU_B_DEVICE_ID) sysfs_remove_group(&pcu->dev->kobj, &ims_pcu_ofn_attr_group); } } static int ims_pcu_init_bootloader_mode(struct ims_pcu *pcu) { int error; error = ims_pcu_execute_bl_command(pcu, QUERY_DEVICE, NULL, 0, IMS_PCU_CMD_RESPONSE_TIMEOUT); if (error) { dev_err(pcu->dev, "Bootloader does not respond, aborting\n"); return error; } pcu->fw_start_addr = get_unaligned_le32(&pcu->cmd_buf[IMS_PCU_DATA_OFFSET + 11]); pcu->fw_end_addr = get_unaligned_le32(&pcu->cmd_buf[IMS_PCU_DATA_OFFSET + 15]); dev_info(pcu->dev, "Device is in bootloader mode (addr 0x%08x-0x%08x), requesting firmware\n", pcu->fw_start_addr, pcu->fw_end_addr); error = request_firmware_nowait(THIS_MODULE, true, IMS_PCU_FIRMWARE_NAME, pcu->dev, GFP_KERNEL, pcu, ims_pcu_process_async_firmware); if (error) { /* This error is not fatal, let userspace have another chance */ complete(&pcu->async_firmware_done); } return 0; } static void ims_pcu_destroy_bootloader_mode(struct ims_pcu *pcu) { /* Make sure our initial firmware request has completed */ wait_for_completion(&pcu->async_firmware_done); } #define IMS_PCU_APPLICATION_MODE 0 #define IMS_PCU_BOOTLOADER_MODE 1 static struct usb_driver ims_pcu_driver; static int ims_pcu_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev(intf); struct ims_pcu *pcu; int error; pcu = kzalloc(sizeof(struct ims_pcu), GFP_KERNEL); if (!pcu) return -ENOMEM; pcu->dev = &intf->dev; pcu->udev = udev; pcu->bootloader_mode = id->driver_info == IMS_PCU_BOOTLOADER_MODE; mutex_init(&pcu->cmd_mutex); init_completion(&pcu->cmd_done); init_completion(&pcu->async_firmware_done); error = ims_pcu_parse_cdc_data(intf, pcu); if (error) goto err_free_mem; error = usb_driver_claim_interface(&ims_pcu_driver, pcu->data_intf, pcu); if (error) { dev_err(&intf->dev, "Unable to claim corresponding data interface: %d\n", error); goto err_free_mem; } usb_set_intfdata(pcu->ctrl_intf, pcu); error = ims_pcu_buffers_alloc(pcu); if (error) goto err_unclaim_intf; error = ims_pcu_start_io(pcu); if (error) goto err_free_buffers; error = ims_pcu_line_setup(pcu); if (error) goto err_stop_io; error = sysfs_create_group(&intf->dev.kobj, &ims_pcu_attr_group); if (error) goto err_stop_io; error = pcu->bootloader_mode ? ims_pcu_init_bootloader_mode(pcu) : ims_pcu_init_application_mode(pcu); if (error) goto err_remove_sysfs; return 0; err_remove_sysfs: sysfs_remove_group(&intf->dev.kobj, &ims_pcu_attr_group); err_stop_io: ims_pcu_stop_io(pcu); err_free_buffers: ims_pcu_buffers_free(pcu); err_unclaim_intf: usb_driver_release_interface(&ims_pcu_driver, pcu->data_intf); err_free_mem: kfree(pcu); return error; } static void ims_pcu_disconnect(struct usb_interface *intf) { struct ims_pcu *pcu = usb_get_intfdata(intf); struct usb_host_interface *alt = intf->cur_altsetting; usb_set_intfdata(intf, NULL); /* * See if we are dealing with control or data interface. The cleanup * happens when we unbind primary (control) interface. */ if (alt->desc.bInterfaceClass != USB_CLASS_COMM) return; sysfs_remove_group(&intf->dev.kobj, &ims_pcu_attr_group); ims_pcu_stop_io(pcu); if (pcu->bootloader_mode) ims_pcu_destroy_bootloader_mode(pcu); else ims_pcu_destroy_application_mode(pcu); ims_pcu_buffers_free(pcu); kfree(pcu); } #ifdef CONFIG_PM static int ims_pcu_suspend(struct usb_interface *intf, pm_message_t message) { struct ims_pcu *pcu = usb_get_intfdata(intf); struct usb_host_interface *alt = intf->cur_altsetting; if (alt->desc.bInterfaceClass == USB_CLASS_COMM) ims_pcu_stop_io(pcu); return 0; } static int ims_pcu_resume(struct usb_interface *intf) { struct ims_pcu *pcu = usb_get_intfdata(intf); struct usb_host_interface *alt = intf->cur_altsetting; int retval = 0; if (alt->desc.bInterfaceClass == USB_CLASS_COMM) { retval = ims_pcu_start_io(pcu); if (retval == 0) retval = ims_pcu_line_setup(pcu); } return retval; } #endif static const struct usb_device_id ims_pcu_id_table[] = { { USB_DEVICE_AND_INTERFACE_INFO(0x04d8, 0x0082, USB_CLASS_COMM, USB_CDC_SUBCLASS_ACM, USB_CDC_ACM_PROTO_AT_V25TER), .driver_info = IMS_PCU_APPLICATION_MODE, }, { USB_DEVICE_AND_INTERFACE_INFO(0x04d8, 0x0083, USB_CLASS_COMM, USB_CDC_SUBCLASS_ACM, USB_CDC_ACM_PROTO_AT_V25TER), .driver_info = IMS_PCU_BOOTLOADER_MODE, }, { } }; static struct usb_driver ims_pcu_driver = { .name = "ims_pcu", .id_table = ims_pcu_id_table, .probe = ims_pcu_probe, .disconnect = ims_pcu_disconnect, #ifdef CONFIG_PM .suspend = ims_pcu_suspend, .resume = ims_pcu_resume, .reset_resume = ims_pcu_resume, #endif }; module_usb_driver(ims_pcu_driver); MODULE_DESCRIPTION("IMS Passenger Control Unit driver"); MODULE_AUTHOR("Dmitry Torokhov "); MODULE_LICENSE("GPL");