// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2019 HiSilicon Limited. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "sec.h" #define SEC_VF_NUM 63 #define SEC_QUEUE_NUM_V1 4096 #define SEC_PF_PCI_DEVICE_ID 0xa255 #define SEC_VF_PCI_DEVICE_ID 0xa256 #define SEC_BD_ERR_CHK_EN0 0xEFFFFFFF #define SEC_BD_ERR_CHK_EN1 0x7ffff7fd #define SEC_BD_ERR_CHK_EN3 0xffffbfff #define SEC_SQE_SIZE 128 #define SEC_SQ_SIZE (SEC_SQE_SIZE * QM_Q_DEPTH) #define SEC_PF_DEF_Q_NUM 256 #define SEC_PF_DEF_Q_BASE 0 #define SEC_CTX_Q_NUM_DEF 2 #define SEC_CTX_Q_NUM_MAX 32 #define SEC_CTRL_CNT_CLR_CE 0x301120 #define SEC_CTRL_CNT_CLR_CE_BIT BIT(0) #define SEC_CORE_INT_SOURCE 0x301010 #define SEC_CORE_INT_MASK 0x301000 #define SEC_CORE_INT_STATUS 0x301008 #define SEC_CORE_SRAM_ECC_ERR_INFO 0x301C14 #define SEC_ECC_NUM 16 #define SEC_ECC_MASH 0xFF #define SEC_CORE_INT_DISABLE 0x0 #define SEC_CORE_INT_ENABLE 0x7c1ff #define SEC_CORE_INT_CLEAR 0x7c1ff #define SEC_SAA_ENABLE 0x17f #define SEC_RAS_CE_REG 0x301050 #define SEC_RAS_FE_REG 0x301054 #define SEC_RAS_NFE_REG 0x301058 #define SEC_RAS_CE_ENB_MSK 0x88 #define SEC_RAS_FE_ENB_MSK 0x0 #define SEC_RAS_NFE_ENB_MSK 0x7c177 #define SEC_OOO_SHUTDOWN_SEL 0x301014 #define SEC_RAS_DISABLE 0x0 #define SEC_MEM_START_INIT_REG 0x301100 #define SEC_MEM_INIT_DONE_REG 0x301104 /* clock gating */ #define SEC_CONTROL_REG 0x301200 #define SEC_DYNAMIC_GATE_REG 0x30121c #define SEC_CORE_AUTO_GATE 0x30212c #define SEC_DYNAMIC_GATE_EN 0x7bff #define SEC_CORE_AUTO_GATE_EN GENMASK(3, 0) #define SEC_CLK_GATE_ENABLE BIT(3) #define SEC_CLK_GATE_DISABLE (~BIT(3)) #define SEC_TRNG_EN_SHIFT 8 #define SEC_AXI_SHUTDOWN_ENABLE BIT(12) #define SEC_AXI_SHUTDOWN_DISABLE 0xFFFFEFFF #define SEC_INTERFACE_USER_CTRL0_REG 0x301220 #define SEC_INTERFACE_USER_CTRL1_REG 0x301224 #define SEC_SAA_EN_REG 0x301270 #define SEC_BD_ERR_CHK_EN_REG0 0x301380 #define SEC_BD_ERR_CHK_EN_REG1 0x301384 #define SEC_BD_ERR_CHK_EN_REG3 0x30138c #define SEC_USER0_SMMU_NORMAL (BIT(23) | BIT(15)) #define SEC_USER1_SMMU_NORMAL (BIT(31) | BIT(23) | BIT(15) | BIT(7)) #define SEC_USER1_ENABLE_CONTEXT_SSV BIT(24) #define SEC_USER1_ENABLE_DATA_SSV BIT(16) #define SEC_USER1_WB_CONTEXT_SSV BIT(8) #define SEC_USER1_WB_DATA_SSV BIT(0) #define SEC_USER1_SVA_SET (SEC_USER1_ENABLE_CONTEXT_SSV | \ SEC_USER1_ENABLE_DATA_SSV | \ SEC_USER1_WB_CONTEXT_SSV | \ SEC_USER1_WB_DATA_SSV) #define SEC_USER1_SMMU_SVA (SEC_USER1_SMMU_NORMAL | SEC_USER1_SVA_SET) #define SEC_USER1_SMMU_MASK (~SEC_USER1_SVA_SET) #define SEC_CORE_INT_STATUS_M_ECC BIT(2) #define SEC_PREFETCH_CFG 0x301130 #define SEC_SVA_TRANS 0x301EC4 #define SEC_PREFETCH_ENABLE (~(BIT(0) | BIT(1) | BIT(11))) #define SEC_PREFETCH_DISABLE BIT(1) #define SEC_SVA_DISABLE_READY (BIT(7) | BIT(11)) #define SEC_DELAY_10_US 10 #define SEC_POLL_TIMEOUT_US 1000 #define SEC_DBGFS_VAL_MAX_LEN 20 #define SEC_SINGLE_PORT_MAX_TRANS 0x2060 #define SEC_SQE_MASK_OFFSET 64 #define SEC_SQE_MASK_LEN 48 #define SEC_SHAPER_TYPE_RATE 128 struct sec_hw_error { u32 int_msk; const char *msg; }; struct sec_dfx_item { const char *name; u32 offset; }; static const char sec_name[] = "hisi_sec2"; static struct dentry *sec_debugfs_root; static struct hisi_qm_list sec_devices = { .register_to_crypto = sec_register_to_crypto, .unregister_from_crypto = sec_unregister_from_crypto, }; static const struct sec_hw_error sec_hw_errors[] = { { .int_msk = BIT(0), .msg = "sec_axi_rresp_err_rint" }, { .int_msk = BIT(1), .msg = "sec_axi_bresp_err_rint" }, { .int_msk = BIT(2), .msg = "sec_ecc_2bit_err_rint" }, { .int_msk = BIT(3), .msg = "sec_ecc_1bit_err_rint" }, { .int_msk = BIT(4), .msg = "sec_req_trng_timeout_rint" }, { .int_msk = BIT(5), .msg = "sec_fsm_hbeat_rint" }, { .int_msk = BIT(6), .msg = "sec_channel_req_rng_timeout_rint" }, { .int_msk = BIT(7), .msg = "sec_bd_err_rint" }, { .int_msk = BIT(8), .msg = "sec_chain_buff_err_rint" }, { .int_msk = BIT(14), .msg = "sec_no_secure_access" }, { .int_msk = BIT(15), .msg = "sec_wrapping_key_auth_err" }, { .int_msk = BIT(16), .msg = "sec_km_key_crc_fail" }, { .int_msk = BIT(17), .msg = "sec_axi_poison_err" }, { .int_msk = BIT(18), .msg = "sec_sva_err" }, {} }; static const char * const sec_dbg_file_name[] = { [SEC_CLEAR_ENABLE] = "clear_enable", }; static struct sec_dfx_item sec_dfx_labels[] = { {"send_cnt", offsetof(struct sec_dfx, send_cnt)}, {"recv_cnt", offsetof(struct sec_dfx, recv_cnt)}, {"send_busy_cnt", offsetof(struct sec_dfx, send_busy_cnt)}, {"recv_busy_cnt", offsetof(struct sec_dfx, recv_busy_cnt)}, {"err_bd_cnt", offsetof(struct sec_dfx, err_bd_cnt)}, {"invalid_req_cnt", offsetof(struct sec_dfx, invalid_req_cnt)}, {"done_flag_cnt", offsetof(struct sec_dfx, done_flag_cnt)}, }; static const struct debugfs_reg32 sec_dfx_regs[] = { {"SEC_PF_ABNORMAL_INT_SOURCE ", 0x301010}, {"SEC_SAA_EN ", 0x301270}, {"SEC_BD_LATENCY_MIN ", 0x301600}, {"SEC_BD_LATENCY_MAX ", 0x301608}, {"SEC_BD_LATENCY_AVG ", 0x30160C}, {"SEC_BD_NUM_IN_SAA0 ", 0x301670}, {"SEC_BD_NUM_IN_SAA1 ", 0x301674}, {"SEC_BD_NUM_IN_SEC ", 0x301680}, {"SEC_ECC_1BIT_CNT ", 0x301C00}, {"SEC_ECC_1BIT_INFO ", 0x301C04}, {"SEC_ECC_2BIT_CNT ", 0x301C10}, {"SEC_ECC_2BIT_INFO ", 0x301C14}, {"SEC_BD_SAA0 ", 0x301C20}, {"SEC_BD_SAA1 ", 0x301C24}, {"SEC_BD_SAA2 ", 0x301C28}, {"SEC_BD_SAA3 ", 0x301C2C}, {"SEC_BD_SAA4 ", 0x301C30}, {"SEC_BD_SAA5 ", 0x301C34}, {"SEC_BD_SAA6 ", 0x301C38}, {"SEC_BD_SAA7 ", 0x301C3C}, {"SEC_BD_SAA8 ", 0x301C40}, }; static int sec_pf_q_num_set(const char *val, const struct kernel_param *kp) { return q_num_set(val, kp, SEC_PF_PCI_DEVICE_ID); } static const struct kernel_param_ops sec_pf_q_num_ops = { .set = sec_pf_q_num_set, .get = param_get_int, }; static u32 pf_q_num = SEC_PF_DEF_Q_NUM; module_param_cb(pf_q_num, &sec_pf_q_num_ops, &pf_q_num, 0444); MODULE_PARM_DESC(pf_q_num, "Number of queues in PF(v1 2-4096, v2 2-1024)"); static int sec_ctx_q_num_set(const char *val, const struct kernel_param *kp) { u32 ctx_q_num; int ret; if (!val) return -EINVAL; ret = kstrtou32(val, 10, &ctx_q_num); if (ret) return -EINVAL; if (!ctx_q_num || ctx_q_num > SEC_CTX_Q_NUM_MAX || ctx_q_num & 0x1) { pr_err("ctx queue num[%u] is invalid!\n", ctx_q_num); return -EINVAL; } return param_set_int(val, kp); } static const struct kernel_param_ops sec_ctx_q_num_ops = { .set = sec_ctx_q_num_set, .get = param_get_int, }; static u32 ctx_q_num = SEC_CTX_Q_NUM_DEF; module_param_cb(ctx_q_num, &sec_ctx_q_num_ops, &ctx_q_num, 0444); MODULE_PARM_DESC(ctx_q_num, "Queue num in ctx (2 default, 2, 4, ..., 32)"); static const struct kernel_param_ops vfs_num_ops = { .set = vfs_num_set, .get = param_get_int, }; static u32 vfs_num; module_param_cb(vfs_num, &vfs_num_ops, &vfs_num, 0444); MODULE_PARM_DESC(vfs_num, "Number of VFs to enable(1-63), 0(default)"); void sec_destroy_qps(struct hisi_qp **qps, int qp_num) { hisi_qm_free_qps(qps, qp_num); kfree(qps); } struct hisi_qp **sec_create_qps(void) { int node = cpu_to_node(smp_processor_id()); u32 ctx_num = ctx_q_num; struct hisi_qp **qps; int ret; qps = kcalloc(ctx_num, sizeof(struct hisi_qp *), GFP_KERNEL); if (!qps) return NULL; ret = hisi_qm_alloc_qps_node(&sec_devices, ctx_num, 0, node, qps); if (!ret) return qps; kfree(qps); return NULL; } static const struct kernel_param_ops sec_uacce_mode_ops = { .set = uacce_mode_set, .get = param_get_int, }; /* * uacce_mode = 0 means sec only register to crypto, * uacce_mode = 1 means sec both register to crypto and uacce. */ static u32 uacce_mode = UACCE_MODE_NOUACCE; module_param_cb(uacce_mode, &sec_uacce_mode_ops, &uacce_mode, 0444); MODULE_PARM_DESC(uacce_mode, UACCE_MODE_DESC); static const struct pci_device_id sec_dev_ids[] = { { PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, SEC_PF_PCI_DEVICE_ID) }, { PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, SEC_VF_PCI_DEVICE_ID) }, { 0, } }; MODULE_DEVICE_TABLE(pci, sec_dev_ids); static void sec_set_endian(struct hisi_qm *qm) { u32 reg; reg = readl_relaxed(qm->io_base + SEC_CONTROL_REG); reg &= ~(BIT(1) | BIT(0)); if (!IS_ENABLED(CONFIG_64BIT)) reg |= BIT(1); if (!IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN)) reg |= BIT(0); writel_relaxed(reg, qm->io_base + SEC_CONTROL_REG); } static void sec_open_sva_prefetch(struct hisi_qm *qm) { u32 val; int ret; if (qm->ver < QM_HW_V3) return; /* Enable prefetch */ val = readl_relaxed(qm->io_base + SEC_PREFETCH_CFG); val &= SEC_PREFETCH_ENABLE; writel(val, qm->io_base + SEC_PREFETCH_CFG); ret = readl_relaxed_poll_timeout(qm->io_base + SEC_PREFETCH_CFG, val, !(val & SEC_PREFETCH_DISABLE), SEC_DELAY_10_US, SEC_POLL_TIMEOUT_US); if (ret) pci_err(qm->pdev, "failed to open sva prefetch\n"); } static void sec_close_sva_prefetch(struct hisi_qm *qm) { u32 val; int ret; if (qm->ver < QM_HW_V3) return; val = readl_relaxed(qm->io_base + SEC_PREFETCH_CFG); val |= SEC_PREFETCH_DISABLE; writel(val, qm->io_base + SEC_PREFETCH_CFG); ret = readl_relaxed_poll_timeout(qm->io_base + SEC_SVA_TRANS, val, !(val & SEC_SVA_DISABLE_READY), SEC_DELAY_10_US, SEC_POLL_TIMEOUT_US); if (ret) pci_err(qm->pdev, "failed to close sva prefetch\n"); } static void sec_enable_clock_gate(struct hisi_qm *qm) { u32 val; if (qm->ver < QM_HW_V3) return; val = readl_relaxed(qm->io_base + SEC_CONTROL_REG); val |= SEC_CLK_GATE_ENABLE; writel_relaxed(val, qm->io_base + SEC_CONTROL_REG); val = readl(qm->io_base + SEC_DYNAMIC_GATE_REG); val |= SEC_DYNAMIC_GATE_EN; writel(val, qm->io_base + SEC_DYNAMIC_GATE_REG); val = readl(qm->io_base + SEC_CORE_AUTO_GATE); val |= SEC_CORE_AUTO_GATE_EN; writel(val, qm->io_base + SEC_CORE_AUTO_GATE); } static void sec_disable_clock_gate(struct hisi_qm *qm) { u32 val; /* Kunpeng920 needs to close clock gating */ val = readl_relaxed(qm->io_base + SEC_CONTROL_REG); val &= SEC_CLK_GATE_DISABLE; writel_relaxed(val, qm->io_base + SEC_CONTROL_REG); } static int sec_engine_init(struct hisi_qm *qm) { int ret; u32 reg; /* disable clock gate control before mem init */ sec_disable_clock_gate(qm); writel_relaxed(0x1, qm->io_base + SEC_MEM_START_INIT_REG); ret = readl_relaxed_poll_timeout(qm->io_base + SEC_MEM_INIT_DONE_REG, reg, reg & 0x1, SEC_DELAY_10_US, SEC_POLL_TIMEOUT_US); if (ret) { pci_err(qm->pdev, "fail to init sec mem\n"); return ret; } reg = readl_relaxed(qm->io_base + SEC_CONTROL_REG); reg |= (0x1 << SEC_TRNG_EN_SHIFT); writel_relaxed(reg, qm->io_base + SEC_CONTROL_REG); reg = readl_relaxed(qm->io_base + SEC_INTERFACE_USER_CTRL0_REG); reg |= SEC_USER0_SMMU_NORMAL; writel_relaxed(reg, qm->io_base + SEC_INTERFACE_USER_CTRL0_REG); reg = readl_relaxed(qm->io_base + SEC_INTERFACE_USER_CTRL1_REG); reg &= SEC_USER1_SMMU_MASK; if (qm->use_sva && qm->ver == QM_HW_V2) reg |= SEC_USER1_SMMU_SVA; else reg |= SEC_USER1_SMMU_NORMAL; writel_relaxed(reg, qm->io_base + SEC_INTERFACE_USER_CTRL1_REG); writel(SEC_SINGLE_PORT_MAX_TRANS, qm->io_base + AM_CFG_SINGLE_PORT_MAX_TRANS); writel(SEC_SAA_ENABLE, qm->io_base + SEC_SAA_EN_REG); /* HW V2 enable sm4 extra mode, as ctr/ecb */ if (qm->ver < QM_HW_V3) writel_relaxed(SEC_BD_ERR_CHK_EN0, qm->io_base + SEC_BD_ERR_CHK_EN_REG0); /* Enable sm4 xts mode multiple iv */ writel_relaxed(SEC_BD_ERR_CHK_EN1, qm->io_base + SEC_BD_ERR_CHK_EN_REG1); writel_relaxed(SEC_BD_ERR_CHK_EN3, qm->io_base + SEC_BD_ERR_CHK_EN_REG3); /* config endian */ sec_set_endian(qm); sec_enable_clock_gate(qm); return 0; } static int sec_set_user_domain_and_cache(struct hisi_qm *qm) { /* qm user domain */ writel(AXUSER_BASE, qm->io_base + QM_ARUSER_M_CFG_1); writel(ARUSER_M_CFG_ENABLE, qm->io_base + QM_ARUSER_M_CFG_ENABLE); writel(AXUSER_BASE, qm->io_base + QM_AWUSER_M_CFG_1); writel(AWUSER_M_CFG_ENABLE, qm->io_base + QM_AWUSER_M_CFG_ENABLE); writel(WUSER_M_CFG_ENABLE, qm->io_base + QM_WUSER_M_CFG_ENABLE); /* qm cache */ writel(AXI_M_CFG, qm->io_base + QM_AXI_M_CFG); writel(AXI_M_CFG_ENABLE, qm->io_base + QM_AXI_M_CFG_ENABLE); /* disable FLR triggered by BME(bus master enable) */ writel(PEH_AXUSER_CFG, qm->io_base + QM_PEH_AXUSER_CFG); writel(PEH_AXUSER_CFG_ENABLE, qm->io_base + QM_PEH_AXUSER_CFG_ENABLE); /* enable sqc,cqc writeback */ writel(SQC_CACHE_ENABLE | CQC_CACHE_ENABLE | SQC_CACHE_WB_ENABLE | CQC_CACHE_WB_ENABLE | FIELD_PREP(SQC_CACHE_WB_THRD, 1) | FIELD_PREP(CQC_CACHE_WB_THRD, 1), qm->io_base + QM_CACHE_CTL); return sec_engine_init(qm); } /* sec_debug_regs_clear() - clear the sec debug regs */ static void sec_debug_regs_clear(struct hisi_qm *qm) { int i; /* clear sec dfx regs */ writel(0x1, qm->io_base + SEC_CTRL_CNT_CLR_CE); for (i = 0; i < ARRAY_SIZE(sec_dfx_regs); i++) readl(qm->io_base + sec_dfx_regs[i].offset); /* clear rdclr_en */ writel(0x0, qm->io_base + SEC_CTRL_CNT_CLR_CE); hisi_qm_debug_regs_clear(qm); } static void sec_master_ooo_ctrl(struct hisi_qm *qm, bool enable) { u32 val1, val2; val1 = readl(qm->io_base + SEC_CONTROL_REG); if (enable) { val1 |= SEC_AXI_SHUTDOWN_ENABLE; val2 = SEC_RAS_NFE_ENB_MSK; } else { val1 &= SEC_AXI_SHUTDOWN_DISABLE; val2 = 0x0; } if (qm->ver > QM_HW_V2) writel(val2, qm->io_base + SEC_OOO_SHUTDOWN_SEL); writel(val1, qm->io_base + SEC_CONTROL_REG); } static void sec_hw_error_enable(struct hisi_qm *qm) { if (qm->ver == QM_HW_V1) { writel(SEC_CORE_INT_DISABLE, qm->io_base + SEC_CORE_INT_MASK); pci_info(qm->pdev, "V1 not support hw error handle\n"); return; } /* clear SEC hw error source if having */ writel(SEC_CORE_INT_CLEAR, qm->io_base + SEC_CORE_INT_SOURCE); /* enable RAS int */ writel(SEC_RAS_CE_ENB_MSK, qm->io_base + SEC_RAS_CE_REG); writel(SEC_RAS_FE_ENB_MSK, qm->io_base + SEC_RAS_FE_REG); writel(SEC_RAS_NFE_ENB_MSK, qm->io_base + SEC_RAS_NFE_REG); /* enable SEC block master OOO when nfe occurs on Kunpeng930 */ sec_master_ooo_ctrl(qm, true); /* enable SEC hw error interrupts */ writel(SEC_CORE_INT_ENABLE, qm->io_base + SEC_CORE_INT_MASK); } static void sec_hw_error_disable(struct hisi_qm *qm) { /* disable SEC hw error interrupts */ writel(SEC_CORE_INT_DISABLE, qm->io_base + SEC_CORE_INT_MASK); /* disable SEC block master OOO when nfe occurs on Kunpeng930 */ sec_master_ooo_ctrl(qm, false); /* disable RAS int */ writel(SEC_RAS_DISABLE, qm->io_base + SEC_RAS_CE_REG); writel(SEC_RAS_DISABLE, qm->io_base + SEC_RAS_FE_REG); writel(SEC_RAS_DISABLE, qm->io_base + SEC_RAS_NFE_REG); } static u32 sec_clear_enable_read(struct hisi_qm *qm) { return readl(qm->io_base + SEC_CTRL_CNT_CLR_CE) & SEC_CTRL_CNT_CLR_CE_BIT; } static int sec_clear_enable_write(struct hisi_qm *qm, u32 val) { u32 tmp; if (val != 1 && val) return -EINVAL; tmp = (readl(qm->io_base + SEC_CTRL_CNT_CLR_CE) & ~SEC_CTRL_CNT_CLR_CE_BIT) | val; writel(tmp, qm->io_base + SEC_CTRL_CNT_CLR_CE); return 0; } static ssize_t sec_debug_read(struct file *filp, char __user *buf, size_t count, loff_t *pos) { struct sec_debug_file *file = filp->private_data; char tbuf[SEC_DBGFS_VAL_MAX_LEN]; struct hisi_qm *qm = file->qm; u32 val; int ret; ret = hisi_qm_get_dfx_access(qm); if (ret) return ret; spin_lock_irq(&file->lock); switch (file->index) { case SEC_CLEAR_ENABLE: val = sec_clear_enable_read(qm); break; default: goto err_input; } spin_unlock_irq(&file->lock); hisi_qm_put_dfx_access(qm); ret = snprintf(tbuf, SEC_DBGFS_VAL_MAX_LEN, "%u\n", val); return simple_read_from_buffer(buf, count, pos, tbuf, ret); err_input: spin_unlock_irq(&file->lock); hisi_qm_put_dfx_access(qm); return -EINVAL; } static ssize_t sec_debug_write(struct file *filp, const char __user *buf, size_t count, loff_t *pos) { struct sec_debug_file *file = filp->private_data; char tbuf[SEC_DBGFS_VAL_MAX_LEN]; struct hisi_qm *qm = file->qm; unsigned long val; int len, ret; if (*pos != 0) return 0; if (count >= SEC_DBGFS_VAL_MAX_LEN) return -ENOSPC; len = simple_write_to_buffer(tbuf, SEC_DBGFS_VAL_MAX_LEN - 1, pos, buf, count); if (len < 0) return len; tbuf[len] = '\0'; if (kstrtoul(tbuf, 0, &val)) return -EFAULT; ret = hisi_qm_get_dfx_access(qm); if (ret) return ret; spin_lock_irq(&file->lock); switch (file->index) { case SEC_CLEAR_ENABLE: ret = sec_clear_enable_write(qm, val); if (ret) goto err_input; break; default: ret = -EINVAL; goto err_input; } ret = count; err_input: spin_unlock_irq(&file->lock); hisi_qm_put_dfx_access(qm); return ret; } static const struct file_operations sec_dbg_fops = { .owner = THIS_MODULE, .open = simple_open, .read = sec_debug_read, .write = sec_debug_write, }; static int sec_debugfs_atomic64_get(void *data, u64 *val) { *val = atomic64_read((atomic64_t *)data); return 0; } static int sec_debugfs_atomic64_set(void *data, u64 val) { if (val) return -EINVAL; atomic64_set((atomic64_t *)data, 0); return 0; } DEFINE_DEBUGFS_ATTRIBUTE(sec_atomic64_ops, sec_debugfs_atomic64_get, sec_debugfs_atomic64_set, "%lld\n"); static int sec_regs_show(struct seq_file *s, void *unused) { hisi_qm_regs_dump(s, s->private); return 0; } DEFINE_SHOW_ATTRIBUTE(sec_regs); static int sec_core_debug_init(struct hisi_qm *qm) { struct sec_dev *sec = container_of(qm, struct sec_dev, qm); struct device *dev = &qm->pdev->dev; struct sec_dfx *dfx = &sec->debug.dfx; struct debugfs_regset32 *regset; struct dentry *tmp_d; int i; tmp_d = debugfs_create_dir("sec_dfx", qm->debug.debug_root); regset = devm_kzalloc(dev, sizeof(*regset), GFP_KERNEL); if (!regset) return -ENOMEM; regset->regs = sec_dfx_regs; regset->nregs = ARRAY_SIZE(sec_dfx_regs); regset->base = qm->io_base; regset->dev = dev; if (qm->pdev->device == SEC_PF_PCI_DEVICE_ID) debugfs_create_file("regs", 0444, tmp_d, regset, &sec_regs_fops); for (i = 0; i < ARRAY_SIZE(sec_dfx_labels); i++) { atomic64_t *data = (atomic64_t *)((uintptr_t)dfx + sec_dfx_labels[i].offset); debugfs_create_file(sec_dfx_labels[i].name, 0644, tmp_d, data, &sec_atomic64_ops); } return 0; } static int sec_debug_init(struct hisi_qm *qm) { struct sec_dev *sec = container_of(qm, struct sec_dev, qm); int i; if (qm->pdev->device == SEC_PF_PCI_DEVICE_ID) { for (i = SEC_CLEAR_ENABLE; i < SEC_DEBUG_FILE_NUM; i++) { spin_lock_init(&sec->debug.files[i].lock); sec->debug.files[i].index = i; sec->debug.files[i].qm = qm; debugfs_create_file(sec_dbg_file_name[i], 0600, qm->debug.debug_root, sec->debug.files + i, &sec_dbg_fops); } } return sec_core_debug_init(qm); } static int sec_debugfs_init(struct hisi_qm *qm) { struct device *dev = &qm->pdev->dev; int ret; qm->debug.debug_root = debugfs_create_dir(dev_name(dev), sec_debugfs_root); qm->debug.sqe_mask_offset = SEC_SQE_MASK_OFFSET; qm->debug.sqe_mask_len = SEC_SQE_MASK_LEN; hisi_qm_debug_init(qm); ret = sec_debug_init(qm); if (ret) goto failed_to_create; return 0; failed_to_create: debugfs_remove_recursive(sec_debugfs_root); return ret; } static void sec_debugfs_exit(struct hisi_qm *qm) { debugfs_remove_recursive(qm->debug.debug_root); } static void sec_log_hw_error(struct hisi_qm *qm, u32 err_sts) { const struct sec_hw_error *errs = sec_hw_errors; struct device *dev = &qm->pdev->dev; u32 err_val; while (errs->msg) { if (errs->int_msk & err_sts) { dev_err(dev, "%s [error status=0x%x] found\n", errs->msg, errs->int_msk); if (SEC_CORE_INT_STATUS_M_ECC & errs->int_msk) { err_val = readl(qm->io_base + SEC_CORE_SRAM_ECC_ERR_INFO); dev_err(dev, "multi ecc sram num=0x%x\n", ((err_val) >> SEC_ECC_NUM) & SEC_ECC_MASH); } } errs++; } } static u32 sec_get_hw_err_status(struct hisi_qm *qm) { return readl(qm->io_base + SEC_CORE_INT_STATUS); } static void sec_clear_hw_err_status(struct hisi_qm *qm, u32 err_sts) { writel(err_sts, qm->io_base + SEC_CORE_INT_SOURCE); } static void sec_open_axi_master_ooo(struct hisi_qm *qm) { u32 val; val = readl(qm->io_base + SEC_CONTROL_REG); writel(val & SEC_AXI_SHUTDOWN_DISABLE, qm->io_base + SEC_CONTROL_REG); writel(val | SEC_AXI_SHUTDOWN_ENABLE, qm->io_base + SEC_CONTROL_REG); } static void sec_err_info_init(struct hisi_qm *qm) { struct hisi_qm_err_info *err_info = &qm->err_info; err_info->ce = QM_BASE_CE; err_info->fe = 0; err_info->ecc_2bits_mask = SEC_CORE_INT_STATUS_M_ECC; err_info->dev_ce_mask = SEC_RAS_CE_ENB_MSK; err_info->msi_wr_port = BIT(0); err_info->acpi_rst = "SRST"; err_info->nfe = QM_BASE_NFE | QM_ACC_DO_TASK_TIMEOUT | QM_ACC_WB_NOT_READY_TIMEOUT; } static const struct hisi_qm_err_ini sec_err_ini = { .hw_init = sec_set_user_domain_and_cache, .hw_err_enable = sec_hw_error_enable, .hw_err_disable = sec_hw_error_disable, .get_dev_hw_err_status = sec_get_hw_err_status, .clear_dev_hw_err_status = sec_clear_hw_err_status, .log_dev_hw_err = sec_log_hw_error, .open_axi_master_ooo = sec_open_axi_master_ooo, .open_sva_prefetch = sec_open_sva_prefetch, .close_sva_prefetch = sec_close_sva_prefetch, .err_info_init = sec_err_info_init, }; static int sec_pf_probe_init(struct sec_dev *sec) { struct hisi_qm *qm = &sec->qm; int ret; qm->err_ini = &sec_err_ini; qm->err_ini->err_info_init(qm); ret = sec_set_user_domain_and_cache(qm); if (ret) return ret; sec_open_sva_prefetch(qm); hisi_qm_dev_err_init(qm); sec_debug_regs_clear(qm); return 0; } static int sec_qm_init(struct hisi_qm *qm, struct pci_dev *pdev) { int ret; qm->pdev = pdev; qm->ver = pdev->revision; qm->algs = "cipher\ndigest\naead"; qm->mode = uacce_mode; qm->sqe_size = SEC_SQE_SIZE; qm->dev_name = sec_name; qm->fun_type = (pdev->device == SEC_PF_PCI_DEVICE_ID) ? QM_HW_PF : QM_HW_VF; if (qm->fun_type == QM_HW_PF) { qm->qp_base = SEC_PF_DEF_Q_BASE; qm->qp_num = pf_q_num; qm->debug.curr_qm_qp_num = pf_q_num; qm->qm_list = &sec_devices; } else if (qm->fun_type == QM_HW_VF && qm->ver == QM_HW_V1) { /* * have no way to get qm configure in VM in v1 hardware, * so currently force PF to uses SEC_PF_DEF_Q_NUM, and force * to trigger only one VF in v1 hardware. * v2 hardware has no such problem. */ qm->qp_base = SEC_PF_DEF_Q_NUM; qm->qp_num = SEC_QUEUE_NUM_V1 - SEC_PF_DEF_Q_NUM; } /* * WQ_HIGHPRI: SEC request must be low delayed, * so need a high priority workqueue. * WQ_UNBOUND: SEC task is likely with long * running CPU intensive workloads. */ qm->wq = alloc_workqueue("%s", WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_UNBOUND, num_online_cpus(), pci_name(qm->pdev)); if (!qm->wq) { pci_err(qm->pdev, "fail to alloc workqueue\n"); return -ENOMEM; } ret = hisi_qm_init(qm); if (ret) destroy_workqueue(qm->wq); return ret; } static void sec_qm_uninit(struct hisi_qm *qm) { hisi_qm_uninit(qm); } static int sec_probe_init(struct sec_dev *sec) { u32 type_rate = SEC_SHAPER_TYPE_RATE; struct hisi_qm *qm = &sec->qm; int ret; if (qm->fun_type == QM_HW_PF) { ret = sec_pf_probe_init(sec); if (ret) return ret; /* enable shaper type 0 */ if (qm->ver >= QM_HW_V3) { type_rate |= QM_SHAPER_ENABLE; qm->type_rate = type_rate; } } return 0; } static void sec_probe_uninit(struct hisi_qm *qm) { hisi_qm_dev_err_uninit(qm); destroy_workqueue(qm->wq); } static void sec_iommu_used_check(struct sec_dev *sec) { struct iommu_domain *domain; struct device *dev = &sec->qm.pdev->dev; domain = iommu_get_domain_for_dev(dev); /* Check if iommu is used */ sec->iommu_used = false; if (domain) { if (domain->type & __IOMMU_DOMAIN_PAGING) sec->iommu_used = true; dev_info(dev, "SMMU Opened, the iommu type = %u\n", domain->type); } } static int sec_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct sec_dev *sec; struct hisi_qm *qm; int ret; sec = devm_kzalloc(&pdev->dev, sizeof(*sec), GFP_KERNEL); if (!sec) return -ENOMEM; qm = &sec->qm; ret = sec_qm_init(qm, pdev); if (ret) { pci_err(pdev, "Failed to init SEC QM (%d)!\n", ret); return ret; } sec->ctx_q_num = ctx_q_num; sec_iommu_used_check(sec); ret = sec_probe_init(sec); if (ret) { pci_err(pdev, "Failed to probe!\n"); goto err_qm_uninit; } ret = hisi_qm_start(qm); if (ret) { pci_err(pdev, "Failed to start sec qm!\n"); goto err_probe_uninit; } ret = sec_debugfs_init(qm); if (ret) pci_warn(pdev, "Failed to init debugfs!\n"); if (qm->qp_num >= ctx_q_num) { ret = hisi_qm_alg_register(qm, &sec_devices); if (ret < 0) { pr_err("Failed to register driver to crypto.\n"); goto err_qm_stop; } } else { pci_warn(qm->pdev, "Failed to use kernel mode, qp not enough!\n"); } if (qm->uacce) { ret = uacce_register(qm->uacce); if (ret) { pci_err(pdev, "failed to register uacce (%d)!\n", ret); goto err_alg_unregister; } } if (qm->fun_type == QM_HW_PF && vfs_num) { ret = hisi_qm_sriov_enable(pdev, vfs_num); if (ret < 0) goto err_alg_unregister; } hisi_qm_pm_init(qm); return 0; err_alg_unregister: if (qm->qp_num >= ctx_q_num) hisi_qm_alg_unregister(qm, &sec_devices); err_qm_stop: sec_debugfs_exit(qm); hisi_qm_stop(qm, QM_NORMAL); err_probe_uninit: sec_probe_uninit(qm); err_qm_uninit: sec_qm_uninit(qm); return ret; } static void sec_remove(struct pci_dev *pdev) { struct hisi_qm *qm = pci_get_drvdata(pdev); hisi_qm_pm_uninit(qm); hisi_qm_wait_task_finish(qm, &sec_devices); if (qm->qp_num >= ctx_q_num) hisi_qm_alg_unregister(qm, &sec_devices); if (qm->fun_type == QM_HW_PF && qm->vfs_num) hisi_qm_sriov_disable(pdev, true); sec_debugfs_exit(qm); (void)hisi_qm_stop(qm, QM_NORMAL); if (qm->fun_type == QM_HW_PF) sec_debug_regs_clear(qm); sec_probe_uninit(qm); sec_qm_uninit(qm); } static const struct dev_pm_ops sec_pm_ops = { SET_RUNTIME_PM_OPS(hisi_qm_suspend, hisi_qm_resume, NULL) }; static const struct pci_error_handlers sec_err_handler = { .error_detected = hisi_qm_dev_err_detected, .slot_reset = hisi_qm_dev_slot_reset, .reset_prepare = hisi_qm_reset_prepare, .reset_done = hisi_qm_reset_done, }; static struct pci_driver sec_pci_driver = { .name = "hisi_sec2", .id_table = sec_dev_ids, .probe = sec_probe, .remove = sec_remove, .err_handler = &sec_err_handler, .sriov_configure = hisi_qm_sriov_configure, .shutdown = hisi_qm_dev_shutdown, .driver.pm = &sec_pm_ops, }; static void sec_register_debugfs(void) { if (!debugfs_initialized()) return; sec_debugfs_root = debugfs_create_dir("hisi_sec2", NULL); } static void sec_unregister_debugfs(void) { debugfs_remove_recursive(sec_debugfs_root); } static int __init sec_init(void) { int ret; hisi_qm_init_list(&sec_devices); sec_register_debugfs(); ret = pci_register_driver(&sec_pci_driver); if (ret < 0) { sec_unregister_debugfs(); pr_err("Failed to register pci driver.\n"); return ret; } return 0; } static void __exit sec_exit(void) { pci_unregister_driver(&sec_pci_driver); sec_unregister_debugfs(); } module_init(sec_init); module_exit(sec_exit); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Zaibo Xu "); MODULE_AUTHOR("Longfang Liu "); MODULE_AUTHOR("Kai Ye "); MODULE_AUTHOR("Wei Zhang "); MODULE_DESCRIPTION("Driver for HiSilicon SEC accelerator");