kernel/fs/btrfs/subpage.c

584 lines
18 KiB
C
Raw Normal View History

2024-07-22 17:22:30 +08:00
// SPDX-License-Identifier: GPL-2.0
#include <linux/slab.h>
#include "ctree.h"
#include "subpage.h"
#include "btrfs_inode.h"
/*
* Subpage (sectorsize < PAGE_SIZE) support overview:
*
* Limitations:
*
* - Only support 64K page size for now
* This is to make metadata handling easier, as 64K page would ensure
* all nodesize would fit inside one page, thus we don't need to handle
* cases where a tree block crosses several pages.
*
* - Only metadata read-write for now
* The data read-write part is in development.
*
* - Metadata can't cross 64K page boundary
* btrfs-progs and kernel have done that for a while, thus only ancient
* filesystems could have such problem. For such case, do a graceful
* rejection.
*
* Special behavior:
*
* - Metadata
* Metadata read is fully supported.
* Meaning when reading one tree block will only trigger the read for the
* needed range, other unrelated range in the same page will not be touched.
*
* Metadata write support is partial.
* The writeback is still for the full page, but we will only submit
* the dirty extent buffers in the page.
*
* This means, if we have a metadata page like this:
*
* Page offset
* 0 16K 32K 48K 64K
* |/////////| |///////////|
* \- Tree block A \- Tree block B
*
* Even if we just want to writeback tree block A, we will also writeback
* tree block B if it's also dirty.
*
* This may cause extra metadata writeback which results more COW.
*
* Implementation:
*
* - Common
* Both metadata and data will use a new structure, btrfs_subpage, to
* record the status of each sector inside a page. This provides the extra
* granularity needed.
*
* - Metadata
* Since we have multiple tree blocks inside one page, we can't rely on page
* locking anymore, or we will have greatly reduced concurrency or even
* deadlocks (hold one tree lock while trying to lock another tree lock in
* the same page).
*
* Thus for metadata locking, subpage support relies on io_tree locking only.
* This means a slightly higher tree locking latency.
*/
int btrfs_attach_subpage(const struct btrfs_fs_info *fs_info,
struct page *page, enum btrfs_subpage_type type)
{
struct btrfs_subpage *subpage = NULL;
int ret;
/*
* We have cases like a dummy extent buffer page, which is not mappped
* and doesn't need to be locked.
*/
if (page->mapping)
ASSERT(PageLocked(page));
/* Either not subpage, or the page already has private attached */
if (fs_info->sectorsize == PAGE_SIZE || PagePrivate(page))
return 0;
ret = btrfs_alloc_subpage(fs_info, &subpage, type);
if (ret < 0)
return ret;
attach_page_private(page, subpage);
return 0;
}
void btrfs_detach_subpage(const struct btrfs_fs_info *fs_info,
struct page *page)
{
struct btrfs_subpage *subpage;
/* Either not subpage, or already detached */
if (fs_info->sectorsize == PAGE_SIZE || !PagePrivate(page))
return;
subpage = (struct btrfs_subpage *)detach_page_private(page);
ASSERT(subpage);
btrfs_free_subpage(subpage);
}
int btrfs_alloc_subpage(const struct btrfs_fs_info *fs_info,
struct btrfs_subpage **ret,
enum btrfs_subpage_type type)
{
if (fs_info->sectorsize == PAGE_SIZE)
return 0;
*ret = kzalloc(sizeof(struct btrfs_subpage), GFP_NOFS);
if (!*ret)
return -ENOMEM;
spin_lock_init(&(*ret)->lock);
if (type == BTRFS_SUBPAGE_METADATA) {
atomic_set(&(*ret)->eb_refs, 0);
} else {
atomic_set(&(*ret)->readers, 0);
atomic_set(&(*ret)->writers, 0);
}
return 0;
}
void btrfs_free_subpage(struct btrfs_subpage *subpage)
{
kfree(subpage);
}
/*
* Increase the eb_refs of current subpage.
*
* This is important for eb allocation, to prevent race with last eb freeing
* of the same page.
* With the eb_refs increased before the eb inserted into radix tree,
* detach_extent_buffer_page() won't detach the page private while we're still
* allocating the extent buffer.
*/
void btrfs_page_inc_eb_refs(const struct btrfs_fs_info *fs_info,
struct page *page)
{
struct btrfs_subpage *subpage;
if (fs_info->sectorsize == PAGE_SIZE)
return;
ASSERT(PagePrivate(page) && page->mapping);
lockdep_assert_held(&page->mapping->private_lock);
subpage = (struct btrfs_subpage *)page->private;
atomic_inc(&subpage->eb_refs);
}
void btrfs_page_dec_eb_refs(const struct btrfs_fs_info *fs_info,
struct page *page)
{
struct btrfs_subpage *subpage;
if (fs_info->sectorsize == PAGE_SIZE)
return;
ASSERT(PagePrivate(page) && page->mapping);
lockdep_assert_held(&page->mapping->private_lock);
subpage = (struct btrfs_subpage *)page->private;
ASSERT(atomic_read(&subpage->eb_refs));
atomic_dec(&subpage->eb_refs);
}
static void btrfs_subpage_assert(const struct btrfs_fs_info *fs_info,
struct page *page, u64 start, u32 len)
{
/* Basic checks */
ASSERT(PagePrivate(page) && page->private);
ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
IS_ALIGNED(len, fs_info->sectorsize));
/*
* The range check only works for mapped page, we can still have
* unmapped page like dummy extent buffer pages.
*/
if (page->mapping)
ASSERT(page_offset(page) <= start &&
start + len <= page_offset(page) + PAGE_SIZE);
}
void btrfs_subpage_start_reader(const struct btrfs_fs_info *fs_info,
struct page *page, u64 start, u32 len)
{
struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
const int nbits = len >> fs_info->sectorsize_bits;
btrfs_subpage_assert(fs_info, page, start, len);
atomic_add(nbits, &subpage->readers);
}
void btrfs_subpage_end_reader(const struct btrfs_fs_info *fs_info,
struct page *page, u64 start, u32 len)
{
struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
const int nbits = len >> fs_info->sectorsize_bits;
bool is_data;
bool last;
btrfs_subpage_assert(fs_info, page, start, len);
is_data = is_data_inode(page->mapping->host);
ASSERT(atomic_read(&subpage->readers) >= nbits);
last = atomic_sub_and_test(nbits, &subpage->readers);
/*
* For data we need to unlock the page if the last read has finished.
*
* And please don't replace @last with atomic_sub_and_test() call
* inside if () condition.
* As we want the atomic_sub_and_test() to be always executed.
*/
if (is_data && last)
unlock_page(page);
}
static void btrfs_subpage_clamp_range(struct page *page, u64 *start, u32 *len)
{
u64 orig_start = *start;
u32 orig_len = *len;
*start = max_t(u64, page_offset(page), orig_start);
*len = min_t(u64, page_offset(page) + PAGE_SIZE,
orig_start + orig_len) - *start;
}
void btrfs_subpage_start_writer(const struct btrfs_fs_info *fs_info,
struct page *page, u64 start, u32 len)
{
struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
const int nbits = (len >> fs_info->sectorsize_bits);
int ret;
btrfs_subpage_assert(fs_info, page, start, len);
ASSERT(atomic_read(&subpage->readers) == 0);
ret = atomic_add_return(nbits, &subpage->writers);
ASSERT(ret == nbits);
}
bool btrfs_subpage_end_and_test_writer(const struct btrfs_fs_info *fs_info,
struct page *page, u64 start, u32 len)
{
struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
const int nbits = (len >> fs_info->sectorsize_bits);
btrfs_subpage_assert(fs_info, page, start, len);
ASSERT(atomic_read(&subpage->writers) >= nbits);
return atomic_sub_and_test(nbits, &subpage->writers);
}
/*
* Lock a page for delalloc page writeback.
*
* Return -EAGAIN if the page is not properly initialized.
* Return 0 with the page locked, and writer counter updated.
*
* Even with 0 returned, the page still need extra check to make sure
* it's really the correct page, as the caller is using
* find_get_pages_contig(), which can race with page invalidating.
*/
int btrfs_page_start_writer_lock(const struct btrfs_fs_info *fs_info,
struct page *page, u64 start, u32 len)
{
if (unlikely(!fs_info) || fs_info->sectorsize == PAGE_SIZE) {
lock_page(page);
return 0;
}
lock_page(page);
if (!PagePrivate(page) || !page->private) {
unlock_page(page);
return -EAGAIN;
}
btrfs_subpage_clamp_range(page, &start, &len);
btrfs_subpage_start_writer(fs_info, page, start, len);
return 0;
}
void btrfs_page_end_writer_lock(const struct btrfs_fs_info *fs_info,
struct page *page, u64 start, u32 len)
{
if (unlikely(!fs_info) || fs_info->sectorsize == PAGE_SIZE)
return unlock_page(page);
btrfs_subpage_clamp_range(page, &start, &len);
if (btrfs_subpage_end_and_test_writer(fs_info, page, start, len))
unlock_page(page);
}
/*
* Convert the [start, start + len) range into a u16 bitmap
*
* For example: if start == page_offset() + 16K, len = 16K, we get 0x00f0.
*/
static u16 btrfs_subpage_calc_bitmap(const struct btrfs_fs_info *fs_info,
struct page *page, u64 start, u32 len)
{
const int bit_start = offset_in_page(start) >> fs_info->sectorsize_bits;
const int nbits = len >> fs_info->sectorsize_bits;
btrfs_subpage_assert(fs_info, page, start, len);
/*
* Here nbits can be 16, thus can go beyond u16 range. We make the
* first left shift to be calculate in unsigned long (at least u32),
* then truncate the result to u16.
*/
return (u16)(((1UL << nbits) - 1) << bit_start);
}
void btrfs_subpage_set_uptodate(const struct btrfs_fs_info *fs_info,
struct page *page, u64 start, u32 len)
{
struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
const u16 tmp = btrfs_subpage_calc_bitmap(fs_info, page, start, len);
unsigned long flags;
spin_lock_irqsave(&subpage->lock, flags);
subpage->uptodate_bitmap |= tmp;
if (subpage->uptodate_bitmap == U16_MAX)
SetPageUptodate(page);
spin_unlock_irqrestore(&subpage->lock, flags);
}
void btrfs_subpage_clear_uptodate(const struct btrfs_fs_info *fs_info,
struct page *page, u64 start, u32 len)
{
struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
const u16 tmp = btrfs_subpage_calc_bitmap(fs_info, page, start, len);
unsigned long flags;
spin_lock_irqsave(&subpage->lock, flags);
subpage->uptodate_bitmap &= ~tmp;
ClearPageUptodate(page);
spin_unlock_irqrestore(&subpage->lock, flags);
}
void btrfs_subpage_set_error(const struct btrfs_fs_info *fs_info,
struct page *page, u64 start, u32 len)
{
struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
const u16 tmp = btrfs_subpage_calc_bitmap(fs_info, page, start, len);
unsigned long flags;
spin_lock_irqsave(&subpage->lock, flags);
subpage->error_bitmap |= tmp;
SetPageError(page);
spin_unlock_irqrestore(&subpage->lock, flags);
}
void btrfs_subpage_clear_error(const struct btrfs_fs_info *fs_info,
struct page *page, u64 start, u32 len)
{
struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
const u16 tmp = btrfs_subpage_calc_bitmap(fs_info, page, start, len);
unsigned long flags;
spin_lock_irqsave(&subpage->lock, flags);
subpage->error_bitmap &= ~tmp;
if (subpage->error_bitmap == 0)
ClearPageError(page);
spin_unlock_irqrestore(&subpage->lock, flags);
}
void btrfs_subpage_set_dirty(const struct btrfs_fs_info *fs_info,
struct page *page, u64 start, u32 len)
{
struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
u16 tmp = btrfs_subpage_calc_bitmap(fs_info, page, start, len);
unsigned long flags;
spin_lock_irqsave(&subpage->lock, flags);
subpage->dirty_bitmap |= tmp;
spin_unlock_irqrestore(&subpage->lock, flags);
set_page_dirty(page);
}
/*
* Extra clear_and_test function for subpage dirty bitmap.
*
* Return true if we're the last bits in the dirty_bitmap and clear the
* dirty_bitmap.
* Return false otherwise.
*
* NOTE: Callers should manually clear page dirty for true case, as we have
* extra handling for tree blocks.
*/
bool btrfs_subpage_clear_and_test_dirty(const struct btrfs_fs_info *fs_info,
struct page *page, u64 start, u32 len)
{
struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
u16 tmp = btrfs_subpage_calc_bitmap(fs_info, page, start, len);
unsigned long flags;
bool last = false;
spin_lock_irqsave(&subpage->lock, flags);
subpage->dirty_bitmap &= ~tmp;
if (subpage->dirty_bitmap == 0)
last = true;
spin_unlock_irqrestore(&subpage->lock, flags);
return last;
}
void btrfs_subpage_clear_dirty(const struct btrfs_fs_info *fs_info,
struct page *page, u64 start, u32 len)
{
bool last;
last = btrfs_subpage_clear_and_test_dirty(fs_info, page, start, len);
if (last)
clear_page_dirty_for_io(page);
}
void btrfs_subpage_set_writeback(const struct btrfs_fs_info *fs_info,
struct page *page, u64 start, u32 len)
{
struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
u16 tmp = btrfs_subpage_calc_bitmap(fs_info, page, start, len);
unsigned long flags;
spin_lock_irqsave(&subpage->lock, flags);
subpage->writeback_bitmap |= tmp;
set_page_writeback(page);
spin_unlock_irqrestore(&subpage->lock, flags);
}
void btrfs_subpage_clear_writeback(const struct btrfs_fs_info *fs_info,
struct page *page, u64 start, u32 len)
{
struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
u16 tmp = btrfs_subpage_calc_bitmap(fs_info, page, start, len);
unsigned long flags;
spin_lock_irqsave(&subpage->lock, flags);
subpage->writeback_bitmap &= ~tmp;
if (subpage->writeback_bitmap == 0) {
ASSERT(PageWriteback(page));
end_page_writeback(page);
}
spin_unlock_irqrestore(&subpage->lock, flags);
}
void btrfs_subpage_set_ordered(const struct btrfs_fs_info *fs_info,
struct page *page, u64 start, u32 len)
{
struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
const u16 tmp = btrfs_subpage_calc_bitmap(fs_info, page, start, len);
unsigned long flags;
spin_lock_irqsave(&subpage->lock, flags);
subpage->ordered_bitmap |= tmp;
SetPageOrdered(page);
spin_unlock_irqrestore(&subpage->lock, flags);
}
void btrfs_subpage_clear_ordered(const struct btrfs_fs_info *fs_info,
struct page *page, u64 start, u32 len)
{
struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
const u16 tmp = btrfs_subpage_calc_bitmap(fs_info, page, start, len);
unsigned long flags;
spin_lock_irqsave(&subpage->lock, flags);
subpage->ordered_bitmap &= ~tmp;
if (subpage->ordered_bitmap == 0)
ClearPageOrdered(page);
spin_unlock_irqrestore(&subpage->lock, flags);
}
/*
* Unlike set/clear which is dependent on each page status, for test all bits
* are tested in the same way.
*/
#define IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(name) \
bool btrfs_subpage_test_##name(const struct btrfs_fs_info *fs_info, \
struct page *page, u64 start, u32 len) \
{ \
struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private; \
const u16 tmp = btrfs_subpage_calc_bitmap(fs_info, page, start, len); \
unsigned long flags; \
bool ret; \
\
spin_lock_irqsave(&subpage->lock, flags); \
ret = ((subpage->name##_bitmap & tmp) == tmp); \
spin_unlock_irqrestore(&subpage->lock, flags); \
return ret; \
}
IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(uptodate);
IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(error);
IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(dirty);
IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(writeback);
IMPLEMENT_BTRFS_SUBPAGE_TEST_OP(ordered);
/*
* Note that, in selftests (extent-io-tests), we can have empty fs_info passed
* in. We only test sectorsize == PAGE_SIZE cases so far, thus we can fall
* back to regular sectorsize branch.
*/
#define IMPLEMENT_BTRFS_PAGE_OPS(name, set_page_func, clear_page_func, \
test_page_func) \
void btrfs_page_set_##name(const struct btrfs_fs_info *fs_info, \
struct page *page, u64 start, u32 len) \
{ \
if (unlikely(!fs_info) || fs_info->sectorsize == PAGE_SIZE) { \
set_page_func(page); \
return; \
} \
btrfs_subpage_set_##name(fs_info, page, start, len); \
} \
void btrfs_page_clear_##name(const struct btrfs_fs_info *fs_info, \
struct page *page, u64 start, u32 len) \
{ \
if (unlikely(!fs_info) || fs_info->sectorsize == PAGE_SIZE) { \
clear_page_func(page); \
return; \
} \
btrfs_subpage_clear_##name(fs_info, page, start, len); \
} \
bool btrfs_page_test_##name(const struct btrfs_fs_info *fs_info, \
struct page *page, u64 start, u32 len) \
{ \
if (unlikely(!fs_info) || fs_info->sectorsize == PAGE_SIZE) \
return test_page_func(page); \
return btrfs_subpage_test_##name(fs_info, page, start, len); \
} \
void btrfs_page_clamp_set_##name(const struct btrfs_fs_info *fs_info, \
struct page *page, u64 start, u32 len) \
{ \
if (unlikely(!fs_info) || fs_info->sectorsize == PAGE_SIZE) { \
set_page_func(page); \
return; \
} \
btrfs_subpage_clamp_range(page, &start, &len); \
btrfs_subpage_set_##name(fs_info, page, start, len); \
} \
void btrfs_page_clamp_clear_##name(const struct btrfs_fs_info *fs_info, \
struct page *page, u64 start, u32 len) \
{ \
if (unlikely(!fs_info) || fs_info->sectorsize == PAGE_SIZE) { \
clear_page_func(page); \
return; \
} \
btrfs_subpage_clamp_range(page, &start, &len); \
btrfs_subpage_clear_##name(fs_info, page, start, len); \
} \
bool btrfs_page_clamp_test_##name(const struct btrfs_fs_info *fs_info, \
struct page *page, u64 start, u32 len) \
{ \
if (unlikely(!fs_info) || fs_info->sectorsize == PAGE_SIZE) \
return test_page_func(page); \
btrfs_subpage_clamp_range(page, &start, &len); \
return btrfs_subpage_test_##name(fs_info, page, start, len); \
}
IMPLEMENT_BTRFS_PAGE_OPS(uptodate, SetPageUptodate, ClearPageUptodate,
PageUptodate);
IMPLEMENT_BTRFS_PAGE_OPS(error, SetPageError, ClearPageError, PageError);
IMPLEMENT_BTRFS_PAGE_OPS(dirty, set_page_dirty, clear_page_dirty_for_io,
PageDirty);
IMPLEMENT_BTRFS_PAGE_OPS(writeback, set_page_writeback, end_page_writeback,
PageWriteback);
IMPLEMENT_BTRFS_PAGE_OPS(ordered, SetPageOrdered, ClearPageOrdered,
PageOrdered);
/*
* Make sure not only the page dirty bit is cleared, but also subpage dirty bit
* is cleared.
*/
void btrfs_page_assert_not_dirty(const struct btrfs_fs_info *fs_info,
struct page *page)
{
struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
return;
ASSERT(!PageDirty(page));
if (fs_info->sectorsize == PAGE_SIZE)
return;
ASSERT(PagePrivate(page) && page->private);
ASSERT(subpage->dirty_bitmap == 0);
}