kernel/drivers/soc/bcm/brcmstb/pm/pm-arm.c

863 lines
20 KiB
C
Raw Normal View History

2024-07-22 17:22:30 +08:00
// SPDX-License-Identifier: GPL-2.0-only
/*
* ARM-specific support for Broadcom STB S2/S3/S5 power management
*
* S2: clock gate CPUs and as many peripherals as possible
* S3: power off all of the chip except the Always ON (AON) island; keep DDR is
* self-refresh
* S5: (a.k.a. S3 cold boot) much like S3, except DDR is powered down, so we
* treat this mode like a soft power-off, with wakeup allowed from AON
*
* Copyright © 2014-2017 Broadcom
*/
#define pr_fmt(fmt) "brcmstb-pm: " fmt
#include <linux/bitops.h>
#include <linux/compiler.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/kconfig.h>
#include <linux/kernel.h>
#include <linux/memblock.h>
#include <linux/module.h>
#include <linux/notifier.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/panic_notifier.h>
#include <linux/platform_device.h>
#include <linux/pm.h>
#include <linux/printk.h>
#include <linux/proc_fs.h>
#include <linux/sizes.h>
#include <linux/slab.h>
#include <linux/sort.h>
#include <linux/suspend.h>
#include <linux/types.h>
#include <linux/uaccess.h>
#include <linux/soc/brcmstb/brcmstb.h>
#include <asm/fncpy.h>
#include <asm/setup.h>
#include <asm/suspend.h>
#include "pm.h"
#include "aon_defs.h"
#define SHIMPHY_DDR_PAD_CNTRL 0x8c
/* Method #0 */
#define SHIMPHY_PAD_PLL_SEQUENCE BIT(8)
#define SHIMPHY_PAD_GATE_PLL_S3 BIT(9)
/* Method #1 */
#define PWRDWN_SEQ_NO_SEQUENCING 0
#define PWRDWN_SEQ_HOLD_CHANNEL 1
#define PWRDWN_SEQ_RESET_PLL 2
#define PWRDWN_SEQ_POWERDOWN_PLL 3
#define SHIMPHY_PAD_S3_PWRDWN_SEQ_MASK 0x00f00000
#define SHIMPHY_PAD_S3_PWRDWN_SEQ_SHIFT 20
#define DDR_FORCE_CKE_RST_N BIT(3)
#define DDR_PHY_RST_N BIT(2)
#define DDR_PHY_CKE BIT(1)
#define DDR_PHY_NO_CHANNEL 0xffffffff
#define MAX_NUM_MEMC 3
struct brcmstb_memc {
void __iomem *ddr_phy_base;
void __iomem *ddr_shimphy_base;
void __iomem *ddr_ctrl;
};
struct brcmstb_pm_control {
void __iomem *aon_ctrl_base;
void __iomem *aon_sram;
struct brcmstb_memc memcs[MAX_NUM_MEMC];
void __iomem *boot_sram;
size_t boot_sram_len;
bool support_warm_boot;
size_t pll_status_offset;
int num_memc;
struct brcmstb_s3_params *s3_params;
dma_addr_t s3_params_pa;
int s3entry_method;
u32 warm_boot_offset;
u32 phy_a_standby_ctrl_offs;
u32 phy_b_standby_ctrl_offs;
bool needs_ddr_pad;
struct platform_device *pdev;
};
enum bsp_initiate_command {
BSP_CLOCK_STOP = 0x00,
BSP_GEN_RANDOM_KEY = 0x4A,
BSP_RESTORE_RANDOM_KEY = 0x55,
BSP_GEN_FIXED_KEY = 0x63,
};
#define PM_INITIATE 0x01
#define PM_INITIATE_SUCCESS 0x00
#define PM_INITIATE_FAIL 0xfe
static struct brcmstb_pm_control ctrl;
noinline int brcmstb_pm_s3_finish(void);
static int (*brcmstb_pm_do_s2_sram)(void __iomem *aon_ctrl_base,
void __iomem *ddr_phy_pll_status);
static int brcmstb_init_sram(struct device_node *dn)
{
void __iomem *sram;
struct resource res;
int ret;
ret = of_address_to_resource(dn, 0, &res);
if (ret)
return ret;
/* Uncached, executable remapping of SRAM */
sram = __arm_ioremap_exec(res.start, resource_size(&res), false);
if (!sram)
return -ENOMEM;
ctrl.boot_sram = sram;
ctrl.boot_sram_len = resource_size(&res);
return 0;
}
static const struct of_device_id sram_dt_ids[] = {
{ .compatible = "mmio-sram" },
{ /* sentinel */ }
};
static int do_bsp_initiate_command(enum bsp_initiate_command cmd)
{
void __iomem *base = ctrl.aon_ctrl_base;
int ret;
int timeo = 1000 * 1000; /* 1 second */
writel_relaxed(0, base + AON_CTRL_PM_INITIATE);
(void)readl_relaxed(base + AON_CTRL_PM_INITIATE);
/* Go! */
writel_relaxed((cmd << 1) | PM_INITIATE, base + AON_CTRL_PM_INITIATE);
/*
* If firmware doesn't support the 'ack', then just assume it's done
* after 10ms. Note that this only works for command 0, BSP_CLOCK_STOP
*/
if (of_machine_is_compatible("brcm,bcm74371a0")) {
(void)readl_relaxed(base + AON_CTRL_PM_INITIATE);
mdelay(10);
return 0;
}
for (;;) {
ret = readl_relaxed(base + AON_CTRL_PM_INITIATE);
if (!(ret & PM_INITIATE))
break;
if (timeo <= 0) {
pr_err("error: timeout waiting for BSP (%x)\n", ret);
break;
}
timeo -= 50;
udelay(50);
}
return (ret & 0xff) != PM_INITIATE_SUCCESS;
}
static int brcmstb_pm_handshake(void)
{
void __iomem *base = ctrl.aon_ctrl_base;
u32 tmp;
int ret;
/* BSP power handshake, v1 */
tmp = readl_relaxed(base + AON_CTRL_HOST_MISC_CMDS);
tmp &= ~1UL;
writel_relaxed(tmp, base + AON_CTRL_HOST_MISC_CMDS);
(void)readl_relaxed(base + AON_CTRL_HOST_MISC_CMDS);
ret = do_bsp_initiate_command(BSP_CLOCK_STOP);
if (ret)
pr_err("BSP handshake failed\n");
/*
* HACK: BSP may have internal race on the CLOCK_STOP command.
* Avoid touching the BSP for a few milliseconds.
*/
mdelay(3);
return ret;
}
static inline void shimphy_set(u32 value, u32 mask)
{
int i;
if (!ctrl.needs_ddr_pad)
return;
for (i = 0; i < ctrl.num_memc; i++) {
u32 tmp;
tmp = readl_relaxed(ctrl.memcs[i].ddr_shimphy_base +
SHIMPHY_DDR_PAD_CNTRL);
tmp = value | (tmp & mask);
writel_relaxed(tmp, ctrl.memcs[i].ddr_shimphy_base +
SHIMPHY_DDR_PAD_CNTRL);
}
wmb(); /* Complete sequence in order. */
}
static inline void ddr_ctrl_set(bool warmboot)
{
int i;
for (i = 0; i < ctrl.num_memc; i++) {
u32 tmp;
tmp = readl_relaxed(ctrl.memcs[i].ddr_ctrl +
ctrl.warm_boot_offset);
if (warmboot)
tmp |= 1;
else
tmp &= ~1; /* Cold boot */
writel_relaxed(tmp, ctrl.memcs[i].ddr_ctrl +
ctrl.warm_boot_offset);
}
/* Complete sequence in order */
wmb();
}
static inline void s3entry_method0(void)
{
shimphy_set(SHIMPHY_PAD_GATE_PLL_S3 | SHIMPHY_PAD_PLL_SEQUENCE,
0xffffffff);
}
static inline void s3entry_method1(void)
{
/*
* S3 Entry Sequence
* -----------------
* Step 1: SHIMPHY_ADDR_CNTL_0_DDR_PAD_CNTRL [ S3_PWRDWN_SEQ ] = 3
* Step 2: MEMC_DDR_0_WARM_BOOT [ WARM_BOOT ] = 1
*/
shimphy_set((PWRDWN_SEQ_POWERDOWN_PLL <<
SHIMPHY_PAD_S3_PWRDWN_SEQ_SHIFT),
~SHIMPHY_PAD_S3_PWRDWN_SEQ_MASK);
ddr_ctrl_set(true);
}
static inline void s5entry_method1(void)
{
int i;
/*
* S5 Entry Sequence
* -----------------
* Step 1: SHIMPHY_ADDR_CNTL_0_DDR_PAD_CNTRL [ S3_PWRDWN_SEQ ] = 3
* Step 2: MEMC_DDR_0_WARM_BOOT [ WARM_BOOT ] = 0
* Step 3: DDR_PHY_CONTROL_REGS_[AB]_0_STANDBY_CONTROL[ CKE ] = 0
* DDR_PHY_CONTROL_REGS_[AB]_0_STANDBY_CONTROL[ RST_N ] = 0
*/
shimphy_set((PWRDWN_SEQ_POWERDOWN_PLL <<
SHIMPHY_PAD_S3_PWRDWN_SEQ_SHIFT),
~SHIMPHY_PAD_S3_PWRDWN_SEQ_MASK);
ddr_ctrl_set(false);
for (i = 0; i < ctrl.num_memc; i++) {
u32 tmp;
/* Step 3: Channel A (RST_N = CKE = 0) */
tmp = readl_relaxed(ctrl.memcs[i].ddr_phy_base +
ctrl.phy_a_standby_ctrl_offs);
tmp &= ~(DDR_PHY_RST_N | DDR_PHY_RST_N);
writel_relaxed(tmp, ctrl.memcs[i].ddr_phy_base +
ctrl.phy_a_standby_ctrl_offs);
/* Step 3: Channel B? */
if (ctrl.phy_b_standby_ctrl_offs != DDR_PHY_NO_CHANNEL) {
tmp = readl_relaxed(ctrl.memcs[i].ddr_phy_base +
ctrl.phy_b_standby_ctrl_offs);
tmp &= ~(DDR_PHY_RST_N | DDR_PHY_RST_N);
writel_relaxed(tmp, ctrl.memcs[i].ddr_phy_base +
ctrl.phy_b_standby_ctrl_offs);
}
}
/* Must complete */
wmb();
}
/*
* Run a Power Management State Machine (PMSM) shutdown command and put the CPU
* into a low-power mode
*/
static void brcmstb_do_pmsm_power_down(unsigned long base_cmd, bool onewrite)
{
void __iomem *base = ctrl.aon_ctrl_base;
if ((ctrl.s3entry_method == 1) && (base_cmd == PM_COLD_CONFIG))
s5entry_method1();
/* pm_start_pwrdn transition 0->1 */
writel_relaxed(base_cmd, base + AON_CTRL_PM_CTRL);
if (!onewrite) {
(void)readl_relaxed(base + AON_CTRL_PM_CTRL);
writel_relaxed(base_cmd | PM_PWR_DOWN, base + AON_CTRL_PM_CTRL);
(void)readl_relaxed(base + AON_CTRL_PM_CTRL);
}
wfi();
}
/* Support S5 cold boot out of "poweroff" */
static void brcmstb_pm_poweroff(void)
{
brcmstb_pm_handshake();
/* Clear magic S3 warm-boot value */
writel_relaxed(0, ctrl.aon_sram + AON_REG_MAGIC_FLAGS);
(void)readl_relaxed(ctrl.aon_sram + AON_REG_MAGIC_FLAGS);
/* Skip wait-for-interrupt signal; just use a countdown */
writel_relaxed(0x10, ctrl.aon_ctrl_base + AON_CTRL_PM_CPU_WAIT_COUNT);
(void)readl_relaxed(ctrl.aon_ctrl_base + AON_CTRL_PM_CPU_WAIT_COUNT);
if (ctrl.s3entry_method == 1) {
shimphy_set((PWRDWN_SEQ_POWERDOWN_PLL <<
SHIMPHY_PAD_S3_PWRDWN_SEQ_SHIFT),
~SHIMPHY_PAD_S3_PWRDWN_SEQ_MASK);
ddr_ctrl_set(false);
brcmstb_do_pmsm_power_down(M1_PM_COLD_CONFIG, true);
return; /* We should never actually get here */
}
brcmstb_do_pmsm_power_down(PM_COLD_CONFIG, false);
}
static void *brcmstb_pm_copy_to_sram(void *fn, size_t len)
{
unsigned int size = ALIGN(len, FNCPY_ALIGN);
if (ctrl.boot_sram_len < size) {
pr_err("standby code will not fit in SRAM\n");
return NULL;
}
return fncpy(ctrl.boot_sram, fn, size);
}
/*
* S2 suspend/resume picks up where we left off, so we must execute carefully
* from SRAM, in order to allow DDR to come back up safely before we continue.
*/
static int brcmstb_pm_s2(void)
{
/* A previous S3 can set a value hazardous to S2, so make sure. */
if (ctrl.s3entry_method == 1) {
shimphy_set((PWRDWN_SEQ_NO_SEQUENCING <<
SHIMPHY_PAD_S3_PWRDWN_SEQ_SHIFT),
~SHIMPHY_PAD_S3_PWRDWN_SEQ_MASK);
ddr_ctrl_set(false);
}
brcmstb_pm_do_s2_sram = brcmstb_pm_copy_to_sram(&brcmstb_pm_do_s2,
brcmstb_pm_do_s2_sz);
if (!brcmstb_pm_do_s2_sram)
return -EINVAL;
return brcmstb_pm_do_s2_sram(ctrl.aon_ctrl_base,
ctrl.memcs[0].ddr_phy_base +
ctrl.pll_status_offset);
}
/*
* This function is called on a new stack, so don't allow inlining (which will
* generate stack references on the old stack). It cannot be made static because
* it is referenced from brcmstb_pm_s3()
*/
noinline int brcmstb_pm_s3_finish(void)
{
struct brcmstb_s3_params *params = ctrl.s3_params;
dma_addr_t params_pa = ctrl.s3_params_pa;
phys_addr_t reentry = virt_to_phys(&cpu_resume_arm);
enum bsp_initiate_command cmd;
u32 flags;
/*
* Clear parameter structure, but not DTU area, which has already been
* filled in. We know DTU is a the end, so we can just subtract its
* size.
*/
memset(params, 0, sizeof(*params) - sizeof(params->dtu));
flags = readl_relaxed(ctrl.aon_sram + AON_REG_MAGIC_FLAGS);
flags &= S3_BOOTLOADER_RESERVED;
flags |= S3_FLAG_NO_MEM_VERIFY;
flags |= S3_FLAG_LOAD_RANDKEY;
/* Load random / fixed key */
if (flags & S3_FLAG_LOAD_RANDKEY)
cmd = BSP_GEN_RANDOM_KEY;
else
cmd = BSP_GEN_FIXED_KEY;
if (do_bsp_initiate_command(cmd)) {
pr_info("key loading failed\n");
return -EIO;
}
params->magic = BRCMSTB_S3_MAGIC;
params->reentry = reentry;
/* No more writes to DRAM */
flush_cache_all();
flags |= BRCMSTB_S3_MAGIC_SHORT;
writel_relaxed(flags, ctrl.aon_sram + AON_REG_MAGIC_FLAGS);
writel_relaxed(lower_32_bits(params_pa),
ctrl.aon_sram + AON_REG_CONTROL_LOW);
writel_relaxed(upper_32_bits(params_pa),
ctrl.aon_sram + AON_REG_CONTROL_HIGH);
switch (ctrl.s3entry_method) {
case 0:
s3entry_method0();
brcmstb_do_pmsm_power_down(PM_WARM_CONFIG, false);
break;
case 1:
s3entry_method1();
brcmstb_do_pmsm_power_down(M1_PM_WARM_CONFIG, true);
break;
default:
return -EINVAL;
}
/* Must have been interrupted from wfi()? */
return -EINTR;
}
static int brcmstb_pm_do_s3(unsigned long sp)
{
unsigned long save_sp;
int ret;
asm volatile (
"mov %[save], sp\n"
"mov sp, %[new]\n"
"bl brcmstb_pm_s3_finish\n"
"mov %[ret], r0\n"
"mov %[new], sp\n"
"mov sp, %[save]\n"
: [save] "=&r" (save_sp), [ret] "=&r" (ret)
: [new] "r" (sp)
);
return ret;
}
static int brcmstb_pm_s3(void)
{
void __iomem *sp = ctrl.boot_sram + ctrl.boot_sram_len;
return cpu_suspend((unsigned long)sp, brcmstb_pm_do_s3);
}
static int brcmstb_pm_standby(bool deep_standby)
{
int ret;
if (brcmstb_pm_handshake())
return -EIO;
if (deep_standby)
ret = brcmstb_pm_s3();
else
ret = brcmstb_pm_s2();
if (ret)
pr_err("%s: standby failed\n", __func__);
return ret;
}
static int brcmstb_pm_enter(suspend_state_t state)
{
int ret = -EINVAL;
switch (state) {
case PM_SUSPEND_STANDBY:
ret = brcmstb_pm_standby(false);
break;
case PM_SUSPEND_MEM:
ret = brcmstb_pm_standby(true);
break;
}
return ret;
}
static int brcmstb_pm_valid(suspend_state_t state)
{
switch (state) {
case PM_SUSPEND_STANDBY:
return true;
case PM_SUSPEND_MEM:
return ctrl.support_warm_boot;
default:
return false;
}
}
static const struct platform_suspend_ops brcmstb_pm_ops = {
.enter = brcmstb_pm_enter,
.valid = brcmstb_pm_valid,
};
static const struct of_device_id aon_ctrl_dt_ids[] = {
{ .compatible = "brcm,brcmstb-aon-ctrl" },
{}
};
struct ddr_phy_ofdata {
bool supports_warm_boot;
size_t pll_status_offset;
int s3entry_method;
u32 warm_boot_offset;
u32 phy_a_standby_ctrl_offs;
u32 phy_b_standby_ctrl_offs;
};
static struct ddr_phy_ofdata ddr_phy_71_1 = {
.supports_warm_boot = true,
.pll_status_offset = 0x0c,
.s3entry_method = 1,
.warm_boot_offset = 0x2c,
.phy_a_standby_ctrl_offs = 0x198,
.phy_b_standby_ctrl_offs = DDR_PHY_NO_CHANNEL
};
static struct ddr_phy_ofdata ddr_phy_72_0 = {
.supports_warm_boot = true,
.pll_status_offset = 0x10,
.s3entry_method = 1,
.warm_boot_offset = 0x40,
.phy_a_standby_ctrl_offs = 0x2a4,
.phy_b_standby_ctrl_offs = 0x8a4
};
static struct ddr_phy_ofdata ddr_phy_225_1 = {
.supports_warm_boot = false,
.pll_status_offset = 0x4,
.s3entry_method = 0
};
static struct ddr_phy_ofdata ddr_phy_240_1 = {
.supports_warm_boot = true,
.pll_status_offset = 0x4,
.s3entry_method = 0
};
static const struct of_device_id ddr_phy_dt_ids[] = {
{
.compatible = "brcm,brcmstb-ddr-phy-v71.1",
.data = &ddr_phy_71_1,
},
{
.compatible = "brcm,brcmstb-ddr-phy-v72.0",
.data = &ddr_phy_72_0,
},
{
.compatible = "brcm,brcmstb-ddr-phy-v225.1",
.data = &ddr_phy_225_1,
},
{
.compatible = "brcm,brcmstb-ddr-phy-v240.1",
.data = &ddr_phy_240_1,
},
{
/* Same as v240.1, for the registers we care about */
.compatible = "brcm,brcmstb-ddr-phy-v240.2",
.data = &ddr_phy_240_1,
},
{}
};
struct ddr_seq_ofdata {
bool needs_ddr_pad;
u32 warm_boot_offset;
};
static const struct ddr_seq_ofdata ddr_seq_b22 = {
.needs_ddr_pad = false,
.warm_boot_offset = 0x2c,
};
static const struct ddr_seq_ofdata ddr_seq = {
.needs_ddr_pad = true,
};
static const struct of_device_id ddr_shimphy_dt_ids[] = {
{ .compatible = "brcm,brcmstb-ddr-shimphy-v1.0" },
{}
};
static const struct of_device_id brcmstb_memc_of_match[] = {
{
.compatible = "brcm,brcmstb-memc-ddr-rev-b.2.1",
.data = &ddr_seq,
},
{
.compatible = "brcm,brcmstb-memc-ddr-rev-b.2.2",
.data = &ddr_seq_b22,
},
{
.compatible = "brcm,brcmstb-memc-ddr-rev-b.2.3",
.data = &ddr_seq_b22,
},
{
.compatible = "brcm,brcmstb-memc-ddr-rev-b.3.0",
.data = &ddr_seq_b22,
},
{
.compatible = "brcm,brcmstb-memc-ddr-rev-b.3.1",
.data = &ddr_seq_b22,
},
{
.compatible = "brcm,brcmstb-memc-ddr",
.data = &ddr_seq,
},
{},
};
static void __iomem *brcmstb_ioremap_match(const struct of_device_id *matches,
int index, const void **ofdata)
{
struct device_node *dn;
const struct of_device_id *match;
dn = of_find_matching_node_and_match(NULL, matches, &match);
if (!dn)
return ERR_PTR(-EINVAL);
if (ofdata)
*ofdata = match->data;
return of_io_request_and_map(dn, index, dn->full_name);
}
static int brcmstb_pm_panic_notify(struct notifier_block *nb,
unsigned long action, void *data)
{
writel_relaxed(BRCMSTB_PANIC_MAGIC, ctrl.aon_sram + AON_REG_PANIC);
return NOTIFY_DONE;
}
static struct notifier_block brcmstb_pm_panic_nb = {
.notifier_call = brcmstb_pm_panic_notify,
};
static int brcmstb_pm_probe(struct platform_device *pdev)
{
const struct ddr_phy_ofdata *ddr_phy_data;
const struct ddr_seq_ofdata *ddr_seq_data;
const struct of_device_id *of_id = NULL;
struct device_node *dn;
void __iomem *base;
int ret, i, s;
/* AON ctrl registers */
base = brcmstb_ioremap_match(aon_ctrl_dt_ids, 0, NULL);
if (IS_ERR(base)) {
pr_err("error mapping AON_CTRL\n");
ret = PTR_ERR(base);
goto aon_err;
}
ctrl.aon_ctrl_base = base;
/* AON SRAM registers */
base = brcmstb_ioremap_match(aon_ctrl_dt_ids, 1, NULL);
if (IS_ERR(base)) {
/* Assume standard offset */
ctrl.aon_sram = ctrl.aon_ctrl_base +
AON_CTRL_SYSTEM_DATA_RAM_OFS;
s = 0;
} else {
ctrl.aon_sram = base;
s = 1;
}
writel_relaxed(0, ctrl.aon_sram + AON_REG_PANIC);
/* DDR PHY registers */
base = brcmstb_ioremap_match(ddr_phy_dt_ids, 0,
(const void **)&ddr_phy_data);
if (IS_ERR(base)) {
pr_err("error mapping DDR PHY\n");
ret = PTR_ERR(base);
goto ddr_phy_err;
}
ctrl.support_warm_boot = ddr_phy_data->supports_warm_boot;
ctrl.pll_status_offset = ddr_phy_data->pll_status_offset;
/* Only need DDR PHY 0 for now? */
ctrl.memcs[0].ddr_phy_base = base;
ctrl.s3entry_method = ddr_phy_data->s3entry_method;
ctrl.phy_a_standby_ctrl_offs = ddr_phy_data->phy_a_standby_ctrl_offs;
ctrl.phy_b_standby_ctrl_offs = ddr_phy_data->phy_b_standby_ctrl_offs;
/*
* Slightly grosss to use the phy ver to get a memc,
* offset but that is the only versioned things so far
* we can test for.
*/
ctrl.warm_boot_offset = ddr_phy_data->warm_boot_offset;
/* DDR SHIM-PHY registers */
for_each_matching_node(dn, ddr_shimphy_dt_ids) {
i = ctrl.num_memc;
if (i >= MAX_NUM_MEMC) {
of_node_put(dn);
pr_warn("too many MEMCs (max %d)\n", MAX_NUM_MEMC);
break;
}
base = of_io_request_and_map(dn, 0, dn->full_name);
if (IS_ERR(base)) {
of_node_put(dn);
if (!ctrl.support_warm_boot)
break;
pr_err("error mapping DDR SHIMPHY %d\n", i);
ret = PTR_ERR(base);
goto ddr_shimphy_err;
}
ctrl.memcs[i].ddr_shimphy_base = base;
ctrl.num_memc++;
}
/* Sequencer DRAM Param and Control Registers */
i = 0;
for_each_matching_node(dn, brcmstb_memc_of_match) {
base = of_iomap(dn, 0);
if (!base) {
of_node_put(dn);
pr_err("error mapping DDR Sequencer %d\n", i);
ret = -ENOMEM;
goto brcmstb_memc_err;
}
of_id = of_match_node(brcmstb_memc_of_match, dn);
if (!of_id) {
iounmap(base);
of_node_put(dn);
ret = -EINVAL;
goto brcmstb_memc_err;
}
ddr_seq_data = of_id->data;
ctrl.needs_ddr_pad = ddr_seq_data->needs_ddr_pad;
/* Adjust warm boot offset based on the DDR sequencer */
if (ddr_seq_data->warm_boot_offset)
ctrl.warm_boot_offset = ddr_seq_data->warm_boot_offset;
ctrl.memcs[i].ddr_ctrl = base;
i++;
}
pr_debug("PM: supports warm boot:%d, method:%d, wboffs:%x\n",
ctrl.support_warm_boot, ctrl.s3entry_method,
ctrl.warm_boot_offset);
dn = of_find_matching_node(NULL, sram_dt_ids);
if (!dn) {
pr_err("SRAM not found\n");
ret = -EINVAL;
goto brcmstb_memc_err;
}
ret = brcmstb_init_sram(dn);
of_node_put(dn);
if (ret) {
pr_err("error setting up SRAM for PM\n");
goto brcmstb_memc_err;
}
ctrl.pdev = pdev;
ctrl.s3_params = kmalloc(sizeof(*ctrl.s3_params), GFP_KERNEL);
if (!ctrl.s3_params) {
ret = -ENOMEM;
goto s3_params_err;
}
ctrl.s3_params_pa = dma_map_single(&pdev->dev, ctrl.s3_params,
sizeof(*ctrl.s3_params),
DMA_TO_DEVICE);
if (dma_mapping_error(&pdev->dev, ctrl.s3_params_pa)) {
pr_err("error mapping DMA memory\n");
ret = -ENOMEM;
goto out;
}
atomic_notifier_chain_register(&panic_notifier_list,
&brcmstb_pm_panic_nb);
pm_power_off = brcmstb_pm_poweroff;
suspend_set_ops(&brcmstb_pm_ops);
return 0;
out:
kfree(ctrl.s3_params);
s3_params_err:
iounmap(ctrl.boot_sram);
brcmstb_memc_err:
for (i--; i >= 0; i--)
iounmap(ctrl.memcs[i].ddr_ctrl);
ddr_shimphy_err:
for (i = 0; i < ctrl.num_memc; i++)
iounmap(ctrl.memcs[i].ddr_shimphy_base);
iounmap(ctrl.memcs[0].ddr_phy_base);
ddr_phy_err:
iounmap(ctrl.aon_ctrl_base);
if (s)
iounmap(ctrl.aon_sram);
aon_err:
pr_warn("PM: initialization failed with code %d\n", ret);
return ret;
}
static struct platform_driver brcmstb_pm_driver = {
.driver = {
.name = "brcmstb-pm",
.of_match_table = aon_ctrl_dt_ids,
},
};
static int __init brcmstb_pm_init(void)
{
return platform_driver_probe(&brcmstb_pm_driver,
brcmstb_pm_probe);
}
module_init(brcmstb_pm_init);