227 lines
6.3 KiB
C
227 lines
6.3 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
/*
|
||
|
* Copyright (C) 2015-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
|
||
|
*/
|
||
|
|
||
|
#include "peerlookup.h"
|
||
|
#include "peer.h"
|
||
|
#include "noise.h"
|
||
|
|
||
|
static struct hlist_head *pubkey_bucket(struct pubkey_hashtable *table,
|
||
|
const u8 pubkey[NOISE_PUBLIC_KEY_LEN])
|
||
|
{
|
||
|
/* siphash gives us a secure 64bit number based on a random key. Since
|
||
|
* the bits are uniformly distributed, we can then mask off to get the
|
||
|
* bits we need.
|
||
|
*/
|
||
|
const u64 hash = siphash(pubkey, NOISE_PUBLIC_KEY_LEN, &table->key);
|
||
|
|
||
|
return &table->hashtable[hash & (HASH_SIZE(table->hashtable) - 1)];
|
||
|
}
|
||
|
|
||
|
struct pubkey_hashtable *wg_pubkey_hashtable_alloc(void)
|
||
|
{
|
||
|
struct pubkey_hashtable *table = kvmalloc(sizeof(*table), GFP_KERNEL);
|
||
|
|
||
|
if (!table)
|
||
|
return NULL;
|
||
|
|
||
|
get_random_bytes(&table->key, sizeof(table->key));
|
||
|
hash_init(table->hashtable);
|
||
|
mutex_init(&table->lock);
|
||
|
return table;
|
||
|
}
|
||
|
|
||
|
void wg_pubkey_hashtable_add(struct pubkey_hashtable *table,
|
||
|
struct wg_peer *peer)
|
||
|
{
|
||
|
mutex_lock(&table->lock);
|
||
|
hlist_add_head_rcu(&peer->pubkey_hash,
|
||
|
pubkey_bucket(table, peer->handshake.remote_static));
|
||
|
mutex_unlock(&table->lock);
|
||
|
}
|
||
|
|
||
|
void wg_pubkey_hashtable_remove(struct pubkey_hashtable *table,
|
||
|
struct wg_peer *peer)
|
||
|
{
|
||
|
mutex_lock(&table->lock);
|
||
|
hlist_del_init_rcu(&peer->pubkey_hash);
|
||
|
mutex_unlock(&table->lock);
|
||
|
}
|
||
|
|
||
|
/* Returns a strong reference to a peer */
|
||
|
struct wg_peer *
|
||
|
wg_pubkey_hashtable_lookup(struct pubkey_hashtable *table,
|
||
|
const u8 pubkey[NOISE_PUBLIC_KEY_LEN])
|
||
|
{
|
||
|
struct wg_peer *iter_peer, *peer = NULL;
|
||
|
|
||
|
rcu_read_lock_bh();
|
||
|
hlist_for_each_entry_rcu_bh(iter_peer, pubkey_bucket(table, pubkey),
|
||
|
pubkey_hash) {
|
||
|
if (!memcmp(pubkey, iter_peer->handshake.remote_static,
|
||
|
NOISE_PUBLIC_KEY_LEN)) {
|
||
|
peer = iter_peer;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
peer = wg_peer_get_maybe_zero(peer);
|
||
|
rcu_read_unlock_bh();
|
||
|
return peer;
|
||
|
}
|
||
|
|
||
|
static struct hlist_head *index_bucket(struct index_hashtable *table,
|
||
|
const __le32 index)
|
||
|
{
|
||
|
/* Since the indices are random and thus all bits are uniformly
|
||
|
* distributed, we can find its bucket simply by masking.
|
||
|
*/
|
||
|
return &table->hashtable[(__force u32)index &
|
||
|
(HASH_SIZE(table->hashtable) - 1)];
|
||
|
}
|
||
|
|
||
|
struct index_hashtable *wg_index_hashtable_alloc(void)
|
||
|
{
|
||
|
struct index_hashtable *table = kvmalloc(sizeof(*table), GFP_KERNEL);
|
||
|
|
||
|
if (!table)
|
||
|
return NULL;
|
||
|
|
||
|
hash_init(table->hashtable);
|
||
|
spin_lock_init(&table->lock);
|
||
|
return table;
|
||
|
}
|
||
|
|
||
|
/* At the moment, we limit ourselves to 2^20 total peers, which generally might
|
||
|
* amount to 2^20*3 items in this hashtable. The algorithm below works by
|
||
|
* picking a random number and testing it. We can see that these limits mean we
|
||
|
* usually succeed pretty quickly:
|
||
|
*
|
||
|
* >>> def calculation(tries, size):
|
||
|
* ... return (size / 2**32)**(tries - 1) * (1 - (size / 2**32))
|
||
|
* ...
|
||
|
* >>> calculation(1, 2**20 * 3)
|
||
|
* 0.999267578125
|
||
|
* >>> calculation(2, 2**20 * 3)
|
||
|
* 0.0007318854331970215
|
||
|
* >>> calculation(3, 2**20 * 3)
|
||
|
* 5.360489012673497e-07
|
||
|
* >>> calculation(4, 2**20 * 3)
|
||
|
* 3.9261394135792216e-10
|
||
|
*
|
||
|
* At the moment, we don't do any masking, so this algorithm isn't exactly
|
||
|
* constant time in either the random guessing or in the hash list lookup. We
|
||
|
* could require a minimum of 3 tries, which would successfully mask the
|
||
|
* guessing. this would not, however, help with the growing hash lengths, which
|
||
|
* is another thing to consider moving forward.
|
||
|
*/
|
||
|
|
||
|
__le32 wg_index_hashtable_insert(struct index_hashtable *table,
|
||
|
struct index_hashtable_entry *entry)
|
||
|
{
|
||
|
struct index_hashtable_entry *existing_entry;
|
||
|
|
||
|
spin_lock_bh(&table->lock);
|
||
|
hlist_del_init_rcu(&entry->index_hash);
|
||
|
spin_unlock_bh(&table->lock);
|
||
|
|
||
|
rcu_read_lock_bh();
|
||
|
|
||
|
search_unused_slot:
|
||
|
/* First we try to find an unused slot, randomly, while unlocked. */
|
||
|
entry->index = (__force __le32)get_random_u32();
|
||
|
hlist_for_each_entry_rcu_bh(existing_entry,
|
||
|
index_bucket(table, entry->index),
|
||
|
index_hash) {
|
||
|
if (existing_entry->index == entry->index)
|
||
|
/* If it's already in use, we continue searching. */
|
||
|
goto search_unused_slot;
|
||
|
}
|
||
|
|
||
|
/* Once we've found an unused slot, we lock it, and then double-check
|
||
|
* that nobody else stole it from us.
|
||
|
*/
|
||
|
spin_lock_bh(&table->lock);
|
||
|
hlist_for_each_entry_rcu_bh(existing_entry,
|
||
|
index_bucket(table, entry->index),
|
||
|
index_hash) {
|
||
|
if (existing_entry->index == entry->index) {
|
||
|
spin_unlock_bh(&table->lock);
|
||
|
/* If it was stolen, we start over. */
|
||
|
goto search_unused_slot;
|
||
|
}
|
||
|
}
|
||
|
/* Otherwise, we know we have it exclusively (since we're locked),
|
||
|
* so we insert.
|
||
|
*/
|
||
|
hlist_add_head_rcu(&entry->index_hash,
|
||
|
index_bucket(table, entry->index));
|
||
|
spin_unlock_bh(&table->lock);
|
||
|
|
||
|
rcu_read_unlock_bh();
|
||
|
|
||
|
return entry->index;
|
||
|
}
|
||
|
|
||
|
bool wg_index_hashtable_replace(struct index_hashtable *table,
|
||
|
struct index_hashtable_entry *old,
|
||
|
struct index_hashtable_entry *new)
|
||
|
{
|
||
|
bool ret;
|
||
|
|
||
|
spin_lock_bh(&table->lock);
|
||
|
ret = !hlist_unhashed(&old->index_hash);
|
||
|
if (unlikely(!ret))
|
||
|
goto out;
|
||
|
|
||
|
new->index = old->index;
|
||
|
hlist_replace_rcu(&old->index_hash, &new->index_hash);
|
||
|
|
||
|
/* Calling init here NULLs out index_hash, and in fact after this
|
||
|
* function returns, it's theoretically possible for this to get
|
||
|
* reinserted elsewhere. That means the RCU lookup below might either
|
||
|
* terminate early or jump between buckets, in which case the packet
|
||
|
* simply gets dropped, which isn't terrible.
|
||
|
*/
|
||
|
INIT_HLIST_NODE(&old->index_hash);
|
||
|
out:
|
||
|
spin_unlock_bh(&table->lock);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
void wg_index_hashtable_remove(struct index_hashtable *table,
|
||
|
struct index_hashtable_entry *entry)
|
||
|
{
|
||
|
spin_lock_bh(&table->lock);
|
||
|
hlist_del_init_rcu(&entry->index_hash);
|
||
|
spin_unlock_bh(&table->lock);
|
||
|
}
|
||
|
|
||
|
/* Returns a strong reference to a entry->peer */
|
||
|
struct index_hashtable_entry *
|
||
|
wg_index_hashtable_lookup(struct index_hashtable *table,
|
||
|
const enum index_hashtable_type type_mask,
|
||
|
const __le32 index, struct wg_peer **peer)
|
||
|
{
|
||
|
struct index_hashtable_entry *iter_entry, *entry = NULL;
|
||
|
|
||
|
rcu_read_lock_bh();
|
||
|
hlist_for_each_entry_rcu_bh(iter_entry, index_bucket(table, index),
|
||
|
index_hash) {
|
||
|
if (iter_entry->index == index) {
|
||
|
if (likely(iter_entry->type & type_mask))
|
||
|
entry = iter_entry;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if (likely(entry)) {
|
||
|
entry->peer = wg_peer_get_maybe_zero(entry->peer);
|
||
|
if (likely(entry->peer))
|
||
|
*peer = entry->peer;
|
||
|
else
|
||
|
entry = NULL;
|
||
|
}
|
||
|
rcu_read_unlock_bh();
|
||
|
return entry;
|
||
|
}
|