kernel/drivers/mmc/core/sd.c

1875 lines
44 KiB
C
Raw Normal View History

2024-07-22 17:22:30 +08:00
// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/drivers/mmc/core/sd.c
*
* Copyright (C) 2003-2004 Russell King, All Rights Reserved.
* SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
* Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
*/
#include <linux/err.h>
#include <linux/sizes.h>
#include <linux/slab.h>
#include <linux/stat.h>
#include <linux/pm_runtime.h>
#include <linux/mmc/host.h>
#include <linux/mmc/card.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sd.h>
#include "core.h"
#include "card.h"
#include "host.h"
#include "bus.h"
#include "mmc_ops.h"
#include "sd.h"
#include "sd_ops.h"
static const unsigned int tran_exp[] = {
10000, 100000, 1000000, 10000000,
0, 0, 0, 0
};
static const unsigned char tran_mant[] = {
0, 10, 12, 13, 15, 20, 25, 30,
35, 40, 45, 50, 55, 60, 70, 80,
};
static const unsigned int taac_exp[] = {
1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
};
static const unsigned int taac_mant[] = {
0, 10, 12, 13, 15, 20, 25, 30,
35, 40, 45, 50, 55, 60, 70, 80,
};
static const unsigned int sd_au_size[] = {
0, SZ_16K / 512, SZ_32K / 512, SZ_64K / 512,
SZ_128K / 512, SZ_256K / 512, SZ_512K / 512, SZ_1M / 512,
SZ_2M / 512, SZ_4M / 512, SZ_8M / 512, (SZ_8M + SZ_4M) / 512,
SZ_16M / 512, (SZ_16M + SZ_8M) / 512, SZ_32M / 512, SZ_64M / 512,
};
#define UNSTUFF_BITS(resp,start,size) \
({ \
const int __size = size; \
const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \
const int __off = 3 - ((start) / 32); \
const int __shft = (start) & 31; \
u32 __res; \
\
__res = resp[__off] >> __shft; \
if (__size + __shft > 32) \
__res |= resp[__off-1] << ((32 - __shft) % 32); \
__res & __mask; \
})
#define SD_POWEROFF_NOTIFY_TIMEOUT_MS 1000
#define SD_WRITE_EXTR_SINGLE_TIMEOUT_MS 1000
struct sd_busy_data {
struct mmc_card *card;
u8 *reg_buf;
};
/*
* Given the decoded CSD structure, decode the raw CID to our CID structure.
*/
void mmc_decode_cid(struct mmc_card *card)
{
u32 *resp = card->raw_cid;
/*
* SD doesn't currently have a version field so we will
* have to assume we can parse this.
*/
card->cid.manfid = UNSTUFF_BITS(resp, 120, 8);
card->cid.oemid = UNSTUFF_BITS(resp, 104, 16);
card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
card->cid.hwrev = UNSTUFF_BITS(resp, 60, 4);
card->cid.fwrev = UNSTUFF_BITS(resp, 56, 4);
card->cid.serial = UNSTUFF_BITS(resp, 24, 32);
card->cid.year = UNSTUFF_BITS(resp, 12, 8);
card->cid.month = UNSTUFF_BITS(resp, 8, 4);
card->cid.year += 2000; /* SD cards year offset */
}
/*
* Given a 128-bit response, decode to our card CSD structure.
*/
static int mmc_decode_csd(struct mmc_card *card)
{
struct mmc_csd *csd = &card->csd;
unsigned int e, m, csd_struct;
u32 *resp = card->raw_csd;
csd_struct = UNSTUFF_BITS(resp, 126, 2);
switch (csd_struct) {
case 0:
m = UNSTUFF_BITS(resp, 115, 4);
e = UNSTUFF_BITS(resp, 112, 3);
csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10;
csd->taac_clks = UNSTUFF_BITS(resp, 104, 8) * 100;
m = UNSTUFF_BITS(resp, 99, 4);
e = UNSTUFF_BITS(resp, 96, 3);
csd->max_dtr = tran_exp[e] * tran_mant[m];
csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
e = UNSTUFF_BITS(resp, 47, 3);
m = UNSTUFF_BITS(resp, 62, 12);
csd->capacity = (1 + m) << (e + 2);
csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
if (UNSTUFF_BITS(resp, 46, 1)) {
csd->erase_size = 1;
} else if (csd->write_blkbits >= 9) {
csd->erase_size = UNSTUFF_BITS(resp, 39, 7) + 1;
csd->erase_size <<= csd->write_blkbits - 9;
}
if (UNSTUFF_BITS(resp, 13, 1))
mmc_card_set_readonly(card);
break;
case 1:
/*
* This is a block-addressed SDHC or SDXC card. Most
* interesting fields are unused and have fixed
* values. To avoid getting tripped by buggy cards,
* we assume those fixed values ourselves.
*/
mmc_card_set_blockaddr(card);
csd->taac_ns = 0; /* Unused */
csd->taac_clks = 0; /* Unused */
m = UNSTUFF_BITS(resp, 99, 4);
e = UNSTUFF_BITS(resp, 96, 3);
csd->max_dtr = tran_exp[e] * tran_mant[m];
csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
csd->c_size = UNSTUFF_BITS(resp, 48, 22);
/* SDXC cards have a minimum C_SIZE of 0x00FFFF */
if (csd->c_size >= 0xFFFF)
mmc_card_set_ext_capacity(card);
m = UNSTUFF_BITS(resp, 48, 22);
csd->capacity = (1 + m) << 10;
csd->read_blkbits = 9;
csd->read_partial = 0;
csd->write_misalign = 0;
csd->read_misalign = 0;
csd->r2w_factor = 4; /* Unused */
csd->write_blkbits = 9;
csd->write_partial = 0;
csd->erase_size = 1;
if (UNSTUFF_BITS(resp, 13, 1))
mmc_card_set_readonly(card);
break;
default:
pr_err("%s: unrecognised CSD structure version %d\n",
mmc_hostname(card->host), csd_struct);
return -EINVAL;
}
card->erase_size = csd->erase_size;
return 0;
}
/*
* Given a 64-bit response, decode to our card SCR structure.
*/
static int mmc_decode_scr(struct mmc_card *card)
{
struct sd_scr *scr = &card->scr;
unsigned int scr_struct;
u32 resp[4];
resp[3] = card->raw_scr[1];
resp[2] = card->raw_scr[0];
scr_struct = UNSTUFF_BITS(resp, 60, 4);
if (scr_struct != 0) {
pr_err("%s: unrecognised SCR structure version %d\n",
mmc_hostname(card->host), scr_struct);
return -EINVAL;
}
scr->sda_vsn = UNSTUFF_BITS(resp, 56, 4);
scr->bus_widths = UNSTUFF_BITS(resp, 48, 4);
if (scr->sda_vsn == SCR_SPEC_VER_2)
/* Check if Physical Layer Spec v3.0 is supported */
scr->sda_spec3 = UNSTUFF_BITS(resp, 47, 1);
if (scr->sda_spec3) {
scr->sda_spec4 = UNSTUFF_BITS(resp, 42, 1);
scr->sda_specx = UNSTUFF_BITS(resp, 38, 4);
}
if (UNSTUFF_BITS(resp, 55, 1))
card->erased_byte = 0xFF;
else
card->erased_byte = 0x0;
if (scr->sda_spec4)
scr->cmds = UNSTUFF_BITS(resp, 32, 4);
else if (scr->sda_spec3)
scr->cmds = UNSTUFF_BITS(resp, 32, 2);
/* SD Spec says: any SD Card shall set at least bits 0 and 2 */
if (!(scr->bus_widths & SD_SCR_BUS_WIDTH_1) ||
!(scr->bus_widths & SD_SCR_BUS_WIDTH_4)) {
pr_err("%s: invalid bus width\n", mmc_hostname(card->host));
return -EINVAL;
}
return 0;
}
/*
* Fetch and process SD Status register.
*/
static int mmc_read_ssr(struct mmc_card *card)
{
unsigned int au, es, et, eo;
__be32 *raw_ssr;
u32 resp[4] = {};
u8 discard_support;
int i;
if (!(card->csd.cmdclass & CCC_APP_SPEC)) {
pr_warn("%s: card lacks mandatory SD Status function\n",
mmc_hostname(card->host));
return 0;
}
raw_ssr = kmalloc(sizeof(card->raw_ssr), GFP_KERNEL);
if (!raw_ssr)
return -ENOMEM;
if (mmc_app_sd_status(card, raw_ssr)) {
pr_warn("%s: problem reading SD Status register\n",
mmc_hostname(card->host));
kfree(raw_ssr);
return 0;
}
for (i = 0; i < 16; i++)
card->raw_ssr[i] = be32_to_cpu(raw_ssr[i]);
kfree(raw_ssr);
/*
* UNSTUFF_BITS only works with four u32s so we have to offset the
* bitfield positions accordingly.
*/
au = UNSTUFF_BITS(card->raw_ssr, 428 - 384, 4);
if (au) {
if (au <= 9 || card->scr.sda_spec3) {
card->ssr.au = sd_au_size[au];
es = UNSTUFF_BITS(card->raw_ssr, 408 - 384, 16);
et = UNSTUFF_BITS(card->raw_ssr, 402 - 384, 6);
if (es && et) {
eo = UNSTUFF_BITS(card->raw_ssr, 400 - 384, 2);
card->ssr.erase_timeout = (et * 1000) / es;
card->ssr.erase_offset = eo * 1000;
}
} else {
pr_warn("%s: SD Status: Invalid Allocation Unit size\n",
mmc_hostname(card->host));
}
}
/*
* starting SD5.1 discard is supported if DISCARD_SUPPORT (b313) is set
*/
resp[3] = card->raw_ssr[6];
discard_support = UNSTUFF_BITS(resp, 313 - 288, 1);
card->erase_arg = (card->scr.sda_specx && discard_support) ?
SD_DISCARD_ARG : SD_ERASE_ARG;
return 0;
}
/*
* Fetches and decodes switch information
*/
static int mmc_read_switch(struct mmc_card *card)
{
int err;
u8 *status;
if (card->scr.sda_vsn < SCR_SPEC_VER_1)
return 0;
if (!(card->csd.cmdclass & CCC_SWITCH)) {
pr_warn("%s: card lacks mandatory switch function, performance might suffer\n",
mmc_hostname(card->host));
return 0;
}
status = kmalloc(64, GFP_KERNEL);
if (!status)
return -ENOMEM;
/*
* Find out the card's support bits with a mode 0 operation.
* The argument does not matter, as the support bits do not
* change with the arguments.
*/
err = mmc_sd_switch(card, 0, 0, 0, status);
if (err) {
/*
* If the host or the card can't do the switch,
* fail more gracefully.
*/
if (err != -EINVAL && err != -ENOSYS && err != -EFAULT)
goto out;
pr_warn("%s: problem reading Bus Speed modes\n",
mmc_hostname(card->host));
err = 0;
goto out;
}
if (status[13] & SD_MODE_HIGH_SPEED)
card->sw_caps.hs_max_dtr = HIGH_SPEED_MAX_DTR;
if (card->scr.sda_spec3) {
card->sw_caps.sd3_bus_mode = status[13];
/* Driver Strengths supported by the card */
card->sw_caps.sd3_drv_type = status[9];
card->sw_caps.sd3_curr_limit = status[7] | status[6] << 8;
}
out:
kfree(status);
return err;
}
/*
* Test if the card supports high-speed mode and, if so, switch to it.
*/
int mmc_sd_switch_hs(struct mmc_card *card)
{
int err;
u8 *status;
if (card->scr.sda_vsn < SCR_SPEC_VER_1)
return 0;
if (!(card->csd.cmdclass & CCC_SWITCH))
return 0;
if (!(card->host->caps & MMC_CAP_SD_HIGHSPEED))
return 0;
if (card->sw_caps.hs_max_dtr == 0)
return 0;
status = kmalloc(64, GFP_KERNEL);
if (!status)
return -ENOMEM;
err = mmc_sd_switch(card, 1, 0, HIGH_SPEED_BUS_SPEED, status);
if (err)
goto out;
if ((status[16] & 0xF) != HIGH_SPEED_BUS_SPEED) {
pr_warn("%s: Problem switching card into high-speed mode!\n",
mmc_hostname(card->host));
err = 0;
} else {
err = 1;
}
out:
kfree(status);
return err;
}
static int sd_select_driver_type(struct mmc_card *card, u8 *status)
{
int card_drv_type, drive_strength, drv_type;
int err;
card->drive_strength = 0;
card_drv_type = card->sw_caps.sd3_drv_type | SD_DRIVER_TYPE_B;
drive_strength = mmc_select_drive_strength(card,
card->sw_caps.uhs_max_dtr,
card_drv_type, &drv_type);
if (drive_strength) {
err = mmc_sd_switch(card, 1, 2, drive_strength, status);
if (err)
return err;
if ((status[15] & 0xF) != drive_strength) {
pr_warn("%s: Problem setting drive strength!\n",
mmc_hostname(card->host));
return 0;
}
card->drive_strength = drive_strength;
}
if (drv_type)
mmc_set_driver_type(card->host, drv_type);
return 0;
}
static void sd_update_bus_speed_mode(struct mmc_card *card)
{
/*
* If the host doesn't support any of the UHS-I modes, fallback on
* default speed.
*/
if (!mmc_host_uhs(card->host)) {
card->sd_bus_speed = 0;
return;
}
if ((card->host->caps & MMC_CAP_UHS_SDR104) &&
(card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR104)) {
card->sd_bus_speed = UHS_SDR104_BUS_SPEED;
} else if ((card->host->caps & MMC_CAP_UHS_DDR50) &&
(card->sw_caps.sd3_bus_mode & SD_MODE_UHS_DDR50)) {
card->sd_bus_speed = UHS_DDR50_BUS_SPEED;
} else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
MMC_CAP_UHS_SDR50)) && (card->sw_caps.sd3_bus_mode &
SD_MODE_UHS_SDR50)) {
card->sd_bus_speed = UHS_SDR50_BUS_SPEED;
} else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25)) &&
(card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR25)) {
card->sd_bus_speed = UHS_SDR25_BUS_SPEED;
} else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25 |
MMC_CAP_UHS_SDR12)) && (card->sw_caps.sd3_bus_mode &
SD_MODE_UHS_SDR12)) {
card->sd_bus_speed = UHS_SDR12_BUS_SPEED;
}
}
static int sd_set_bus_speed_mode(struct mmc_card *card, u8 *status)
{
int err;
unsigned int timing = 0;
switch (card->sd_bus_speed) {
case UHS_SDR104_BUS_SPEED:
timing = MMC_TIMING_UHS_SDR104;
card->sw_caps.uhs_max_dtr = UHS_SDR104_MAX_DTR;
break;
case UHS_DDR50_BUS_SPEED:
timing = MMC_TIMING_UHS_DDR50;
card->sw_caps.uhs_max_dtr = UHS_DDR50_MAX_DTR;
break;
case UHS_SDR50_BUS_SPEED:
timing = MMC_TIMING_UHS_SDR50;
card->sw_caps.uhs_max_dtr = UHS_SDR50_MAX_DTR;
break;
case UHS_SDR25_BUS_SPEED:
timing = MMC_TIMING_UHS_SDR25;
card->sw_caps.uhs_max_dtr = UHS_SDR25_MAX_DTR;
break;
case UHS_SDR12_BUS_SPEED:
timing = MMC_TIMING_UHS_SDR12;
card->sw_caps.uhs_max_dtr = UHS_SDR12_MAX_DTR;
break;
default:
return 0;
}
err = mmc_sd_switch(card, 1, 0, card->sd_bus_speed, status);
if (err)
return err;
if ((status[16] & 0xF) != card->sd_bus_speed)
pr_warn("%s: Problem setting bus speed mode!\n",
mmc_hostname(card->host));
else {
mmc_set_timing(card->host, timing);
mmc_set_clock(card->host, card->sw_caps.uhs_max_dtr);
}
return 0;
}
/* Get host's max current setting at its current voltage */
static u32 sd_get_host_max_current(struct mmc_host *host)
{
u32 voltage, max_current;
voltage = 1 << host->ios.vdd;
switch (voltage) {
case MMC_VDD_165_195:
max_current = host->max_current_180;
break;
case MMC_VDD_29_30:
case MMC_VDD_30_31:
max_current = host->max_current_300;
break;
case MMC_VDD_32_33:
case MMC_VDD_33_34:
max_current = host->max_current_330;
break;
default:
max_current = 0;
}
return max_current;
}
static int sd_set_current_limit(struct mmc_card *card, u8 *status)
{
int current_limit = SD_SET_CURRENT_NO_CHANGE;
int err;
u32 max_current;
/*
* Current limit switch is only defined for SDR50, SDR104, and DDR50
* bus speed modes. For other bus speed modes, we do not change the
* current limit.
*/
if ((card->sd_bus_speed != UHS_SDR50_BUS_SPEED) &&
(card->sd_bus_speed != UHS_SDR104_BUS_SPEED) &&
(card->sd_bus_speed != UHS_DDR50_BUS_SPEED))
return 0;
/*
* Host has different current capabilities when operating at
* different voltages, so find out its max current first.
*/
max_current = sd_get_host_max_current(card->host);
/*
* We only check host's capability here, if we set a limit that is
* higher than the card's maximum current, the card will be using its
* maximum current, e.g. if the card's maximum current is 300ma, and
* when we set current limit to 200ma, the card will draw 200ma, and
* when we set current limit to 400/600/800ma, the card will draw its
* maximum 300ma from the host.
*
* The above is incorrect: if we try to set a current limit that is
* not supported by the card, the card can rightfully error out the
* attempt, and remain at the default current limit. This results
* in a 300mA card being limited to 200mA even though the host
* supports 800mA. Failures seen with SanDisk 8GB UHS cards with
* an iMX6 host. --rmk
*/
if (max_current >= 800 &&
card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_800)
current_limit = SD_SET_CURRENT_LIMIT_800;
else if (max_current >= 600 &&
card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_600)
current_limit = SD_SET_CURRENT_LIMIT_600;
else if (max_current >= 400 &&
card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_400)
current_limit = SD_SET_CURRENT_LIMIT_400;
else if (max_current >= 200 &&
card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_200)
current_limit = SD_SET_CURRENT_LIMIT_200;
if (current_limit != SD_SET_CURRENT_NO_CHANGE) {
err = mmc_sd_switch(card, 1, 3, current_limit, status);
if (err)
return err;
if (((status[15] >> 4) & 0x0F) != current_limit)
pr_warn("%s: Problem setting current limit!\n",
mmc_hostname(card->host));
}
return 0;
}
/*
* UHS-I specific initialization procedure
*/
static int mmc_sd_init_uhs_card(struct mmc_card *card)
{
int err;
u8 *status;
if (!(card->csd.cmdclass & CCC_SWITCH))
return 0;
status = kmalloc(64, GFP_KERNEL);
if (!status)
return -ENOMEM;
/* Set 4-bit bus width */
err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4);
if (err)
goto out;
mmc_set_bus_width(card->host, MMC_BUS_WIDTH_4);
/*
* Select the bus speed mode depending on host
* and card capability.
*/
sd_update_bus_speed_mode(card);
/* Set the driver strength for the card */
err = sd_select_driver_type(card, status);
if (err)
goto out;
/* Set current limit for the card */
err = sd_set_current_limit(card, status);
if (err)
goto out;
/* Set bus speed mode of the card */
err = sd_set_bus_speed_mode(card, status);
if (err)
goto out;
/*
* SPI mode doesn't define CMD19 and tuning is only valid for SDR50 and
* SDR104 mode SD-cards. Note that tuning is mandatory for SDR104.
*/
if (!mmc_host_is_spi(card->host) &&
(card->host->ios.timing == MMC_TIMING_UHS_SDR50 ||
card->host->ios.timing == MMC_TIMING_UHS_DDR50 ||
card->host->ios.timing == MMC_TIMING_UHS_SDR104)) {
err = mmc_execute_tuning(card);
/*
* As SD Specifications Part1 Physical Layer Specification
* Version 3.01 says, CMD19 tuning is available for unlocked
* cards in transfer state of 1.8V signaling mode. The small
* difference between v3.00 and 3.01 spec means that CMD19
* tuning is also available for DDR50 mode.
*/
if (err && card->host->ios.timing == MMC_TIMING_UHS_DDR50) {
pr_warn("%s: ddr50 tuning failed\n",
mmc_hostname(card->host));
err = 0;
}
}
out:
kfree(status);
return err;
}
MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
card->raw_cid[2], card->raw_cid[3]);
MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
card->raw_csd[2], card->raw_csd[3]);
MMC_DEV_ATTR(scr, "%08x%08x\n", card->raw_scr[0], card->raw_scr[1]);
MMC_DEV_ATTR(ssr,
"%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x\n",
card->raw_ssr[0], card->raw_ssr[1], card->raw_ssr[2],
card->raw_ssr[3], card->raw_ssr[4], card->raw_ssr[5],
card->raw_ssr[6], card->raw_ssr[7], card->raw_ssr[8],
card->raw_ssr[9], card->raw_ssr[10], card->raw_ssr[11],
card->raw_ssr[12], card->raw_ssr[13], card->raw_ssr[14],
card->raw_ssr[15]);
MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
MMC_DEV_ATTR(fwrev, "0x%x\n", card->cid.fwrev);
MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
static ssize_t mmc_dsr_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct mmc_card *card = mmc_dev_to_card(dev);
struct mmc_host *host = card->host;
if (card->csd.dsr_imp && host->dsr_req)
return sprintf(buf, "0x%x\n", host->dsr);
else
/* return default DSR value */
return sprintf(buf, "0x%x\n", 0x404);
}
static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
MMC_DEV_ATTR(vendor, "0x%04x\n", card->cis.vendor);
MMC_DEV_ATTR(device, "0x%04x\n", card->cis.device);
MMC_DEV_ATTR(revision, "%u.%u\n", card->major_rev, card->minor_rev);
#define sdio_info_attr(num) \
static ssize_t info##num##_show(struct device *dev, struct device_attribute *attr, char *buf) \
{ \
struct mmc_card *card = mmc_dev_to_card(dev); \
\
if (num > card->num_info) \
return -ENODATA; \
if (!card->info[num-1][0]) \
return 0; \
return sprintf(buf, "%s\n", card->info[num-1]); \
} \
static DEVICE_ATTR_RO(info##num)
sdio_info_attr(1);
sdio_info_attr(2);
sdio_info_attr(3);
sdio_info_attr(4);
static struct attribute *sd_std_attrs[] = {
&dev_attr_vendor.attr,
&dev_attr_device.attr,
&dev_attr_revision.attr,
&dev_attr_info1.attr,
&dev_attr_info2.attr,
&dev_attr_info3.attr,
&dev_attr_info4.attr,
&dev_attr_cid.attr,
&dev_attr_csd.attr,
&dev_attr_scr.attr,
&dev_attr_ssr.attr,
&dev_attr_date.attr,
&dev_attr_erase_size.attr,
&dev_attr_preferred_erase_size.attr,
&dev_attr_fwrev.attr,
&dev_attr_hwrev.attr,
&dev_attr_manfid.attr,
&dev_attr_name.attr,
&dev_attr_oemid.attr,
&dev_attr_serial.attr,
&dev_attr_ocr.attr,
&dev_attr_rca.attr,
&dev_attr_dsr.attr,
NULL,
};
static umode_t sd_std_is_visible(struct kobject *kobj, struct attribute *attr,
int index)
{
struct device *dev = kobj_to_dev(kobj);
struct mmc_card *card = mmc_dev_to_card(dev);
/* CIS vendor and device ids, revision and info string are available only for Combo cards */
if ((attr == &dev_attr_vendor.attr ||
attr == &dev_attr_device.attr ||
attr == &dev_attr_revision.attr ||
attr == &dev_attr_info1.attr ||
attr == &dev_attr_info2.attr ||
attr == &dev_attr_info3.attr ||
attr == &dev_attr_info4.attr
) && card->type != MMC_TYPE_SD_COMBO)
return 0;
return attr->mode;
}
static const struct attribute_group sd_std_group = {
.attrs = sd_std_attrs,
.is_visible = sd_std_is_visible,
};
__ATTRIBUTE_GROUPS(sd_std);
struct device_type sd_type = {
.groups = sd_std_groups,
};
/*
* Fetch CID from card.
*/
int mmc_sd_get_cid(struct mmc_host *host, u32 ocr, u32 *cid, u32 *rocr)
{
int err;
u32 max_current;
int retries = 10;
u32 pocr = ocr;
try_again:
if (!retries) {
ocr &= ~SD_OCR_S18R;
pr_warn("%s: Skipping voltage switch\n", mmc_hostname(host));
}
/*
* Since we're changing the OCR value, we seem to
* need to tell some cards to go back to the idle
* state. We wait 1ms to give cards time to
* respond.
*/
mmc_go_idle(host);
/*
* If SD_SEND_IF_COND indicates an SD 2.0
* compliant card and we should set bit 30
* of the ocr to indicate that we can handle
* block-addressed SDHC cards.
*/
err = mmc_send_if_cond(host, ocr);
if (!err)
ocr |= SD_OCR_CCS;
/*
* If the host supports one of UHS-I modes, request the card
* to switch to 1.8V signaling level. If the card has failed
* repeatedly to switch however, skip this.
*/
if (retries && mmc_host_uhs(host))
ocr |= SD_OCR_S18R;
/*
* If the host can supply more than 150mA at current voltage,
* XPC should be set to 1.
*/
max_current = sd_get_host_max_current(host);
if (max_current > 150)
ocr |= SD_OCR_XPC;
err = mmc_send_app_op_cond(host, ocr, rocr);
if (err)
return err;
/*
* In case the S18A bit is set in the response, let's start the signal
* voltage switch procedure. SPI mode doesn't support CMD11.
* Note that, according to the spec, the S18A bit is not valid unless
* the CCS bit is set as well. We deliberately deviate from the spec in
* regards to this, which allows UHS-I to be supported for SDSC cards.
*/
if (!mmc_host_is_spi(host) && (ocr & SD_OCR_S18R) &&
rocr && (*rocr & SD_ROCR_S18A)) {
err = mmc_set_uhs_voltage(host, pocr);
if (err == -EAGAIN) {
retries--;
goto try_again;
} else if (err) {
retries = 0;
goto try_again;
}
}
err = mmc_send_cid(host, cid);
return err;
}
int mmc_sd_get_csd(struct mmc_card *card)
{
int err;
/*
* Fetch CSD from card.
*/
err = mmc_send_csd(card, card->raw_csd);
if (err)
return err;
err = mmc_decode_csd(card);
if (err)
return err;
return 0;
}
static int mmc_sd_get_ro(struct mmc_host *host)
{
int ro;
/*
* Some systems don't feature a write-protect pin and don't need one.
* E.g. because they only have micro-SD card slot. For those systems
* assume that the SD card is always read-write.
*/
if (host->caps2 & MMC_CAP2_NO_WRITE_PROTECT)
return 0;
if (!host->ops->get_ro)
return -1;
ro = host->ops->get_ro(host);
return ro;
}
int mmc_sd_setup_card(struct mmc_host *host, struct mmc_card *card,
bool reinit)
{
int err;
if (!reinit) {
/*
* Fetch SCR from card.
*/
err = mmc_app_send_scr(card);
if (err)
return err;
err = mmc_decode_scr(card);
if (err)
return err;
/*
* Fetch and process SD Status register.
*/
err = mmc_read_ssr(card);
if (err)
return err;
/* Erase init depends on CSD and SSR */
mmc_init_erase(card);
}
/*
* Fetch switch information from card. Note, sd3_bus_mode can change if
* voltage switch outcome changes, so do this always.
*/
err = mmc_read_switch(card);
if (err)
return err;
/*
* For SPI, enable CRC as appropriate.
* This CRC enable is located AFTER the reading of the
* card registers because some SDHC cards are not able
* to provide valid CRCs for non-512-byte blocks.
*/
if (mmc_host_is_spi(host)) {
err = mmc_spi_set_crc(host, use_spi_crc);
if (err)
return err;
}
/*
* Check if read-only switch is active.
*/
if (!reinit) {
int ro = mmc_sd_get_ro(host);
if (ro < 0) {
pr_warn("%s: host does not support reading read-only switch, assuming write-enable\n",
mmc_hostname(host));
} else if (ro > 0) {
mmc_card_set_readonly(card);
}
}
return 0;
}
unsigned mmc_sd_get_max_clock(struct mmc_card *card)
{
unsigned max_dtr = (unsigned int)-1;
if (mmc_card_hs(card)) {
if (max_dtr > card->sw_caps.hs_max_dtr)
max_dtr = card->sw_caps.hs_max_dtr;
} else if (max_dtr > card->csd.max_dtr) {
max_dtr = card->csd.max_dtr;
}
return max_dtr;
}
static bool mmc_sd_card_using_v18(struct mmc_card *card)
{
/*
* According to the SD spec., the Bus Speed Mode (function group 1) bits
* 2 to 4 are zero if the card is initialized at 3.3V signal level. Thus
* they can be used to determine if the card has already switched to
* 1.8V signaling.
*/
return card->sw_caps.sd3_bus_mode &
(SD_MODE_UHS_SDR50 | SD_MODE_UHS_SDR104 | SD_MODE_UHS_DDR50);
}
static int sd_write_ext_reg(struct mmc_card *card, u8 fno, u8 page, u16 offset,
u8 reg_data)
{
struct mmc_host *host = card->host;
struct mmc_request mrq = {};
struct mmc_command cmd = {};
struct mmc_data data = {};
struct scatterlist sg;
u8 *reg_buf;
reg_buf = kzalloc(512, GFP_KERNEL);
if (!reg_buf)
return -ENOMEM;
mrq.cmd = &cmd;
mrq.data = &data;
/*
* Arguments of CMD49:
* [31:31] MIO (0 = memory).
* [30:27] FNO (function number).
* [26:26] MW - mask write mode (0 = disable).
* [25:18] page number.
* [17:9] offset address.
* [8:0] length (0 = 1 byte).
*/
cmd.arg = fno << 27 | page << 18 | offset << 9;
/* The first byte in the buffer is the data to be written. */
reg_buf[0] = reg_data;
data.flags = MMC_DATA_WRITE;
data.blksz = 512;
data.blocks = 1;
data.sg = &sg;
data.sg_len = 1;
sg_init_one(&sg, reg_buf, 512);
cmd.opcode = SD_WRITE_EXTR_SINGLE;
cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
mmc_set_data_timeout(&data, card);
mmc_wait_for_req(host, &mrq);
kfree(reg_buf);
/*
* Note that, the SD card is allowed to signal busy on DAT0 up to 1s
* after the CMD49. Although, let's leave this to be managed by the
* caller.
*/
if (cmd.error)
return cmd.error;
if (data.error)
return data.error;
return 0;
}
static int sd_read_ext_reg(struct mmc_card *card, u8 fno, u8 page,
u16 offset, u16 len, u8 *reg_buf)
{
u32 cmd_args;
/*
* Command arguments of CMD48:
* [31:31] MIO (0 = memory).
* [30:27] FNO (function number).
* [26:26] reserved (0).
* [25:18] page number.
* [17:9] offset address.
* [8:0] length (0 = 1 byte, 1ff = 512 bytes).
*/
cmd_args = fno << 27 | page << 18 | offset << 9 | (len -1);
return mmc_send_adtc_data(card, card->host, SD_READ_EXTR_SINGLE,
cmd_args, reg_buf, 512);
}
static int sd_parse_ext_reg_power(struct mmc_card *card, u8 fno, u8 page,
u16 offset)
{
int err;
u8 *reg_buf;
reg_buf = kzalloc(512, GFP_KERNEL);
if (!reg_buf)
return -ENOMEM;
/* Read the extension register for power management function. */
err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf);
if (err) {
pr_warn("%s: error %d reading PM func of ext reg\n",
mmc_hostname(card->host), err);
goto out;
}
/* PM revision consists of 4 bits. */
card->ext_power.rev = reg_buf[0] & 0xf;
/* Power Off Notification support at bit 4. */
if (reg_buf[1] & BIT(4))
card->ext_power.feature_support |= SD_EXT_POWER_OFF_NOTIFY;
/* Power Sustenance support at bit 5. */
if (reg_buf[1] & BIT(5))
card->ext_power.feature_support |= SD_EXT_POWER_SUSTENANCE;
/* Power Down Mode support at bit 6. */
if (reg_buf[1] & BIT(6))
card->ext_power.feature_support |= SD_EXT_POWER_DOWN_MODE;
card->ext_power.fno = fno;
card->ext_power.page = page;
card->ext_power.offset = offset;
out:
kfree(reg_buf);
return err;
}
static int sd_parse_ext_reg_perf(struct mmc_card *card, u8 fno, u8 page,
u16 offset)
{
int err;
u8 *reg_buf;
reg_buf = kzalloc(512, GFP_KERNEL);
if (!reg_buf)
return -ENOMEM;
err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf);
if (err) {
pr_warn("%s: error %d reading PERF func of ext reg\n",
mmc_hostname(card->host), err);
goto out;
}
/* PERF revision. */
card->ext_perf.rev = reg_buf[0];
/* FX_EVENT support at bit 0. */
if (reg_buf[1] & BIT(0))
card->ext_perf.feature_support |= SD_EXT_PERF_FX_EVENT;
/* Card initiated self-maintenance support at bit 0. */
if (reg_buf[2] & BIT(0))
card->ext_perf.feature_support |= SD_EXT_PERF_CARD_MAINT;
/* Host initiated self-maintenance support at bit 1. */
if (reg_buf[2] & BIT(1))
card->ext_perf.feature_support |= SD_EXT_PERF_HOST_MAINT;
/* Cache support at bit 0. */
if (reg_buf[4] & BIT(0))
card->ext_perf.feature_support |= SD_EXT_PERF_CACHE;
/* Command queue support indicated via queue depth bits (0 to 4). */
if (reg_buf[6] & 0x1f)
card->ext_perf.feature_support |= SD_EXT_PERF_CMD_QUEUE;
card->ext_perf.fno = fno;
card->ext_perf.page = page;
card->ext_perf.offset = offset;
out:
kfree(reg_buf);
return err;
}
static int sd_parse_ext_reg(struct mmc_card *card, u8 *gen_info_buf,
u16 *next_ext_addr)
{
u8 num_regs, fno, page;
u16 sfc, offset, ext = *next_ext_addr;
u32 reg_addr;
/*
* Parse only one register set per extension, as that is sufficient to
* support the standard functions. This means another 48 bytes in the
* buffer must be available.
*/
if (ext + 48 > 512)
return -EFAULT;
/* Standard Function Code */
memcpy(&sfc, &gen_info_buf[ext], 2);
/* Address to the next extension. */
memcpy(next_ext_addr, &gen_info_buf[ext + 40], 2);
/* Number of registers for this extension. */
num_regs = gen_info_buf[ext + 42];
/* We support only one register per extension. */
if (num_regs != 1)
return 0;
/* Extension register address. */
memcpy(&reg_addr, &gen_info_buf[ext + 44], 4);
/* 9 bits (0 to 8) contains the offset address. */
offset = reg_addr & 0x1ff;
/* 8 bits (9 to 16) contains the page number. */
page = reg_addr >> 9 & 0xff ;
/* 4 bits (18 to 21) contains the function number. */
fno = reg_addr >> 18 & 0xf;
/* Standard Function Code for power management. */
if (sfc == 0x1)
return sd_parse_ext_reg_power(card, fno, page, offset);
/* Standard Function Code for performance enhancement. */
if (sfc == 0x2)
return sd_parse_ext_reg_perf(card, fno, page, offset);
return 0;
}
static int sd_read_ext_regs(struct mmc_card *card)
{
int err, i;
u8 num_ext, *gen_info_buf;
u16 rev, len, next_ext_addr;
if (mmc_host_is_spi(card->host))
return 0;
if (!(card->scr.cmds & SD_SCR_CMD48_SUPPORT))
return 0;
gen_info_buf = kzalloc(512, GFP_KERNEL);
if (!gen_info_buf)
return -ENOMEM;
/*
* Read 512 bytes of general info, which is found at function number 0,
* at page 0 and with no offset.
*/
err = sd_read_ext_reg(card, 0, 0, 0, 512, gen_info_buf);
if (err) {
pr_err("%s: error %d reading general info of SD ext reg\n",
mmc_hostname(card->host), err);
goto out;
}
/* General info structure revision. */
memcpy(&rev, &gen_info_buf[0], 2);
/* Length of general info in bytes. */
memcpy(&len, &gen_info_buf[2], 2);
/* Number of extensions to be find. */
num_ext = gen_info_buf[4];
/*
* We only support revision 0 and limit it to 512 bytes for simplicity.
* No matter what, let's return zero to allow us to continue using the
* card, even if we can't support the features from the SD function
* extensions registers.
*/
if (rev != 0 || len > 512) {
pr_warn("%s: non-supported SD ext reg layout\n",
mmc_hostname(card->host));
goto out;
}
/*
* Parse the extension registers. The first extension should start
* immediately after the general info header (16 bytes).
*/
next_ext_addr = 16;
for (i = 0; i < num_ext; i++) {
err = sd_parse_ext_reg(card, gen_info_buf, &next_ext_addr);
if (err) {
pr_err("%s: error %d parsing SD ext reg\n",
mmc_hostname(card->host), err);
goto out;
}
}
out:
kfree(gen_info_buf);
return err;
}
static bool sd_cache_enabled(struct mmc_host *host)
{
return host->card->ext_perf.feature_enabled & SD_EXT_PERF_CACHE;
}
static int sd_flush_cache(struct mmc_host *host)
{
struct mmc_card *card = host->card;
u8 *reg_buf, fno, page;
u16 offset;
int err;
if (!sd_cache_enabled(host))
return 0;
reg_buf = kzalloc(512, GFP_KERNEL);
if (!reg_buf)
return -ENOMEM;
/*
* Set Flush Cache at bit 0 in the performance enhancement register at
* 261 bytes offset.
*/
fno = card->ext_perf.fno;
page = card->ext_perf.page;
offset = card->ext_perf.offset + 261;
err = sd_write_ext_reg(card, fno, page, offset, BIT(0));
if (err) {
pr_warn("%s: error %d writing Cache Flush bit\n",
mmc_hostname(host), err);
goto out;
}
err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false,
MMC_BUSY_EXTR_SINGLE);
if (err)
goto out;
/*
* Read the Flush Cache bit. The card shall reset it, to confirm that
* it's has completed the flushing of the cache.
*/
err = sd_read_ext_reg(card, fno, page, offset, 1, reg_buf);
if (err) {
pr_warn("%s: error %d reading Cache Flush bit\n",
mmc_hostname(host), err);
goto out;
}
if (reg_buf[0] & BIT(0))
err = -ETIMEDOUT;
out:
kfree(reg_buf);
return err;
}
static int sd_enable_cache(struct mmc_card *card)
{
u8 *reg_buf;
int err;
card->ext_perf.feature_enabled &= ~SD_EXT_PERF_CACHE;
reg_buf = kzalloc(512, GFP_KERNEL);
if (!reg_buf)
return -ENOMEM;
/*
* Set Cache Enable at bit 0 in the performance enhancement register at
* 260 bytes offset.
*/
err = sd_write_ext_reg(card, card->ext_perf.fno, card->ext_perf.page,
card->ext_perf.offset + 260, BIT(0));
if (err) {
pr_warn("%s: error %d writing Cache Enable bit\n",
mmc_hostname(card->host), err);
goto out;
}
err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false,
MMC_BUSY_EXTR_SINGLE);
if (!err)
card->ext_perf.feature_enabled |= SD_EXT_PERF_CACHE;
out:
kfree(reg_buf);
return err;
}
/*
* Handle the detection and initialisation of a card.
*
* In the case of a resume, "oldcard" will contain the card
* we're trying to reinitialise.
*/
static int mmc_sd_init_card(struct mmc_host *host, u32 ocr,
struct mmc_card *oldcard)
{
struct mmc_card *card;
int err;
u32 cid[4];
u32 rocr = 0;
bool v18_fixup_failed = false;
WARN_ON(!host->claimed);
retry:
err = mmc_sd_get_cid(host, ocr, cid, &rocr);
if (err)
return err;
if (oldcard) {
if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
pr_debug("%s: Perhaps the card was replaced\n",
mmc_hostname(host));
return -ENOENT;
}
card = oldcard;
} else {
/*
* Allocate card structure.
*/
card = mmc_alloc_card(host, &sd_type);
if (IS_ERR(card))
return PTR_ERR(card);
card->ocr = ocr;
card->type = MMC_TYPE_SD;
memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
}
/*
* Call the optional HC's init_card function to handle quirks.
*/
if (host->ops->init_card)
host->ops->init_card(host, card);
/*
* For native busses: get card RCA and quit open drain mode.
*/
if (!mmc_host_is_spi(host)) {
err = mmc_send_relative_addr(host, &card->rca);
if (err)
goto free_card;
}
if (!oldcard) {
err = mmc_sd_get_csd(card);
if (err)
goto free_card;
mmc_decode_cid(card);
}
/*
* handling only for cards supporting DSR and hosts requesting
* DSR configuration
*/
if (card->csd.dsr_imp && host->dsr_req)
mmc_set_dsr(host);
/*
* Select card, as all following commands rely on that.
*/
if (!mmc_host_is_spi(host)) {
err = mmc_select_card(card);
if (err)
goto free_card;
}
err = mmc_sd_setup_card(host, card, oldcard != NULL);
if (err)
goto free_card;
/*
* If the card has not been power cycled, it may still be using 1.8V
* signaling. Detect that situation and try to initialize a UHS-I (1.8V)
* transfer mode.
*/
if (!v18_fixup_failed && !mmc_host_is_spi(host) && mmc_host_uhs(host) &&
mmc_sd_card_using_v18(card) &&
host->ios.signal_voltage != MMC_SIGNAL_VOLTAGE_180) {
if (mmc_host_set_uhs_voltage(host) ||
mmc_sd_init_uhs_card(card)) {
v18_fixup_failed = true;
mmc_power_cycle(host, ocr);
if (!oldcard)
mmc_remove_card(card);
goto retry;
}
goto cont;
}
/* Initialization sequence for UHS-I cards */
if (rocr & SD_ROCR_S18A && mmc_host_uhs(host)) {
err = mmc_sd_init_uhs_card(card);
if (err)
goto free_card;
} else {
/*
* Attempt to change to high-speed (if supported)
*/
err = mmc_sd_switch_hs(card);
if (err > 0)
mmc_set_timing(card->host, MMC_TIMING_SD_HS);
else if (err)
goto free_card;
/*
* Set bus speed.
*/
mmc_set_clock(host, mmc_sd_get_max_clock(card));
/*
* Switch to wider bus (if supported).
*/
if ((host->caps & MMC_CAP_4_BIT_DATA) &&
(card->scr.bus_widths & SD_SCR_BUS_WIDTH_4)) {
err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4);
if (err)
goto free_card;
mmc_set_bus_width(host, MMC_BUS_WIDTH_4);
}
}
cont:
if (!oldcard) {
/* Read/parse the extension registers. */
err = sd_read_ext_regs(card);
if (err)
goto free_card;
}
/* Enable internal SD cache if supported. */
if (card->ext_perf.feature_support & SD_EXT_PERF_CACHE) {
err = sd_enable_cache(card);
if (err)
goto free_card;
}
if (host->cqe_ops && !host->cqe_enabled) {
err = host->cqe_ops->cqe_enable(host, card);
if (!err) {
host->cqe_enabled = true;
host->hsq_enabled = true;
pr_info("%s: Host Software Queue enabled\n",
mmc_hostname(host));
}
}
if (host->caps2 & MMC_CAP2_AVOID_3_3V &&
host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
pr_err("%s: Host failed to negotiate down from 3.3V\n",
mmc_hostname(host));
err = -EINVAL;
goto free_card;
}
host->card = card;
return 0;
free_card:
if (!oldcard)
mmc_remove_card(card);
return err;
}
/*
* Host is being removed. Free up the current card.
*/
static void mmc_sd_remove(struct mmc_host *host)
{
mmc_remove_card(host->card);
host->card = NULL;
}
/*
* Card detection - card is alive.
*/
static int mmc_sd_alive(struct mmc_host *host)
{
return mmc_send_status(host->card, NULL);
}
/*
* Card detection callback from host.
*/
static void mmc_sd_detect(struct mmc_host *host)
{
int err;
mmc_get_card(host->card, NULL);
/*
* Just check if our card has been removed.
*/
err = _mmc_detect_card_removed(host);
mmc_put_card(host->card, NULL);
if (err) {
mmc_sd_remove(host);
mmc_claim_host(host);
mmc_detach_bus(host);
mmc_power_off(host);
mmc_release_host(host);
}
}
static int sd_can_poweroff_notify(struct mmc_card *card)
{
return card->ext_power.feature_support & SD_EXT_POWER_OFF_NOTIFY;
}
static int sd_busy_poweroff_notify_cb(void *cb_data, bool *busy)
{
struct sd_busy_data *data = cb_data;
struct mmc_card *card = data->card;
int err;
/*
* Read the status register for the power management function. It's at
* one byte offset and is one byte long. The Power Off Notification
* Ready is bit 0.
*/
err = sd_read_ext_reg(card, card->ext_power.fno, card->ext_power.page,
card->ext_power.offset + 1, 1, data->reg_buf);
if (err) {
pr_warn("%s: error %d reading status reg of PM func\n",
mmc_hostname(card->host), err);
return err;
}
*busy = !(data->reg_buf[0] & BIT(0));
return 0;
}
static int sd_poweroff_notify(struct mmc_card *card)
{
struct sd_busy_data cb_data;
u8 *reg_buf;
int err;
reg_buf = kzalloc(512, GFP_KERNEL);
if (!reg_buf)
return -ENOMEM;
/*
* Set the Power Off Notification bit in the power management settings
* register at 2 bytes offset.
*/
err = sd_write_ext_reg(card, card->ext_power.fno, card->ext_power.page,
card->ext_power.offset + 2, BIT(0));
if (err) {
pr_warn("%s: error %d writing Power Off Notify bit\n",
mmc_hostname(card->host), err);
goto out;
}
/* Find out when the command is completed. */
err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false,
MMC_BUSY_EXTR_SINGLE);
if (err)
goto out;
cb_data.card = card;
cb_data.reg_buf = reg_buf;
err = __mmc_poll_for_busy(card, SD_POWEROFF_NOTIFY_TIMEOUT_MS,
&sd_busy_poweroff_notify_cb, &cb_data);
out:
kfree(reg_buf);
return err;
}
static int _mmc_sd_suspend(struct mmc_host *host)
{
struct mmc_card *card = host->card;
int err = 0;
mmc_claim_host(host);
if (mmc_card_suspended(card))
goto out;
if (sd_can_poweroff_notify(card))
err = sd_poweroff_notify(card);
else if (!mmc_host_is_spi(host))
err = mmc_deselect_cards(host);
if (!err) {
mmc_power_off(host);
mmc_card_set_suspended(card);
}
out:
mmc_release_host(host);
return err;
}
/*
* Callback for suspend
*/
static int mmc_sd_suspend(struct mmc_host *host)
{
int err;
err = _mmc_sd_suspend(host);
if (!err) {
pm_runtime_disable(&host->card->dev);
pm_runtime_set_suspended(&host->card->dev);
}
return err;
}
/*
* This function tries to determine if the same card is still present
* and, if so, restore all state to it.
*/
static int _mmc_sd_resume(struct mmc_host *host)
{
int err = 0;
mmc_claim_host(host);
if (!mmc_card_suspended(host->card))
goto out;
mmc_power_up(host, host->card->ocr);
err = mmc_sd_init_card(host, host->card->ocr, host->card);
mmc_card_clr_suspended(host->card);
out:
mmc_release_host(host);
return err;
}
/*
* Callback for resume
*/
static int mmc_sd_resume(struct mmc_host *host)
{
pm_runtime_enable(&host->card->dev);
return 0;
}
/*
* Callback for runtime_suspend.
*/
static int mmc_sd_runtime_suspend(struct mmc_host *host)
{
int err;
if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
return 0;
err = _mmc_sd_suspend(host);
if (err)
pr_err("%s: error %d doing aggressive suspend\n",
mmc_hostname(host), err);
return err;
}
/*
* Callback for runtime_resume.
*/
static int mmc_sd_runtime_resume(struct mmc_host *host)
{
int err;
err = _mmc_sd_resume(host);
if (err && err != -ENOMEDIUM)
pr_err("%s: error %d doing runtime resume\n",
mmc_hostname(host), err);
return 0;
}
static int mmc_sd_hw_reset(struct mmc_host *host)
{
mmc_power_cycle(host, host->card->ocr);
return mmc_sd_init_card(host, host->card->ocr, host->card);
}
static const struct mmc_bus_ops mmc_sd_ops = {
.remove = mmc_sd_remove,
.detect = mmc_sd_detect,
.runtime_suspend = mmc_sd_runtime_suspend,
.runtime_resume = mmc_sd_runtime_resume,
.suspend = mmc_sd_suspend,
.resume = mmc_sd_resume,
.alive = mmc_sd_alive,
.shutdown = mmc_sd_suspend,
.hw_reset = mmc_sd_hw_reset,
.cache_enabled = sd_cache_enabled,
.flush_cache = sd_flush_cache,
};
/*
* Starting point for SD card init.
*/
int mmc_attach_sd(struct mmc_host *host)
{
int err;
u32 ocr, rocr;
WARN_ON(!host->claimed);
err = mmc_send_app_op_cond(host, 0, &ocr);
if (err)
return err;
mmc_attach_bus(host, &mmc_sd_ops);
if (host->ocr_avail_sd)
host->ocr_avail = host->ocr_avail_sd;
/*
* We need to get OCR a different way for SPI.
*/
if (mmc_host_is_spi(host)) {
mmc_go_idle(host);
err = mmc_spi_read_ocr(host, 0, &ocr);
if (err)
goto err;
}
/*
* Some SD cards claims an out of spec VDD voltage range. Let's treat
* these bits as being in-valid and especially also bit7.
*/
ocr &= ~0x7FFF;
rocr = mmc_select_voltage(host, ocr);
/*
* Can we support the voltage(s) of the card(s)?
*/
if (!rocr) {
err = -EINVAL;
goto err;
}
/*
* Detect and init the card.
*/
err = mmc_sd_init_card(host, rocr, NULL);
if (err)
goto err;
mmc_release_host(host);
err = mmc_add_card(host->card);
if (err)
goto remove_card;
mmc_claim_host(host);
return 0;
remove_card:
mmc_remove_card(host->card);
host->card = NULL;
mmc_claim_host(host);
err:
mmc_detach_bus(host);
pr_err("%s: error %d whilst initialising SD card\n",
mmc_hostname(host), err);
return err;
}