656 lines
18 KiB
C
656 lines
18 KiB
C
|
// SPDX-License-Identifier: GPL-2.0-only
|
||
|
/*
|
||
|
*
|
||
|
* Copyright (C) 2005 Mike Isely <isely@pobox.com>
|
||
|
*/
|
||
|
|
||
|
#include <linux/i2c.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <media/i2c/ir-kbd-i2c.h>
|
||
|
#include "pvrusb2-i2c-core.h"
|
||
|
#include "pvrusb2-hdw-internal.h"
|
||
|
#include "pvrusb2-debug.h"
|
||
|
#include "pvrusb2-fx2-cmd.h"
|
||
|
#include "pvrusb2.h"
|
||
|
|
||
|
#define trace_i2c(...) pvr2_trace(PVR2_TRACE_I2C,__VA_ARGS__)
|
||
|
|
||
|
/*
|
||
|
|
||
|
This module attempts to implement a compliant I2C adapter for the pvrusb2
|
||
|
device.
|
||
|
|
||
|
*/
|
||
|
|
||
|
static unsigned int i2c_scan;
|
||
|
module_param(i2c_scan, int, S_IRUGO|S_IWUSR);
|
||
|
MODULE_PARM_DESC(i2c_scan,"scan i2c bus at insmod time");
|
||
|
|
||
|
static int ir_mode[PVR_NUM] = { [0 ... PVR_NUM-1] = 1 };
|
||
|
module_param_array(ir_mode, int, NULL, 0444);
|
||
|
MODULE_PARM_DESC(ir_mode,"specify: 0=disable IR reception, 1=normal IR");
|
||
|
|
||
|
static int pvr2_disable_ir_video;
|
||
|
module_param_named(disable_autoload_ir_video, pvr2_disable_ir_video,
|
||
|
int, S_IRUGO|S_IWUSR);
|
||
|
MODULE_PARM_DESC(disable_autoload_ir_video,
|
||
|
"1=do not try to autoload ir_video IR receiver");
|
||
|
|
||
|
static int pvr2_i2c_write(struct pvr2_hdw *hdw, /* Context */
|
||
|
u8 i2c_addr, /* I2C address we're talking to */
|
||
|
u8 *data, /* Data to write */
|
||
|
u16 length) /* Size of data to write */
|
||
|
{
|
||
|
/* Return value - default 0 means success */
|
||
|
int ret;
|
||
|
|
||
|
|
||
|
if (!data) length = 0;
|
||
|
if (length > (sizeof(hdw->cmd_buffer) - 3)) {
|
||
|
pvr2_trace(PVR2_TRACE_ERROR_LEGS,
|
||
|
"Killing an I2C write to %u that is too large (desired=%u limit=%u)",
|
||
|
i2c_addr,
|
||
|
length,(unsigned int)(sizeof(hdw->cmd_buffer) - 3));
|
||
|
return -ENOTSUPP;
|
||
|
}
|
||
|
|
||
|
LOCK_TAKE(hdw->ctl_lock);
|
||
|
|
||
|
/* Clear the command buffer (likely to be paranoia) */
|
||
|
memset(hdw->cmd_buffer, 0, sizeof(hdw->cmd_buffer));
|
||
|
|
||
|
/* Set up command buffer for an I2C write */
|
||
|
hdw->cmd_buffer[0] = FX2CMD_I2C_WRITE; /* write prefix */
|
||
|
hdw->cmd_buffer[1] = i2c_addr; /* i2c addr of chip */
|
||
|
hdw->cmd_buffer[2] = length; /* length of what follows */
|
||
|
if (length) memcpy(hdw->cmd_buffer + 3, data, length);
|
||
|
|
||
|
/* Do the operation */
|
||
|
ret = pvr2_send_request(hdw,
|
||
|
hdw->cmd_buffer,
|
||
|
length + 3,
|
||
|
hdw->cmd_buffer,
|
||
|
1);
|
||
|
if (!ret) {
|
||
|
if (hdw->cmd_buffer[0] != 8) {
|
||
|
ret = -EIO;
|
||
|
if (hdw->cmd_buffer[0] != 7) {
|
||
|
trace_i2c("unexpected status from i2_write[%d]: %d",
|
||
|
i2c_addr,hdw->cmd_buffer[0]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
LOCK_GIVE(hdw->ctl_lock);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int pvr2_i2c_read(struct pvr2_hdw *hdw, /* Context */
|
||
|
u8 i2c_addr, /* I2C address we're talking to */
|
||
|
u8 *data, /* Data to write */
|
||
|
u16 dlen, /* Size of data to write */
|
||
|
u8 *res, /* Where to put data we read */
|
||
|
u16 rlen) /* Amount of data to read */
|
||
|
{
|
||
|
/* Return value - default 0 means success */
|
||
|
int ret;
|
||
|
|
||
|
|
||
|
if (!data) dlen = 0;
|
||
|
if (dlen > (sizeof(hdw->cmd_buffer) - 4)) {
|
||
|
pvr2_trace(PVR2_TRACE_ERROR_LEGS,
|
||
|
"Killing an I2C read to %u that has wlen too large (desired=%u limit=%u)",
|
||
|
i2c_addr,
|
||
|
dlen,(unsigned int)(sizeof(hdw->cmd_buffer) - 4));
|
||
|
return -ENOTSUPP;
|
||
|
}
|
||
|
if (res && (rlen > (sizeof(hdw->cmd_buffer) - 1))) {
|
||
|
pvr2_trace(PVR2_TRACE_ERROR_LEGS,
|
||
|
"Killing an I2C read to %u that has rlen too large (desired=%u limit=%u)",
|
||
|
i2c_addr,
|
||
|
rlen,(unsigned int)(sizeof(hdw->cmd_buffer) - 1));
|
||
|
return -ENOTSUPP;
|
||
|
}
|
||
|
|
||
|
LOCK_TAKE(hdw->ctl_lock);
|
||
|
|
||
|
/* Clear the command buffer (likely to be paranoia) */
|
||
|
memset(hdw->cmd_buffer, 0, sizeof(hdw->cmd_buffer));
|
||
|
|
||
|
/* Set up command buffer for an I2C write followed by a read */
|
||
|
hdw->cmd_buffer[0] = FX2CMD_I2C_READ; /* read prefix */
|
||
|
hdw->cmd_buffer[1] = dlen; /* arg length */
|
||
|
hdw->cmd_buffer[2] = rlen; /* answer length. Device will send one
|
||
|
more byte (status). */
|
||
|
hdw->cmd_buffer[3] = i2c_addr; /* i2c addr of chip */
|
||
|
if (dlen) memcpy(hdw->cmd_buffer + 4, data, dlen);
|
||
|
|
||
|
/* Do the operation */
|
||
|
ret = pvr2_send_request(hdw,
|
||
|
hdw->cmd_buffer,
|
||
|
4 + dlen,
|
||
|
hdw->cmd_buffer,
|
||
|
rlen + 1);
|
||
|
if (!ret) {
|
||
|
if (hdw->cmd_buffer[0] != 8) {
|
||
|
ret = -EIO;
|
||
|
if (hdw->cmd_buffer[0] != 7) {
|
||
|
trace_i2c("unexpected status from i2_read[%d]: %d",
|
||
|
i2c_addr,hdw->cmd_buffer[0]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Copy back the result */
|
||
|
if (res && rlen) {
|
||
|
if (ret) {
|
||
|
/* Error, just blank out the return buffer */
|
||
|
memset(res, 0, rlen);
|
||
|
} else {
|
||
|
memcpy(res, hdw->cmd_buffer + 1, rlen);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
LOCK_GIVE(hdw->ctl_lock);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/* This is the common low level entry point for doing I2C operations to the
|
||
|
hardware. */
|
||
|
static int pvr2_i2c_basic_op(struct pvr2_hdw *hdw,
|
||
|
u8 i2c_addr,
|
||
|
u8 *wdata,
|
||
|
u16 wlen,
|
||
|
u8 *rdata,
|
||
|
u16 rlen)
|
||
|
{
|
||
|
if (!rdata) rlen = 0;
|
||
|
if (!wdata) wlen = 0;
|
||
|
if (rlen || !wlen) {
|
||
|
return pvr2_i2c_read(hdw,i2c_addr,wdata,wlen,rdata,rlen);
|
||
|
} else {
|
||
|
return pvr2_i2c_write(hdw,i2c_addr,wdata,wlen);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/* This is a special entry point for cases of I2C transaction attempts to
|
||
|
the IR receiver. The implementation here simulates the IR receiver by
|
||
|
issuing a command to the FX2 firmware and using that response to return
|
||
|
what the real I2C receiver would have returned. We use this for 24xxx
|
||
|
devices, where the IR receiver chip has been removed and replaced with
|
||
|
FX2 related logic. */
|
||
|
static int i2c_24xxx_ir(struct pvr2_hdw *hdw,
|
||
|
u8 i2c_addr,u8 *wdata,u16 wlen,u8 *rdata,u16 rlen)
|
||
|
{
|
||
|
u8 dat[4];
|
||
|
unsigned int stat;
|
||
|
|
||
|
if (!(rlen || wlen)) {
|
||
|
/* This is a probe attempt. Just let it succeed. */
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* We don't understand this kind of transaction */
|
||
|
if ((wlen != 0) || (rlen == 0)) return -EIO;
|
||
|
|
||
|
if (rlen < 3) {
|
||
|
/* Mike Isely <isely@pobox.com> Appears to be a probe
|
||
|
attempt from lirc. Just fill in zeroes and return. If
|
||
|
we try instead to do the full transaction here, then bad
|
||
|
things seem to happen within the lirc driver module
|
||
|
(version 0.8.0-7 sources from Debian, when run under
|
||
|
vanilla 2.6.17.6 kernel) - and I don't have the patience
|
||
|
to chase it down. */
|
||
|
if (rlen > 0) rdata[0] = 0;
|
||
|
if (rlen > 1) rdata[1] = 0;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Issue a command to the FX2 to read the IR receiver. */
|
||
|
LOCK_TAKE(hdw->ctl_lock); do {
|
||
|
hdw->cmd_buffer[0] = FX2CMD_GET_IR_CODE;
|
||
|
stat = pvr2_send_request(hdw,
|
||
|
hdw->cmd_buffer,1,
|
||
|
hdw->cmd_buffer,4);
|
||
|
dat[0] = hdw->cmd_buffer[0];
|
||
|
dat[1] = hdw->cmd_buffer[1];
|
||
|
dat[2] = hdw->cmd_buffer[2];
|
||
|
dat[3] = hdw->cmd_buffer[3];
|
||
|
} while (0); LOCK_GIVE(hdw->ctl_lock);
|
||
|
|
||
|
/* Give up if that operation failed. */
|
||
|
if (stat != 0) return stat;
|
||
|
|
||
|
/* Mangle the results into something that looks like the real IR
|
||
|
receiver. */
|
||
|
rdata[2] = 0xc1;
|
||
|
if (dat[0] != 1) {
|
||
|
/* No code received. */
|
||
|
rdata[0] = 0;
|
||
|
rdata[1] = 0;
|
||
|
} else {
|
||
|
u16 val;
|
||
|
/* Mash the FX2 firmware-provided IR code into something
|
||
|
that the normal i2c chip-level driver expects. */
|
||
|
val = dat[1];
|
||
|
val <<= 8;
|
||
|
val |= dat[2];
|
||
|
val >>= 1;
|
||
|
val &= ~0x0003;
|
||
|
val |= 0x8000;
|
||
|
rdata[0] = (val >> 8) & 0xffu;
|
||
|
rdata[1] = val & 0xffu;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* This is a special entry point that is entered if an I2C operation is
|
||
|
attempted to a wm8775 chip on model 24xxx hardware. Autodetect of this
|
||
|
part doesn't work, but we know it is really there. So let's look for
|
||
|
the autodetect attempt and just return success if we see that. */
|
||
|
static int i2c_hack_wm8775(struct pvr2_hdw *hdw,
|
||
|
u8 i2c_addr,u8 *wdata,u16 wlen,u8 *rdata,u16 rlen)
|
||
|
{
|
||
|
if (!(rlen || wlen)) {
|
||
|
// This is a probe attempt. Just let it succeed.
|
||
|
return 0;
|
||
|
}
|
||
|
return pvr2_i2c_basic_op(hdw,i2c_addr,wdata,wlen,rdata,rlen);
|
||
|
}
|
||
|
|
||
|
/* This is an entry point designed to always fail any attempt to perform a
|
||
|
transfer. We use this to cause certain I2C addresses to not be
|
||
|
probed. */
|
||
|
static int i2c_black_hole(struct pvr2_hdw *hdw,
|
||
|
u8 i2c_addr,u8 *wdata,u16 wlen,u8 *rdata,u16 rlen)
|
||
|
{
|
||
|
return -EIO;
|
||
|
}
|
||
|
|
||
|
/* This is a special entry point that is entered if an I2C operation is
|
||
|
attempted to a cx25840 chip on model 24xxx hardware. This chip can
|
||
|
sometimes wedge itself. Worse still, when this happens msp3400 can
|
||
|
falsely detect this part and then the system gets hosed up after msp3400
|
||
|
gets confused and dies. What we want to do here is try to keep msp3400
|
||
|
away and also try to notice if the chip is wedged and send a warning to
|
||
|
the system log. */
|
||
|
static int i2c_hack_cx25840(struct pvr2_hdw *hdw,
|
||
|
u8 i2c_addr,u8 *wdata,u16 wlen,u8 *rdata,u16 rlen)
|
||
|
{
|
||
|
int ret;
|
||
|
unsigned int subaddr;
|
||
|
u8 wbuf[2];
|
||
|
int state = hdw->i2c_cx25840_hack_state;
|
||
|
|
||
|
if (!(rlen || wlen)) {
|
||
|
// Probe attempt - always just succeed and don't bother the
|
||
|
// hardware (this helps to make the state machine further
|
||
|
// down somewhat easier).
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (state == 3) {
|
||
|
return pvr2_i2c_basic_op(hdw,i2c_addr,wdata,wlen,rdata,rlen);
|
||
|
}
|
||
|
|
||
|
/* We're looking for the exact pattern where the revision register
|
||
|
is being read. The cx25840 module will always look at the
|
||
|
revision register first. Any other pattern of access therefore
|
||
|
has to be a probe attempt from somebody else so we'll reject it.
|
||
|
Normally we could just let each client just probe the part
|
||
|
anyway, but when the cx25840 is wedged, msp3400 will get a false
|
||
|
positive and that just screws things up... */
|
||
|
|
||
|
if (wlen == 0) {
|
||
|
switch (state) {
|
||
|
case 1: subaddr = 0x0100; break;
|
||
|
case 2: subaddr = 0x0101; break;
|
||
|
default: goto fail;
|
||
|
}
|
||
|
} else if (wlen == 2) {
|
||
|
subaddr = (wdata[0] << 8) | wdata[1];
|
||
|
switch (subaddr) {
|
||
|
case 0x0100: state = 1; break;
|
||
|
case 0x0101: state = 2; break;
|
||
|
default: goto fail;
|
||
|
}
|
||
|
} else {
|
||
|
goto fail;
|
||
|
}
|
||
|
if (!rlen) goto success;
|
||
|
state = 0;
|
||
|
if (rlen != 1) goto fail;
|
||
|
|
||
|
/* If we get to here then we have a legitimate read for one of the
|
||
|
two revision bytes, so pass it through. */
|
||
|
wbuf[0] = subaddr >> 8;
|
||
|
wbuf[1] = subaddr;
|
||
|
ret = pvr2_i2c_basic_op(hdw,i2c_addr,wbuf,2,rdata,rlen);
|
||
|
|
||
|
if ((ret != 0) || (*rdata == 0x04) || (*rdata == 0x0a)) {
|
||
|
pvr2_trace(PVR2_TRACE_ERROR_LEGS,
|
||
|
"***WARNING*** Detected a wedged cx25840 chip; the device will not work.");
|
||
|
pvr2_trace(PVR2_TRACE_ERROR_LEGS,
|
||
|
"***WARNING*** Try power cycling the pvrusb2 device.");
|
||
|
pvr2_trace(PVR2_TRACE_ERROR_LEGS,
|
||
|
"***WARNING*** Disabling further access to the device to prevent other foul-ups.");
|
||
|
// This blocks all further communication with the part.
|
||
|
hdw->i2c_func[0x44] = NULL;
|
||
|
pvr2_hdw_render_useless(hdw);
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
/* Success! */
|
||
|
pvr2_trace(PVR2_TRACE_CHIPS,"cx25840 appears to be OK.");
|
||
|
state = 3;
|
||
|
|
||
|
success:
|
||
|
hdw->i2c_cx25840_hack_state = state;
|
||
|
return 0;
|
||
|
|
||
|
fail:
|
||
|
hdw->i2c_cx25840_hack_state = state;
|
||
|
return -EIO;
|
||
|
}
|
||
|
|
||
|
/* This is a very, very limited I2C adapter implementation. We can only
|
||
|
support what we actually know will work on the device... */
|
||
|
static int pvr2_i2c_xfer(struct i2c_adapter *i2c_adap,
|
||
|
struct i2c_msg msgs[],
|
||
|
int num)
|
||
|
{
|
||
|
int ret = -ENOTSUPP;
|
||
|
pvr2_i2c_func funcp = NULL;
|
||
|
struct pvr2_hdw *hdw = (struct pvr2_hdw *)(i2c_adap->algo_data);
|
||
|
|
||
|
if (!num) {
|
||
|
ret = -EINVAL;
|
||
|
goto done;
|
||
|
}
|
||
|
if (msgs[0].addr < PVR2_I2C_FUNC_CNT) {
|
||
|
funcp = hdw->i2c_func[msgs[0].addr];
|
||
|
}
|
||
|
if (!funcp) {
|
||
|
ret = -EIO;
|
||
|
goto done;
|
||
|
}
|
||
|
|
||
|
if (num == 1) {
|
||
|
if (msgs[0].flags & I2C_M_RD) {
|
||
|
/* Simple read */
|
||
|
u16 tcnt,bcnt,offs;
|
||
|
if (!msgs[0].len) {
|
||
|
/* Length == 0 read. This is a probe. */
|
||
|
if (funcp(hdw,msgs[0].addr,NULL,0,NULL,0)) {
|
||
|
ret = -EIO;
|
||
|
goto done;
|
||
|
}
|
||
|
ret = 1;
|
||
|
goto done;
|
||
|
}
|
||
|
/* If the read is short enough we'll do the whole
|
||
|
thing atomically. Otherwise we have no choice
|
||
|
but to break apart the reads. */
|
||
|
tcnt = msgs[0].len;
|
||
|
offs = 0;
|
||
|
while (tcnt) {
|
||
|
bcnt = tcnt;
|
||
|
if (bcnt > sizeof(hdw->cmd_buffer)-1) {
|
||
|
bcnt = sizeof(hdw->cmd_buffer)-1;
|
||
|
}
|
||
|
if (funcp(hdw,msgs[0].addr,NULL,0,
|
||
|
msgs[0].buf+offs,bcnt)) {
|
||
|
ret = -EIO;
|
||
|
goto done;
|
||
|
}
|
||
|
offs += bcnt;
|
||
|
tcnt -= bcnt;
|
||
|
}
|
||
|
ret = 1;
|
||
|
goto done;
|
||
|
} else {
|
||
|
/* Simple write */
|
||
|
ret = 1;
|
||
|
if (funcp(hdw,msgs[0].addr,
|
||
|
msgs[0].buf,msgs[0].len,NULL,0)) {
|
||
|
ret = -EIO;
|
||
|
}
|
||
|
goto done;
|
||
|
}
|
||
|
} else if (num == 2) {
|
||
|
if (msgs[0].addr != msgs[1].addr) {
|
||
|
trace_i2c("i2c refusing 2 phase transfer with conflicting target addresses");
|
||
|
ret = -ENOTSUPP;
|
||
|
goto done;
|
||
|
}
|
||
|
if ((!((msgs[0].flags & I2C_M_RD))) &&
|
||
|
(msgs[1].flags & I2C_M_RD)) {
|
||
|
u16 tcnt,bcnt,wcnt,offs;
|
||
|
/* Write followed by atomic read. If the read
|
||
|
portion is short enough we'll do the whole thing
|
||
|
atomically. Otherwise we have no choice but to
|
||
|
break apart the reads. */
|
||
|
tcnt = msgs[1].len;
|
||
|
wcnt = msgs[0].len;
|
||
|
offs = 0;
|
||
|
while (tcnt || wcnt) {
|
||
|
bcnt = tcnt;
|
||
|
if (bcnt > sizeof(hdw->cmd_buffer)-1) {
|
||
|
bcnt = sizeof(hdw->cmd_buffer)-1;
|
||
|
}
|
||
|
if (funcp(hdw,msgs[0].addr,
|
||
|
msgs[0].buf,wcnt,
|
||
|
msgs[1].buf+offs,bcnt)) {
|
||
|
ret = -EIO;
|
||
|
goto done;
|
||
|
}
|
||
|
offs += bcnt;
|
||
|
tcnt -= bcnt;
|
||
|
wcnt = 0;
|
||
|
}
|
||
|
ret = 2;
|
||
|
goto done;
|
||
|
} else {
|
||
|
trace_i2c("i2c refusing complex transfer read0=%d read1=%d",
|
||
|
(msgs[0].flags & I2C_M_RD),
|
||
|
(msgs[1].flags & I2C_M_RD));
|
||
|
}
|
||
|
} else {
|
||
|
trace_i2c("i2c refusing %d phase transfer",num);
|
||
|
}
|
||
|
|
||
|
done:
|
||
|
if (pvrusb2_debug & PVR2_TRACE_I2C_TRAF) {
|
||
|
unsigned int idx,offs,cnt;
|
||
|
for (idx = 0; idx < num; idx++) {
|
||
|
cnt = msgs[idx].len;
|
||
|
pr_info("pvrusb2 i2c xfer %u/%u: addr=0x%x len=%d %s",
|
||
|
idx+1,num,
|
||
|
msgs[idx].addr,
|
||
|
cnt,
|
||
|
(msgs[idx].flags & I2C_M_RD ?
|
||
|
"read" : "write"));
|
||
|
if ((ret > 0) || !(msgs[idx].flags & I2C_M_RD)) {
|
||
|
if (cnt > 8) cnt = 8;
|
||
|
pr_cont(" [");
|
||
|
for (offs = 0; offs < cnt; offs++) {
|
||
|
if (offs) pr_cont(" ");
|
||
|
pr_cont("%02x", msgs[idx].buf[offs]);
|
||
|
}
|
||
|
if (offs < cnt) pr_cont(" ...");
|
||
|
pr_cont("]");
|
||
|
}
|
||
|
if (idx+1 == num) {
|
||
|
pr_cont(" result=%d", ret);
|
||
|
}
|
||
|
pr_cont("\n");
|
||
|
}
|
||
|
if (!num) {
|
||
|
pr_info("pvrusb2 i2c xfer null transfer result=%d\n",
|
||
|
ret);
|
||
|
}
|
||
|
}
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static u32 pvr2_i2c_functionality(struct i2c_adapter *adap)
|
||
|
{
|
||
|
return I2C_FUNC_SMBUS_EMUL | I2C_FUNC_I2C;
|
||
|
}
|
||
|
|
||
|
static const struct i2c_algorithm pvr2_i2c_algo_template = {
|
||
|
.master_xfer = pvr2_i2c_xfer,
|
||
|
.functionality = pvr2_i2c_functionality,
|
||
|
};
|
||
|
|
||
|
static const struct i2c_adapter pvr2_i2c_adap_template = {
|
||
|
.owner = THIS_MODULE,
|
||
|
.class = 0,
|
||
|
};
|
||
|
|
||
|
|
||
|
/* Return true if device exists at given address */
|
||
|
static int do_i2c_probe(struct pvr2_hdw *hdw, int addr)
|
||
|
{
|
||
|
struct i2c_msg msg[1];
|
||
|
int rc;
|
||
|
msg[0].addr = 0;
|
||
|
msg[0].flags = I2C_M_RD;
|
||
|
msg[0].len = 0;
|
||
|
msg[0].buf = NULL;
|
||
|
msg[0].addr = addr;
|
||
|
rc = i2c_transfer(&hdw->i2c_adap, msg, ARRAY_SIZE(msg));
|
||
|
return rc == 1;
|
||
|
}
|
||
|
|
||
|
static void do_i2c_scan(struct pvr2_hdw *hdw)
|
||
|
{
|
||
|
int i;
|
||
|
pr_info("%s: i2c scan beginning\n", hdw->name);
|
||
|
for (i = 0; i < 128; i++) {
|
||
|
if (do_i2c_probe(hdw, i)) {
|
||
|
pr_info("%s: i2c scan: found device @ 0x%x\n",
|
||
|
hdw->name, i);
|
||
|
}
|
||
|
}
|
||
|
pr_info("%s: i2c scan done.\n", hdw->name);
|
||
|
}
|
||
|
|
||
|
static void pvr2_i2c_register_ir(struct pvr2_hdw *hdw)
|
||
|
{
|
||
|
struct i2c_board_info info;
|
||
|
struct IR_i2c_init_data *init_data = &hdw->ir_init_data;
|
||
|
if (pvr2_disable_ir_video) {
|
||
|
pvr2_trace(PVR2_TRACE_INFO,
|
||
|
"Automatic binding of ir_video has been disabled.");
|
||
|
return;
|
||
|
}
|
||
|
memset(&info, 0, sizeof(struct i2c_board_info));
|
||
|
switch (hdw->ir_scheme_active) {
|
||
|
case PVR2_IR_SCHEME_24XXX: /* FX2-controlled IR */
|
||
|
case PVR2_IR_SCHEME_29XXX: /* Original 29xxx device */
|
||
|
init_data->ir_codes = RC_MAP_HAUPPAUGE;
|
||
|
init_data->internal_get_key_func = IR_KBD_GET_KEY_HAUP;
|
||
|
init_data->type = RC_PROTO_BIT_RC5;
|
||
|
init_data->name = hdw->hdw_desc->description;
|
||
|
init_data->polling_interval = 100; /* ms From ir-kbd-i2c */
|
||
|
/* IR Receiver */
|
||
|
info.addr = 0x18;
|
||
|
info.platform_data = init_data;
|
||
|
strscpy(info.type, "ir_video", I2C_NAME_SIZE);
|
||
|
pvr2_trace(PVR2_TRACE_INFO, "Binding %s to i2c address 0x%02x.",
|
||
|
info.type, info.addr);
|
||
|
i2c_new_client_device(&hdw->i2c_adap, &info);
|
||
|
break;
|
||
|
case PVR2_IR_SCHEME_ZILOG: /* HVR-1950 style */
|
||
|
case PVR2_IR_SCHEME_24XXX_MCE: /* 24xxx MCE device */
|
||
|
init_data->ir_codes = RC_MAP_HAUPPAUGE;
|
||
|
init_data->internal_get_key_func = IR_KBD_GET_KEY_HAUP_XVR;
|
||
|
init_data->type = RC_PROTO_BIT_RC5 | RC_PROTO_BIT_RC6_MCE |
|
||
|
RC_PROTO_BIT_RC6_6A_32;
|
||
|
init_data->name = hdw->hdw_desc->description;
|
||
|
/* IR Transceiver */
|
||
|
info.addr = 0x71;
|
||
|
info.platform_data = init_data;
|
||
|
strscpy(info.type, "ir_z8f0811_haup", I2C_NAME_SIZE);
|
||
|
pvr2_trace(PVR2_TRACE_INFO, "Binding %s to i2c address 0x%02x.",
|
||
|
info.type, info.addr);
|
||
|
i2c_new_client_device(&hdw->i2c_adap, &info);
|
||
|
break;
|
||
|
default:
|
||
|
/* The device either doesn't support I2C-based IR or we
|
||
|
don't know (yet) how to operate IR on the device. */
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void pvr2_i2c_core_init(struct pvr2_hdw *hdw)
|
||
|
{
|
||
|
unsigned int idx;
|
||
|
|
||
|
/* The default action for all possible I2C addresses is just to do
|
||
|
the transfer normally. */
|
||
|
for (idx = 0; idx < PVR2_I2C_FUNC_CNT; idx++) {
|
||
|
hdw->i2c_func[idx] = pvr2_i2c_basic_op;
|
||
|
}
|
||
|
|
||
|
/* However, deal with various special cases for 24xxx hardware. */
|
||
|
if (ir_mode[hdw->unit_number] == 0) {
|
||
|
pr_info("%s: IR disabled\n", hdw->name);
|
||
|
hdw->i2c_func[0x18] = i2c_black_hole;
|
||
|
} else if (ir_mode[hdw->unit_number] == 1) {
|
||
|
if (hdw->ir_scheme_active == PVR2_IR_SCHEME_24XXX) {
|
||
|
/* Set up translation so that our IR looks like a
|
||
|
29xxx device */
|
||
|
hdw->i2c_func[0x18] = i2c_24xxx_ir;
|
||
|
}
|
||
|
}
|
||
|
if (hdw->hdw_desc->flag_has_cx25840) {
|
||
|
hdw->i2c_func[0x44] = i2c_hack_cx25840;
|
||
|
}
|
||
|
if (hdw->hdw_desc->flag_has_wm8775) {
|
||
|
hdw->i2c_func[0x1b] = i2c_hack_wm8775;
|
||
|
}
|
||
|
|
||
|
// Configure the adapter and set up everything else related to it.
|
||
|
hdw->i2c_adap = pvr2_i2c_adap_template;
|
||
|
hdw->i2c_algo = pvr2_i2c_algo_template;
|
||
|
strscpy(hdw->i2c_adap.name, hdw->name, sizeof(hdw->i2c_adap.name));
|
||
|
hdw->i2c_adap.dev.parent = &hdw->usb_dev->dev;
|
||
|
hdw->i2c_adap.algo = &hdw->i2c_algo;
|
||
|
hdw->i2c_adap.algo_data = hdw;
|
||
|
hdw->i2c_linked = !0;
|
||
|
i2c_set_adapdata(&hdw->i2c_adap, &hdw->v4l2_dev);
|
||
|
i2c_add_adapter(&hdw->i2c_adap);
|
||
|
if (hdw->i2c_func[0x18] == i2c_24xxx_ir) {
|
||
|
/* Probe for a different type of IR receiver on this
|
||
|
device. This is really the only way to differentiate
|
||
|
older 24xxx devices from 24xxx variants that include an
|
||
|
IR blaster. If the IR blaster is present, the IR
|
||
|
receiver is part of that chip and thus we must disable
|
||
|
the emulated IR receiver. */
|
||
|
if (do_i2c_probe(hdw, 0x71)) {
|
||
|
pvr2_trace(PVR2_TRACE_INFO,
|
||
|
"Device has newer IR hardware; disabling unneeded virtual IR device");
|
||
|
hdw->i2c_func[0x18] = NULL;
|
||
|
/* Remember that this is a different device... */
|
||
|
hdw->ir_scheme_active = PVR2_IR_SCHEME_24XXX_MCE;
|
||
|
}
|
||
|
}
|
||
|
if (i2c_scan) do_i2c_scan(hdw);
|
||
|
|
||
|
pvr2_i2c_register_ir(hdw);
|
||
|
}
|
||
|
|
||
|
void pvr2_i2c_core_done(struct pvr2_hdw *hdw)
|
||
|
{
|
||
|
if (hdw->i2c_linked) {
|
||
|
i2c_del_adapter(&hdw->i2c_adap);
|
||
|
hdw->i2c_linked = 0;
|
||
|
}
|
||
|
}
|