kernel/drivers/hwmon/axi-fan-control.c

554 lines
15 KiB
C
Raw Normal View History

2024-07-22 17:22:30 +08:00
// SPDX-License-Identifier: GPL-2.0
/*
* Fan Control HDL CORE driver
*
* Copyright 2019 Analog Devices Inc.
*/
#include <linux/bits.h>
#include <linux/clk.h>
#include <linux/fpga/adi-axi-common.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
/* register map */
#define ADI_REG_RSTN 0x0080
#define ADI_REG_PWM_WIDTH 0x0084
#define ADI_REG_TACH_PERIOD 0x0088
#define ADI_REG_TACH_TOLERANCE 0x008c
#define ADI_REG_PWM_PERIOD 0x00c0
#define ADI_REG_TACH_MEASUR 0x00c4
#define ADI_REG_TEMPERATURE 0x00c8
#define ADI_REG_TEMP_00_H 0x0100
#define ADI_REG_TEMP_25_L 0x0104
#define ADI_REG_TEMP_25_H 0x0108
#define ADI_REG_TEMP_50_L 0x010c
#define ADI_REG_TEMP_50_H 0x0110
#define ADI_REG_TEMP_75_L 0x0114
#define ADI_REG_TEMP_75_H 0x0118
#define ADI_REG_TEMP_100_L 0x011c
#define ADI_REG_IRQ_MASK 0x0040
#define ADI_REG_IRQ_PENDING 0x0044
#define ADI_REG_IRQ_SRC 0x0048
/* IRQ sources */
#define ADI_IRQ_SRC_PWM_CHANGED BIT(0)
#define ADI_IRQ_SRC_TACH_ERR BIT(1)
#define ADI_IRQ_SRC_TEMP_INCREASE BIT(2)
#define ADI_IRQ_SRC_NEW_MEASUR BIT(3)
#define ADI_IRQ_SRC_MASK GENMASK(3, 0)
#define ADI_IRQ_MASK_OUT_ALL 0xFFFFFFFFU
#define SYSFS_PWM_MAX 255
struct axi_fan_control_data {
void __iomem *base;
struct device *hdev;
unsigned long clk_rate;
int irq;
/* pulses per revolution */
u32 ppr;
bool hw_pwm_req;
bool update_tacho_params;
u8 fan_fault;
};
static inline void axi_iowrite(const u32 val, const u32 reg,
const struct axi_fan_control_data *ctl)
{
iowrite32(val, ctl->base + reg);
}
static inline u32 axi_ioread(const u32 reg,
const struct axi_fan_control_data *ctl)
{
return ioread32(ctl->base + reg);
}
/*
* The core calculates the temperature as:
* T = /raw * 509.3140064 / 65535) - 280.2308787
*/
static ssize_t axi_fan_control_show(struct device *dev, struct device_attribute *da, char *buf)
{
struct axi_fan_control_data *ctl = dev_get_drvdata(dev);
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
u32 temp = axi_ioread(attr->index, ctl);
temp = DIV_ROUND_CLOSEST_ULL(temp * 509314ULL, 65535) - 280230;
return sprintf(buf, "%u\n", temp);
}
static ssize_t axi_fan_control_store(struct device *dev, struct device_attribute *da,
const char *buf, size_t count)
{
struct axi_fan_control_data *ctl = dev_get_drvdata(dev);
struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
u32 temp;
int ret;
ret = kstrtou32(buf, 10, &temp);
if (ret)
return ret;
temp = DIV_ROUND_CLOSEST_ULL((temp + 280230) * 65535ULL, 509314);
axi_iowrite(temp, attr->index, ctl);
return count;
}
static long axi_fan_control_get_pwm_duty(const struct axi_fan_control_data *ctl)
{
u32 pwm_width = axi_ioread(ADI_REG_PWM_WIDTH, ctl);
u32 pwm_period = axi_ioread(ADI_REG_PWM_PERIOD, ctl);
/*
* PWM_PERIOD is a RO register set by the core. It should never be 0.
* For now we are trusting the HW...
*/
return DIV_ROUND_CLOSEST(pwm_width * SYSFS_PWM_MAX, pwm_period);
}
static int axi_fan_control_set_pwm_duty(const long val,
struct axi_fan_control_data *ctl)
{
u32 pwm_period = axi_ioread(ADI_REG_PWM_PERIOD, ctl);
u32 new_width;
long __val = clamp_val(val, 0, SYSFS_PWM_MAX);
new_width = DIV_ROUND_CLOSEST(__val * pwm_period, SYSFS_PWM_MAX);
axi_iowrite(new_width, ADI_REG_PWM_WIDTH, ctl);
return 0;
}
static long axi_fan_control_get_fan_rpm(const struct axi_fan_control_data *ctl)
{
const u32 tach = axi_ioread(ADI_REG_TACH_MEASUR, ctl);
if (tach == 0)
/* should we return error, EAGAIN maybe? */
return 0;
/*
* The tacho period should be:
* TACH = 60/(ppr * rpm), where rpm is revolutions per second
* and ppr is pulses per revolution.
* Given the tacho period, we can multiply it by the input clock
* so that we know how many clocks we need to have this period.
* From this, we can derive the RPM value.
*/
return DIV_ROUND_CLOSEST(60 * ctl->clk_rate, ctl->ppr * tach);
}
static int axi_fan_control_read_temp(struct device *dev, u32 attr, long *val)
{
struct axi_fan_control_data *ctl = dev_get_drvdata(dev);
long raw_temp;
switch (attr) {
case hwmon_temp_input:
raw_temp = axi_ioread(ADI_REG_TEMPERATURE, ctl);
/*
* The formula for the temperature is:
* T = (ADC * 501.3743 / 2^bits) - 273.6777
* It's multiplied by 1000 to have millidegrees as
* specified by the hwmon sysfs interface.
*/
*val = ((raw_temp * 501374) >> 16) - 273677;
return 0;
default:
return -ENOTSUPP;
}
}
static int axi_fan_control_read_fan(struct device *dev, u32 attr, long *val)
{
struct axi_fan_control_data *ctl = dev_get_drvdata(dev);
switch (attr) {
case hwmon_fan_fault:
*val = ctl->fan_fault;
/* clear it now */
ctl->fan_fault = 0;
return 0;
case hwmon_fan_input:
*val = axi_fan_control_get_fan_rpm(ctl);
return 0;
default:
return -ENOTSUPP;
}
}
static int axi_fan_control_read_pwm(struct device *dev, u32 attr, long *val)
{
struct axi_fan_control_data *ctl = dev_get_drvdata(dev);
switch (attr) {
case hwmon_pwm_input:
*val = axi_fan_control_get_pwm_duty(ctl);
return 0;
default:
return -ENOTSUPP;
}
}
static int axi_fan_control_write_pwm(struct device *dev, u32 attr, long val)
{
struct axi_fan_control_data *ctl = dev_get_drvdata(dev);
switch (attr) {
case hwmon_pwm_input:
return axi_fan_control_set_pwm_duty(val, ctl);
default:
return -ENOTSUPP;
}
}
static int axi_fan_control_read_labels(struct device *dev,
enum hwmon_sensor_types type,
u32 attr, int channel, const char **str)
{
switch (type) {
case hwmon_fan:
*str = "FAN";
return 0;
case hwmon_temp:
*str = "SYSMON4";
return 0;
default:
return -ENOTSUPP;
}
}
static int axi_fan_control_read(struct device *dev,
enum hwmon_sensor_types type,
u32 attr, int channel, long *val)
{
switch (type) {
case hwmon_fan:
return axi_fan_control_read_fan(dev, attr, val);
case hwmon_pwm:
return axi_fan_control_read_pwm(dev, attr, val);
case hwmon_temp:
return axi_fan_control_read_temp(dev, attr, val);
default:
return -ENOTSUPP;
}
}
static int axi_fan_control_write(struct device *dev,
enum hwmon_sensor_types type,
u32 attr, int channel, long val)
{
switch (type) {
case hwmon_pwm:
return axi_fan_control_write_pwm(dev, attr, val);
default:
return -ENOTSUPP;
}
}
static umode_t axi_fan_control_fan_is_visible(const u32 attr)
{
switch (attr) {
case hwmon_fan_input:
case hwmon_fan_fault:
case hwmon_fan_label:
return 0444;
default:
return 0;
}
}
static umode_t axi_fan_control_pwm_is_visible(const u32 attr)
{
switch (attr) {
case hwmon_pwm_input:
return 0644;
default:
return 0;
}
}
static umode_t axi_fan_control_temp_is_visible(const u32 attr)
{
switch (attr) {
case hwmon_temp_input:
case hwmon_temp_label:
return 0444;
default:
return 0;
}
}
static umode_t axi_fan_control_is_visible(const void *data,
enum hwmon_sensor_types type,
u32 attr, int channel)
{
switch (type) {
case hwmon_fan:
return axi_fan_control_fan_is_visible(attr);
case hwmon_pwm:
return axi_fan_control_pwm_is_visible(attr);
case hwmon_temp:
return axi_fan_control_temp_is_visible(attr);
default:
return 0;
}
}
/*
* This core has two main ways of changing the PWM duty cycle. It is done,
* either by a request from userspace (writing on pwm1_input) or by the
* core itself. When the change is done by the core, it will use predefined
* parameters to evaluate the tach signal and, on that case we cannot set them.
* On the other hand, when the request is done by the user, with some arbitrary
* value that the core does not now about, we have to provide the tach
* parameters so that, the core can evaluate the signal. On the IRQ handler we
* distinguish this by using the ADI_IRQ_SRC_TEMP_INCREASE interrupt. This tell
* us that the CORE requested a new duty cycle. After this, there is 5s delay
* on which the core waits for the fan rotation speed to stabilize. After this
* we get ADI_IRQ_SRC_PWM_CHANGED irq where we will decide if we need to set
* the tach parameters or not on the next tach measurement cycle (corresponding
* already to the ney duty cycle) based on the %ctl->hw_pwm_req flag.
*/
static irqreturn_t axi_fan_control_irq_handler(int irq, void *data)
{
struct axi_fan_control_data *ctl = (struct axi_fan_control_data *)data;
u32 irq_pending = axi_ioread(ADI_REG_IRQ_PENDING, ctl);
u32 clear_mask;
if (irq_pending & ADI_IRQ_SRC_TEMP_INCREASE)
/* hardware requested a new pwm */
ctl->hw_pwm_req = true;
if (irq_pending & ADI_IRQ_SRC_PWM_CHANGED) {
/*
* if the pwm changes on behalf of software,
* we need to provide new tacho parameters to the core.
* Wait for the next measurement for that...
*/
if (!ctl->hw_pwm_req) {
ctl->update_tacho_params = true;
} else {
ctl->hw_pwm_req = false;
sysfs_notify(&ctl->hdev->kobj, NULL, "pwm1");
}
}
if (irq_pending & ADI_IRQ_SRC_NEW_MEASUR) {
if (ctl->update_tacho_params) {
u32 new_tach = axi_ioread(ADI_REG_TACH_MEASUR, ctl);
/* get 25% tolerance */
u32 tach_tol = DIV_ROUND_CLOSEST(new_tach * 25, 100);
/* set new tacho parameters */
axi_iowrite(new_tach, ADI_REG_TACH_PERIOD, ctl);
axi_iowrite(tach_tol, ADI_REG_TACH_TOLERANCE, ctl);
ctl->update_tacho_params = false;
}
}
if (irq_pending & ADI_IRQ_SRC_TACH_ERR)
ctl->fan_fault = 1;
/* clear all interrupts */
clear_mask = irq_pending & ADI_IRQ_SRC_MASK;
axi_iowrite(clear_mask, ADI_REG_IRQ_PENDING, ctl);
return IRQ_HANDLED;
}
static int axi_fan_control_init(struct axi_fan_control_data *ctl,
const struct device_node *np)
{
int ret;
/* get fan pulses per revolution */
ret = of_property_read_u32(np, "pulses-per-revolution", &ctl->ppr);
if (ret)
return ret;
/* 1, 2 and 4 are the typical and accepted values */
if (ctl->ppr != 1 && ctl->ppr != 2 && ctl->ppr != 4)
return -EINVAL;
/*
* Enable all IRQs
*/
axi_iowrite(ADI_IRQ_MASK_OUT_ALL &
~(ADI_IRQ_SRC_NEW_MEASUR | ADI_IRQ_SRC_TACH_ERR |
ADI_IRQ_SRC_PWM_CHANGED | ADI_IRQ_SRC_TEMP_INCREASE),
ADI_REG_IRQ_MASK, ctl);
/* bring the device out of reset */
axi_iowrite(0x01, ADI_REG_RSTN, ctl);
return ret;
}
static void axi_fan_control_clk_disable(void *clk)
{
clk_disable_unprepare(clk);
}
static const struct hwmon_channel_info *axi_fan_control_info[] = {
HWMON_CHANNEL_INFO(pwm, HWMON_PWM_INPUT),
HWMON_CHANNEL_INFO(fan, HWMON_F_INPUT | HWMON_F_FAULT | HWMON_F_LABEL),
HWMON_CHANNEL_INFO(temp, HWMON_T_INPUT | HWMON_T_LABEL),
NULL
};
static const struct hwmon_ops axi_fan_control_hwmon_ops = {
.is_visible = axi_fan_control_is_visible,
.read = axi_fan_control_read,
.write = axi_fan_control_write,
.read_string = axi_fan_control_read_labels,
};
static const struct hwmon_chip_info axi_chip_info = {
.ops = &axi_fan_control_hwmon_ops,
.info = axi_fan_control_info,
};
/* temperature threshold below which PWM should be 0% */
static SENSOR_DEVICE_ATTR_RW(pwm1_auto_point1_temp_hyst, axi_fan_control, ADI_REG_TEMP_00_H);
/* temperature threshold above which PWM should be 25% */
static SENSOR_DEVICE_ATTR_RW(pwm1_auto_point1_temp, axi_fan_control, ADI_REG_TEMP_25_L);
/* temperature threshold below which PWM should be 25% */
static SENSOR_DEVICE_ATTR_RW(pwm1_auto_point2_temp_hyst, axi_fan_control, ADI_REG_TEMP_25_H);
/* temperature threshold above which PWM should be 50% */
static SENSOR_DEVICE_ATTR_RW(pwm1_auto_point2_temp, axi_fan_control, ADI_REG_TEMP_50_L);
/* temperature threshold below which PWM should be 50% */
static SENSOR_DEVICE_ATTR_RW(pwm1_auto_point3_temp_hyst, axi_fan_control, ADI_REG_TEMP_50_H);
/* temperature threshold above which PWM should be 75% */
static SENSOR_DEVICE_ATTR_RW(pwm1_auto_point3_temp, axi_fan_control, ADI_REG_TEMP_75_L);
/* temperature threshold below which PWM should be 75% */
static SENSOR_DEVICE_ATTR_RW(pwm1_auto_point4_temp_hyst, axi_fan_control, ADI_REG_TEMP_75_H);
/* temperature threshold above which PWM should be 100% */
static SENSOR_DEVICE_ATTR_RW(pwm1_auto_point4_temp, axi_fan_control, ADI_REG_TEMP_100_L);
static struct attribute *axi_fan_control_attrs[] = {
&sensor_dev_attr_pwm1_auto_point1_temp_hyst.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point1_temp.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point2_temp_hyst.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point2_temp.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point3_temp_hyst.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point3_temp.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point4_temp_hyst.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point4_temp.dev_attr.attr,
NULL,
};
ATTRIBUTE_GROUPS(axi_fan_control);
static const u32 version_1_0_0 = ADI_AXI_PCORE_VER(1, 0, 'a');
static const struct of_device_id axi_fan_control_of_match[] = {
{ .compatible = "adi,axi-fan-control-1.00.a",
.data = (void *)&version_1_0_0},
{},
};
MODULE_DEVICE_TABLE(of, axi_fan_control_of_match);
static int axi_fan_control_probe(struct platform_device *pdev)
{
struct axi_fan_control_data *ctl;
struct clk *clk;
const struct of_device_id *id;
const char *name = "axi_fan_control";
u32 version;
int ret;
id = of_match_node(axi_fan_control_of_match, pdev->dev.of_node);
if (!id)
return -EINVAL;
ctl = devm_kzalloc(&pdev->dev, sizeof(*ctl), GFP_KERNEL);
if (!ctl)
return -ENOMEM;
ctl->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(ctl->base))
return PTR_ERR(ctl->base);
clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(clk)) {
dev_err(&pdev->dev, "clk_get failed with %ld\n", PTR_ERR(clk));
return PTR_ERR(clk);
}
ret = clk_prepare_enable(clk);
if (ret)
return ret;
ret = devm_add_action_or_reset(&pdev->dev, axi_fan_control_clk_disable, clk);
if (ret)
return ret;
ctl->clk_rate = clk_get_rate(clk);
if (!ctl->clk_rate)
return -EINVAL;
version = axi_ioread(ADI_AXI_REG_VERSION, ctl);
if (ADI_AXI_PCORE_VER_MAJOR(version) !=
ADI_AXI_PCORE_VER_MAJOR((*(u32 *)id->data))) {
dev_err(&pdev->dev, "Major version mismatch. Expected %d.%.2d.%c, Reported %d.%.2d.%c\n",
ADI_AXI_PCORE_VER_MAJOR((*(u32 *)id->data)),
ADI_AXI_PCORE_VER_MINOR((*(u32 *)id->data)),
ADI_AXI_PCORE_VER_PATCH((*(u32 *)id->data)),
ADI_AXI_PCORE_VER_MAJOR(version),
ADI_AXI_PCORE_VER_MINOR(version),
ADI_AXI_PCORE_VER_PATCH(version));
return -ENODEV;
}
ret = axi_fan_control_init(ctl, pdev->dev.of_node);
if (ret) {
dev_err(&pdev->dev, "Failed to initialize device\n");
return ret;
}
ctl->hdev = devm_hwmon_device_register_with_info(&pdev->dev,
name,
ctl,
&axi_chip_info,
axi_fan_control_groups);
if (IS_ERR(ctl->hdev))
return PTR_ERR(ctl->hdev);
ctl->irq = platform_get_irq(pdev, 0);
if (ctl->irq < 0)
return ctl->irq;
ret = devm_request_threaded_irq(&pdev->dev, ctl->irq, NULL,
axi_fan_control_irq_handler,
IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
pdev->driver_override, ctl);
if (ret) {
dev_err(&pdev->dev, "failed to request an irq, %d", ret);
return ret;
}
return 0;
}
static struct platform_driver axi_fan_control_driver = {
.driver = {
.name = "axi_fan_control_driver",
.of_match_table = axi_fan_control_of_match,
},
.probe = axi_fan_control_probe,
};
module_platform_driver(axi_fan_control_driver);
MODULE_AUTHOR("Nuno Sa <nuno.sa@analog.com>");
MODULE_DESCRIPTION("Analog Devices Fan Control HDL CORE driver");
MODULE_LICENSE("GPL");