kernel/drivers/gpu/drm/i915/gt/uc/intel_guc_submission.c

3091 lines
83 KiB
C
Raw Normal View History

2024-07-22 17:22:30 +08:00
// SPDX-License-Identifier: MIT
/*
* Copyright © 2014 Intel Corporation
*/
#include <linux/circ_buf.h>
#include "gem/i915_gem_context.h"
#include "gt/gen8_engine_cs.h"
#include "gt/intel_breadcrumbs.h"
#include "gt/intel_context.h"
#include "gt/intel_engine_pm.h"
#include "gt/intel_engine_heartbeat.h"
#include "gt/intel_gt.h"
#include "gt/intel_gt_irq.h"
#include "gt/intel_gt_pm.h"
#include "gt/intel_gt_requests.h"
#include "gt/intel_lrc.h"
#include "gt/intel_lrc_reg.h"
#include "gt/intel_mocs.h"
#include "gt/intel_ring.h"
#include "intel_guc_submission.h"
#include "i915_drv.h"
#include "i915_trace.h"
/**
* DOC: GuC-based command submission
*
* IMPORTANT NOTE: GuC submission is currently not supported in i915. The GuC
* firmware is moving to an updated submission interface and we plan to
* turn submission back on when that lands. The below documentation (and related
* code) matches the old submission model and will be updated as part of the
* upgrade to the new flow.
*
* GuC stage descriptor:
* During initialization, the driver allocates a static pool of 1024 such
* descriptors, and shares them with the GuC. Currently, we only use one
* descriptor. This stage descriptor lets the GuC know about the workqueue and
* process descriptor. Theoretically, it also lets the GuC know about our HW
* contexts (context ID, etc...), but we actually employ a kind of submission
* where the GuC uses the LRCA sent via the work item instead. This is called
* a "proxy" submission.
*
* The Scratch registers:
* There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
* a value to the action register (SOFT_SCRATCH_0) along with any data. It then
* triggers an interrupt on the GuC via another register write (0xC4C8).
* Firmware writes a success/fail code back to the action register after
* processes the request. The kernel driver polls waiting for this update and
* then proceeds.
*
* Work Items:
* There are several types of work items that the host may place into a
* workqueue, each with its own requirements and limitations. Currently only
* WQ_TYPE_INORDER is needed to support legacy submission via GuC, which
* represents in-order queue. The kernel driver packs ring tail pointer and an
* ELSP context descriptor dword into Work Item.
* See guc_add_request()
*
*/
/* GuC Virtual Engine */
struct guc_virtual_engine {
struct intel_engine_cs base;
struct intel_context context;
};
static struct intel_context *
guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count);
#define GUC_REQUEST_SIZE 64 /* bytes */
/*
* Below is a set of functions which control the GuC scheduling state which do
* not require a lock as all state transitions are mutually exclusive. i.e. It
* is not possible for the context pinning code and submission, for the same
* context, to be executing simultaneously. We still need an atomic as it is
* possible for some of the bits to changing at the same time though.
*/
#define SCHED_STATE_NO_LOCK_ENABLED BIT(0)
#define SCHED_STATE_NO_LOCK_PENDING_ENABLE BIT(1)
#define SCHED_STATE_NO_LOCK_REGISTERED BIT(2)
static inline bool context_enabled(struct intel_context *ce)
{
return (atomic_read(&ce->guc_sched_state_no_lock) &
SCHED_STATE_NO_LOCK_ENABLED);
}
static inline void set_context_enabled(struct intel_context *ce)
{
atomic_or(SCHED_STATE_NO_LOCK_ENABLED, &ce->guc_sched_state_no_lock);
}
static inline void clr_context_enabled(struct intel_context *ce)
{
atomic_and((u32)~SCHED_STATE_NO_LOCK_ENABLED,
&ce->guc_sched_state_no_lock);
}
static inline bool context_pending_enable(struct intel_context *ce)
{
return (atomic_read(&ce->guc_sched_state_no_lock) &
SCHED_STATE_NO_LOCK_PENDING_ENABLE);
}
static inline void set_context_pending_enable(struct intel_context *ce)
{
atomic_or(SCHED_STATE_NO_LOCK_PENDING_ENABLE,
&ce->guc_sched_state_no_lock);
}
static inline void clr_context_pending_enable(struct intel_context *ce)
{
atomic_and((u32)~SCHED_STATE_NO_LOCK_PENDING_ENABLE,
&ce->guc_sched_state_no_lock);
}
static inline bool context_registered(struct intel_context *ce)
{
return (atomic_read(&ce->guc_sched_state_no_lock) &
SCHED_STATE_NO_LOCK_REGISTERED);
}
static inline void set_context_registered(struct intel_context *ce)
{
atomic_or(SCHED_STATE_NO_LOCK_REGISTERED,
&ce->guc_sched_state_no_lock);
}
static inline void clr_context_registered(struct intel_context *ce)
{
atomic_and((u32)~SCHED_STATE_NO_LOCK_REGISTERED,
&ce->guc_sched_state_no_lock);
}
/*
* Below is a set of functions which control the GuC scheduling state which
* require a lock, aside from the special case where the functions are called
* from guc_lrc_desc_pin(). In that case it isn't possible for any other code
* path to be executing on the context.
*/
#define SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER BIT(0)
#define SCHED_STATE_DESTROYED BIT(1)
#define SCHED_STATE_PENDING_DISABLE BIT(2)
#define SCHED_STATE_BANNED BIT(3)
#define SCHED_STATE_BLOCKED_SHIFT 4
#define SCHED_STATE_BLOCKED BIT(SCHED_STATE_BLOCKED_SHIFT)
#define SCHED_STATE_BLOCKED_MASK (0xfff << SCHED_STATE_BLOCKED_SHIFT)
static inline void init_sched_state(struct intel_context *ce)
{
/* Only should be called from guc_lrc_desc_pin() */
atomic_set(&ce->guc_sched_state_no_lock, 0);
ce->guc_state.sched_state &= SCHED_STATE_BLOCKED_MASK;
}
static inline bool
context_wait_for_deregister_to_register(struct intel_context *ce)
{
return ce->guc_state.sched_state &
SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
}
static inline void
set_context_wait_for_deregister_to_register(struct intel_context *ce)
{
/* Only should be called from guc_lrc_desc_pin() without lock */
ce->guc_state.sched_state |=
SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
}
static inline void
clr_context_wait_for_deregister_to_register(struct intel_context *ce)
{
lockdep_assert_held(&ce->guc_state.lock);
ce->guc_state.sched_state &=
~SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
}
static inline bool
context_destroyed(struct intel_context *ce)
{
return ce->guc_state.sched_state & SCHED_STATE_DESTROYED;
}
static inline void
set_context_destroyed(struct intel_context *ce)
{
lockdep_assert_held(&ce->guc_state.lock);
ce->guc_state.sched_state |= SCHED_STATE_DESTROYED;
}
static inline bool context_pending_disable(struct intel_context *ce)
{
return ce->guc_state.sched_state & SCHED_STATE_PENDING_DISABLE;
}
static inline void set_context_pending_disable(struct intel_context *ce)
{
lockdep_assert_held(&ce->guc_state.lock);
ce->guc_state.sched_state |= SCHED_STATE_PENDING_DISABLE;
}
static inline void clr_context_pending_disable(struct intel_context *ce)
{
lockdep_assert_held(&ce->guc_state.lock);
ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_DISABLE;
}
static inline bool context_banned(struct intel_context *ce)
{
return ce->guc_state.sched_state & SCHED_STATE_BANNED;
}
static inline void set_context_banned(struct intel_context *ce)
{
lockdep_assert_held(&ce->guc_state.lock);
ce->guc_state.sched_state |= SCHED_STATE_BANNED;
}
static inline void clr_context_banned(struct intel_context *ce)
{
lockdep_assert_held(&ce->guc_state.lock);
ce->guc_state.sched_state &= ~SCHED_STATE_BANNED;
}
static inline u32 context_blocked(struct intel_context *ce)
{
return (ce->guc_state.sched_state & SCHED_STATE_BLOCKED_MASK) >>
SCHED_STATE_BLOCKED_SHIFT;
}
static inline void incr_context_blocked(struct intel_context *ce)
{
lockdep_assert_held(&ce->engine->sched_engine->lock);
lockdep_assert_held(&ce->guc_state.lock);
ce->guc_state.sched_state += SCHED_STATE_BLOCKED;
GEM_BUG_ON(!context_blocked(ce)); /* Overflow check */
}
static inline void decr_context_blocked(struct intel_context *ce)
{
lockdep_assert_held(&ce->engine->sched_engine->lock);
lockdep_assert_held(&ce->guc_state.lock);
GEM_BUG_ON(!context_blocked(ce)); /* Underflow check */
ce->guc_state.sched_state -= SCHED_STATE_BLOCKED;
}
static inline bool context_guc_id_invalid(struct intel_context *ce)
{
return ce->guc_id == GUC_INVALID_LRC_ID;
}
static inline void set_context_guc_id_invalid(struct intel_context *ce)
{
ce->guc_id = GUC_INVALID_LRC_ID;
}
static inline struct intel_guc *ce_to_guc(struct intel_context *ce)
{
return &ce->engine->gt->uc.guc;
}
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
return rb_entry(rb, struct i915_priolist, node);
}
static struct guc_lrc_desc *__get_lrc_desc(struct intel_guc *guc, u32 index)
{
struct guc_lrc_desc *base = guc->lrc_desc_pool_vaddr;
GEM_BUG_ON(index >= GUC_MAX_LRC_DESCRIPTORS);
return &base[index];
}
static inline struct intel_context *__get_context(struct intel_guc *guc, u32 id)
{
struct intel_context *ce = xa_load(&guc->context_lookup, id);
GEM_BUG_ON(id >= GUC_MAX_LRC_DESCRIPTORS);
return ce;
}
static int guc_lrc_desc_pool_create(struct intel_guc *guc)
{
u32 size;
int ret;
size = PAGE_ALIGN(sizeof(struct guc_lrc_desc) *
GUC_MAX_LRC_DESCRIPTORS);
ret = intel_guc_allocate_and_map_vma(guc, size, &guc->lrc_desc_pool,
(void **)&guc->lrc_desc_pool_vaddr);
if (ret)
return ret;
return 0;
}
static void guc_lrc_desc_pool_destroy(struct intel_guc *guc)
{
guc->lrc_desc_pool_vaddr = NULL;
i915_vma_unpin_and_release(&guc->lrc_desc_pool, I915_VMA_RELEASE_MAP);
}
static inline bool guc_submission_initialized(struct intel_guc *guc)
{
return !!guc->lrc_desc_pool_vaddr;
}
static inline void reset_lrc_desc(struct intel_guc *guc, u32 id)
{
if (likely(guc_submission_initialized(guc))) {
struct guc_lrc_desc *desc = __get_lrc_desc(guc, id);
unsigned long flags;
memset(desc, 0, sizeof(*desc));
/*
* xarray API doesn't have xa_erase_irqsave wrapper, so calling
* the lower level functions directly.
*/
xa_lock_irqsave(&guc->context_lookup, flags);
__xa_erase(&guc->context_lookup, id);
xa_unlock_irqrestore(&guc->context_lookup, flags);
}
}
static inline bool lrc_desc_registered(struct intel_guc *guc, u32 id)
{
return __get_context(guc, id);
}
static inline void set_lrc_desc_registered(struct intel_guc *guc, u32 id,
struct intel_context *ce)
{
unsigned long flags;
/*
* xarray API doesn't have xa_save_irqsave wrapper, so calling the
* lower level functions directly.
*/
xa_lock_irqsave(&guc->context_lookup, flags);
__xa_store(&guc->context_lookup, id, ce, GFP_ATOMIC);
xa_unlock_irqrestore(&guc->context_lookup, flags);
}
static void decr_outstanding_submission_g2h(struct intel_guc *guc)
{
if (atomic_dec_and_test(&guc->outstanding_submission_g2h))
wake_up_all(&guc->ct.wq);
}
static int guc_submission_send_busy_loop(struct intel_guc *guc,
const u32 *action,
u32 len,
u32 g2h_len_dw,
bool loop)
{
/*
* We always loop when a send requires a reply (i.e. g2h_len_dw > 0),
* so we don't handle the case where we don't get a reply because we
* aborted the send due to the channel being busy.
*/
GEM_BUG_ON(g2h_len_dw && !loop);
if (g2h_len_dw)
atomic_inc(&guc->outstanding_submission_g2h);
return intel_guc_send_busy_loop(guc, action, len, g2h_len_dw, loop);
}
int intel_guc_wait_for_pending_msg(struct intel_guc *guc,
atomic_t *wait_var,
bool interruptible,
long timeout)
{
const int state = interruptible ?
TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
DEFINE_WAIT(wait);
might_sleep();
GEM_BUG_ON(timeout < 0);
if (!atomic_read(wait_var))
return 0;
if (!timeout)
return -ETIME;
for (;;) {
prepare_to_wait(&guc->ct.wq, &wait, state);
if (!atomic_read(wait_var))
break;
if (signal_pending_state(state, current)) {
timeout = -EINTR;
break;
}
if (!timeout) {
timeout = -ETIME;
break;
}
timeout = io_schedule_timeout(timeout);
}
finish_wait(&guc->ct.wq, &wait);
return (timeout < 0) ? timeout : 0;
}
int intel_guc_wait_for_idle(struct intel_guc *guc, long timeout)
{
if (!intel_uc_uses_guc_submission(&guc_to_gt(guc)->uc))
return 0;
return intel_guc_wait_for_pending_msg(guc,
&guc->outstanding_submission_g2h,
true, timeout);
}
static int guc_lrc_desc_pin(struct intel_context *ce, bool loop);
static int guc_add_request(struct intel_guc *guc, struct i915_request *rq)
{
int err = 0;
struct intel_context *ce = rq->context;
u32 action[3];
int len = 0;
u32 g2h_len_dw = 0;
bool enabled;
/*
* Corner case where requests were sitting in the priority list or a
* request resubmitted after the context was banned.
*/
if (unlikely(intel_context_is_banned(ce))) {
i915_request_put(i915_request_mark_eio(rq));
intel_engine_signal_breadcrumbs(ce->engine);
goto out;
}
GEM_BUG_ON(!atomic_read(&ce->guc_id_ref));
GEM_BUG_ON(context_guc_id_invalid(ce));
/*
* Corner case where the GuC firmware was blown away and reloaded while
* this context was pinned.
*/
if (unlikely(!lrc_desc_registered(guc, ce->guc_id))) {
err = guc_lrc_desc_pin(ce, false);
if (unlikely(err))
goto out;
}
/*
* The request / context will be run on the hardware when scheduling
* gets enabled in the unblock.
*/
if (unlikely(context_blocked(ce)))
goto out;
enabled = context_enabled(ce);
if (!enabled) {
action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET;
action[len++] = ce->guc_id;
action[len++] = GUC_CONTEXT_ENABLE;
set_context_pending_enable(ce);
intel_context_get(ce);
g2h_len_dw = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET;
} else {
action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT;
action[len++] = ce->guc_id;
}
err = intel_guc_send_nb(guc, action, len, g2h_len_dw);
if (!enabled && !err) {
trace_intel_context_sched_enable(ce);
atomic_inc(&guc->outstanding_submission_g2h);
set_context_enabled(ce);
} else if (!enabled) {
clr_context_pending_enable(ce);
intel_context_put(ce);
}
if (likely(!err))
trace_i915_request_guc_submit(rq);
out:
return err;
}
static inline void guc_set_lrc_tail(struct i915_request *rq)
{
rq->context->lrc_reg_state[CTX_RING_TAIL] =
intel_ring_set_tail(rq->ring, rq->tail);
}
static inline int rq_prio(const struct i915_request *rq)
{
return rq->sched.attr.priority;
}
static int guc_dequeue_one_context(struct intel_guc *guc)
{
struct i915_sched_engine * const sched_engine = guc->sched_engine;
struct i915_request *last = NULL;
bool submit = false;
struct rb_node *rb;
int ret;
lockdep_assert_held(&sched_engine->lock);
if (guc->stalled_request) {
submit = true;
last = guc->stalled_request;
goto resubmit;
}
while ((rb = rb_first_cached(&sched_engine->queue))) {
struct i915_priolist *p = to_priolist(rb);
struct i915_request *rq, *rn;
priolist_for_each_request_consume(rq, rn, p) {
if (last && rq->context != last->context)
goto done;
list_del_init(&rq->sched.link);
__i915_request_submit(rq);
trace_i915_request_in(rq, 0);
last = rq;
submit = true;
}
rb_erase_cached(&p->node, &sched_engine->queue);
i915_priolist_free(p);
}
done:
if (submit) {
guc_set_lrc_tail(last);
resubmit:
ret = guc_add_request(guc, last);
if (unlikely(ret == -EPIPE))
goto deadlk;
else if (ret == -EBUSY) {
tasklet_schedule(&sched_engine->tasklet);
guc->stalled_request = last;
return false;
}
}
guc->stalled_request = NULL;
return submit;
deadlk:
sched_engine->tasklet.callback = NULL;
tasklet_disable_nosync(&sched_engine->tasklet);
return false;
}
static void guc_submission_tasklet(struct tasklet_struct *t)
{
struct i915_sched_engine *sched_engine =
from_tasklet(sched_engine, t, tasklet);
unsigned long flags;
bool loop;
spin_lock_irqsave(&sched_engine->lock, flags);
do {
loop = guc_dequeue_one_context(sched_engine->private_data);
} while (loop);
i915_sched_engine_reset_on_empty(sched_engine);
spin_unlock_irqrestore(&sched_engine->lock, flags);
}
static void cs_irq_handler(struct intel_engine_cs *engine, u16 iir)
{
if (iir & GT_RENDER_USER_INTERRUPT)
intel_engine_signal_breadcrumbs(engine);
}
static void __guc_context_destroy(struct intel_context *ce);
static void release_guc_id(struct intel_guc *guc, struct intel_context *ce);
static void guc_signal_context_fence(struct intel_context *ce);
static void guc_cancel_context_requests(struct intel_context *ce);
static void guc_blocked_fence_complete(struct intel_context *ce);
static void scrub_guc_desc_for_outstanding_g2h(struct intel_guc *guc)
{
struct intel_context *ce;
unsigned long index, flags;
bool pending_disable, pending_enable, deregister, destroyed, banned;
xa_for_each(&guc->context_lookup, index, ce) {
/* Flush context */
spin_lock_irqsave(&ce->guc_state.lock, flags);
spin_unlock_irqrestore(&ce->guc_state.lock, flags);
/*
* Once we are at this point submission_disabled() is guaranteed
* to be visible to all callers who set the below flags (see above
* flush and flushes in reset_prepare). If submission_disabled()
* is set, the caller shouldn't set these flags.
*/
destroyed = context_destroyed(ce);
pending_enable = context_pending_enable(ce);
pending_disable = context_pending_disable(ce);
deregister = context_wait_for_deregister_to_register(ce);
banned = context_banned(ce);
init_sched_state(ce);
if (pending_enable || destroyed || deregister) {
decr_outstanding_submission_g2h(guc);
if (deregister)
guc_signal_context_fence(ce);
if (destroyed) {
release_guc_id(guc, ce);
__guc_context_destroy(ce);
}
if (pending_enable || deregister)
intel_context_put(ce);
}
/* Not mutualy exclusive with above if statement. */
if (pending_disable) {
guc_signal_context_fence(ce);
if (banned) {
guc_cancel_context_requests(ce);
intel_engine_signal_breadcrumbs(ce->engine);
}
intel_context_sched_disable_unpin(ce);
decr_outstanding_submission_g2h(guc);
spin_lock_irqsave(&ce->guc_state.lock, flags);
guc_blocked_fence_complete(ce);
spin_unlock_irqrestore(&ce->guc_state.lock, flags);
intel_context_put(ce);
}
}
}
static inline bool
submission_disabled(struct intel_guc *guc)
{
struct i915_sched_engine * const sched_engine = guc->sched_engine;
return unlikely(!sched_engine ||
!__tasklet_is_enabled(&sched_engine->tasklet));
}
static void disable_submission(struct intel_guc *guc)
{
struct i915_sched_engine * const sched_engine = guc->sched_engine;
if (__tasklet_is_enabled(&sched_engine->tasklet)) {
GEM_BUG_ON(!guc->ct.enabled);
__tasklet_disable_sync_once(&sched_engine->tasklet);
sched_engine->tasklet.callback = NULL;
}
}
static void enable_submission(struct intel_guc *guc)
{
struct i915_sched_engine * const sched_engine = guc->sched_engine;
unsigned long flags;
spin_lock_irqsave(&guc->sched_engine->lock, flags);
sched_engine->tasklet.callback = guc_submission_tasklet;
wmb(); /* Make sure callback visible */
if (!__tasklet_is_enabled(&sched_engine->tasklet) &&
__tasklet_enable(&sched_engine->tasklet)) {
GEM_BUG_ON(!guc->ct.enabled);
/* And kick in case we missed a new request submission. */
tasklet_hi_schedule(&sched_engine->tasklet);
}
spin_unlock_irqrestore(&guc->sched_engine->lock, flags);
}
static void guc_flush_submissions(struct intel_guc *guc)
{
struct i915_sched_engine * const sched_engine = guc->sched_engine;
unsigned long flags;
spin_lock_irqsave(&sched_engine->lock, flags);
spin_unlock_irqrestore(&sched_engine->lock, flags);
}
void intel_guc_submission_reset_prepare(struct intel_guc *guc)
{
int i;
if (unlikely(!guc_submission_initialized(guc))) {
/* Reset called during driver load? GuC not yet initialised! */
return;
}
intel_gt_park_heartbeats(guc_to_gt(guc));
disable_submission(guc);
guc->interrupts.disable(guc);
/* Flush IRQ handler */
spin_lock_irq(&guc_to_gt(guc)->irq_lock);
spin_unlock_irq(&guc_to_gt(guc)->irq_lock);
guc_flush_submissions(guc);
/*
* Handle any outstanding G2Hs before reset. Call IRQ handler directly
* each pass as interrupt have been disabled. We always scrub for
* outstanding G2H as it is possible for outstanding_submission_g2h to
* be incremented after the context state update.
*/
for (i = 0; i < 4 && atomic_read(&guc->outstanding_submission_g2h); ++i) {
intel_guc_to_host_event_handler(guc);
#define wait_for_reset(guc, wait_var) \
intel_guc_wait_for_pending_msg(guc, wait_var, false, (HZ / 20))
do {
wait_for_reset(guc, &guc->outstanding_submission_g2h);
} while (!list_empty(&guc->ct.requests.incoming));
}
scrub_guc_desc_for_outstanding_g2h(guc);
}
static struct intel_engine_cs *
guc_virtual_get_sibling(struct intel_engine_cs *ve, unsigned int sibling)
{
struct intel_engine_cs *engine;
intel_engine_mask_t tmp, mask = ve->mask;
unsigned int num_siblings = 0;
for_each_engine_masked(engine, ve->gt, mask, tmp)
if (num_siblings++ == sibling)
return engine;
return NULL;
}
static inline struct intel_engine_cs *
__context_to_physical_engine(struct intel_context *ce)
{
struct intel_engine_cs *engine = ce->engine;
if (intel_engine_is_virtual(engine))
engine = guc_virtual_get_sibling(engine, 0);
return engine;
}
static void guc_reset_state(struct intel_context *ce, u32 head, bool scrub)
{
struct intel_engine_cs *engine = __context_to_physical_engine(ce);
if (intel_context_is_banned(ce))
return;
GEM_BUG_ON(!intel_context_is_pinned(ce));
/*
* We want a simple context + ring to execute the breadcrumb update.
* We cannot rely on the context being intact across the GPU hang,
* so clear it and rebuild just what we need for the breadcrumb.
* All pending requests for this context will be zapped, and any
* future request will be after userspace has had the opportunity
* to recreate its own state.
*/
if (scrub)
lrc_init_regs(ce, engine, true);
/* Rerun the request; its payload has been neutered (if guilty). */
lrc_update_regs(ce, engine, head);
}
static void guc_reset_nop(struct intel_engine_cs *engine)
{
}
static void guc_rewind_nop(struct intel_engine_cs *engine, bool stalled)
{
}
static void
__unwind_incomplete_requests(struct intel_context *ce)
{
struct i915_request *rq, *rn;
struct list_head *pl;
int prio = I915_PRIORITY_INVALID;
struct i915_sched_engine * const sched_engine =
ce->engine->sched_engine;
unsigned long flags;
spin_lock_irqsave(&sched_engine->lock, flags);
spin_lock(&ce->guc_active.lock);
list_for_each_entry_safe_reverse(rq, rn,
&ce->guc_active.requests,
sched.link) {
if (i915_request_completed(rq))
continue;
list_del_init(&rq->sched.link);
__i915_request_unsubmit(rq);
/* Push the request back into the queue for later resubmission. */
GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
if (rq_prio(rq) != prio) {
prio = rq_prio(rq);
pl = i915_sched_lookup_priolist(sched_engine, prio);
}
GEM_BUG_ON(i915_sched_engine_is_empty(sched_engine));
list_add(&rq->sched.link, pl);
set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
}
spin_unlock(&ce->guc_active.lock);
spin_unlock_irqrestore(&sched_engine->lock, flags);
}
static void __guc_reset_context(struct intel_context *ce, bool stalled)
{
struct i915_request *rq;
unsigned long flags;
u32 head;
bool skip = false;
intel_context_get(ce);
/*
* GuC will implicitly mark the context as non-schedulable when it sends
* the reset notification. Make sure our state reflects this change. The
* context will be marked enabled on resubmission.
*
* XXX: If the context is reset as a result of the request cancellation
* this G2H is received after the schedule disable complete G2H which is
* wrong as this creates a race between the request cancellation code
* re-submitting the context and this G2H handler. This is a bug in the
* GuC but can be worked around in the meantime but converting this to a
* NOP if a pending enable is in flight as this indicates that a request
* cancellation has occurred.
*/
spin_lock_irqsave(&ce->guc_state.lock, flags);
if (likely(!context_pending_enable(ce)))
clr_context_enabled(ce);
else
skip = true;
spin_unlock_irqrestore(&ce->guc_state.lock, flags);
if (unlikely(skip))
goto out_put;
rq = intel_context_find_active_request(ce);
if (!rq) {
head = ce->ring->tail;
stalled = false;
goto out_replay;
}
if (!i915_request_started(rq))
stalled = false;
GEM_BUG_ON(i915_active_is_idle(&ce->active));
head = intel_ring_wrap(ce->ring, rq->head);
__i915_request_reset(rq, stalled);
out_replay:
guc_reset_state(ce, head, stalled);
__unwind_incomplete_requests(ce);
out_put:
intel_context_put(ce);
}
void intel_guc_submission_reset(struct intel_guc *guc, bool stalled)
{
struct intel_context *ce;
unsigned long index;
if (unlikely(!guc_submission_initialized(guc))) {
/* Reset called during driver load? GuC not yet initialised! */
return;
}
xa_for_each(&guc->context_lookup, index, ce)
if (intel_context_is_pinned(ce))
__guc_reset_context(ce, stalled);
/* GuC is blown away, drop all references to contexts */
xa_destroy(&guc->context_lookup);
}
static void guc_cancel_context_requests(struct intel_context *ce)
{
struct i915_sched_engine *sched_engine = ce_to_guc(ce)->sched_engine;
struct i915_request *rq;
unsigned long flags;
/* Mark all executing requests as skipped. */
spin_lock_irqsave(&sched_engine->lock, flags);
spin_lock(&ce->guc_active.lock);
list_for_each_entry(rq, &ce->guc_active.requests, sched.link)
i915_request_put(i915_request_mark_eio(rq));
spin_unlock(&ce->guc_active.lock);
spin_unlock_irqrestore(&sched_engine->lock, flags);
}
static void
guc_cancel_sched_engine_requests(struct i915_sched_engine *sched_engine)
{
struct i915_request *rq, *rn;
struct rb_node *rb;
unsigned long flags;
/* Can be called during boot if GuC fails to load */
if (!sched_engine)
return;
/*
* Before we call engine->cancel_requests(), we should have exclusive
* access to the submission state. This is arranged for us by the
* caller disabling the interrupt generation, the tasklet and other
* threads that may then access the same state, giving us a free hand
* to reset state. However, we still need to let lockdep be aware that
* we know this state may be accessed in hardirq context, so we
* disable the irq around this manipulation and we want to keep
* the spinlock focused on its duties and not accidentally conflate
* coverage to the submission's irq state. (Similarly, although we
* shouldn't need to disable irq around the manipulation of the
* submission's irq state, we also wish to remind ourselves that
* it is irq state.)
*/
spin_lock_irqsave(&sched_engine->lock, flags);
/* Flush the queued requests to the timeline list (for retiring). */
while ((rb = rb_first_cached(&sched_engine->queue))) {
struct i915_priolist *p = to_priolist(rb);
priolist_for_each_request_consume(rq, rn, p) {
list_del_init(&rq->sched.link);
__i915_request_submit(rq);
i915_request_put(i915_request_mark_eio(rq));
}
rb_erase_cached(&p->node, &sched_engine->queue);
i915_priolist_free(p);
}
/* Remaining _unready_ requests will be nop'ed when submitted */
sched_engine->queue_priority_hint = INT_MIN;
sched_engine->queue = RB_ROOT_CACHED;
spin_unlock_irqrestore(&sched_engine->lock, flags);
}
void intel_guc_submission_cancel_requests(struct intel_guc *guc)
{
struct intel_context *ce;
unsigned long index;
xa_for_each(&guc->context_lookup, index, ce)
if (intel_context_is_pinned(ce))
guc_cancel_context_requests(ce);
guc_cancel_sched_engine_requests(guc->sched_engine);
/* GuC is blown away, drop all references to contexts */
xa_destroy(&guc->context_lookup);
}
void intel_guc_submission_reset_finish(struct intel_guc *guc)
{
/* Reset called during driver load or during wedge? */
if (unlikely(!guc_submission_initialized(guc) ||
test_bit(I915_WEDGED, &guc_to_gt(guc)->reset.flags))) {
return;
}
/*
* Technically possible for either of these values to be non-zero here,
* but very unlikely + harmless. Regardless let's add a warn so we can
* see in CI if this happens frequently / a precursor to taking down the
* machine.
*/
GEM_WARN_ON(atomic_read(&guc->outstanding_submission_g2h));
atomic_set(&guc->outstanding_submission_g2h, 0);
intel_guc_global_policies_update(guc);
enable_submission(guc);
intel_gt_unpark_heartbeats(guc_to_gt(guc));
}
/*
* Set up the memory resources to be shared with the GuC (via the GGTT)
* at firmware loading time.
*/
int intel_guc_submission_init(struct intel_guc *guc)
{
int ret;
if (guc->lrc_desc_pool)
return 0;
ret = guc_lrc_desc_pool_create(guc);
if (ret)
return ret;
/*
* Keep static analysers happy, let them know that we allocated the
* vma after testing that it didn't exist earlier.
*/
GEM_BUG_ON(!guc->lrc_desc_pool);
xa_init_flags(&guc->context_lookup, XA_FLAGS_LOCK_IRQ);
spin_lock_init(&guc->contexts_lock);
INIT_LIST_HEAD(&guc->guc_id_list);
ida_init(&guc->guc_ids);
return 0;
}
void intel_guc_submission_fini(struct intel_guc *guc)
{
if (!guc->lrc_desc_pool)
return;
guc_lrc_desc_pool_destroy(guc);
i915_sched_engine_put(guc->sched_engine);
}
static inline void queue_request(struct i915_sched_engine *sched_engine,
struct i915_request *rq,
int prio)
{
GEM_BUG_ON(!list_empty(&rq->sched.link));
list_add_tail(&rq->sched.link,
i915_sched_lookup_priolist(sched_engine, prio));
set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
}
static int guc_bypass_tasklet_submit(struct intel_guc *guc,
struct i915_request *rq)
{
int ret;
__i915_request_submit(rq);
trace_i915_request_in(rq, 0);
guc_set_lrc_tail(rq);
ret = guc_add_request(guc, rq);
if (ret == -EBUSY)
guc->stalled_request = rq;
if (unlikely(ret == -EPIPE))
disable_submission(guc);
return ret;
}
static void guc_submit_request(struct i915_request *rq)
{
struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
struct intel_guc *guc = &rq->engine->gt->uc.guc;
unsigned long flags;
/* Will be called from irq-context when using foreign fences. */
spin_lock_irqsave(&sched_engine->lock, flags);
if (submission_disabled(guc) || guc->stalled_request ||
!i915_sched_engine_is_empty(sched_engine))
queue_request(sched_engine, rq, rq_prio(rq));
else if (guc_bypass_tasklet_submit(guc, rq) == -EBUSY)
tasklet_hi_schedule(&sched_engine->tasklet);
spin_unlock_irqrestore(&sched_engine->lock, flags);
}
static int new_guc_id(struct intel_guc *guc)
{
return ida_simple_get(&guc->guc_ids, 0,
GUC_MAX_LRC_DESCRIPTORS, GFP_KERNEL |
__GFP_RETRY_MAYFAIL | __GFP_NOWARN);
}
static void __release_guc_id(struct intel_guc *guc, struct intel_context *ce)
{
if (!context_guc_id_invalid(ce)) {
ida_simple_remove(&guc->guc_ids, ce->guc_id);
reset_lrc_desc(guc, ce->guc_id);
set_context_guc_id_invalid(ce);
}
if (!list_empty(&ce->guc_id_link))
list_del_init(&ce->guc_id_link);
}
static void release_guc_id(struct intel_guc *guc, struct intel_context *ce)
{
unsigned long flags;
spin_lock_irqsave(&guc->contexts_lock, flags);
__release_guc_id(guc, ce);
spin_unlock_irqrestore(&guc->contexts_lock, flags);
}
static int steal_guc_id(struct intel_guc *guc)
{
struct intel_context *ce;
int guc_id;
lockdep_assert_held(&guc->contexts_lock);
if (!list_empty(&guc->guc_id_list)) {
ce = list_first_entry(&guc->guc_id_list,
struct intel_context,
guc_id_link);
GEM_BUG_ON(atomic_read(&ce->guc_id_ref));
GEM_BUG_ON(context_guc_id_invalid(ce));
list_del_init(&ce->guc_id_link);
guc_id = ce->guc_id;
clr_context_registered(ce);
set_context_guc_id_invalid(ce);
return guc_id;
} else {
return -EAGAIN;
}
}
static int assign_guc_id(struct intel_guc *guc, u16 *out)
{
int ret;
lockdep_assert_held(&guc->contexts_lock);
ret = new_guc_id(guc);
if (unlikely(ret < 0)) {
ret = steal_guc_id(guc);
if (ret < 0)
return ret;
}
*out = ret;
return 0;
}
#define PIN_GUC_ID_TRIES 4
static int pin_guc_id(struct intel_guc *guc, struct intel_context *ce)
{
int ret = 0;
unsigned long flags, tries = PIN_GUC_ID_TRIES;
GEM_BUG_ON(atomic_read(&ce->guc_id_ref));
try_again:
spin_lock_irqsave(&guc->contexts_lock, flags);
if (context_guc_id_invalid(ce)) {
ret = assign_guc_id(guc, &ce->guc_id);
if (ret)
goto out_unlock;
ret = 1; /* Indidcates newly assigned guc_id */
}
if (!list_empty(&ce->guc_id_link))
list_del_init(&ce->guc_id_link);
atomic_inc(&ce->guc_id_ref);
out_unlock:
spin_unlock_irqrestore(&guc->contexts_lock, flags);
/*
* -EAGAIN indicates no guc_ids are available, let's retire any
* outstanding requests to see if that frees up a guc_id. If the first
* retire didn't help, insert a sleep with the timeslice duration before
* attempting to retire more requests. Double the sleep period each
* subsequent pass before finally giving up. The sleep period has max of
* 100ms and minimum of 1ms.
*/
if (ret == -EAGAIN && --tries) {
if (PIN_GUC_ID_TRIES - tries > 1) {
unsigned int timeslice_shifted =
ce->engine->props.timeslice_duration_ms <<
(PIN_GUC_ID_TRIES - tries - 2);
unsigned int max = min_t(unsigned int, 100,
timeslice_shifted);
msleep(max_t(unsigned int, max, 1));
}
intel_gt_retire_requests(guc_to_gt(guc));
goto try_again;
}
return ret;
}
static void unpin_guc_id(struct intel_guc *guc, struct intel_context *ce)
{
unsigned long flags;
GEM_BUG_ON(atomic_read(&ce->guc_id_ref) < 0);
if (unlikely(context_guc_id_invalid(ce)))
return;
spin_lock_irqsave(&guc->contexts_lock, flags);
if (!context_guc_id_invalid(ce) && list_empty(&ce->guc_id_link) &&
!atomic_read(&ce->guc_id_ref))
list_add_tail(&ce->guc_id_link, &guc->guc_id_list);
spin_unlock_irqrestore(&guc->contexts_lock, flags);
}
static int __guc_action_register_context(struct intel_guc *guc,
u32 guc_id,
u32 offset,
bool loop)
{
u32 action[] = {
INTEL_GUC_ACTION_REGISTER_CONTEXT,
guc_id,
offset,
};
return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
0, loop);
}
static int register_context(struct intel_context *ce, bool loop)
{
struct intel_guc *guc = ce_to_guc(ce);
u32 offset = intel_guc_ggtt_offset(guc, guc->lrc_desc_pool) +
ce->guc_id * sizeof(struct guc_lrc_desc);
int ret;
trace_intel_context_register(ce);
ret = __guc_action_register_context(guc, ce->guc_id, offset, loop);
if (likely(!ret))
set_context_registered(ce);
return ret;
}
static int __guc_action_deregister_context(struct intel_guc *guc,
u32 guc_id)
{
u32 action[] = {
INTEL_GUC_ACTION_DEREGISTER_CONTEXT,
guc_id,
};
return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
G2H_LEN_DW_DEREGISTER_CONTEXT,
true);
}
static int deregister_context(struct intel_context *ce, u32 guc_id)
{
struct intel_guc *guc = ce_to_guc(ce);
trace_intel_context_deregister(ce);
return __guc_action_deregister_context(guc, guc_id);
}
static intel_engine_mask_t adjust_engine_mask(u8 class, intel_engine_mask_t mask)
{
switch (class) {
case RENDER_CLASS:
return mask >> RCS0;
case VIDEO_ENHANCEMENT_CLASS:
return mask >> VECS0;
case VIDEO_DECODE_CLASS:
return mask >> VCS0;
case COPY_ENGINE_CLASS:
return mask >> BCS0;
default:
MISSING_CASE(class);
return 0;
}
}
static void guc_context_policy_init(struct intel_engine_cs *engine,
struct guc_lrc_desc *desc)
{
desc->policy_flags = 0;
if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
desc->policy_flags |= CONTEXT_POLICY_FLAG_PREEMPT_TO_IDLE;
/* NB: For both of these, zero means disabled. */
desc->execution_quantum = engine->props.timeslice_duration_ms * 1000;
desc->preemption_timeout = engine->props.preempt_timeout_ms * 1000;
}
static inline u8 map_i915_prio_to_guc_prio(int prio);
static int guc_lrc_desc_pin(struct intel_context *ce, bool loop)
{
struct intel_engine_cs *engine = ce->engine;
struct intel_runtime_pm *runtime_pm = engine->uncore->rpm;
struct intel_guc *guc = &engine->gt->uc.guc;
u32 desc_idx = ce->guc_id;
struct guc_lrc_desc *desc;
const struct i915_gem_context *ctx;
int prio = I915_CONTEXT_DEFAULT_PRIORITY;
bool context_registered;
intel_wakeref_t wakeref;
int ret = 0;
GEM_BUG_ON(!engine->mask);
/*
* Ensure LRC + CT vmas are is same region as write barrier is done
* based on CT vma region.
*/
GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
i915_gem_object_is_lmem(ce->ring->vma->obj));
context_registered = lrc_desc_registered(guc, desc_idx);
rcu_read_lock();
ctx = rcu_dereference(ce->gem_context);
if (ctx)
prio = ctx->sched.priority;
rcu_read_unlock();
reset_lrc_desc(guc, desc_idx);
set_lrc_desc_registered(guc, desc_idx, ce);
desc = __get_lrc_desc(guc, desc_idx);
desc->engine_class = engine_class_to_guc_class(engine->class);
desc->engine_submit_mask = adjust_engine_mask(engine->class,
engine->mask);
desc->hw_context_desc = ce->lrc.lrca;
ce->guc_prio = map_i915_prio_to_guc_prio(prio);
desc->priority = ce->guc_prio;
desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
guc_context_policy_init(engine, desc);
init_sched_state(ce);
/*
* The context_lookup xarray is used to determine if the hardware
* context is currently registered. There are two cases in which it
* could be registered either the guc_id has been stolen from another
* context or the lrc descriptor address of this context has changed. In
* either case the context needs to be deregistered with the GuC before
* registering this context.
*/
if (context_registered) {
bool disabled;
unsigned long flags;
trace_intel_context_steal_guc_id(ce);
GEM_BUG_ON(!loop);
/* Seal race with Reset */
spin_lock_irqsave(&ce->guc_state.lock, flags);
disabled = submission_disabled(guc);
if (likely(!disabled)) {
set_context_wait_for_deregister_to_register(ce);
intel_context_get(ce);
}
spin_unlock_irqrestore(&ce->guc_state.lock, flags);
if (unlikely(disabled)) {
reset_lrc_desc(guc, desc_idx);
return 0; /* Will get registered later */
}
/*
* If stealing the guc_id, this ce has the same guc_id as the
* context whose guc_id was stolen.
*/
with_intel_runtime_pm(runtime_pm, wakeref)
ret = deregister_context(ce, ce->guc_id);
if (unlikely(ret == -ENODEV))
ret = 0; /* Will get registered later */
} else {
with_intel_runtime_pm(runtime_pm, wakeref)
ret = register_context(ce, loop);
if (unlikely(ret == -EBUSY))
reset_lrc_desc(guc, desc_idx);
else if (unlikely(ret == -ENODEV))
ret = 0; /* Will get registered later */
}
return ret;
}
static int __guc_context_pre_pin(struct intel_context *ce,
struct intel_engine_cs *engine,
struct i915_gem_ww_ctx *ww,
void **vaddr)
{
return lrc_pre_pin(ce, engine, ww, vaddr);
}
static int __guc_context_pin(struct intel_context *ce,
struct intel_engine_cs *engine,
void *vaddr)
{
if (i915_ggtt_offset(ce->state) !=
(ce->lrc.lrca & CTX_GTT_ADDRESS_MASK))
set_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
/*
* GuC context gets pinned in guc_request_alloc. See that function for
* explaination of why.
*/
return lrc_pin(ce, engine, vaddr);
}
static int guc_context_pre_pin(struct intel_context *ce,
struct i915_gem_ww_ctx *ww,
void **vaddr)
{
return __guc_context_pre_pin(ce, ce->engine, ww, vaddr);
}
static int guc_context_pin(struct intel_context *ce, void *vaddr)
{
return __guc_context_pin(ce, ce->engine, vaddr);
}
static void guc_context_unpin(struct intel_context *ce)
{
struct intel_guc *guc = ce_to_guc(ce);
unpin_guc_id(guc, ce);
lrc_unpin(ce);
}
static void guc_context_post_unpin(struct intel_context *ce)
{
lrc_post_unpin(ce);
}
static void __guc_context_sched_enable(struct intel_guc *guc,
struct intel_context *ce)
{
u32 action[] = {
INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
ce->guc_id,
GUC_CONTEXT_ENABLE
};
trace_intel_context_sched_enable(ce);
guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
}
static void __guc_context_sched_disable(struct intel_guc *guc,
struct intel_context *ce,
u16 guc_id)
{
u32 action[] = {
INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
guc_id, /* ce->guc_id not stable */
GUC_CONTEXT_DISABLE
};
GEM_BUG_ON(guc_id == GUC_INVALID_LRC_ID);
trace_intel_context_sched_disable(ce);
guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
}
static void guc_blocked_fence_complete(struct intel_context *ce)
{
lockdep_assert_held(&ce->guc_state.lock);
if (!i915_sw_fence_done(&ce->guc_blocked))
i915_sw_fence_complete(&ce->guc_blocked);
}
static void guc_blocked_fence_reinit(struct intel_context *ce)
{
lockdep_assert_held(&ce->guc_state.lock);
GEM_BUG_ON(!i915_sw_fence_done(&ce->guc_blocked));
/*
* This fence is always complete unless a pending schedule disable is
* outstanding. We arm the fence here and complete it when we receive
* the pending schedule disable complete message.
*/
i915_sw_fence_fini(&ce->guc_blocked);
i915_sw_fence_reinit(&ce->guc_blocked);
i915_sw_fence_await(&ce->guc_blocked);
i915_sw_fence_commit(&ce->guc_blocked);
}
static u16 prep_context_pending_disable(struct intel_context *ce)
{
lockdep_assert_held(&ce->guc_state.lock);
set_context_pending_disable(ce);
clr_context_enabled(ce);
guc_blocked_fence_reinit(ce);
intel_context_get(ce);
return ce->guc_id;
}
static struct i915_sw_fence *guc_context_block(struct intel_context *ce)
{
struct intel_guc *guc = ce_to_guc(ce);
struct i915_sched_engine *sched_engine = ce->engine->sched_engine;
unsigned long flags;
struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
intel_wakeref_t wakeref;
u16 guc_id;
bool enabled;
spin_lock_irqsave(&ce->guc_state.lock, flags);
/*
* Sync with submission path, increment before below changes to context
* state.
*/
spin_lock(&sched_engine->lock);
incr_context_blocked(ce);
spin_unlock(&sched_engine->lock);
enabled = context_enabled(ce);
if (unlikely(!enabled || submission_disabled(guc))) {
if (enabled)
clr_context_enabled(ce);
spin_unlock_irqrestore(&ce->guc_state.lock, flags);
return &ce->guc_blocked;
}
/*
* We add +2 here as the schedule disable complete CTB handler calls
* intel_context_sched_disable_unpin (-2 to pin_count).
*/
atomic_add(2, &ce->pin_count);
guc_id = prep_context_pending_disable(ce);
spin_unlock_irqrestore(&ce->guc_state.lock, flags);
with_intel_runtime_pm(runtime_pm, wakeref)
__guc_context_sched_disable(guc, ce, guc_id);
return &ce->guc_blocked;
}
#define SCHED_STATE_MULTI_BLOCKED_MASK \
(SCHED_STATE_BLOCKED_MASK & ~SCHED_STATE_BLOCKED)
#define SCHED_STATE_NO_UNBLOCK \
(SCHED_STATE_MULTI_BLOCKED_MASK | \
SCHED_STATE_PENDING_DISABLE | \
SCHED_STATE_BANNED)
static bool context_cant_unblock(struct intel_context *ce)
{
lockdep_assert_held(&ce->guc_state.lock);
return (ce->guc_state.sched_state & SCHED_STATE_NO_UNBLOCK) ||
context_guc_id_invalid(ce) ||
!lrc_desc_registered(ce_to_guc(ce), ce->guc_id) ||
!intel_context_is_pinned(ce);
}
static void guc_context_unblock(struct intel_context *ce)
{
struct intel_guc *guc = ce_to_guc(ce);
struct i915_sched_engine *sched_engine = ce->engine->sched_engine;
unsigned long flags;
struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
intel_wakeref_t wakeref;
bool enable;
GEM_BUG_ON(context_enabled(ce));
spin_lock_irqsave(&ce->guc_state.lock, flags);
if (unlikely(submission_disabled(guc) ||
context_cant_unblock(ce))) {
enable = false;
} else {
enable = true;
set_context_pending_enable(ce);
set_context_enabled(ce);
intel_context_get(ce);
}
/*
* Sync with submission path, decrement after above changes to context
* state.
*/
spin_lock(&sched_engine->lock);
decr_context_blocked(ce);
spin_unlock(&sched_engine->lock);
spin_unlock_irqrestore(&ce->guc_state.lock, flags);
if (enable) {
with_intel_runtime_pm(runtime_pm, wakeref)
__guc_context_sched_enable(guc, ce);
}
}
static void guc_context_cancel_request(struct intel_context *ce,
struct i915_request *rq)
{
if (i915_sw_fence_signaled(&rq->submit)) {
struct i915_sw_fence *fence = guc_context_block(ce);
i915_sw_fence_wait(fence);
if (!i915_request_completed(rq)) {
__i915_request_skip(rq);
guc_reset_state(ce, intel_ring_wrap(ce->ring, rq->head),
true);
}
/*
* XXX: Racey if context is reset, see comment in
* __guc_reset_context().
*/
flush_work(&ce_to_guc(ce)->ct.requests.worker);
guc_context_unblock(ce);
}
}
static void __guc_context_set_preemption_timeout(struct intel_guc *guc,
u16 guc_id,
u32 preemption_timeout)
{
u32 action[] = {
INTEL_GUC_ACTION_SET_CONTEXT_PREEMPTION_TIMEOUT,
guc_id,
preemption_timeout
};
intel_guc_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
}
static void guc_context_ban(struct intel_context *ce, struct i915_request *rq)
{
struct intel_guc *guc = ce_to_guc(ce);
struct intel_runtime_pm *runtime_pm =
&ce->engine->gt->i915->runtime_pm;
intel_wakeref_t wakeref;
unsigned long flags;
guc_flush_submissions(guc);
spin_lock_irqsave(&ce->guc_state.lock, flags);
set_context_banned(ce);
if (submission_disabled(guc) ||
(!context_enabled(ce) && !context_pending_disable(ce))) {
spin_unlock_irqrestore(&ce->guc_state.lock, flags);
guc_cancel_context_requests(ce);
intel_engine_signal_breadcrumbs(ce->engine);
} else if (!context_pending_disable(ce)) {
u16 guc_id;
/*
* We add +2 here as the schedule disable complete CTB handler
* calls intel_context_sched_disable_unpin (-2 to pin_count).
*/
atomic_add(2, &ce->pin_count);
guc_id = prep_context_pending_disable(ce);
spin_unlock_irqrestore(&ce->guc_state.lock, flags);
/*
* In addition to disabling scheduling, set the preemption
* timeout to the minimum value (1 us) so the banned context
* gets kicked off the HW ASAP.
*/
with_intel_runtime_pm(runtime_pm, wakeref) {
__guc_context_set_preemption_timeout(guc, guc_id, 1);
__guc_context_sched_disable(guc, ce, guc_id);
}
} else {
if (!context_guc_id_invalid(ce))
with_intel_runtime_pm(runtime_pm, wakeref)
__guc_context_set_preemption_timeout(guc,
ce->guc_id,
1);
spin_unlock_irqrestore(&ce->guc_state.lock, flags);
}
}
static void guc_context_sched_disable(struct intel_context *ce)
{
struct intel_guc *guc = ce_to_guc(ce);
unsigned long flags;
struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm;
intel_wakeref_t wakeref;
u16 guc_id;
bool enabled;
if (submission_disabled(guc) || context_guc_id_invalid(ce) ||
!lrc_desc_registered(guc, ce->guc_id)) {
clr_context_enabled(ce);
goto unpin;
}
if (!context_enabled(ce))
goto unpin;
spin_lock_irqsave(&ce->guc_state.lock, flags);
/*
* We have to check if the context has been disabled by another thread.
* We also have to check if the context has been pinned again as another
* pin operation is allowed to pass this function. Checking the pin
* count, within ce->guc_state.lock, synchronizes this function with
* guc_request_alloc ensuring a request doesn't slip through the
* 'context_pending_disable' fence. Checking within the spin lock (can't
* sleep) ensures another process doesn't pin this context and generate
* a request before we set the 'context_pending_disable' flag here.
*/
enabled = context_enabled(ce);
if (unlikely(!enabled || submission_disabled(guc))) {
if (enabled)
clr_context_enabled(ce);
spin_unlock_irqrestore(&ce->guc_state.lock, flags);
goto unpin;
}
if (unlikely(atomic_add_unless(&ce->pin_count, -2, 2))) {
spin_unlock_irqrestore(&ce->guc_state.lock, flags);
return;
}
guc_id = prep_context_pending_disable(ce);
spin_unlock_irqrestore(&ce->guc_state.lock, flags);
with_intel_runtime_pm(runtime_pm, wakeref)
__guc_context_sched_disable(guc, ce, guc_id);
return;
unpin:
intel_context_sched_disable_unpin(ce);
}
static inline void guc_lrc_desc_unpin(struct intel_context *ce)
{
struct intel_guc *guc = ce_to_guc(ce);
GEM_BUG_ON(!lrc_desc_registered(guc, ce->guc_id));
GEM_BUG_ON(ce != __get_context(guc, ce->guc_id));
GEM_BUG_ON(context_enabled(ce));
clr_context_registered(ce);
deregister_context(ce, ce->guc_id);
}
static void __guc_context_destroy(struct intel_context *ce)
{
GEM_BUG_ON(ce->guc_prio_count[GUC_CLIENT_PRIORITY_KMD_HIGH] ||
ce->guc_prio_count[GUC_CLIENT_PRIORITY_HIGH] ||
ce->guc_prio_count[GUC_CLIENT_PRIORITY_KMD_NORMAL] ||
ce->guc_prio_count[GUC_CLIENT_PRIORITY_NORMAL]);
lrc_fini(ce);
intel_context_fini(ce);
if (intel_engine_is_virtual(ce->engine)) {
struct guc_virtual_engine *ve =
container_of(ce, typeof(*ve), context);
if (ve->base.breadcrumbs)
intel_breadcrumbs_put(ve->base.breadcrumbs);
kfree(ve);
} else {
intel_context_free(ce);
}
}
static void guc_context_destroy(struct kref *kref)
{
struct intel_context *ce = container_of(kref, typeof(*ce), ref);
struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
struct intel_guc *guc = ce_to_guc(ce);
intel_wakeref_t wakeref;
unsigned long flags;
bool disabled;
/*
* If the guc_id is invalid this context has been stolen and we can free
* it immediately. Also can be freed immediately if the context is not
* registered with the GuC or the GuC is in the middle of a reset.
*/
if (context_guc_id_invalid(ce)) {
__guc_context_destroy(ce);
return;
} else if (submission_disabled(guc) ||
!lrc_desc_registered(guc, ce->guc_id)) {
release_guc_id(guc, ce);
__guc_context_destroy(ce);
return;
}
/*
* We have to acquire the context spinlock and check guc_id again, if it
* is valid it hasn't been stolen and needs to be deregistered. We
* delete this context from the list of unpinned guc_ids available to
* steal to seal a race with guc_lrc_desc_pin(). When the G2H CTB
* returns indicating this context has been deregistered the guc_id is
* returned to the pool of available guc_ids.
*/
spin_lock_irqsave(&guc->contexts_lock, flags);
if (context_guc_id_invalid(ce)) {
spin_unlock_irqrestore(&guc->contexts_lock, flags);
__guc_context_destroy(ce);
return;
}
if (!list_empty(&ce->guc_id_link))
list_del_init(&ce->guc_id_link);
spin_unlock_irqrestore(&guc->contexts_lock, flags);
/* Seal race with Reset */
spin_lock_irqsave(&ce->guc_state.lock, flags);
disabled = submission_disabled(guc);
if (likely(!disabled))
set_context_destroyed(ce);
spin_unlock_irqrestore(&ce->guc_state.lock, flags);
if (unlikely(disabled)) {
release_guc_id(guc, ce);
__guc_context_destroy(ce);
return;
}
/*
* We defer GuC context deregistration until the context is destroyed
* in order to save on CTBs. With this optimization ideally we only need
* 1 CTB to register the context during the first pin and 1 CTB to
* deregister the context when the context is destroyed. Without this
* optimization, a CTB would be needed every pin & unpin.
*
* XXX: Need to acqiure the runtime wakeref as this can be triggered
* from context_free_worker when runtime wakeref is not held.
* guc_lrc_desc_unpin requires the runtime as a GuC register is written
* in H2G CTB to deregister the context. A future patch may defer this
* H2G CTB if the runtime wakeref is zero.
*/
with_intel_runtime_pm(runtime_pm, wakeref)
guc_lrc_desc_unpin(ce);
}
static int guc_context_alloc(struct intel_context *ce)
{
return lrc_alloc(ce, ce->engine);
}
static void guc_context_set_prio(struct intel_guc *guc,
struct intel_context *ce,
u8 prio)
{
u32 action[] = {
INTEL_GUC_ACTION_SET_CONTEXT_PRIORITY,
ce->guc_id,
prio,
};
GEM_BUG_ON(prio < GUC_CLIENT_PRIORITY_KMD_HIGH ||
prio > GUC_CLIENT_PRIORITY_NORMAL);
if (ce->guc_prio == prio || submission_disabled(guc) ||
!context_registered(ce))
return;
guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
ce->guc_prio = prio;
trace_intel_context_set_prio(ce);
}
static inline u8 map_i915_prio_to_guc_prio(int prio)
{
if (prio == I915_PRIORITY_NORMAL)
return GUC_CLIENT_PRIORITY_KMD_NORMAL;
else if (prio < I915_PRIORITY_NORMAL)
return GUC_CLIENT_PRIORITY_NORMAL;
else if (prio < I915_PRIORITY_DISPLAY)
return GUC_CLIENT_PRIORITY_HIGH;
else
return GUC_CLIENT_PRIORITY_KMD_HIGH;
}
static inline void add_context_inflight_prio(struct intel_context *ce,
u8 guc_prio)
{
lockdep_assert_held(&ce->guc_active.lock);
GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_prio_count));
++ce->guc_prio_count[guc_prio];
/* Overflow protection */
GEM_WARN_ON(!ce->guc_prio_count[guc_prio]);
}
static inline void sub_context_inflight_prio(struct intel_context *ce,
u8 guc_prio)
{
lockdep_assert_held(&ce->guc_active.lock);
GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_prio_count));
/* Underflow protection */
GEM_WARN_ON(!ce->guc_prio_count[guc_prio]);
--ce->guc_prio_count[guc_prio];
}
static inline void update_context_prio(struct intel_context *ce)
{
struct intel_guc *guc = &ce->engine->gt->uc.guc;
int i;
BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH != 0);
BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH > GUC_CLIENT_PRIORITY_NORMAL);
lockdep_assert_held(&ce->guc_active.lock);
for (i = 0; i < ARRAY_SIZE(ce->guc_prio_count); ++i) {
if (ce->guc_prio_count[i]) {
guc_context_set_prio(guc, ce, i);
break;
}
}
}
static inline bool new_guc_prio_higher(u8 old_guc_prio, u8 new_guc_prio)
{
/* Lower value is higher priority */
return new_guc_prio < old_guc_prio;
}
static void add_to_context(struct i915_request *rq)
{
struct intel_context *ce = rq->context;
u8 new_guc_prio = map_i915_prio_to_guc_prio(rq_prio(rq));
GEM_BUG_ON(rq->guc_prio == GUC_PRIO_FINI);
spin_lock(&ce->guc_active.lock);
list_move_tail(&rq->sched.link, &ce->guc_active.requests);
if (rq->guc_prio == GUC_PRIO_INIT) {
rq->guc_prio = new_guc_prio;
add_context_inflight_prio(ce, rq->guc_prio);
} else if (new_guc_prio_higher(rq->guc_prio, new_guc_prio)) {
sub_context_inflight_prio(ce, rq->guc_prio);
rq->guc_prio = new_guc_prio;
add_context_inflight_prio(ce, rq->guc_prio);
}
update_context_prio(ce);
spin_unlock(&ce->guc_active.lock);
}
static void guc_prio_fini(struct i915_request *rq, struct intel_context *ce)
{
lockdep_assert_held(&ce->guc_active.lock);
if (rq->guc_prio != GUC_PRIO_INIT &&
rq->guc_prio != GUC_PRIO_FINI) {
sub_context_inflight_prio(ce, rq->guc_prio);
update_context_prio(ce);
}
rq->guc_prio = GUC_PRIO_FINI;
}
static void remove_from_context(struct i915_request *rq)
{
struct intel_context *ce = rq->context;
spin_lock_irq(&ce->guc_active.lock);
list_del_init(&rq->sched.link);
clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
/* Prevent further __await_execution() registering a cb, then flush */
set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
guc_prio_fini(rq, ce);
spin_unlock_irq(&ce->guc_active.lock);
atomic_dec(&ce->guc_id_ref);
i915_request_notify_execute_cb_imm(rq);
}
static const struct intel_context_ops guc_context_ops = {
.alloc = guc_context_alloc,
.pre_pin = guc_context_pre_pin,
.pin = guc_context_pin,
.unpin = guc_context_unpin,
.post_unpin = guc_context_post_unpin,
.ban = guc_context_ban,
.cancel_request = guc_context_cancel_request,
.enter = intel_context_enter_engine,
.exit = intel_context_exit_engine,
.sched_disable = guc_context_sched_disable,
.reset = lrc_reset,
.destroy = guc_context_destroy,
.create_virtual = guc_create_virtual,
};
static void __guc_signal_context_fence(struct intel_context *ce)
{
struct i915_request *rq;
lockdep_assert_held(&ce->guc_state.lock);
if (!list_empty(&ce->guc_state.fences))
trace_intel_context_fence_release(ce);
list_for_each_entry(rq, &ce->guc_state.fences, guc_fence_link)
i915_sw_fence_complete(&rq->submit);
INIT_LIST_HEAD(&ce->guc_state.fences);
}
static void guc_signal_context_fence(struct intel_context *ce)
{
unsigned long flags;
spin_lock_irqsave(&ce->guc_state.lock, flags);
clr_context_wait_for_deregister_to_register(ce);
__guc_signal_context_fence(ce);
spin_unlock_irqrestore(&ce->guc_state.lock, flags);
}
static bool context_needs_register(struct intel_context *ce, bool new_guc_id)
{
return (new_guc_id || test_bit(CONTEXT_LRCA_DIRTY, &ce->flags) ||
!lrc_desc_registered(ce_to_guc(ce), ce->guc_id)) &&
!submission_disabled(ce_to_guc(ce));
}
static int guc_request_alloc(struct i915_request *rq)
{
struct intel_context *ce = rq->context;
struct intel_guc *guc = ce_to_guc(ce);
unsigned long flags;
int ret;
GEM_BUG_ON(!intel_context_is_pinned(rq->context));
/*
* Flush enough space to reduce the likelihood of waiting after
* we start building the request - in which case we will just
* have to repeat work.
*/
rq->reserved_space += GUC_REQUEST_SIZE;
/*
* Note that after this point, we have committed to using
* this request as it is being used to both track the
* state of engine initialisation and liveness of the
* golden renderstate above. Think twice before you try
* to cancel/unwind this request now.
*/
/* Unconditionally invalidate GPU caches and TLBs. */
ret = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
if (ret)
return ret;
rq->reserved_space -= GUC_REQUEST_SIZE;
/*
* Call pin_guc_id here rather than in the pinning step as with
* dma_resv, contexts can be repeatedly pinned / unpinned trashing the
* guc_ids and creating horrible race conditions. This is especially bad
* when guc_ids are being stolen due to over subscription. By the time
* this function is reached, it is guaranteed that the guc_id will be
* persistent until the generated request is retired. Thus, sealing these
* race conditions. It is still safe to fail here if guc_ids are
* exhausted and return -EAGAIN to the user indicating that they can try
* again in the future.
*
* There is no need for a lock here as the timeline mutex ensures at
* most one context can be executing this code path at once. The
* guc_id_ref is incremented once for every request in flight and
* decremented on each retire. When it is zero, a lock around the
* increment (in pin_guc_id) is needed to seal a race with unpin_guc_id.
*/
if (atomic_add_unless(&ce->guc_id_ref, 1, 0))
goto out;
ret = pin_guc_id(guc, ce); /* returns 1 if new guc_id assigned */
if (unlikely(ret < 0))
return ret;
if (context_needs_register(ce, !!ret)) {
ret = guc_lrc_desc_pin(ce, true);
if (unlikely(ret)) { /* unwind */
if (ret == -EPIPE) {
disable_submission(guc);
goto out; /* GPU will be reset */
}
atomic_dec(&ce->guc_id_ref);
unpin_guc_id(guc, ce);
return ret;
}
}
clear_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
out:
/*
* We block all requests on this context if a G2H is pending for a
* schedule disable or context deregistration as the GuC will fail a
* schedule enable or context registration if either G2H is pending
* respectfully. Once a G2H returns, the fence is released that is
* blocking these requests (see guc_signal_context_fence).
*
* We can safely check the below fields outside of the lock as it isn't
* possible for these fields to transition from being clear to set but
* converse is possible, hence the need for the check within the lock.
*/
if (likely(!context_wait_for_deregister_to_register(ce) &&
!context_pending_disable(ce)))
return 0;
spin_lock_irqsave(&ce->guc_state.lock, flags);
if (context_wait_for_deregister_to_register(ce) ||
context_pending_disable(ce)) {
i915_sw_fence_await(&rq->submit);
list_add_tail(&rq->guc_fence_link, &ce->guc_state.fences);
}
spin_unlock_irqrestore(&ce->guc_state.lock, flags);
return 0;
}
static int guc_virtual_context_pre_pin(struct intel_context *ce,
struct i915_gem_ww_ctx *ww,
void **vaddr)
{
struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
return __guc_context_pre_pin(ce, engine, ww, vaddr);
}
static int guc_virtual_context_pin(struct intel_context *ce, void *vaddr)
{
struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
return __guc_context_pin(ce, engine, vaddr);
}
static void guc_virtual_context_enter(struct intel_context *ce)
{
intel_engine_mask_t tmp, mask = ce->engine->mask;
struct intel_engine_cs *engine;
for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
intel_engine_pm_get(engine);
intel_timeline_enter(ce->timeline);
}
static void guc_virtual_context_exit(struct intel_context *ce)
{
intel_engine_mask_t tmp, mask = ce->engine->mask;
struct intel_engine_cs *engine;
for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
intel_engine_pm_put(engine);
intel_timeline_exit(ce->timeline);
}
static int guc_virtual_context_alloc(struct intel_context *ce)
{
struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
return lrc_alloc(ce, engine);
}
static const struct intel_context_ops virtual_guc_context_ops = {
.alloc = guc_virtual_context_alloc,
.pre_pin = guc_virtual_context_pre_pin,
.pin = guc_virtual_context_pin,
.unpin = guc_context_unpin,
.post_unpin = guc_context_post_unpin,
.ban = guc_context_ban,
.cancel_request = guc_context_cancel_request,
.enter = guc_virtual_context_enter,
.exit = guc_virtual_context_exit,
.sched_disable = guc_context_sched_disable,
.destroy = guc_context_destroy,
.get_sibling = guc_virtual_get_sibling,
};
static bool
guc_irq_enable_breadcrumbs(struct intel_breadcrumbs *b)
{
struct intel_engine_cs *sibling;
intel_engine_mask_t tmp, mask = b->engine_mask;
bool result = false;
for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
result |= intel_engine_irq_enable(sibling);
return result;
}
static void
guc_irq_disable_breadcrumbs(struct intel_breadcrumbs *b)
{
struct intel_engine_cs *sibling;
intel_engine_mask_t tmp, mask = b->engine_mask;
for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
intel_engine_irq_disable(sibling);
}
static void guc_init_breadcrumbs(struct intel_engine_cs *engine)
{
int i;
/*
* In GuC submission mode we do not know which physical engine a request
* will be scheduled on, this creates a problem because the breadcrumb
* interrupt is per physical engine. To work around this we attach
* requests and direct all breadcrumb interrupts to the first instance
* of an engine per class. In addition all breadcrumb interrupts are
* enabled / disabled across an engine class in unison.
*/
for (i = 0; i < MAX_ENGINE_INSTANCE; ++i) {
struct intel_engine_cs *sibling =
engine->gt->engine_class[engine->class][i];
if (sibling) {
if (engine->breadcrumbs != sibling->breadcrumbs) {
intel_breadcrumbs_put(engine->breadcrumbs);
engine->breadcrumbs =
intel_breadcrumbs_get(sibling->breadcrumbs);
}
break;
}
}
if (engine->breadcrumbs) {
engine->breadcrumbs->engine_mask |= engine->mask;
engine->breadcrumbs->irq_enable = guc_irq_enable_breadcrumbs;
engine->breadcrumbs->irq_disable = guc_irq_disable_breadcrumbs;
}
}
static void guc_bump_inflight_request_prio(struct i915_request *rq,
int prio)
{
struct intel_context *ce = rq->context;
u8 new_guc_prio = map_i915_prio_to_guc_prio(prio);
/* Short circuit function */
if (prio < I915_PRIORITY_NORMAL ||
rq->guc_prio == GUC_PRIO_FINI ||
(rq->guc_prio != GUC_PRIO_INIT &&
!new_guc_prio_higher(rq->guc_prio, new_guc_prio)))
return;
spin_lock(&ce->guc_active.lock);
if (rq->guc_prio != GUC_PRIO_FINI) {
if (rq->guc_prio != GUC_PRIO_INIT)
sub_context_inflight_prio(ce, rq->guc_prio);
rq->guc_prio = new_guc_prio;
add_context_inflight_prio(ce, rq->guc_prio);
update_context_prio(ce);
}
spin_unlock(&ce->guc_active.lock);
}
static void guc_retire_inflight_request_prio(struct i915_request *rq)
{
struct intel_context *ce = rq->context;
spin_lock(&ce->guc_active.lock);
guc_prio_fini(rq, ce);
spin_unlock(&ce->guc_active.lock);
}
static void sanitize_hwsp(struct intel_engine_cs *engine)
{
struct intel_timeline *tl;
list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
intel_timeline_reset_seqno(tl);
}
static void guc_sanitize(struct intel_engine_cs *engine)
{
/*
* Poison residual state on resume, in case the suspend didn't!
*
* We have to assume that across suspend/resume (or other loss
* of control) that the contents of our pinned buffers has been
* lost, replaced by garbage. Since this doesn't always happen,
* let's poison such state so that we more quickly spot when
* we falsely assume it has been preserved.
*/
if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
/*
* The kernel_context HWSP is stored in the status_page. As above,
* that may be lost on resume/initialisation, and so we need to
* reset the value in the HWSP.
*/
sanitize_hwsp(engine);
/* And scrub the dirty cachelines for the HWSP */
clflush_cache_range(engine->status_page.addr, PAGE_SIZE);
intel_engine_reset_pinned_contexts(engine);
}
static void setup_hwsp(struct intel_engine_cs *engine)
{
intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
ENGINE_WRITE_FW(engine,
RING_HWS_PGA,
i915_ggtt_offset(engine->status_page.vma));
}
static void start_engine(struct intel_engine_cs *engine)
{
ENGINE_WRITE_FW(engine,
RING_MODE_GEN7,
_MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
ENGINE_POSTING_READ(engine, RING_MI_MODE);
}
static int guc_resume(struct intel_engine_cs *engine)
{
assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
intel_mocs_init_engine(engine);
intel_breadcrumbs_reset(engine->breadcrumbs);
setup_hwsp(engine);
start_engine(engine);
return 0;
}
static bool guc_sched_engine_disabled(struct i915_sched_engine *sched_engine)
{
return !sched_engine->tasklet.callback;
}
static void guc_set_default_submission(struct intel_engine_cs *engine)
{
engine->submit_request = guc_submit_request;
}
static inline void guc_kernel_context_pin(struct intel_guc *guc,
struct intel_context *ce)
{
if (context_guc_id_invalid(ce))
pin_guc_id(guc, ce);
guc_lrc_desc_pin(ce, true);
}
static inline void guc_init_lrc_mapping(struct intel_guc *guc)
{
struct intel_gt *gt = guc_to_gt(guc);
struct intel_engine_cs *engine;
enum intel_engine_id id;
/* make sure all descriptors are clean... */
xa_destroy(&guc->context_lookup);
/*
* Some contexts might have been pinned before we enabled GuC
* submission, so we need to add them to the GuC bookeeping.
* Also, after a reset the of the GuC we want to make sure that the
* information shared with GuC is properly reset. The kernel LRCs are
* not attached to the gem_context, so they need to be added separately.
*
* Note: we purposefully do not check the return of guc_lrc_desc_pin,
* because that function can only fail if a reset is just starting. This
* is at the end of reset so presumably another reset isn't happening
* and even it did this code would be run again.
*/
for_each_engine(engine, gt, id) {
struct intel_context *ce;
list_for_each_entry(ce, &engine->pinned_contexts_list,
pinned_contexts_link)
guc_kernel_context_pin(guc, ce);
}
}
static void guc_release(struct intel_engine_cs *engine)
{
engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
intel_engine_cleanup_common(engine);
lrc_fini_wa_ctx(engine);
}
static void virtual_guc_bump_serial(struct intel_engine_cs *engine)
{
struct intel_engine_cs *e;
intel_engine_mask_t tmp, mask = engine->mask;
for_each_engine_masked(e, engine->gt, mask, tmp)
e->serial++;
}
static void guc_default_vfuncs(struct intel_engine_cs *engine)
{
/* Default vfuncs which can be overridden by each engine. */
engine->resume = guc_resume;
engine->cops = &guc_context_ops;
engine->request_alloc = guc_request_alloc;
engine->add_active_request = add_to_context;
engine->remove_active_request = remove_from_context;
engine->sched_engine->schedule = i915_schedule;
engine->reset.prepare = guc_reset_nop;
engine->reset.rewind = guc_rewind_nop;
engine->reset.cancel = guc_reset_nop;
engine->reset.finish = guc_reset_nop;
engine->emit_flush = gen8_emit_flush_xcs;
engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
if (GRAPHICS_VER(engine->i915) >= 12) {
engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
engine->emit_flush = gen12_emit_flush_xcs;
}
engine->set_default_submission = guc_set_default_submission;
engine->flags |= I915_ENGINE_HAS_PREEMPTION;
engine->flags |= I915_ENGINE_HAS_TIMESLICES;
/*
* TODO: GuC supports timeslicing and semaphores as well, but they're
* handled by the firmware so some minor tweaks are required before
* enabling.
*
* engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
*/
engine->emit_bb_start = gen8_emit_bb_start;
}
static void rcs_submission_override(struct intel_engine_cs *engine)
{
switch (GRAPHICS_VER(engine->i915)) {
case 12:
engine->emit_flush = gen12_emit_flush_rcs;
engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
break;
case 11:
engine->emit_flush = gen11_emit_flush_rcs;
engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
break;
default:
engine->emit_flush = gen8_emit_flush_rcs;
engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
break;
}
}
static inline void guc_default_irqs(struct intel_engine_cs *engine)
{
engine->irq_keep_mask = GT_RENDER_USER_INTERRUPT;
intel_engine_set_irq_handler(engine, cs_irq_handler);
}
static void guc_sched_engine_destroy(struct kref *kref)
{
struct i915_sched_engine *sched_engine =
container_of(kref, typeof(*sched_engine), ref);
struct intel_guc *guc = sched_engine->private_data;
guc->sched_engine = NULL;
tasklet_kill(&sched_engine->tasklet); /* flush the callback */
kfree(sched_engine);
}
int intel_guc_submission_setup(struct intel_engine_cs *engine)
{
struct drm_i915_private *i915 = engine->i915;
struct intel_guc *guc = &engine->gt->uc.guc;
/*
* The setup relies on several assumptions (e.g. irqs always enabled)
* that are only valid on gen11+
*/
GEM_BUG_ON(GRAPHICS_VER(i915) < 11);
if (!guc->sched_engine) {
guc->sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
if (!guc->sched_engine)
return -ENOMEM;
guc->sched_engine->schedule = i915_schedule;
guc->sched_engine->disabled = guc_sched_engine_disabled;
guc->sched_engine->private_data = guc;
guc->sched_engine->destroy = guc_sched_engine_destroy;
guc->sched_engine->bump_inflight_request_prio =
guc_bump_inflight_request_prio;
guc->sched_engine->retire_inflight_request_prio =
guc_retire_inflight_request_prio;
tasklet_setup(&guc->sched_engine->tasklet,
guc_submission_tasklet);
}
i915_sched_engine_put(engine->sched_engine);
engine->sched_engine = i915_sched_engine_get(guc->sched_engine);
guc_default_vfuncs(engine);
guc_default_irqs(engine);
guc_init_breadcrumbs(engine);
if (engine->class == RENDER_CLASS)
rcs_submission_override(engine);
lrc_init_wa_ctx(engine);
/* Finally, take ownership and responsibility for cleanup! */
engine->sanitize = guc_sanitize;
engine->release = guc_release;
return 0;
}
void intel_guc_submission_enable(struct intel_guc *guc)
{
guc_init_lrc_mapping(guc);
}
void intel_guc_submission_disable(struct intel_guc *guc)
{
/* Note: By the time we're here, GuC may have already been reset */
}
static bool __guc_submission_supported(struct intel_guc *guc)
{
/* GuC submission is unavailable for pre-Gen11 */
return intel_guc_is_supported(guc) &&
GRAPHICS_VER(guc_to_gt(guc)->i915) >= 11;
}
static bool __guc_submission_selected(struct intel_guc *guc)
{
struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
if (!intel_guc_submission_is_supported(guc))
return false;
return i915->params.enable_guc & ENABLE_GUC_SUBMISSION;
}
void intel_guc_submission_init_early(struct intel_guc *guc)
{
guc->submission_supported = __guc_submission_supported(guc);
guc->submission_selected = __guc_submission_selected(guc);
}
static inline struct intel_context *
g2h_context_lookup(struct intel_guc *guc, u32 desc_idx)
{
struct intel_context *ce;
if (unlikely(desc_idx >= GUC_MAX_LRC_DESCRIPTORS)) {
drm_err(&guc_to_gt(guc)->i915->drm,
"Invalid desc_idx %u", desc_idx);
return NULL;
}
ce = __get_context(guc, desc_idx);
if (unlikely(!ce)) {
drm_err(&guc_to_gt(guc)->i915->drm,
"Context is NULL, desc_idx %u", desc_idx);
return NULL;
}
return ce;
}
int intel_guc_deregister_done_process_msg(struct intel_guc *guc,
const u32 *msg,
u32 len)
{
struct intel_context *ce;
u32 desc_idx = msg[0];
if (unlikely(len < 1)) {
drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u", len);
return -EPROTO;
}
ce = g2h_context_lookup(guc, desc_idx);
if (unlikely(!ce))
return -EPROTO;
trace_intel_context_deregister_done(ce);
if (context_wait_for_deregister_to_register(ce)) {
struct intel_runtime_pm *runtime_pm =
&ce->engine->gt->i915->runtime_pm;
intel_wakeref_t wakeref;
/*
* Previous owner of this guc_id has been deregistered, now safe
* register this context.
*/
with_intel_runtime_pm(runtime_pm, wakeref)
register_context(ce, true);
guc_signal_context_fence(ce);
intel_context_put(ce);
} else if (context_destroyed(ce)) {
/* Context has been destroyed */
release_guc_id(guc, ce);
__guc_context_destroy(ce);
}
decr_outstanding_submission_g2h(guc);
return 0;
}
int intel_guc_sched_done_process_msg(struct intel_guc *guc,
const u32 *msg,
u32 len)
{
struct intel_context *ce;
unsigned long flags;
u32 desc_idx = msg[0];
if (unlikely(len < 2)) {
drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u", len);
return -EPROTO;
}
ce = g2h_context_lookup(guc, desc_idx);
if (unlikely(!ce))
return -EPROTO;
if (unlikely(context_destroyed(ce) ||
(!context_pending_enable(ce) &&
!context_pending_disable(ce)))) {
drm_err(&guc_to_gt(guc)->i915->drm,
"Bad context sched_state 0x%x, 0x%x, desc_idx %u",
atomic_read(&ce->guc_sched_state_no_lock),
ce->guc_state.sched_state, desc_idx);
return -EPROTO;
}
trace_intel_context_sched_done(ce);
if (context_pending_enable(ce)) {
clr_context_pending_enable(ce);
} else if (context_pending_disable(ce)) {
bool banned;
/*
* Unpin must be done before __guc_signal_context_fence,
* otherwise a race exists between the requests getting
* submitted + retired before this unpin completes resulting in
* the pin_count going to zero and the context still being
* enabled.
*/
intel_context_sched_disable_unpin(ce);
spin_lock_irqsave(&ce->guc_state.lock, flags);
banned = context_banned(ce);
clr_context_banned(ce);
clr_context_pending_disable(ce);
__guc_signal_context_fence(ce);
guc_blocked_fence_complete(ce);
spin_unlock_irqrestore(&ce->guc_state.lock, flags);
if (banned) {
guc_cancel_context_requests(ce);
intel_engine_signal_breadcrumbs(ce->engine);
}
}
decr_outstanding_submission_g2h(guc);
intel_context_put(ce);
return 0;
}
static void capture_error_state(struct intel_guc *guc,
struct intel_context *ce)
{
struct intel_gt *gt = guc_to_gt(guc);
struct drm_i915_private *i915 = gt->i915;
struct intel_engine_cs *engine = __context_to_physical_engine(ce);
intel_wakeref_t wakeref;
intel_engine_set_hung_context(engine, ce);
with_intel_runtime_pm(&i915->runtime_pm, wakeref)
i915_capture_error_state(gt, engine->mask);
atomic_inc(&i915->gpu_error.reset_engine_count[engine->uabi_class]);
}
static void guc_context_replay(struct intel_context *ce)
{
struct i915_sched_engine *sched_engine = ce->engine->sched_engine;
__guc_reset_context(ce, true);
tasklet_hi_schedule(&sched_engine->tasklet);
}
static void guc_handle_context_reset(struct intel_guc *guc,
struct intel_context *ce)
{
trace_intel_context_reset(ce);
/*
* XXX: Racey if request cancellation has occurred, see comment in
* __guc_reset_context().
*/
if (likely(!intel_context_is_banned(ce) &&
!context_blocked(ce))) {
capture_error_state(guc, ce);
guc_context_replay(ce);
}
}
int intel_guc_context_reset_process_msg(struct intel_guc *guc,
const u32 *msg, u32 len)
{
struct intel_context *ce;
int desc_idx;
if (unlikely(len != 1)) {
drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u", len);
return -EPROTO;
}
desc_idx = msg[0];
ce = g2h_context_lookup(guc, desc_idx);
if (unlikely(!ce))
return -EPROTO;
guc_handle_context_reset(guc, ce);
return 0;
}
static struct intel_engine_cs *
guc_lookup_engine(struct intel_guc *guc, u8 guc_class, u8 instance)
{
struct intel_gt *gt = guc_to_gt(guc);
u8 engine_class = guc_class_to_engine_class(guc_class);
/* Class index is checked in class converter */
GEM_BUG_ON(instance > MAX_ENGINE_INSTANCE);
return gt->engine_class[engine_class][instance];
}
int intel_guc_engine_failure_process_msg(struct intel_guc *guc,
const u32 *msg, u32 len)
{
struct intel_engine_cs *engine;
u8 guc_class, instance;
u32 reason;
if (unlikely(len != 3)) {
drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u", len);
return -EPROTO;
}
guc_class = msg[0];
instance = msg[1];
reason = msg[2];
engine = guc_lookup_engine(guc, guc_class, instance);
if (unlikely(!engine)) {
drm_err(&guc_to_gt(guc)->i915->drm,
"Invalid engine %d:%d", guc_class, instance);
return -EPROTO;
}
intel_gt_handle_error(guc_to_gt(guc), engine->mask,
I915_ERROR_CAPTURE,
"GuC failed to reset %s (reason=0x%08x)\n",
engine->name, reason);
return 0;
}
void intel_guc_find_hung_context(struct intel_engine_cs *engine)
{
struct intel_guc *guc = &engine->gt->uc.guc;
struct intel_context *ce;
struct i915_request *rq;
unsigned long index;
/* Reset called during driver load? GuC not yet initialised! */
if (unlikely(!guc_submission_initialized(guc)))
return;
xa_for_each(&guc->context_lookup, index, ce) {
bool found;
if (!intel_context_is_pinned(ce))
continue;
if (intel_engine_is_virtual(ce->engine)) {
if (!(ce->engine->mask & engine->mask))
continue;
} else {
if (ce->engine != engine)
continue;
}
found = false;
spin_lock(&ce->guc_state.lock);
list_for_each_entry(rq, &ce->guc_active.requests, sched.link) {
if (i915_test_request_state(rq) != I915_REQUEST_ACTIVE)
continue;
found = true;
break;
}
spin_unlock(&ce->guc_state.lock);
if (found) {
intel_engine_set_hung_context(engine, ce);
/* Can only cope with one hang at a time... */
return;
}
}
}
void intel_guc_dump_active_requests(struct intel_engine_cs *engine,
struct i915_request *hung_rq,
struct drm_printer *m)
{
struct intel_guc *guc = &engine->gt->uc.guc;
struct intel_context *ce;
unsigned long index;
unsigned long flags;
/* Reset called during driver load? GuC not yet initialised! */
if (unlikely(!guc_submission_initialized(guc)))
return;
xa_for_each(&guc->context_lookup, index, ce) {
if (!intel_context_is_pinned(ce))
continue;
if (intel_engine_is_virtual(ce->engine)) {
if (!(ce->engine->mask & engine->mask))
continue;
} else {
if (ce->engine != engine)
continue;
}
spin_lock_irqsave(&ce->guc_active.lock, flags);
intel_engine_dump_active_requests(&ce->guc_active.requests,
hung_rq, m);
spin_unlock_irqrestore(&ce->guc_active.lock, flags);
}
}
void intel_guc_submission_print_info(struct intel_guc *guc,
struct drm_printer *p)
{
struct i915_sched_engine *sched_engine = guc->sched_engine;
struct rb_node *rb;
unsigned long flags;
if (!sched_engine)
return;
drm_printf(p, "GuC Number Outstanding Submission G2H: %u\n",
atomic_read(&guc->outstanding_submission_g2h));
drm_printf(p, "GuC tasklet count: %u\n\n",
atomic_read(&sched_engine->tasklet.count));
spin_lock_irqsave(&sched_engine->lock, flags);
drm_printf(p, "Requests in GuC submit tasklet:\n");
for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
struct i915_priolist *pl = to_priolist(rb);
struct i915_request *rq;
priolist_for_each_request(rq, pl)
drm_printf(p, "guc_id=%u, seqno=%llu\n",
rq->context->guc_id,
rq->fence.seqno);
}
spin_unlock_irqrestore(&sched_engine->lock, flags);
drm_printf(p, "\n");
}
static inline void guc_log_context_priority(struct drm_printer *p,
struct intel_context *ce)
{
int i;
drm_printf(p, "\t\tPriority: %d\n",
ce->guc_prio);
drm_printf(p, "\t\tNumber Requests (lower index == higher priority)\n");
for (i = GUC_CLIENT_PRIORITY_KMD_HIGH;
i < GUC_CLIENT_PRIORITY_NUM; ++i) {
drm_printf(p, "\t\tNumber requests in priority band[%d]: %d\n",
i, ce->guc_prio_count[i]);
}
drm_printf(p, "\n");
}
void intel_guc_submission_print_context_info(struct intel_guc *guc,
struct drm_printer *p)
{
struct intel_context *ce;
unsigned long index;
xa_for_each(&guc->context_lookup, index, ce) {
drm_printf(p, "GuC lrc descriptor %u:\n", ce->guc_id);
drm_printf(p, "\tHW Context Desc: 0x%08x\n", ce->lrc.lrca);
drm_printf(p, "\t\tLRC Head: Internal %u, Memory %u\n",
ce->ring->head,
ce->lrc_reg_state[CTX_RING_HEAD]);
drm_printf(p, "\t\tLRC Tail: Internal %u, Memory %u\n",
ce->ring->tail,
ce->lrc_reg_state[CTX_RING_TAIL]);
drm_printf(p, "\t\tContext Pin Count: %u\n",
atomic_read(&ce->pin_count));
drm_printf(p, "\t\tGuC ID Ref Count: %u\n",
atomic_read(&ce->guc_id_ref));
drm_printf(p, "\t\tSchedule State: 0x%x, 0x%x\n\n",
ce->guc_state.sched_state,
atomic_read(&ce->guc_sched_state_no_lock));
guc_log_context_priority(p, ce);
}
}
static struct intel_context *
guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count)
{
struct guc_virtual_engine *ve;
struct intel_guc *guc;
unsigned int n;
int err;
ve = kzalloc(sizeof(*ve), GFP_KERNEL);
if (!ve)
return ERR_PTR(-ENOMEM);
guc = &siblings[0]->gt->uc.guc;
ve->base.i915 = siblings[0]->i915;
ve->base.gt = siblings[0]->gt;
ve->base.uncore = siblings[0]->uncore;
ve->base.id = -1;
ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
ve->base.saturated = ALL_ENGINES;
snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
ve->base.sched_engine = i915_sched_engine_get(guc->sched_engine);
ve->base.cops = &virtual_guc_context_ops;
ve->base.request_alloc = guc_request_alloc;
ve->base.bump_serial = virtual_guc_bump_serial;
ve->base.submit_request = guc_submit_request;
ve->base.flags = I915_ENGINE_IS_VIRTUAL;
intel_context_init(&ve->context, &ve->base);
for (n = 0; n < count; n++) {
struct intel_engine_cs *sibling = siblings[n];
GEM_BUG_ON(!is_power_of_2(sibling->mask));
if (sibling->mask & ve->base.mask) {
DRM_DEBUG("duplicate %s entry in load balancer\n",
sibling->name);
err = -EINVAL;
goto err_put;
}
ve->base.mask |= sibling->mask;
if (n != 0 && ve->base.class != sibling->class) {
DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
sibling->class, ve->base.class);
err = -EINVAL;
goto err_put;
} else if (n == 0) {
ve->base.class = sibling->class;
ve->base.uabi_class = sibling->uabi_class;
snprintf(ve->base.name, sizeof(ve->base.name),
"v%dx%d", ve->base.class, count);
ve->base.context_size = sibling->context_size;
ve->base.add_active_request =
sibling->add_active_request;
ve->base.remove_active_request =
sibling->remove_active_request;
ve->base.emit_bb_start = sibling->emit_bb_start;
ve->base.emit_flush = sibling->emit_flush;
ve->base.emit_init_breadcrumb =
sibling->emit_init_breadcrumb;
ve->base.emit_fini_breadcrumb =
sibling->emit_fini_breadcrumb;
ve->base.emit_fini_breadcrumb_dw =
sibling->emit_fini_breadcrumb_dw;
ve->base.breadcrumbs =
intel_breadcrumbs_get(sibling->breadcrumbs);
ve->base.flags |= sibling->flags;
ve->base.props.timeslice_duration_ms =
sibling->props.timeslice_duration_ms;
ve->base.props.preempt_timeout_ms =
sibling->props.preempt_timeout_ms;
}
}
return &ve->context;
err_put:
intel_context_put(&ve->context);
return ERR_PTR(err);
}
bool intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs *ve)
{
struct intel_engine_cs *engine;
intel_engine_mask_t tmp, mask = ve->mask;
for_each_engine_masked(engine, ve->gt, mask, tmp)
if (READ_ONCE(engine->props.heartbeat_interval_ms))
return true;
return false;
}