kernel/drivers/gpu/drm/i915/gt/gen8_engine_cs.c

636 lines
17 KiB
C
Raw Normal View History

2024-07-22 17:22:30 +08:00
// SPDX-License-Identifier: MIT
/*
* Copyright © 2014 Intel Corporation
*/
#include "gen8_engine_cs.h"
#include "i915_drv.h"
#include "intel_lrc.h"
#include "intel_gpu_commands.h"
#include "intel_ring.h"
int gen8_emit_flush_rcs(struct i915_request *rq, u32 mode)
{
bool vf_flush_wa = false, dc_flush_wa = false;
u32 *cs, flags = 0;
int len;
flags |= PIPE_CONTROL_CS_STALL;
if (mode & EMIT_FLUSH) {
flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
flags |= PIPE_CONTROL_FLUSH_ENABLE;
}
if (mode & EMIT_INVALIDATE) {
flags |= PIPE_CONTROL_TLB_INVALIDATE;
flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_QW_WRITE;
flags |= PIPE_CONTROL_STORE_DATA_INDEX;
/*
* On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
* pipe control.
*/
if (GRAPHICS_VER(rq->engine->i915) == 9)
vf_flush_wa = true;
/* WaForGAMHang:kbl */
if (IS_KBL_GT_STEP(rq->engine->i915, 0, STEP_C0))
dc_flush_wa = true;
}
len = 6;
if (vf_flush_wa)
len += 6;
if (dc_flush_wa)
len += 12;
cs = intel_ring_begin(rq, len);
if (IS_ERR(cs))
return PTR_ERR(cs);
if (vf_flush_wa)
cs = gen8_emit_pipe_control(cs, 0, 0);
if (dc_flush_wa)
cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
0);
cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
if (dc_flush_wa)
cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
intel_ring_advance(rq, cs);
return 0;
}
int gen8_emit_flush_xcs(struct i915_request *rq, u32 mode)
{
u32 cmd, *cs;
cs = intel_ring_begin(rq, 4);
if (IS_ERR(cs))
return PTR_ERR(cs);
cmd = MI_FLUSH_DW + 1;
/*
* We always require a command barrier so that subsequent
* commands, such as breadcrumb interrupts, are strictly ordered
* wrt the contents of the write cache being flushed to memory
* (and thus being coherent from the CPU).
*/
cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
if (mode & EMIT_INVALIDATE) {
cmd |= MI_INVALIDATE_TLB;
if (rq->engine->class == VIDEO_DECODE_CLASS)
cmd |= MI_INVALIDATE_BSD;
}
*cs++ = cmd;
*cs++ = LRC_PPHWSP_SCRATCH_ADDR;
*cs++ = 0; /* upper addr */
*cs++ = 0; /* value */
intel_ring_advance(rq, cs);
return 0;
}
int gen11_emit_flush_rcs(struct i915_request *rq, u32 mode)
{
if (mode & EMIT_FLUSH) {
u32 *cs;
u32 flags = 0;
flags |= PIPE_CONTROL_CS_STALL;
flags |= PIPE_CONTROL_TILE_CACHE_FLUSH;
flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
flags |= PIPE_CONTROL_FLUSH_ENABLE;
flags |= PIPE_CONTROL_QW_WRITE;
flags |= PIPE_CONTROL_STORE_DATA_INDEX;
cs = intel_ring_begin(rq, 6);
if (IS_ERR(cs))
return PTR_ERR(cs);
cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
intel_ring_advance(rq, cs);
}
if (mode & EMIT_INVALIDATE) {
u32 *cs;
u32 flags = 0;
flags |= PIPE_CONTROL_CS_STALL;
flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_TLB_INVALIDATE;
flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_QW_WRITE;
flags |= PIPE_CONTROL_STORE_DATA_INDEX;
cs = intel_ring_begin(rq, 6);
if (IS_ERR(cs))
return PTR_ERR(cs);
cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
intel_ring_advance(rq, cs);
}
return 0;
}
static u32 preparser_disable(bool state)
{
return MI_ARB_CHECK | 1 << 8 | state;
}
static i915_reg_t aux_inv_reg(const struct intel_engine_cs *engine)
{
static const i915_reg_t vd[] = {
GEN12_VD0_AUX_NV,
GEN12_VD1_AUX_NV,
GEN12_VD2_AUX_NV,
GEN12_VD3_AUX_NV,
};
static const i915_reg_t ve[] = {
GEN12_VE0_AUX_NV,
GEN12_VE1_AUX_NV,
};
if (engine->class == VIDEO_DECODE_CLASS)
return vd[engine->instance];
if (engine->class == VIDEO_ENHANCEMENT_CLASS)
return ve[engine->instance];
GEM_BUG_ON("unknown aux_inv reg\n");
return INVALID_MMIO_REG;
}
static u32 *gen12_emit_aux_table_inv(const i915_reg_t inv_reg, u32 *cs)
{
*cs++ = MI_LOAD_REGISTER_IMM(1);
*cs++ = i915_mmio_reg_offset(inv_reg);
*cs++ = AUX_INV;
*cs++ = MI_NOOP;
return cs;
}
int gen12_emit_flush_rcs(struct i915_request *rq, u32 mode)
{
if (mode & EMIT_FLUSH) {
u32 flags = 0;
u32 *cs;
flags |= PIPE_CONTROL_TILE_CACHE_FLUSH;
flags |= PIPE_CONTROL_FLUSH_L3;
flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
/* Wa_1409600907:tgl,adl-p */
flags |= PIPE_CONTROL_DEPTH_STALL;
flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
flags |= PIPE_CONTROL_FLUSH_ENABLE;
flags |= PIPE_CONTROL_STORE_DATA_INDEX;
flags |= PIPE_CONTROL_QW_WRITE;
flags |= PIPE_CONTROL_CS_STALL;
cs = intel_ring_begin(rq, 6);
if (IS_ERR(cs))
return PTR_ERR(cs);
cs = gen12_emit_pipe_control(cs,
PIPE_CONTROL0_HDC_PIPELINE_FLUSH,
flags, LRC_PPHWSP_SCRATCH_ADDR);
intel_ring_advance(rq, cs);
}
if (mode & EMIT_INVALIDATE) {
u32 flags = 0;
u32 *cs;
flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_TLB_INVALIDATE;
flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_STORE_DATA_INDEX;
flags |= PIPE_CONTROL_QW_WRITE;
flags |= PIPE_CONTROL_CS_STALL;
cs = intel_ring_begin(rq, 8 + 4);
if (IS_ERR(cs))
return PTR_ERR(cs);
/*
* Prevent the pre-parser from skipping past the TLB
* invalidate and loading a stale page for the batch
* buffer / request payload.
*/
*cs++ = preparser_disable(true);
cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
/* hsdes: 1809175790 */
cs = gen12_emit_aux_table_inv(GEN12_GFX_CCS_AUX_NV, cs);
*cs++ = preparser_disable(false);
intel_ring_advance(rq, cs);
}
return 0;
}
int gen12_emit_flush_xcs(struct i915_request *rq, u32 mode)
{
intel_engine_mask_t aux_inv = 0;
u32 cmd, *cs;
cmd = 4;
if (mode & EMIT_INVALIDATE)
cmd += 2;
if (mode & EMIT_INVALIDATE)
aux_inv = rq->engine->mask & ~BIT(BCS0);
if (aux_inv)
cmd += 2 * hweight32(aux_inv) + 2;
cs = intel_ring_begin(rq, cmd);
if (IS_ERR(cs))
return PTR_ERR(cs);
if (mode & EMIT_INVALIDATE)
*cs++ = preparser_disable(true);
cmd = MI_FLUSH_DW + 1;
/*
* We always require a command barrier so that subsequent
* commands, such as breadcrumb interrupts, are strictly ordered
* wrt the contents of the write cache being flushed to memory
* (and thus being coherent from the CPU).
*/
cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
if (mode & EMIT_INVALIDATE) {
cmd |= MI_INVALIDATE_TLB;
if (rq->engine->class == VIDEO_DECODE_CLASS)
cmd |= MI_INVALIDATE_BSD;
}
*cs++ = cmd;
*cs++ = LRC_PPHWSP_SCRATCH_ADDR;
*cs++ = 0; /* upper addr */
*cs++ = 0; /* value */
if (aux_inv) { /* hsdes: 1809175790 */
struct intel_engine_cs *engine;
unsigned int tmp;
*cs++ = MI_LOAD_REGISTER_IMM(hweight32(aux_inv));
for_each_engine_masked(engine, rq->engine->gt, aux_inv, tmp) {
*cs++ = i915_mmio_reg_offset(aux_inv_reg(engine));
*cs++ = AUX_INV;
}
*cs++ = MI_NOOP;
}
if (mode & EMIT_INVALIDATE)
*cs++ = preparser_disable(false);
intel_ring_advance(rq, cs);
return 0;
}
static u32 preempt_address(struct intel_engine_cs *engine)
{
return (i915_ggtt_offset(engine->status_page.vma) +
I915_GEM_HWS_PREEMPT_ADDR);
}
static u32 hwsp_offset(const struct i915_request *rq)
{
const struct intel_timeline *tl;
/* Before the request is executed, the timeline is fixed */
tl = rcu_dereference_protected(rq->timeline,
!i915_request_signaled(rq));
/* See the comment in i915_request_active_seqno(). */
return page_mask_bits(tl->hwsp_offset) + offset_in_page(rq->hwsp_seqno);
}
int gen8_emit_init_breadcrumb(struct i915_request *rq)
{
u32 *cs;
GEM_BUG_ON(i915_request_has_initial_breadcrumb(rq));
if (!i915_request_timeline(rq)->has_initial_breadcrumb)
return 0;
cs = intel_ring_begin(rq, 6);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
*cs++ = hwsp_offset(rq);
*cs++ = 0;
*cs++ = rq->fence.seqno - 1;
/*
* Check if we have been preempted before we even get started.
*
* After this point i915_request_started() reports true, even if
* we get preempted and so are no longer running.
*
* i915_request_started() is used during preemption processing
* to decide if the request is currently inside the user payload
* or spinning on a kernel semaphore (or earlier). For no-preemption
* requests, we do allow preemption on the semaphore before the user
* payload, but do not allow preemption once the request is started.
*
* i915_request_started() is similarly used during GPU hangs to
* determine if the user's payload was guilty, and if so, the
* request is banned. Before the request is started, it is assumed
* to be unharmed and an innocent victim of another's hang.
*/
*cs++ = MI_NOOP;
*cs++ = MI_ARB_CHECK;
intel_ring_advance(rq, cs);
/* Record the updated position of the request's payload */
rq->infix = intel_ring_offset(rq, cs);
__set_bit(I915_FENCE_FLAG_INITIAL_BREADCRUMB, &rq->fence.flags);
return 0;
}
int gen8_emit_bb_start_noarb(struct i915_request *rq,
u64 offset, u32 len,
const unsigned int flags)
{
u32 *cs;
cs = intel_ring_begin(rq, 4);
if (IS_ERR(cs))
return PTR_ERR(cs);
/*
* WaDisableCtxRestoreArbitration:bdw,chv
*
* We don't need to perform MI_ARB_ENABLE as often as we do (in
* particular all the gen that do not need the w/a at all!), if we
* took care to make sure that on every switch into this context
* (both ordinary and for preemption) that arbitrartion was enabled
* we would be fine. However, for gen8 there is another w/a that
* requires us to not preempt inside GPGPU execution, so we keep
* arbitration disabled for gen8 batches. Arbitration will be
* re-enabled before we close the request
* (engine->emit_fini_breadcrumb).
*/
*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
/* FIXME(BDW+): Address space and security selectors. */
*cs++ = MI_BATCH_BUFFER_START_GEN8 |
(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
*cs++ = lower_32_bits(offset);
*cs++ = upper_32_bits(offset);
intel_ring_advance(rq, cs);
return 0;
}
int gen8_emit_bb_start(struct i915_request *rq,
u64 offset, u32 len,
const unsigned int flags)
{
u32 *cs;
if (unlikely(i915_request_has_nopreempt(rq)))
return gen8_emit_bb_start_noarb(rq, offset, len, flags);
cs = intel_ring_begin(rq, 6);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
*cs++ = MI_BATCH_BUFFER_START_GEN8 |
(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
*cs++ = lower_32_bits(offset);
*cs++ = upper_32_bits(offset);
*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
*cs++ = MI_NOOP;
intel_ring_advance(rq, cs);
return 0;
}
static void assert_request_valid(struct i915_request *rq)
{
struct intel_ring *ring __maybe_unused = rq->ring;
/* Can we unwind this request without appearing to go forwards? */
GEM_BUG_ON(intel_ring_direction(ring, rq->wa_tail, rq->head) <= 0);
}
/*
* Reserve space for 2 NOOPs at the end of each request to be
* used as a workaround for not being allowed to do lite
* restore with HEAD==TAIL (WaIdleLiteRestore).
*/
static u32 *gen8_emit_wa_tail(struct i915_request *rq, u32 *cs)
{
/* Ensure there's always at least one preemption point per-request. */
*cs++ = MI_ARB_CHECK;
*cs++ = MI_NOOP;
rq->wa_tail = intel_ring_offset(rq, cs);
/* Check that entire request is less than half the ring */
assert_request_valid(rq);
return cs;
}
static u32 *emit_preempt_busywait(struct i915_request *rq, u32 *cs)
{
*cs++ = MI_ARB_CHECK; /* trigger IDLE->ACTIVE first */
*cs++ = MI_SEMAPHORE_WAIT |
MI_SEMAPHORE_GLOBAL_GTT |
MI_SEMAPHORE_POLL |
MI_SEMAPHORE_SAD_EQ_SDD;
*cs++ = 0;
*cs++ = preempt_address(rq->engine);
*cs++ = 0;
*cs++ = MI_NOOP;
return cs;
}
static __always_inline u32*
gen8_emit_fini_breadcrumb_tail(struct i915_request *rq, u32 *cs)
{
*cs++ = MI_USER_INTERRUPT;
*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
if (intel_engine_has_semaphores(rq->engine) &&
!intel_uc_uses_guc_submission(&rq->engine->gt->uc))
cs = emit_preempt_busywait(rq, cs);
rq->tail = intel_ring_offset(rq, cs);
assert_ring_tail_valid(rq->ring, rq->tail);
return gen8_emit_wa_tail(rq, cs);
}
static u32 *emit_xcs_breadcrumb(struct i915_request *rq, u32 *cs)
{
return gen8_emit_ggtt_write(cs, rq->fence.seqno, hwsp_offset(rq), 0);
}
u32 *gen8_emit_fini_breadcrumb_xcs(struct i915_request *rq, u32 *cs)
{
return gen8_emit_fini_breadcrumb_tail(rq, emit_xcs_breadcrumb(rq, cs));
}
u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *rq, u32 *cs)
{
cs = gen8_emit_pipe_control(cs,
PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
PIPE_CONTROL_DC_FLUSH_ENABLE,
0);
/* XXX flush+write+CS_STALL all in one upsets gem_concurrent_blt:kbl */
cs = gen8_emit_ggtt_write_rcs(cs,
rq->fence.seqno,
hwsp_offset(rq),
PIPE_CONTROL_FLUSH_ENABLE |
PIPE_CONTROL_CS_STALL);
return gen8_emit_fini_breadcrumb_tail(rq, cs);
}
u32 *gen11_emit_fini_breadcrumb_rcs(struct i915_request *rq, u32 *cs)
{
cs = gen8_emit_ggtt_write_rcs(cs,
rq->fence.seqno,
hwsp_offset(rq),
PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_TILE_CACHE_FLUSH |
PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
PIPE_CONTROL_DC_FLUSH_ENABLE |
PIPE_CONTROL_FLUSH_ENABLE);
return gen8_emit_fini_breadcrumb_tail(rq, cs);
}
/*
* Note that the CS instruction pre-parser will not stall on the breadcrumb
* flush and will continue pre-fetching the instructions after it before the
* memory sync is completed. On pre-gen12 HW, the pre-parser will stop at
* BB_START/END instructions, so, even though we might pre-fetch the pre-amble
* of the next request before the memory has been flushed, we're guaranteed that
* we won't access the batch itself too early.
* However, on gen12+ the parser can pre-fetch across the BB_START/END commands,
* so, if the current request is modifying an instruction in the next request on
* the same intel_context, we might pre-fetch and then execute the pre-update
* instruction. To avoid this, the users of self-modifying code should either
* disable the parser around the code emitting the memory writes, via a new flag
* added to MI_ARB_CHECK, or emit the writes from a different intel_context. For
* the in-kernel use-cases we've opted to use a separate context, see
* reloc_gpu() as an example.
* All the above applies only to the instructions themselves. Non-inline data
* used by the instructions is not pre-fetched.
*/
static u32 *gen12_emit_preempt_busywait(struct i915_request *rq, u32 *cs)
{
*cs++ = MI_ARB_CHECK; /* trigger IDLE->ACTIVE first */
*cs++ = MI_SEMAPHORE_WAIT_TOKEN |
MI_SEMAPHORE_GLOBAL_GTT |
MI_SEMAPHORE_POLL |
MI_SEMAPHORE_SAD_EQ_SDD;
*cs++ = 0;
*cs++ = preempt_address(rq->engine);
*cs++ = 0;
*cs++ = 0;
return cs;
}
static __always_inline u32*
gen12_emit_fini_breadcrumb_tail(struct i915_request *rq, u32 *cs)
{
*cs++ = MI_USER_INTERRUPT;
*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
if (intel_engine_has_semaphores(rq->engine) &&
!intel_uc_uses_guc_submission(&rq->engine->gt->uc))
cs = gen12_emit_preempt_busywait(rq, cs);
rq->tail = intel_ring_offset(rq, cs);
assert_ring_tail_valid(rq->ring, rq->tail);
return gen8_emit_wa_tail(rq, cs);
}
u32 *gen12_emit_fini_breadcrumb_xcs(struct i915_request *rq, u32 *cs)
{
/* XXX Stalling flush before seqno write; post-sync not */
cs = emit_xcs_breadcrumb(rq, __gen8_emit_flush_dw(cs, 0, 0, 0));
return gen12_emit_fini_breadcrumb_tail(rq, cs);
}
u32 *gen12_emit_fini_breadcrumb_rcs(struct i915_request *rq, u32 *cs)
{
cs = gen12_emit_ggtt_write_rcs(cs,
rq->fence.seqno,
hwsp_offset(rq),
PIPE_CONTROL0_HDC_PIPELINE_FLUSH,
PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_TILE_CACHE_FLUSH |
PIPE_CONTROL_FLUSH_L3 |
PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
/* Wa_1409600907:tgl */
PIPE_CONTROL_DEPTH_STALL |
PIPE_CONTROL_DC_FLUSH_ENABLE |
PIPE_CONTROL_FLUSH_ENABLE);
return gen12_emit_fini_breadcrumb_tail(rq, cs);
}