kernel/drivers/gpu/drm/amd/display/dc/dcn10/dcn10_optc.c

1621 lines
43 KiB
C
Raw Normal View History

2024-07-22 17:22:30 +08:00
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "reg_helper.h"
#include "dcn10_optc.h"
#include "dc.h"
#define REG(reg)\
optc1->tg_regs->reg
#define CTX \
optc1->base.ctx
#undef FN
#define FN(reg_name, field_name) \
optc1->tg_shift->field_name, optc1->tg_mask->field_name
#define STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN 0x100
/**
* apply_front_porch_workaround TODO FPGA still need?
*
* This is a workaround for a bug that has existed since R5xx and has not been
* fixed keep Front porch at minimum 2 for Interlaced mode or 1 for progressive.
*/
static void apply_front_porch_workaround(struct dc_crtc_timing *timing)
{
if (timing->flags.INTERLACE == 1) {
if (timing->v_front_porch < 2)
timing->v_front_porch = 2;
} else {
if (timing->v_front_porch < 1)
timing->v_front_porch = 1;
}
}
void optc1_program_global_sync(
struct timing_generator *optc,
int vready_offset,
int vstartup_start,
int vupdate_offset,
int vupdate_width)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
optc1->vready_offset = vready_offset;
optc1->vstartup_start = vstartup_start;
optc1->vupdate_offset = vupdate_offset;
optc1->vupdate_width = vupdate_width;
if (optc1->vstartup_start == 0) {
BREAK_TO_DEBUGGER();
return;
}
REG_SET(OTG_VSTARTUP_PARAM, 0,
VSTARTUP_START, optc1->vstartup_start);
REG_SET_2(OTG_VUPDATE_PARAM, 0,
VUPDATE_OFFSET, optc1->vupdate_offset,
VUPDATE_WIDTH, optc1->vupdate_width);
REG_SET(OTG_VREADY_PARAM, 0,
VREADY_OFFSET, optc1->vready_offset);
}
static void optc1_disable_stereo(struct timing_generator *optc)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
REG_SET(OTG_STEREO_CONTROL, 0,
OTG_STEREO_EN, 0);
REG_SET_2(OTG_3D_STRUCTURE_CONTROL, 0,
OTG_3D_STRUCTURE_EN, 0,
OTG_3D_STRUCTURE_STEREO_SEL_OVR, 0);
}
void optc1_setup_vertical_interrupt0(
struct timing_generator *optc,
uint32_t start_line,
uint32_t end_line)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
REG_SET_2(OTG_VERTICAL_INTERRUPT0_POSITION, 0,
OTG_VERTICAL_INTERRUPT0_LINE_START, start_line,
OTG_VERTICAL_INTERRUPT0_LINE_END, end_line);
}
void optc1_setup_vertical_interrupt1(
struct timing_generator *optc,
uint32_t start_line)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
REG_SET(OTG_VERTICAL_INTERRUPT1_POSITION, 0,
OTG_VERTICAL_INTERRUPT1_LINE_START, start_line);
}
void optc1_setup_vertical_interrupt2(
struct timing_generator *optc,
uint32_t start_line)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
REG_SET(OTG_VERTICAL_INTERRUPT2_POSITION, 0,
OTG_VERTICAL_INTERRUPT2_LINE_START, start_line);
}
/**
* Vupdate keepout can be set to a window to block the update lock for that pipe from changing.
* Start offset begins with vstartup and goes for x number of clocks,
* end offset starts from end of vupdate to x number of clocks.
*/
void optc1_set_vupdate_keepout(struct timing_generator *optc,
struct vupdate_keepout_params *params)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
REG_SET_3(OTG_VUPDATE_KEEPOUT, 0,
MASTER_UPDATE_LOCK_VUPDATE_KEEPOUT_START_OFFSET, params->start_offset,
MASTER_UPDATE_LOCK_VUPDATE_KEEPOUT_END_OFFSET, params->end_offset,
OTG_MASTER_UPDATE_LOCK_VUPDATE_KEEPOUT_EN, params->enable);
}
/**
* program_timing_generator used by mode timing set
* Program CRTC Timing Registers - OTG_H_*, OTG_V_*, Pixel repetition.
* Including SYNC. Call BIOS command table to program Timings.
*/
void optc1_program_timing(
struct timing_generator *optc,
const struct dc_crtc_timing *dc_crtc_timing,
int vready_offset,
int vstartup_start,
int vupdate_offset,
int vupdate_width,
const enum signal_type signal,
bool use_vbios)
{
struct dc_crtc_timing patched_crtc_timing;
uint32_t asic_blank_end;
uint32_t asic_blank_start;
uint32_t v_total;
uint32_t v_sync_end;
uint32_t h_sync_polarity, v_sync_polarity;
uint32_t start_point = 0;
uint32_t field_num = 0;
enum h_timing_div_mode h_div = H_TIMING_NO_DIV;
struct optc *optc1 = DCN10TG_FROM_TG(optc);
optc1->signal = signal;
optc1->vready_offset = vready_offset;
optc1->vstartup_start = vstartup_start;
optc1->vupdate_offset = vupdate_offset;
optc1->vupdate_width = vupdate_width;
patched_crtc_timing = *dc_crtc_timing;
apply_front_porch_workaround(&patched_crtc_timing);
/* Load horizontal timing */
/* CRTC_H_TOTAL = vesa.h_total - 1 */
REG_SET(OTG_H_TOTAL, 0,
OTG_H_TOTAL, patched_crtc_timing.h_total - 1);
/* h_sync_start = 0, h_sync_end = vesa.h_sync_width */
REG_UPDATE_2(OTG_H_SYNC_A,
OTG_H_SYNC_A_START, 0,
OTG_H_SYNC_A_END, patched_crtc_timing.h_sync_width);
/* blank_start = line end - front porch */
asic_blank_start = patched_crtc_timing.h_total -
patched_crtc_timing.h_front_porch;
/* blank_end = blank_start - active */
asic_blank_end = asic_blank_start -
patched_crtc_timing.h_border_right -
patched_crtc_timing.h_addressable -
patched_crtc_timing.h_border_left;
REG_UPDATE_2(OTG_H_BLANK_START_END,
OTG_H_BLANK_START, asic_blank_start,
OTG_H_BLANK_END, asic_blank_end);
/* h_sync polarity */
h_sync_polarity = patched_crtc_timing.flags.HSYNC_POSITIVE_POLARITY ?
0 : 1;
REG_UPDATE(OTG_H_SYNC_A_CNTL,
OTG_H_SYNC_A_POL, h_sync_polarity);
v_total = patched_crtc_timing.v_total - 1;
REG_SET(OTG_V_TOTAL, 0,
OTG_V_TOTAL, v_total);
/* In case of V_TOTAL_CONTROL is on, make sure OTG_V_TOTAL_MAX and
* OTG_V_TOTAL_MIN are equal to V_TOTAL.
*/
REG_SET(OTG_V_TOTAL_MAX, 0,
OTG_V_TOTAL_MAX, v_total);
REG_SET(OTG_V_TOTAL_MIN, 0,
OTG_V_TOTAL_MIN, v_total);
/* v_sync_start = 0, v_sync_end = v_sync_width */
v_sync_end = patched_crtc_timing.v_sync_width;
REG_UPDATE_2(OTG_V_SYNC_A,
OTG_V_SYNC_A_START, 0,
OTG_V_SYNC_A_END, v_sync_end);
/* blank_start = frame end - front porch */
asic_blank_start = patched_crtc_timing.v_total -
patched_crtc_timing.v_front_porch;
/* blank_end = blank_start - active */
asic_blank_end = asic_blank_start -
patched_crtc_timing.v_border_bottom -
patched_crtc_timing.v_addressable -
patched_crtc_timing.v_border_top;
REG_UPDATE_2(OTG_V_BLANK_START_END,
OTG_V_BLANK_START, asic_blank_start,
OTG_V_BLANK_END, asic_blank_end);
/* v_sync polarity */
v_sync_polarity = patched_crtc_timing.flags.VSYNC_POSITIVE_POLARITY ?
0 : 1;
REG_UPDATE(OTG_V_SYNC_A_CNTL,
OTG_V_SYNC_A_POL, v_sync_polarity);
if (optc1->signal == SIGNAL_TYPE_DISPLAY_PORT ||
optc1->signal == SIGNAL_TYPE_DISPLAY_PORT_MST ||
optc1->signal == SIGNAL_TYPE_EDP) {
start_point = 1;
if (patched_crtc_timing.flags.INTERLACE == 1)
field_num = 1;
}
/* Interlace */
if (REG(OTG_INTERLACE_CONTROL)) {
if (patched_crtc_timing.flags.INTERLACE == 1)
REG_UPDATE(OTG_INTERLACE_CONTROL,
OTG_INTERLACE_ENABLE, 1);
else
REG_UPDATE(OTG_INTERLACE_CONTROL,
OTG_INTERLACE_ENABLE, 0);
}
/* VTG enable set to 0 first VInit */
REG_UPDATE(CONTROL,
VTG0_ENABLE, 0);
/* original code is using VTG offset to address OTG reg, seems wrong */
REG_UPDATE_2(OTG_CONTROL,
OTG_START_POINT_CNTL, start_point,
OTG_FIELD_NUMBER_CNTL, field_num);
optc->funcs->program_global_sync(optc,
vready_offset,
vstartup_start,
vupdate_offset,
vupdate_width);
optc->funcs->set_vtg_params(optc, dc_crtc_timing, true);
/* TODO
* patched_crtc_timing.flags.HORZ_COUNT_BY_TWO == 1
* program_horz_count_by_2
* for DVI 30bpp mode, 0 otherwise
* program_horz_count_by_2(optc, &patched_crtc_timing);
*/
/* Enable stereo - only when we need to pack 3D frame. Other types
* of stereo handled in explicit call
*/
if (optc1_is_two_pixels_per_containter(&patched_crtc_timing) || optc1->opp_count == 2)
h_div = H_TIMING_DIV_BY2;
if (REG(OPTC_DATA_FORMAT_CONTROL)) {
uint32_t data_fmt = 0;
if (patched_crtc_timing.pixel_encoding == PIXEL_ENCODING_YCBCR422)
data_fmt = 1;
else if (patched_crtc_timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
data_fmt = 2;
REG_UPDATE(OPTC_DATA_FORMAT_CONTROL, OPTC_DATA_FORMAT, data_fmt);
}
if (optc1->tg_mask->OTG_H_TIMING_DIV_MODE != 0) {
if (optc1->opp_count == 4)
h_div = H_TIMING_DIV_BY4;
REG_UPDATE(OTG_H_TIMING_CNTL,
OTG_H_TIMING_DIV_MODE, h_div);
} else {
REG_UPDATE(OTG_H_TIMING_CNTL,
OTG_H_TIMING_DIV_BY2, h_div);
}
}
void optc1_set_vtg_params(struct timing_generator *optc,
const struct dc_crtc_timing *dc_crtc_timing, bool program_fp2)
{
struct dc_crtc_timing patched_crtc_timing;
uint32_t asic_blank_end;
uint32_t v_init;
uint32_t v_fp2 = 0;
int32_t vertical_line_start;
struct optc *optc1 = DCN10TG_FROM_TG(optc);
patched_crtc_timing = *dc_crtc_timing;
apply_front_porch_workaround(&patched_crtc_timing);
/* VCOUNT_INIT is the start of blank */
v_init = patched_crtc_timing.v_total - patched_crtc_timing.v_front_porch;
/* end of blank = v_init - active */
asic_blank_end = v_init -
patched_crtc_timing.v_border_bottom -
patched_crtc_timing.v_addressable -
patched_crtc_timing.v_border_top;
/* if VSTARTUP is before VSYNC, FP2 is the offset, otherwise 0 */
vertical_line_start = asic_blank_end - optc1->vstartup_start + 1;
if (vertical_line_start < 0)
v_fp2 = -vertical_line_start;
/* Interlace */
if (REG(OTG_INTERLACE_CONTROL)) {
if (patched_crtc_timing.flags.INTERLACE == 1) {
v_init = v_init / 2;
if ((optc1->vstartup_start/2)*2 > asic_blank_end)
v_fp2 = v_fp2 / 2;
}
}
if (program_fp2)
REG_UPDATE_2(CONTROL,
VTG0_FP2, v_fp2,
VTG0_VCOUNT_INIT, v_init);
else
REG_UPDATE(CONTROL, VTG0_VCOUNT_INIT, v_init);
}
void optc1_set_blank_data_double_buffer(struct timing_generator *optc, bool enable)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
uint32_t blank_data_double_buffer_enable = enable ? 1 : 0;
REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL,
OTG_BLANK_DATA_DOUBLE_BUFFER_EN, blank_data_double_buffer_enable);
}
/**
* optc1_set_timing_double_buffer() - DRR double buffering control
*
* Sets double buffer point for V_TOTAL, H_TOTAL, VTOTAL_MIN,
* VTOTAL_MAX, VTOTAL_MIN_SEL and VTOTAL_MAX_SEL registers.
*
* Options: any time, start of frame, dp start of frame (range timing)
*/
void optc1_set_timing_double_buffer(struct timing_generator *optc, bool enable)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
uint32_t mode = enable ? 2 : 0;
REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL,
OTG_RANGE_TIMING_DBUF_UPDATE_MODE, mode);
}
/**
* unblank_crtc
* Call ASIC Control Object to UnBlank CRTC.
*/
static void optc1_unblank_crtc(struct timing_generator *optc)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
REG_UPDATE_2(OTG_BLANK_CONTROL,
OTG_BLANK_DATA_EN, 0,
OTG_BLANK_DE_MODE, 0);
/* W/A for automated testing
* Automated testing will fail underflow test as there
* sporadic underflows which occur during the optc blank
* sequence. As a w/a, clear underflow on unblank.
* This prevents the failure, but will not mask actual
* underflow that affect real use cases.
*/
optc1_clear_optc_underflow(optc);
}
/**
* blank_crtc
* Call ASIC Control Object to Blank CRTC.
*/
static void optc1_blank_crtc(struct timing_generator *optc)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
REG_UPDATE_2(OTG_BLANK_CONTROL,
OTG_BLANK_DATA_EN, 1,
OTG_BLANK_DE_MODE, 0);
optc1_set_blank_data_double_buffer(optc, false);
}
void optc1_set_blank(struct timing_generator *optc,
bool enable_blanking)
{
if (enable_blanking)
optc1_blank_crtc(optc);
else
optc1_unblank_crtc(optc);
}
bool optc1_is_blanked(struct timing_generator *optc)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
uint32_t blank_en;
uint32_t blank_state;
REG_GET_2(OTG_BLANK_CONTROL,
OTG_BLANK_DATA_EN, &blank_en,
OTG_CURRENT_BLANK_STATE, &blank_state);
return blank_en && blank_state;
}
void optc1_enable_optc_clock(struct timing_generator *optc, bool enable)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
if (enable) {
REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL,
OPTC_INPUT_CLK_EN, 1,
OPTC_INPUT_CLK_GATE_DIS, 1);
REG_WAIT(OPTC_INPUT_CLOCK_CONTROL,
OPTC_INPUT_CLK_ON, 1,
1, 1000);
/* Enable clock */
REG_UPDATE_2(OTG_CLOCK_CONTROL,
OTG_CLOCK_EN, 1,
OTG_CLOCK_GATE_DIS, 1);
REG_WAIT(OTG_CLOCK_CONTROL,
OTG_CLOCK_ON, 1,
1, 1000);
} else {
//last chance to clear underflow, otherwise, it will always there due to clock is off.
if (optc->funcs->is_optc_underflow_occurred(optc) == true)
optc->funcs->clear_optc_underflow(optc);
REG_UPDATE_2(OTG_CLOCK_CONTROL,
OTG_CLOCK_GATE_DIS, 0,
OTG_CLOCK_EN, 0);
REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL,
OPTC_INPUT_CLK_GATE_DIS, 0,
OPTC_INPUT_CLK_EN, 0);
}
}
/**
* Enable CRTC
* Enable CRTC - call ASIC Control Object to enable Timing generator.
*/
static bool optc1_enable_crtc(struct timing_generator *optc)
{
/* TODO FPGA wait for answer
* OTG_MASTER_UPDATE_MODE != CRTC_MASTER_UPDATE_MODE
* OTG_MASTER_UPDATE_LOCK != CRTC_MASTER_UPDATE_LOCK
*/
struct optc *optc1 = DCN10TG_FROM_TG(optc);
/* opp instance for OTG. For DCN1.0, ODM is remoed.
* OPP and OPTC should 1:1 mapping
*/
REG_UPDATE(OPTC_DATA_SOURCE_SELECT,
OPTC_SRC_SEL, optc->inst);
/* VTG enable first is for HW workaround */
REG_UPDATE(CONTROL,
VTG0_ENABLE, 1);
REG_SEQ_START();
/* Enable CRTC */
REG_UPDATE_2(OTG_CONTROL,
OTG_DISABLE_POINT_CNTL, 3,
OTG_MASTER_EN, 1);
REG_SEQ_SUBMIT();
REG_SEQ_WAIT_DONE();
return true;
}
/* disable_crtc - call ASIC Control Object to disable Timing generator. */
bool optc1_disable_crtc(struct timing_generator *optc)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
/* disable otg request until end of the first line
* in the vertical blank region
*/
REG_UPDATE_2(OTG_CONTROL,
OTG_DISABLE_POINT_CNTL, 3,
OTG_MASTER_EN, 0);
REG_UPDATE(CONTROL,
VTG0_ENABLE, 0);
/* CRTC disabled, so disable clock. */
REG_WAIT(OTG_CLOCK_CONTROL,
OTG_BUSY, 0,
1, 100000);
return true;
}
void optc1_program_blank_color(
struct timing_generator *optc,
const struct tg_color *black_color)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
REG_SET_3(OTG_BLACK_COLOR, 0,
OTG_BLACK_COLOR_B_CB, black_color->color_b_cb,
OTG_BLACK_COLOR_G_Y, black_color->color_g_y,
OTG_BLACK_COLOR_R_CR, black_color->color_r_cr);
}
bool optc1_validate_timing(
struct timing_generator *optc,
const struct dc_crtc_timing *timing)
{
uint32_t v_blank;
uint32_t h_blank;
uint32_t min_v_blank;
struct optc *optc1 = DCN10TG_FROM_TG(optc);
ASSERT(timing != NULL);
v_blank = (timing->v_total - timing->v_addressable -
timing->v_border_top - timing->v_border_bottom);
h_blank = (timing->h_total - timing->h_addressable -
timing->h_border_right -
timing->h_border_left);
if (timing->timing_3d_format != TIMING_3D_FORMAT_NONE &&
timing->timing_3d_format != TIMING_3D_FORMAT_HW_FRAME_PACKING &&
timing->timing_3d_format != TIMING_3D_FORMAT_TOP_AND_BOTTOM &&
timing->timing_3d_format != TIMING_3D_FORMAT_SIDE_BY_SIDE &&
timing->timing_3d_format != TIMING_3D_FORMAT_FRAME_ALTERNATE &&
timing->timing_3d_format != TIMING_3D_FORMAT_INBAND_FA)
return false;
/* Temporarily blocking interlacing mode until it's supported */
if (timing->flags.INTERLACE == 1)
return false;
/* Check maximum number of pixels supported by Timing Generator
* (Currently will never fail, in order to fail needs display which
* needs more than 8192 horizontal and
* more than 8192 vertical total pixels)
*/
if (timing->h_total > optc1->max_h_total ||
timing->v_total > optc1->max_v_total)
return false;
if (h_blank < optc1->min_h_blank)
return false;
if (timing->h_sync_width < optc1->min_h_sync_width ||
timing->v_sync_width < optc1->min_v_sync_width)
return false;
min_v_blank = timing->flags.INTERLACE?optc1->min_v_blank_interlace:optc1->min_v_blank;
if (v_blank < min_v_blank)
return false;
return true;
}
/*
* get_vblank_counter
*
* @brief
* Get counter for vertical blanks. use register CRTC_STATUS_FRAME_COUNT which
* holds the counter of frames.
*
* @param
* struct timing_generator *optc - [in] timing generator which controls the
* desired CRTC
*
* @return
* Counter of frames, which should equal to number of vblanks.
*/
uint32_t optc1_get_vblank_counter(struct timing_generator *optc)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
uint32_t frame_count;
REG_GET(OTG_STATUS_FRAME_COUNT,
OTG_FRAME_COUNT, &frame_count);
return frame_count;
}
void optc1_lock(struct timing_generator *optc)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
uint32_t regval = 0;
regval = REG_READ(OTG_CONTROL);
/* otg is not running, do not need to be locked */
if ((regval & 0x1) == 0x0)
return;
REG_SET(OTG_GLOBAL_CONTROL0, 0,
OTG_MASTER_UPDATE_LOCK_SEL, optc->inst);
REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
OTG_MASTER_UPDATE_LOCK, 1);
/* Should be fast, status does not update on maximus */
if (optc->ctx->dce_environment != DCE_ENV_FPGA_MAXIMUS) {
REG_WAIT(OTG_MASTER_UPDATE_LOCK,
UPDATE_LOCK_STATUS, 1,
1, 10);
}
}
void optc1_unlock(struct timing_generator *optc)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
OTG_MASTER_UPDATE_LOCK, 0);
}
bool optc1_is_locked(struct timing_generator *optc)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
uint32_t locked;
REG_GET(OTG_MASTER_UPDATE_LOCK, UPDATE_LOCK_STATUS, &locked);
return (locked == 1);
}
void optc1_get_position(struct timing_generator *optc,
struct crtc_position *position)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
REG_GET_2(OTG_STATUS_POSITION,
OTG_HORZ_COUNT, &position->horizontal_count,
OTG_VERT_COUNT, &position->vertical_count);
REG_GET(OTG_NOM_VERT_POSITION,
OTG_VERT_COUNT_NOM, &position->nominal_vcount);
}
bool optc1_is_counter_moving(struct timing_generator *optc)
{
struct crtc_position position1, position2;
optc->funcs->get_position(optc, &position1);
optc->funcs->get_position(optc, &position2);
if (position1.horizontal_count == position2.horizontal_count &&
position1.vertical_count == position2.vertical_count)
return false;
else
return true;
}
bool optc1_did_triggered_reset_occur(
struct timing_generator *optc)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
uint32_t occurred_force, occurred_vsync;
REG_GET(OTG_FORCE_COUNT_NOW_CNTL,
OTG_FORCE_COUNT_NOW_OCCURRED, &occurred_force);
REG_GET(OTG_VERT_SYNC_CONTROL,
OTG_FORCE_VSYNC_NEXT_LINE_OCCURRED, &occurred_vsync);
return occurred_vsync != 0 || occurred_force != 0;
}
void optc1_disable_reset_trigger(struct timing_generator *optc)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
REG_WRITE(OTG_TRIGA_CNTL, 0);
REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
OTG_FORCE_COUNT_NOW_CLEAR, 1);
REG_SET(OTG_VERT_SYNC_CONTROL, 0,
OTG_FORCE_VSYNC_NEXT_LINE_CLEAR, 1);
}
void optc1_enable_reset_trigger(struct timing_generator *optc, int source_tg_inst)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
uint32_t falling_edge;
REG_GET(OTG_V_SYNC_A_CNTL,
OTG_V_SYNC_A_POL, &falling_edge);
if (falling_edge)
REG_SET_3(OTG_TRIGA_CNTL, 0,
/* vsync signal from selected OTG pipe based
* on OTG_TRIG_SOURCE_PIPE_SELECT setting
*/
OTG_TRIGA_SOURCE_SELECT, 20,
OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
/* always detect falling edge */
OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 1);
else
REG_SET_3(OTG_TRIGA_CNTL, 0,
/* vsync signal from selected OTG pipe based
* on OTG_TRIG_SOURCE_PIPE_SELECT setting
*/
OTG_TRIGA_SOURCE_SELECT, 20,
OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
/* always detect rising edge */
OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1);
REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
/* force H count to H_TOTAL and V count to V_TOTAL in
* progressive mode and V_TOTAL-1 in interlaced mode
*/
OTG_FORCE_COUNT_NOW_MODE, 2);
}
void optc1_enable_crtc_reset(
struct timing_generator *optc,
int source_tg_inst,
struct crtc_trigger_info *crtc_tp)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
uint32_t falling_edge = 0;
uint32_t rising_edge = 0;
switch (crtc_tp->event) {
case CRTC_EVENT_VSYNC_RISING:
rising_edge = 1;
break;
case CRTC_EVENT_VSYNC_FALLING:
falling_edge = 1;
break;
}
REG_SET_4(OTG_TRIGA_CNTL, 0,
/* vsync signal from selected OTG pipe based
* on OTG_TRIG_SOURCE_PIPE_SELECT setting
*/
OTG_TRIGA_SOURCE_SELECT, 20,
OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
/* always detect falling edge */
OTG_TRIGA_RISING_EDGE_DETECT_CNTL, rising_edge,
OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, falling_edge);
switch (crtc_tp->delay) {
case TRIGGER_DELAY_NEXT_LINE:
REG_SET(OTG_VERT_SYNC_CONTROL, 0,
OTG_AUTO_FORCE_VSYNC_MODE, 1);
break;
case TRIGGER_DELAY_NEXT_PIXEL:
REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
/* force H count to H_TOTAL and V count to V_TOTAL in
* progressive mode and V_TOTAL-1 in interlaced mode
*/
OTG_FORCE_COUNT_NOW_MODE, 2);
break;
}
}
void optc1_wait_for_state(struct timing_generator *optc,
enum crtc_state state)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
switch (state) {
case CRTC_STATE_VBLANK:
REG_WAIT(OTG_STATUS,
OTG_V_BLANK, 1,
1, 100000); /* 1 vupdate at 10hz */
break;
case CRTC_STATE_VACTIVE:
REG_WAIT(OTG_STATUS,
OTG_V_ACTIVE_DISP, 1,
1, 100000); /* 1 vupdate at 10hz */
break;
default:
break;
}
}
void optc1_set_early_control(
struct timing_generator *optc,
uint32_t early_cntl)
{
/* asic design change, do not need this control
* empty for share caller logic
*/
}
void optc1_set_static_screen_control(
struct timing_generator *optc,
uint32_t event_triggers,
uint32_t num_frames)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
// By register spec, it only takes 8 bit value
if (num_frames > 0xFF)
num_frames = 0xFF;
/* Bit 8 is no longer applicable in RV for PSR case,
* set bit 8 to 0 if given
*/
if ((event_triggers & STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN)
!= 0)
event_triggers = event_triggers &
~STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN;
REG_SET_2(OTG_STATIC_SCREEN_CONTROL, 0,
OTG_STATIC_SCREEN_EVENT_MASK, event_triggers,
OTG_STATIC_SCREEN_FRAME_COUNT, num_frames);
}
void optc1_setup_manual_trigger(struct timing_generator *optc)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
REG_SET(OTG_GLOBAL_CONTROL2, 0,
MANUAL_FLOW_CONTROL_SEL, optc->inst);
REG_SET_8(OTG_TRIGA_CNTL, 0,
OTG_TRIGA_SOURCE_SELECT, 22,
OTG_TRIGA_SOURCE_PIPE_SELECT, optc->inst,
OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1,
OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 0,
OTG_TRIGA_POLARITY_SELECT, 0,
OTG_TRIGA_FREQUENCY_SELECT, 0,
OTG_TRIGA_DELAY, 0,
OTG_TRIGA_CLEAR, 1);
}
void optc1_program_manual_trigger(struct timing_generator *optc)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
REG_SET(OTG_MANUAL_FLOW_CONTROL, 0,
MANUAL_FLOW_CONTROL, 1);
REG_SET(OTG_MANUAL_FLOW_CONTROL, 0,
MANUAL_FLOW_CONTROL, 0);
}
/**
*****************************************************************************
* Function: set_drr
*
* @brief
* Program dynamic refresh rate registers m_OTGx_OTG_V_TOTAL_*.
*
*****************************************************************************
*/
void optc1_set_drr(
struct timing_generator *optc,
const struct drr_params *params)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
if (params != NULL &&
params->vertical_total_max > 0 &&
params->vertical_total_min > 0) {
if (params->vertical_total_mid != 0) {
REG_SET(OTG_V_TOTAL_MID, 0,
OTG_V_TOTAL_MID, params->vertical_total_mid - 1);
REG_UPDATE_2(OTG_V_TOTAL_CONTROL,
OTG_VTOTAL_MID_REPLACING_MAX_EN, 1,
OTG_VTOTAL_MID_FRAME_NUM,
(uint8_t)params->vertical_total_mid_frame_num);
}
REG_SET(OTG_V_TOTAL_MAX, 0,
OTG_V_TOTAL_MAX, params->vertical_total_max - 1);
REG_SET(OTG_V_TOTAL_MIN, 0,
OTG_V_TOTAL_MIN, params->vertical_total_min - 1);
REG_UPDATE_5(OTG_V_TOTAL_CONTROL,
OTG_V_TOTAL_MIN_SEL, 1,
OTG_V_TOTAL_MAX_SEL, 1,
OTG_FORCE_LOCK_ON_EVENT, 0,
OTG_SET_V_TOTAL_MIN_MASK_EN, 0,
OTG_SET_V_TOTAL_MIN_MASK, 0);
// Setup manual flow control for EOF via TRIG_A
optc->funcs->setup_manual_trigger(optc);
} else {
REG_UPDATE_4(OTG_V_TOTAL_CONTROL,
OTG_SET_V_TOTAL_MIN_MASK, 0,
OTG_V_TOTAL_MIN_SEL, 0,
OTG_V_TOTAL_MAX_SEL, 0,
OTG_FORCE_LOCK_ON_EVENT, 0);
REG_SET(OTG_V_TOTAL_MIN, 0,
OTG_V_TOTAL_MIN, 0);
REG_SET(OTG_V_TOTAL_MAX, 0,
OTG_V_TOTAL_MAX, 0);
}
}
void optc1_set_vtotal_min_max(struct timing_generator *optc, int vtotal_min, int vtotal_max)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
REG_SET(OTG_V_TOTAL_MAX, 0,
OTG_V_TOTAL_MAX, vtotal_max);
REG_SET(OTG_V_TOTAL_MIN, 0,
OTG_V_TOTAL_MIN, vtotal_min);
}
static void optc1_set_test_pattern(
struct timing_generator *optc,
/* TODO: replace 'controller_dp_test_pattern' by 'test_pattern_mode'
* because this is not DP-specific (which is probably somewhere in DP
* encoder) */
enum controller_dp_test_pattern test_pattern,
enum dc_color_depth color_depth)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
enum test_pattern_color_format bit_depth;
enum test_pattern_dyn_range dyn_range;
enum test_pattern_mode mode;
uint32_t pattern_mask;
uint32_t pattern_data;
/* color ramp generator mixes 16-bits color */
uint32_t src_bpc = 16;
/* requested bpc */
uint32_t dst_bpc;
uint32_t index;
/* RGB values of the color bars.
* Produce two RGB colors: RGB0 - white (all Fs)
* and RGB1 - black (all 0s)
* (three RGB components for two colors)
*/
uint16_t src_color[6] = {0xFFFF, 0xFFFF, 0xFFFF, 0x0000,
0x0000, 0x0000};
/* dest color (converted to the specified color format) */
uint16_t dst_color[6];
uint32_t inc_base;
/* translate to bit depth */
switch (color_depth) {
case COLOR_DEPTH_666:
bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_6;
break;
case COLOR_DEPTH_888:
bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
break;
case COLOR_DEPTH_101010:
bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_10;
break;
case COLOR_DEPTH_121212:
bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_12;
break;
default:
bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
break;
}
switch (test_pattern) {
case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES:
case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA:
{
dyn_range = (test_pattern ==
CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA ?
TEST_PATTERN_DYN_RANGE_CEA :
TEST_PATTERN_DYN_RANGE_VESA);
mode = TEST_PATTERN_MODE_COLORSQUARES_RGB;
REG_UPDATE_2(OTG_TEST_PATTERN_PARAMETERS,
OTG_TEST_PATTERN_VRES, 6,
OTG_TEST_PATTERN_HRES, 6);
REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL,
OTG_TEST_PATTERN_EN, 1,
OTG_TEST_PATTERN_MODE, mode,
OTG_TEST_PATTERN_DYNAMIC_RANGE, dyn_range,
OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
}
break;
case CONTROLLER_DP_TEST_PATTERN_VERTICALBARS:
case CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS:
{
mode = (test_pattern ==
CONTROLLER_DP_TEST_PATTERN_VERTICALBARS ?
TEST_PATTERN_MODE_VERTICALBARS :
TEST_PATTERN_MODE_HORIZONTALBARS);
switch (bit_depth) {
case TEST_PATTERN_COLOR_FORMAT_BPC_6:
dst_bpc = 6;
break;
case TEST_PATTERN_COLOR_FORMAT_BPC_8:
dst_bpc = 8;
break;
case TEST_PATTERN_COLOR_FORMAT_BPC_10:
dst_bpc = 10;
break;
default:
dst_bpc = 8;
break;
}
/* adjust color to the required colorFormat */
for (index = 0; index < 6; index++) {
/* dst = 2^dstBpc * src / 2^srcBpc = src >>
* (srcBpc - dstBpc);
*/
dst_color[index] =
src_color[index] >> (src_bpc - dst_bpc);
/* CRTC_TEST_PATTERN_DATA has 16 bits,
* lowest 6 are hardwired to ZERO
* color bits should be left aligned aligned to MSB
* XXXXXXXXXX000000 for 10 bit,
* XXXXXXXX00000000 for 8 bit and XXXXXX0000000000 for 6
*/
dst_color[index] <<= (16 - dst_bpc);
}
REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0);
/* We have to write the mask before data, similar to pipeline.
* For example, for 8 bpc, if we want RGB0 to be magenta,
* and RGB1 to be cyan,
* we need to make 7 writes:
* MASK DATA
* 000001 00000000 00000000 set mask to R0
* 000010 11111111 00000000 R0 255, 0xFF00, set mask to G0
* 000100 00000000 00000000 G0 0, 0x0000, set mask to B0
* 001000 11111111 00000000 B0 255, 0xFF00, set mask to R1
* 010000 00000000 00000000 R1 0, 0x0000, set mask to G1
* 100000 11111111 00000000 G1 255, 0xFF00, set mask to B1
* 100000 11111111 00000000 B1 255, 0xFF00
*
* we will make a loop of 6 in which we prepare the mask,
* then write, then prepare the color for next write.
* first iteration will write mask only,
* but each next iteration color prepared in
* previous iteration will be written within new mask,
* the last component will written separately,
* mask is not changing between 6th and 7th write
* and color will be prepared by last iteration
*/
/* write color, color values mask in CRTC_TEST_PATTERN_MASK
* is B1, G1, R1, B0, G0, R0
*/
pattern_data = 0;
for (index = 0; index < 6; index++) {
/* prepare color mask, first write PATTERN_DATA
* will have all zeros
*/
pattern_mask = (1 << index);
/* write color component */
REG_SET_2(OTG_TEST_PATTERN_COLOR, 0,
OTG_TEST_PATTERN_MASK, pattern_mask,
OTG_TEST_PATTERN_DATA, pattern_data);
/* prepare next color component,
* will be written in the next iteration
*/
pattern_data = dst_color[index];
}
/* write last color component,
* it's been already prepared in the loop
*/
REG_SET_2(OTG_TEST_PATTERN_COLOR, 0,
OTG_TEST_PATTERN_MASK, pattern_mask,
OTG_TEST_PATTERN_DATA, pattern_data);
/* enable test pattern */
REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL,
OTG_TEST_PATTERN_EN, 1,
OTG_TEST_PATTERN_MODE, mode,
OTG_TEST_PATTERN_DYNAMIC_RANGE, 0,
OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
}
break;
case CONTROLLER_DP_TEST_PATTERN_COLORRAMP:
{
mode = (bit_depth ==
TEST_PATTERN_COLOR_FORMAT_BPC_10 ?
TEST_PATTERN_MODE_DUALRAMP_RGB :
TEST_PATTERN_MODE_SINGLERAMP_RGB);
switch (bit_depth) {
case TEST_PATTERN_COLOR_FORMAT_BPC_6:
dst_bpc = 6;
break;
case TEST_PATTERN_COLOR_FORMAT_BPC_8:
dst_bpc = 8;
break;
case TEST_PATTERN_COLOR_FORMAT_BPC_10:
dst_bpc = 10;
break;
default:
dst_bpc = 8;
break;
}
/* increment for the first ramp for one color gradation
* 1 gradation for 6-bit color is 2^10
* gradations in 16-bit color
*/
inc_base = (src_bpc - dst_bpc);
switch (bit_depth) {
case TEST_PATTERN_COLOR_FORMAT_BPC_6:
{
REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
OTG_TEST_PATTERN_INC0, inc_base,
OTG_TEST_PATTERN_INC1, 0,
OTG_TEST_PATTERN_HRES, 6,
OTG_TEST_PATTERN_VRES, 6,
OTG_TEST_PATTERN_RAMP0_OFFSET, 0);
}
break;
case TEST_PATTERN_COLOR_FORMAT_BPC_8:
{
REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
OTG_TEST_PATTERN_INC0, inc_base,
OTG_TEST_PATTERN_INC1, 0,
OTG_TEST_PATTERN_HRES, 8,
OTG_TEST_PATTERN_VRES, 6,
OTG_TEST_PATTERN_RAMP0_OFFSET, 0);
}
break;
case TEST_PATTERN_COLOR_FORMAT_BPC_10:
{
REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
OTG_TEST_PATTERN_INC0, inc_base,
OTG_TEST_PATTERN_INC1, inc_base + 2,
OTG_TEST_PATTERN_HRES, 8,
OTG_TEST_PATTERN_VRES, 5,
OTG_TEST_PATTERN_RAMP0_OFFSET, 384 << 6);
}
break;
default:
break;
}
REG_WRITE(OTG_TEST_PATTERN_COLOR, 0);
/* enable test pattern */
REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0);
REG_SET_4(OTG_TEST_PATTERN_CONTROL, 0,
OTG_TEST_PATTERN_EN, 1,
OTG_TEST_PATTERN_MODE, mode,
OTG_TEST_PATTERN_DYNAMIC_RANGE, 0,
OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
}
break;
case CONTROLLER_DP_TEST_PATTERN_VIDEOMODE:
{
REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0);
REG_WRITE(OTG_TEST_PATTERN_COLOR, 0);
REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0);
}
break;
default:
break;
}
}
void optc1_get_crtc_scanoutpos(
struct timing_generator *optc,
uint32_t *v_blank_start,
uint32_t *v_blank_end,
uint32_t *h_position,
uint32_t *v_position)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
struct crtc_position position;
REG_GET_2(OTG_V_BLANK_START_END,
OTG_V_BLANK_START, v_blank_start,
OTG_V_BLANK_END, v_blank_end);
optc1_get_position(optc, &position);
*h_position = position.horizontal_count;
*v_position = position.vertical_count;
}
static void optc1_enable_stereo(struct timing_generator *optc,
const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
if (flags) {
uint32_t stereo_en;
stereo_en = flags->FRAME_PACKED == 0 ? 1 : 0;
if (flags->PROGRAM_STEREO)
REG_UPDATE_3(OTG_STEREO_CONTROL,
OTG_STEREO_EN, stereo_en,
OTG_STEREO_SYNC_OUTPUT_LINE_NUM, 0,
OTG_STEREO_SYNC_OUTPUT_POLARITY, flags->RIGHT_EYE_POLARITY == 0 ? 0 : 1);
if (flags->PROGRAM_POLARITY)
REG_UPDATE(OTG_STEREO_CONTROL,
OTG_STEREO_EYE_FLAG_POLARITY,
flags->RIGHT_EYE_POLARITY == 0 ? 0 : 1);
if (flags->DISABLE_STEREO_DP_SYNC)
REG_UPDATE(OTG_STEREO_CONTROL,
OTG_DISABLE_STEREOSYNC_OUTPUT_FOR_DP, 1);
if (flags->PROGRAM_STEREO)
REG_UPDATE_2(OTG_3D_STRUCTURE_CONTROL,
OTG_3D_STRUCTURE_EN, flags->FRAME_PACKED,
OTG_3D_STRUCTURE_STEREO_SEL_OVR, flags->FRAME_PACKED);
}
}
void optc1_program_stereo(struct timing_generator *optc,
const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags)
{
if (flags->PROGRAM_STEREO)
optc1_enable_stereo(optc, timing, flags);
else
optc1_disable_stereo(optc);
}
bool optc1_is_stereo_left_eye(struct timing_generator *optc)
{
bool ret = false;
uint32_t left_eye = 0;
struct optc *optc1 = DCN10TG_FROM_TG(optc);
REG_GET(OTG_STEREO_STATUS,
OTG_STEREO_CURRENT_EYE, &left_eye);
if (left_eye == 1)
ret = true;
else
ret = false;
return ret;
}
bool optc1_get_hw_timing(struct timing_generator *tg,
struct dc_crtc_timing *hw_crtc_timing)
{
struct dcn_otg_state s = {0};
if (tg == NULL || hw_crtc_timing == NULL)
return false;
optc1_read_otg_state(DCN10TG_FROM_TG(tg), &s);
hw_crtc_timing->h_total = s.h_total + 1;
hw_crtc_timing->h_addressable = s.h_total - ((s.h_total - s.h_blank_start) + s.h_blank_end);
hw_crtc_timing->h_front_porch = s.h_total + 1 - s.h_blank_start;
hw_crtc_timing->h_sync_width = s.h_sync_a_end - s.h_sync_a_start;
hw_crtc_timing->v_total = s.v_total + 1;
hw_crtc_timing->v_addressable = s.v_total - ((s.v_total - s.v_blank_start) + s.v_blank_end);
hw_crtc_timing->v_front_porch = s.v_total + 1 - s.v_blank_start;
hw_crtc_timing->v_sync_width = s.v_sync_a_end - s.v_sync_a_start;
return true;
}
void optc1_read_otg_state(struct optc *optc1,
struct dcn_otg_state *s)
{
REG_GET(OTG_CONTROL,
OTG_MASTER_EN, &s->otg_enabled);
REG_GET_2(OTG_V_BLANK_START_END,
OTG_V_BLANK_START, &s->v_blank_start,
OTG_V_BLANK_END, &s->v_blank_end);
REG_GET(OTG_V_SYNC_A_CNTL,
OTG_V_SYNC_A_POL, &s->v_sync_a_pol);
REG_GET(OTG_V_TOTAL,
OTG_V_TOTAL, &s->v_total);
REG_GET(OTG_V_TOTAL_MAX,
OTG_V_TOTAL_MAX, &s->v_total_max);
REG_GET(OTG_V_TOTAL_MIN,
OTG_V_TOTAL_MIN, &s->v_total_min);
REG_GET(OTG_V_TOTAL_CONTROL,
OTG_V_TOTAL_MAX_SEL, &s->v_total_max_sel);
REG_GET(OTG_V_TOTAL_CONTROL,
OTG_V_TOTAL_MIN_SEL, &s->v_total_min_sel);
REG_GET_2(OTG_V_SYNC_A,
OTG_V_SYNC_A_START, &s->v_sync_a_start,
OTG_V_SYNC_A_END, &s->v_sync_a_end);
REG_GET_2(OTG_H_BLANK_START_END,
OTG_H_BLANK_START, &s->h_blank_start,
OTG_H_BLANK_END, &s->h_blank_end);
REG_GET_2(OTG_H_SYNC_A,
OTG_H_SYNC_A_START, &s->h_sync_a_start,
OTG_H_SYNC_A_END, &s->h_sync_a_end);
REG_GET(OTG_H_SYNC_A_CNTL,
OTG_H_SYNC_A_POL, &s->h_sync_a_pol);
REG_GET(OTG_H_TOTAL,
OTG_H_TOTAL, &s->h_total);
REG_GET(OPTC_INPUT_GLOBAL_CONTROL,
OPTC_UNDERFLOW_OCCURRED_STATUS, &s->underflow_occurred_status);
REG_GET(OTG_VERTICAL_INTERRUPT2_CONTROL,
OTG_VERTICAL_INTERRUPT2_INT_ENABLE, &s->vertical_interrupt2_en);
REG_GET(OTG_VERTICAL_INTERRUPT2_POSITION,
OTG_VERTICAL_INTERRUPT2_LINE_START, &s->vertical_interrupt2_line);
}
bool optc1_get_otg_active_size(struct timing_generator *optc,
uint32_t *otg_active_width,
uint32_t *otg_active_height)
{
uint32_t otg_enabled;
uint32_t v_blank_start;
uint32_t v_blank_end;
uint32_t h_blank_start;
uint32_t h_blank_end;
struct optc *optc1 = DCN10TG_FROM_TG(optc);
REG_GET(OTG_CONTROL,
OTG_MASTER_EN, &otg_enabled);
if (otg_enabled == 0)
return false;
REG_GET_2(OTG_V_BLANK_START_END,
OTG_V_BLANK_START, &v_blank_start,
OTG_V_BLANK_END, &v_blank_end);
REG_GET_2(OTG_H_BLANK_START_END,
OTG_H_BLANK_START, &h_blank_start,
OTG_H_BLANK_END, &h_blank_end);
*otg_active_width = v_blank_start - v_blank_end;
*otg_active_height = h_blank_start - h_blank_end;
return true;
}
void optc1_clear_optc_underflow(struct timing_generator *optc)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
REG_UPDATE(OPTC_INPUT_GLOBAL_CONTROL, OPTC_UNDERFLOW_CLEAR, 1);
}
void optc1_tg_init(struct timing_generator *optc)
{
optc1_set_blank_data_double_buffer(optc, true);
optc1_set_timing_double_buffer(optc, true);
optc1_clear_optc_underflow(optc);
}
bool optc1_is_tg_enabled(struct timing_generator *optc)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
uint32_t otg_enabled = 0;
REG_GET(OTG_CONTROL, OTG_MASTER_EN, &otg_enabled);
return (otg_enabled != 0);
}
bool optc1_is_optc_underflow_occurred(struct timing_generator *optc)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
uint32_t underflow_occurred = 0;
REG_GET(OPTC_INPUT_GLOBAL_CONTROL,
OPTC_UNDERFLOW_OCCURRED_STATUS,
&underflow_occurred);
return (underflow_occurred == 1);
}
bool optc1_configure_crc(struct timing_generator *optc,
const struct crc_params *params)
{
struct optc *optc1 = DCN10TG_FROM_TG(optc);
/* Cannot configure crc on a CRTC that is disabled */
if (!optc1_is_tg_enabled(optc))
return false;
REG_WRITE(OTG_CRC_CNTL, 0);
if (!params->enable)
return true;
/* Program frame boundaries */
/* Window A x axis start and end. */
REG_UPDATE_2(OTG_CRC0_WINDOWA_X_CONTROL,
OTG_CRC0_WINDOWA_X_START, params->windowa_x_start,
OTG_CRC0_WINDOWA_X_END, params->windowa_x_end);
/* Window A y axis start and end. */
REG_UPDATE_2(OTG_CRC0_WINDOWA_Y_CONTROL,
OTG_CRC0_WINDOWA_Y_START, params->windowa_y_start,
OTG_CRC0_WINDOWA_Y_END, params->windowa_y_end);
/* Window B x axis start and end. */
REG_UPDATE_2(OTG_CRC0_WINDOWB_X_CONTROL,
OTG_CRC0_WINDOWB_X_START, params->windowb_x_start,
OTG_CRC0_WINDOWB_X_END, params->windowb_x_end);
/* Window B y axis start and end. */
REG_UPDATE_2(OTG_CRC0_WINDOWB_Y_CONTROL,
OTG_CRC0_WINDOWB_Y_START, params->windowb_y_start,
OTG_CRC0_WINDOWB_Y_END, params->windowb_y_end);
/* Set crc mode and selection, and enable. Only using CRC0*/
REG_UPDATE_3(OTG_CRC_CNTL,
OTG_CRC_CONT_EN, params->continuous_mode ? 1 : 0,
OTG_CRC0_SELECT, params->selection,
OTG_CRC_EN, 1);
return true;
}
bool optc1_get_crc(struct timing_generator *optc,
uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
{
uint32_t field = 0;
struct optc *optc1 = DCN10TG_FROM_TG(optc);
REG_GET(OTG_CRC_CNTL, OTG_CRC_EN, &field);
/* Early return if CRC is not enabled for this CRTC */
if (!field)
return false;
REG_GET_2(OTG_CRC0_DATA_RG,
CRC0_R_CR, r_cr,
CRC0_G_Y, g_y);
REG_GET(OTG_CRC0_DATA_B,
CRC0_B_CB, b_cb);
return true;
}
static const struct timing_generator_funcs dcn10_tg_funcs = {
.validate_timing = optc1_validate_timing,
.program_timing = optc1_program_timing,
.setup_vertical_interrupt0 = optc1_setup_vertical_interrupt0,
.setup_vertical_interrupt1 = optc1_setup_vertical_interrupt1,
.setup_vertical_interrupt2 = optc1_setup_vertical_interrupt2,
.program_global_sync = optc1_program_global_sync,
.enable_crtc = optc1_enable_crtc,
.disable_crtc = optc1_disable_crtc,
/* used by enable_timing_synchronization. Not need for FPGA */
.is_counter_moving = optc1_is_counter_moving,
.get_position = optc1_get_position,
.get_frame_count = optc1_get_vblank_counter,
.get_scanoutpos = optc1_get_crtc_scanoutpos,
.get_otg_active_size = optc1_get_otg_active_size,
.set_early_control = optc1_set_early_control,
/* used by enable_timing_synchronization. Not need for FPGA */
.wait_for_state = optc1_wait_for_state,
.set_blank = optc1_set_blank,
.is_blanked = optc1_is_blanked,
.set_blank_color = optc1_program_blank_color,
.did_triggered_reset_occur = optc1_did_triggered_reset_occur,
.enable_reset_trigger = optc1_enable_reset_trigger,
.enable_crtc_reset = optc1_enable_crtc_reset,
.disable_reset_trigger = optc1_disable_reset_trigger,
.lock = optc1_lock,
.is_locked = optc1_is_locked,
.unlock = optc1_unlock,
.enable_optc_clock = optc1_enable_optc_clock,
.set_drr = optc1_set_drr,
.get_last_used_drr_vtotal = NULL,
.set_static_screen_control = optc1_set_static_screen_control,
.set_test_pattern = optc1_set_test_pattern,
.program_stereo = optc1_program_stereo,
.is_stereo_left_eye = optc1_is_stereo_left_eye,
.set_blank_data_double_buffer = optc1_set_blank_data_double_buffer,
.tg_init = optc1_tg_init,
.is_tg_enabled = optc1_is_tg_enabled,
.is_optc_underflow_occurred = optc1_is_optc_underflow_occurred,
.clear_optc_underflow = optc1_clear_optc_underflow,
.get_crc = optc1_get_crc,
.configure_crc = optc1_configure_crc,
.set_vtg_params = optc1_set_vtg_params,
.program_manual_trigger = optc1_program_manual_trigger,
.setup_manual_trigger = optc1_setup_manual_trigger,
.get_hw_timing = optc1_get_hw_timing,
};
void dcn10_timing_generator_init(struct optc *optc1)
{
optc1->base.funcs = &dcn10_tg_funcs;
optc1->max_h_total = optc1->tg_mask->OTG_H_TOTAL + 1;
optc1->max_v_total = optc1->tg_mask->OTG_V_TOTAL + 1;
optc1->min_h_blank = 32;
optc1->min_v_blank = 3;
optc1->min_v_blank_interlace = 5;
optc1->min_h_sync_width = 4;
optc1->min_v_sync_width = 1;
}
/* "Containter" vs. "pixel" is a concept within HW blocks, mostly those closer to the back-end. It works like this:
*
* - In most of the formats (RGB or YCbCr 4:4:4, 4:2:2 uncompressed and DSC 4:2:2 Simple) pixel rate is the same as
* containter rate.
*
* - In 4:2:0 (DSC or uncompressed) there are two pixels per container, hence the target container rate has to be
* halved to maintain the correct pixel rate.
*
* - Unlike 4:2:2 uncompressed, DSC 4:2:2 Native also has two pixels per container (this happens when DSC is applied
* to it) and has to be treated the same as 4:2:0, i.e. target containter rate has to be halved in this case as well.
*
*/
bool optc1_is_two_pixels_per_containter(const struct dc_crtc_timing *timing)
{
bool two_pix = timing->pixel_encoding == PIXEL_ENCODING_YCBCR420;
two_pix = two_pix || (timing->flags.DSC && timing->pixel_encoding == PIXEL_ENCODING_YCBCR422
&& !timing->dsc_cfg.ycbcr422_simple);
return two_pix;
}