1103 lines
32 KiB
C
1103 lines
32 KiB
C
|
#include <linux/gfp.h>
|
||
|
#include <linux/initrd.h>
|
||
|
#include <linux/ioport.h>
|
||
|
#include <linux/swap.h>
|
||
|
#include <linux/memblock.h>
|
||
|
#include <linux/swapfile.h>
|
||
|
#include <linux/swapops.h>
|
||
|
#include <linux/kmemleak.h>
|
||
|
#include <linux/sched/task.h>
|
||
|
|
||
|
#include <asm/set_memory.h>
|
||
|
#include <asm/cpu_device_id.h>
|
||
|
#include <asm/e820/api.h>
|
||
|
#include <asm/init.h>
|
||
|
#include <asm/page.h>
|
||
|
#include <asm/page_types.h>
|
||
|
#include <asm/sections.h>
|
||
|
#include <asm/setup.h>
|
||
|
#include <asm/tlbflush.h>
|
||
|
#include <asm/tlb.h>
|
||
|
#include <asm/proto.h>
|
||
|
#include <asm/dma.h> /* for MAX_DMA_PFN */
|
||
|
#include <asm/microcode.h>
|
||
|
#include <asm/kaslr.h>
|
||
|
#include <asm/hypervisor.h>
|
||
|
#include <asm/cpufeature.h>
|
||
|
#include <asm/pti.h>
|
||
|
#include <asm/text-patching.h>
|
||
|
#include <asm/memtype.h>
|
||
|
#include <asm/paravirt.h>
|
||
|
|
||
|
/*
|
||
|
* We need to define the tracepoints somewhere, and tlb.c
|
||
|
* is only compiled when SMP=y.
|
||
|
*/
|
||
|
#define CREATE_TRACE_POINTS
|
||
|
#include <trace/events/tlb.h>
|
||
|
|
||
|
#include "mm_internal.h"
|
||
|
|
||
|
/*
|
||
|
* Tables translating between page_cache_type_t and pte encoding.
|
||
|
*
|
||
|
* The default values are defined statically as minimal supported mode;
|
||
|
* WC and WT fall back to UC-. pat_init() updates these values to support
|
||
|
* more cache modes, WC and WT, when it is safe to do so. See pat_init()
|
||
|
* for the details. Note, __early_ioremap() used during early boot-time
|
||
|
* takes pgprot_t (pte encoding) and does not use these tables.
|
||
|
*
|
||
|
* Index into __cachemode2pte_tbl[] is the cachemode.
|
||
|
*
|
||
|
* Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
|
||
|
* (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
|
||
|
*/
|
||
|
static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
|
||
|
[_PAGE_CACHE_MODE_WB ] = 0 | 0 ,
|
||
|
[_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD,
|
||
|
[_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD,
|
||
|
[_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD,
|
||
|
[_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD,
|
||
|
[_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD,
|
||
|
};
|
||
|
|
||
|
unsigned long cachemode2protval(enum page_cache_mode pcm)
|
||
|
{
|
||
|
if (likely(pcm == 0))
|
||
|
return 0;
|
||
|
return __cachemode2pte_tbl[pcm];
|
||
|
}
|
||
|
EXPORT_SYMBOL(cachemode2protval);
|
||
|
|
||
|
static uint8_t __pte2cachemode_tbl[8] = {
|
||
|
[__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB,
|
||
|
[__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
|
||
|
[__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
|
||
|
[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC,
|
||
|
[__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
|
||
|
[__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
|
||
|
[__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
|
||
|
[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* Check that the write-protect PAT entry is set for write-protect.
|
||
|
* To do this without making assumptions how PAT has been set up (Xen has
|
||
|
* another layout than the kernel), translate the _PAGE_CACHE_MODE_WP cache
|
||
|
* mode via the __cachemode2pte_tbl[] into protection bits (those protection
|
||
|
* bits will select a cache mode of WP or better), and then translate the
|
||
|
* protection bits back into the cache mode using __pte2cm_idx() and the
|
||
|
* __pte2cachemode_tbl[] array. This will return the really used cache mode.
|
||
|
*/
|
||
|
bool x86_has_pat_wp(void)
|
||
|
{
|
||
|
uint16_t prot = __cachemode2pte_tbl[_PAGE_CACHE_MODE_WP];
|
||
|
|
||
|
return __pte2cachemode_tbl[__pte2cm_idx(prot)] == _PAGE_CACHE_MODE_WP;
|
||
|
}
|
||
|
|
||
|
enum page_cache_mode pgprot2cachemode(pgprot_t pgprot)
|
||
|
{
|
||
|
unsigned long masked;
|
||
|
|
||
|
masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK;
|
||
|
if (likely(masked == 0))
|
||
|
return 0;
|
||
|
return __pte2cachemode_tbl[__pte2cm_idx(masked)];
|
||
|
}
|
||
|
|
||
|
static unsigned long __initdata pgt_buf_start;
|
||
|
static unsigned long __initdata pgt_buf_end;
|
||
|
static unsigned long __initdata pgt_buf_top;
|
||
|
|
||
|
static unsigned long min_pfn_mapped;
|
||
|
|
||
|
static bool __initdata can_use_brk_pgt = true;
|
||
|
|
||
|
/*
|
||
|
* Pages returned are already directly mapped.
|
||
|
*
|
||
|
* Changing that is likely to break Xen, see commit:
|
||
|
*
|
||
|
* 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
|
||
|
*
|
||
|
* for detailed information.
|
||
|
*/
|
||
|
__ref void *alloc_low_pages(unsigned int num)
|
||
|
{
|
||
|
unsigned long pfn;
|
||
|
int i;
|
||
|
|
||
|
if (after_bootmem) {
|
||
|
unsigned int order;
|
||
|
|
||
|
order = get_order((unsigned long)num << PAGE_SHIFT);
|
||
|
return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
|
||
|
}
|
||
|
|
||
|
if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
|
||
|
unsigned long ret = 0;
|
||
|
|
||
|
if (min_pfn_mapped < max_pfn_mapped) {
|
||
|
ret = memblock_phys_alloc_range(
|
||
|
PAGE_SIZE * num, PAGE_SIZE,
|
||
|
min_pfn_mapped << PAGE_SHIFT,
|
||
|
max_pfn_mapped << PAGE_SHIFT);
|
||
|
}
|
||
|
if (!ret && can_use_brk_pgt)
|
||
|
ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
|
||
|
|
||
|
if (!ret)
|
||
|
panic("alloc_low_pages: can not alloc memory");
|
||
|
|
||
|
pfn = ret >> PAGE_SHIFT;
|
||
|
} else {
|
||
|
pfn = pgt_buf_end;
|
||
|
pgt_buf_end += num;
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < num; i++) {
|
||
|
void *adr;
|
||
|
|
||
|
adr = __va((pfn + i) << PAGE_SHIFT);
|
||
|
clear_page(adr);
|
||
|
}
|
||
|
|
||
|
return __va(pfn << PAGE_SHIFT);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* By default need to be able to allocate page tables below PGD firstly for
|
||
|
* the 0-ISA_END_ADDRESS range and secondly for the initial PMD_SIZE mapping.
|
||
|
* With KASLR memory randomization, depending on the machine e820 memory and the
|
||
|
* PUD alignment, twice that many pages may be needed when KASLR memory
|
||
|
* randomization is enabled.
|
||
|
*/
|
||
|
|
||
|
#ifndef CONFIG_X86_5LEVEL
|
||
|
#define INIT_PGD_PAGE_TABLES 3
|
||
|
#else
|
||
|
#define INIT_PGD_PAGE_TABLES 4
|
||
|
#endif
|
||
|
|
||
|
#ifndef CONFIG_RANDOMIZE_MEMORY
|
||
|
#define INIT_PGD_PAGE_COUNT (2 * INIT_PGD_PAGE_TABLES)
|
||
|
#else
|
||
|
#define INIT_PGD_PAGE_COUNT (4 * INIT_PGD_PAGE_TABLES)
|
||
|
#endif
|
||
|
|
||
|
#define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
|
||
|
RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
|
||
|
void __init early_alloc_pgt_buf(void)
|
||
|
{
|
||
|
unsigned long tables = INIT_PGT_BUF_SIZE;
|
||
|
phys_addr_t base;
|
||
|
|
||
|
base = __pa(extend_brk(tables, PAGE_SIZE));
|
||
|
|
||
|
pgt_buf_start = base >> PAGE_SHIFT;
|
||
|
pgt_buf_end = pgt_buf_start;
|
||
|
pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
|
||
|
}
|
||
|
|
||
|
int after_bootmem;
|
||
|
|
||
|
early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
|
||
|
|
||
|
struct map_range {
|
||
|
unsigned long start;
|
||
|
unsigned long end;
|
||
|
unsigned page_size_mask;
|
||
|
};
|
||
|
|
||
|
static int page_size_mask;
|
||
|
|
||
|
/*
|
||
|
* Save some of cr4 feature set we're using (e.g. Pentium 4MB
|
||
|
* enable and PPro Global page enable), so that any CPU's that boot
|
||
|
* up after us can get the correct flags. Invoked on the boot CPU.
|
||
|
*/
|
||
|
static inline void cr4_set_bits_and_update_boot(unsigned long mask)
|
||
|
{
|
||
|
mmu_cr4_features |= mask;
|
||
|
if (trampoline_cr4_features)
|
||
|
*trampoline_cr4_features = mmu_cr4_features;
|
||
|
cr4_set_bits(mask);
|
||
|
}
|
||
|
|
||
|
static void __init probe_page_size_mask(void)
|
||
|
{
|
||
|
/*
|
||
|
* For pagealloc debugging, identity mapping will use small pages.
|
||
|
* This will simplify cpa(), which otherwise needs to support splitting
|
||
|
* large pages into small in interrupt context, etc.
|
||
|
*/
|
||
|
if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
|
||
|
page_size_mask |= 1 << PG_LEVEL_2M;
|
||
|
else
|
||
|
direct_gbpages = 0;
|
||
|
|
||
|
/* Enable PSE if available */
|
||
|
if (boot_cpu_has(X86_FEATURE_PSE))
|
||
|
cr4_set_bits_and_update_boot(X86_CR4_PSE);
|
||
|
|
||
|
/* Enable PGE if available */
|
||
|
__supported_pte_mask &= ~_PAGE_GLOBAL;
|
||
|
if (boot_cpu_has(X86_FEATURE_PGE)) {
|
||
|
cr4_set_bits_and_update_boot(X86_CR4_PGE);
|
||
|
__supported_pte_mask |= _PAGE_GLOBAL;
|
||
|
}
|
||
|
|
||
|
/* By the default is everything supported: */
|
||
|
__default_kernel_pte_mask = __supported_pte_mask;
|
||
|
/* Except when with PTI where the kernel is mostly non-Global: */
|
||
|
if (cpu_feature_enabled(X86_FEATURE_PTI))
|
||
|
__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
|
||
|
|
||
|
/* Enable 1 GB linear kernel mappings if available: */
|
||
|
if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
|
||
|
printk(KERN_INFO "Using GB pages for direct mapping\n");
|
||
|
page_size_mask |= 1 << PG_LEVEL_1G;
|
||
|
} else {
|
||
|
direct_gbpages = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#define INTEL_MATCH(_model) { .vendor = X86_VENDOR_INTEL, \
|
||
|
.family = 6, \
|
||
|
.model = _model, \
|
||
|
}
|
||
|
/*
|
||
|
* INVLPG may not properly flush Global entries
|
||
|
* on these CPUs when PCIDs are enabled.
|
||
|
*/
|
||
|
static const struct x86_cpu_id invlpg_miss_ids[] = {
|
||
|
INTEL_MATCH(INTEL_FAM6_ALDERLAKE ),
|
||
|
INTEL_MATCH(INTEL_FAM6_ALDERLAKE_L ),
|
||
|
INTEL_MATCH(INTEL_FAM6_ALDERLAKE_N ),
|
||
|
INTEL_MATCH(INTEL_FAM6_RAPTORLAKE ),
|
||
|
INTEL_MATCH(INTEL_FAM6_RAPTORLAKE_P),
|
||
|
INTEL_MATCH(INTEL_FAM6_RAPTORLAKE_S),
|
||
|
{}
|
||
|
};
|
||
|
|
||
|
static void setup_pcid(void)
|
||
|
{
|
||
|
if (!IS_ENABLED(CONFIG_X86_64))
|
||
|
return;
|
||
|
|
||
|
if (!boot_cpu_has(X86_FEATURE_PCID))
|
||
|
return;
|
||
|
|
||
|
if (x86_match_cpu(invlpg_miss_ids)) {
|
||
|
pr_info("Incomplete global flushes, disabling PCID");
|
||
|
setup_clear_cpu_cap(X86_FEATURE_PCID);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (boot_cpu_has(X86_FEATURE_PGE)) {
|
||
|
/*
|
||
|
* This can't be cr4_set_bits_and_update_boot() -- the
|
||
|
* trampoline code can't handle CR4.PCIDE and it wouldn't
|
||
|
* do any good anyway. Despite the name,
|
||
|
* cr4_set_bits_and_update_boot() doesn't actually cause
|
||
|
* the bits in question to remain set all the way through
|
||
|
* the secondary boot asm.
|
||
|
*
|
||
|
* Instead, we brute-force it and set CR4.PCIDE manually in
|
||
|
* start_secondary().
|
||
|
*/
|
||
|
cr4_set_bits(X86_CR4_PCIDE);
|
||
|
|
||
|
/*
|
||
|
* INVPCID's single-context modes (2/3) only work if we set
|
||
|
* X86_CR4_PCIDE, *and* we INVPCID support. It's unusable
|
||
|
* on systems that have X86_CR4_PCIDE clear, or that have
|
||
|
* no INVPCID support at all.
|
||
|
*/
|
||
|
if (boot_cpu_has(X86_FEATURE_INVPCID))
|
||
|
setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
|
||
|
} else {
|
||
|
/*
|
||
|
* flush_tlb_all(), as currently implemented, won't work if
|
||
|
* PCID is on but PGE is not. Since that combination
|
||
|
* doesn't exist on real hardware, there's no reason to try
|
||
|
* to fully support it, but it's polite to avoid corrupting
|
||
|
* data if we're on an improperly configured VM.
|
||
|
*/
|
||
|
setup_clear_cpu_cap(X86_FEATURE_PCID);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_X86_32
|
||
|
#define NR_RANGE_MR 3
|
||
|
#else /* CONFIG_X86_64 */
|
||
|
#define NR_RANGE_MR 5
|
||
|
#endif
|
||
|
|
||
|
static int __meminit save_mr(struct map_range *mr, int nr_range,
|
||
|
unsigned long start_pfn, unsigned long end_pfn,
|
||
|
unsigned long page_size_mask)
|
||
|
{
|
||
|
if (start_pfn < end_pfn) {
|
||
|
if (nr_range >= NR_RANGE_MR)
|
||
|
panic("run out of range for init_memory_mapping\n");
|
||
|
mr[nr_range].start = start_pfn<<PAGE_SHIFT;
|
||
|
mr[nr_range].end = end_pfn<<PAGE_SHIFT;
|
||
|
mr[nr_range].page_size_mask = page_size_mask;
|
||
|
nr_range++;
|
||
|
}
|
||
|
|
||
|
return nr_range;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* adjust the page_size_mask for small range to go with
|
||
|
* big page size instead small one if nearby are ram too.
|
||
|
*/
|
||
|
static void __ref adjust_range_page_size_mask(struct map_range *mr,
|
||
|
int nr_range)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < nr_range; i++) {
|
||
|
if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
|
||
|
!(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
|
||
|
unsigned long start = round_down(mr[i].start, PMD_SIZE);
|
||
|
unsigned long end = round_up(mr[i].end, PMD_SIZE);
|
||
|
|
||
|
#ifdef CONFIG_X86_32
|
||
|
if ((end >> PAGE_SHIFT) > max_low_pfn)
|
||
|
continue;
|
||
|
#endif
|
||
|
|
||
|
if (memblock_is_region_memory(start, end - start))
|
||
|
mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
|
||
|
}
|
||
|
if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
|
||
|
!(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
|
||
|
unsigned long start = round_down(mr[i].start, PUD_SIZE);
|
||
|
unsigned long end = round_up(mr[i].end, PUD_SIZE);
|
||
|
|
||
|
if (memblock_is_region_memory(start, end - start))
|
||
|
mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const char *page_size_string(struct map_range *mr)
|
||
|
{
|
||
|
static const char str_1g[] = "1G";
|
||
|
static const char str_2m[] = "2M";
|
||
|
static const char str_4m[] = "4M";
|
||
|
static const char str_4k[] = "4k";
|
||
|
|
||
|
if (mr->page_size_mask & (1<<PG_LEVEL_1G))
|
||
|
return str_1g;
|
||
|
/*
|
||
|
* 32-bit without PAE has a 4M large page size.
|
||
|
* PG_LEVEL_2M is misnamed, but we can at least
|
||
|
* print out the right size in the string.
|
||
|
*/
|
||
|
if (IS_ENABLED(CONFIG_X86_32) &&
|
||
|
!IS_ENABLED(CONFIG_X86_PAE) &&
|
||
|
mr->page_size_mask & (1<<PG_LEVEL_2M))
|
||
|
return str_4m;
|
||
|
|
||
|
if (mr->page_size_mask & (1<<PG_LEVEL_2M))
|
||
|
return str_2m;
|
||
|
|
||
|
return str_4k;
|
||
|
}
|
||
|
|
||
|
static int __meminit split_mem_range(struct map_range *mr, int nr_range,
|
||
|
unsigned long start,
|
||
|
unsigned long end)
|
||
|
{
|
||
|
unsigned long start_pfn, end_pfn, limit_pfn;
|
||
|
unsigned long pfn;
|
||
|
int i;
|
||
|
|
||
|
limit_pfn = PFN_DOWN(end);
|
||
|
|
||
|
/* head if not big page alignment ? */
|
||
|
pfn = start_pfn = PFN_DOWN(start);
|
||
|
#ifdef CONFIG_X86_32
|
||
|
/*
|
||
|
* Don't use a large page for the first 2/4MB of memory
|
||
|
* because there are often fixed size MTRRs in there
|
||
|
* and overlapping MTRRs into large pages can cause
|
||
|
* slowdowns.
|
||
|
*/
|
||
|
if (pfn == 0)
|
||
|
end_pfn = PFN_DOWN(PMD_SIZE);
|
||
|
else
|
||
|
end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
|
||
|
#else /* CONFIG_X86_64 */
|
||
|
end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
|
||
|
#endif
|
||
|
if (end_pfn > limit_pfn)
|
||
|
end_pfn = limit_pfn;
|
||
|
if (start_pfn < end_pfn) {
|
||
|
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
|
||
|
pfn = end_pfn;
|
||
|
}
|
||
|
|
||
|
/* big page (2M) range */
|
||
|
start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
|
||
|
#ifdef CONFIG_X86_32
|
||
|
end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
|
||
|
#else /* CONFIG_X86_64 */
|
||
|
end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
|
||
|
if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
|
||
|
end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
|
||
|
#endif
|
||
|
|
||
|
if (start_pfn < end_pfn) {
|
||
|
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
|
||
|
page_size_mask & (1<<PG_LEVEL_2M));
|
||
|
pfn = end_pfn;
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_X86_64
|
||
|
/* big page (1G) range */
|
||
|
start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
|
||
|
end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
|
||
|
if (start_pfn < end_pfn) {
|
||
|
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
|
||
|
page_size_mask &
|
||
|
((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
|
||
|
pfn = end_pfn;
|
||
|
}
|
||
|
|
||
|
/* tail is not big page (1G) alignment */
|
||
|
start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
|
||
|
end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
|
||
|
if (start_pfn < end_pfn) {
|
||
|
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
|
||
|
page_size_mask & (1<<PG_LEVEL_2M));
|
||
|
pfn = end_pfn;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/* tail is not big page (2M) alignment */
|
||
|
start_pfn = pfn;
|
||
|
end_pfn = limit_pfn;
|
||
|
nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
|
||
|
|
||
|
if (!after_bootmem)
|
||
|
adjust_range_page_size_mask(mr, nr_range);
|
||
|
|
||
|
/* try to merge same page size and continuous */
|
||
|
for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
|
||
|
unsigned long old_start;
|
||
|
if (mr[i].end != mr[i+1].start ||
|
||
|
mr[i].page_size_mask != mr[i+1].page_size_mask)
|
||
|
continue;
|
||
|
/* move it */
|
||
|
old_start = mr[i].start;
|
||
|
memmove(&mr[i], &mr[i+1],
|
||
|
(nr_range - 1 - i) * sizeof(struct map_range));
|
||
|
mr[i--].start = old_start;
|
||
|
nr_range--;
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < nr_range; i++)
|
||
|
pr_debug(" [mem %#010lx-%#010lx] page %s\n",
|
||
|
mr[i].start, mr[i].end - 1,
|
||
|
page_size_string(&mr[i]));
|
||
|
|
||
|
return nr_range;
|
||
|
}
|
||
|
|
||
|
struct range pfn_mapped[E820_MAX_ENTRIES];
|
||
|
int nr_pfn_mapped;
|
||
|
|
||
|
static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
|
||
|
{
|
||
|
nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
|
||
|
nr_pfn_mapped, start_pfn, end_pfn);
|
||
|
nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
|
||
|
|
||
|
max_pfn_mapped = max(max_pfn_mapped, end_pfn);
|
||
|
|
||
|
if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
|
||
|
max_low_pfn_mapped = max(max_low_pfn_mapped,
|
||
|
min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
|
||
|
}
|
||
|
|
||
|
bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < nr_pfn_mapped; i++)
|
||
|
if ((start_pfn >= pfn_mapped[i].start) &&
|
||
|
(end_pfn <= pfn_mapped[i].end))
|
||
|
return true;
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Setup the direct mapping of the physical memory at PAGE_OFFSET.
|
||
|
* This runs before bootmem is initialized and gets pages directly from
|
||
|
* the physical memory. To access them they are temporarily mapped.
|
||
|
*/
|
||
|
unsigned long __ref init_memory_mapping(unsigned long start,
|
||
|
unsigned long end, pgprot_t prot)
|
||
|
{
|
||
|
struct map_range mr[NR_RANGE_MR];
|
||
|
unsigned long ret = 0;
|
||
|
int nr_range, i;
|
||
|
|
||
|
pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
|
||
|
start, end - 1);
|
||
|
|
||
|
memset(mr, 0, sizeof(mr));
|
||
|
nr_range = split_mem_range(mr, 0, start, end);
|
||
|
|
||
|
for (i = 0; i < nr_range; i++)
|
||
|
ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
|
||
|
mr[i].page_size_mask,
|
||
|
prot);
|
||
|
|
||
|
add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
|
||
|
|
||
|
return ret >> PAGE_SHIFT;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* We need to iterate through the E820 memory map and create direct mappings
|
||
|
* for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
|
||
|
* create direct mappings for all pfns from [0 to max_low_pfn) and
|
||
|
* [4GB to max_pfn) because of possible memory holes in high addresses
|
||
|
* that cannot be marked as UC by fixed/variable range MTRRs.
|
||
|
* Depending on the alignment of E820 ranges, this may possibly result
|
||
|
* in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
|
||
|
*
|
||
|
* init_mem_mapping() calls init_range_memory_mapping() with big range.
|
||
|
* That range would have hole in the middle or ends, and only ram parts
|
||
|
* will be mapped in init_range_memory_mapping().
|
||
|
*/
|
||
|
static unsigned long __init init_range_memory_mapping(
|
||
|
unsigned long r_start,
|
||
|
unsigned long r_end)
|
||
|
{
|
||
|
unsigned long start_pfn, end_pfn;
|
||
|
unsigned long mapped_ram_size = 0;
|
||
|
int i;
|
||
|
|
||
|
for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
|
||
|
u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
|
||
|
u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
|
||
|
if (start >= end)
|
||
|
continue;
|
||
|
|
||
|
/*
|
||
|
* if it is overlapping with brk pgt, we need to
|
||
|
* alloc pgt buf from memblock instead.
|
||
|
*/
|
||
|
can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
|
||
|
min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
|
||
|
init_memory_mapping(start, end, PAGE_KERNEL);
|
||
|
mapped_ram_size += end - start;
|
||
|
can_use_brk_pgt = true;
|
||
|
}
|
||
|
|
||
|
return mapped_ram_size;
|
||
|
}
|
||
|
|
||
|
static unsigned long __init get_new_step_size(unsigned long step_size)
|
||
|
{
|
||
|
/*
|
||
|
* Initial mapped size is PMD_SIZE (2M).
|
||
|
* We can not set step_size to be PUD_SIZE (1G) yet.
|
||
|
* In worse case, when we cross the 1G boundary, and
|
||
|
* PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
|
||
|
* to map 1G range with PTE. Hence we use one less than the
|
||
|
* difference of page table level shifts.
|
||
|
*
|
||
|
* Don't need to worry about overflow in the top-down case, on 32bit,
|
||
|
* when step_size is 0, round_down() returns 0 for start, and that
|
||
|
* turns it into 0x100000000ULL.
|
||
|
* In the bottom-up case, round_up(x, 0) returns 0 though too, which
|
||
|
* needs to be taken into consideration by the code below.
|
||
|
*/
|
||
|
return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* memory_map_top_down - Map [map_start, map_end) top down
|
||
|
* @map_start: start address of the target memory range
|
||
|
* @map_end: end address of the target memory range
|
||
|
*
|
||
|
* This function will setup direct mapping for memory range
|
||
|
* [map_start, map_end) in top-down. That said, the page tables
|
||
|
* will be allocated at the end of the memory, and we map the
|
||
|
* memory in top-down.
|
||
|
*/
|
||
|
static void __init memory_map_top_down(unsigned long map_start,
|
||
|
unsigned long map_end)
|
||
|
{
|
||
|
unsigned long real_end, last_start;
|
||
|
unsigned long step_size;
|
||
|
unsigned long addr;
|
||
|
unsigned long mapped_ram_size = 0;
|
||
|
|
||
|
/*
|
||
|
* Systems that have many reserved areas near top of the memory,
|
||
|
* e.g. QEMU with less than 1G RAM and EFI enabled, or Xen, will
|
||
|
* require lots of 4K mappings which may exhaust pgt_buf.
|
||
|
* Start with top-most PMD_SIZE range aligned at PMD_SIZE to ensure
|
||
|
* there is enough mapped memory that can be allocated from
|
||
|
* memblock.
|
||
|
*/
|
||
|
addr = memblock_phys_alloc_range(PMD_SIZE, PMD_SIZE, map_start,
|
||
|
map_end);
|
||
|
memblock_free(addr, PMD_SIZE);
|
||
|
real_end = addr + PMD_SIZE;
|
||
|
|
||
|
/* step_size need to be small so pgt_buf from BRK could cover it */
|
||
|
step_size = PMD_SIZE;
|
||
|
max_pfn_mapped = 0; /* will get exact value next */
|
||
|
min_pfn_mapped = real_end >> PAGE_SHIFT;
|
||
|
last_start = real_end;
|
||
|
|
||
|
/*
|
||
|
* We start from the top (end of memory) and go to the bottom.
|
||
|
* The memblock_find_in_range() gets us a block of RAM from the
|
||
|
* end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
|
||
|
* for page table.
|
||
|
*/
|
||
|
while (last_start > map_start) {
|
||
|
unsigned long start;
|
||
|
|
||
|
if (last_start > step_size) {
|
||
|
start = round_down(last_start - 1, step_size);
|
||
|
if (start < map_start)
|
||
|
start = map_start;
|
||
|
} else
|
||
|
start = map_start;
|
||
|
mapped_ram_size += init_range_memory_mapping(start,
|
||
|
last_start);
|
||
|
last_start = start;
|
||
|
min_pfn_mapped = last_start >> PAGE_SHIFT;
|
||
|
if (mapped_ram_size >= step_size)
|
||
|
step_size = get_new_step_size(step_size);
|
||
|
}
|
||
|
|
||
|
if (real_end < map_end)
|
||
|
init_range_memory_mapping(real_end, map_end);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* memory_map_bottom_up - Map [map_start, map_end) bottom up
|
||
|
* @map_start: start address of the target memory range
|
||
|
* @map_end: end address of the target memory range
|
||
|
*
|
||
|
* This function will setup direct mapping for memory range
|
||
|
* [map_start, map_end) in bottom-up. Since we have limited the
|
||
|
* bottom-up allocation above the kernel, the page tables will
|
||
|
* be allocated just above the kernel and we map the memory
|
||
|
* in [map_start, map_end) in bottom-up.
|
||
|
*/
|
||
|
static void __init memory_map_bottom_up(unsigned long map_start,
|
||
|
unsigned long map_end)
|
||
|
{
|
||
|
unsigned long next, start;
|
||
|
unsigned long mapped_ram_size = 0;
|
||
|
/* step_size need to be small so pgt_buf from BRK could cover it */
|
||
|
unsigned long step_size = PMD_SIZE;
|
||
|
|
||
|
start = map_start;
|
||
|
min_pfn_mapped = start >> PAGE_SHIFT;
|
||
|
|
||
|
/*
|
||
|
* We start from the bottom (@map_start) and go to the top (@map_end).
|
||
|
* The memblock_find_in_range() gets us a block of RAM from the
|
||
|
* end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
|
||
|
* for page table.
|
||
|
*/
|
||
|
while (start < map_end) {
|
||
|
if (step_size && map_end - start > step_size) {
|
||
|
next = round_up(start + 1, step_size);
|
||
|
if (next > map_end)
|
||
|
next = map_end;
|
||
|
} else {
|
||
|
next = map_end;
|
||
|
}
|
||
|
|
||
|
mapped_ram_size += init_range_memory_mapping(start, next);
|
||
|
start = next;
|
||
|
|
||
|
if (mapped_ram_size >= step_size)
|
||
|
step_size = get_new_step_size(step_size);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The real mode trampoline, which is required for bootstrapping CPUs
|
||
|
* occupies only a small area under the low 1MB. See reserve_real_mode()
|
||
|
* for details.
|
||
|
*
|
||
|
* If KASLR is disabled the first PGD entry of the direct mapping is copied
|
||
|
* to map the real mode trampoline.
|
||
|
*
|
||
|
* If KASLR is enabled, copy only the PUD which covers the low 1MB
|
||
|
* area. This limits the randomization granularity to 1GB for both 4-level
|
||
|
* and 5-level paging.
|
||
|
*/
|
||
|
static void __init init_trampoline(void)
|
||
|
{
|
||
|
#ifdef CONFIG_X86_64
|
||
|
if (!kaslr_memory_enabled())
|
||
|
trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)];
|
||
|
else
|
||
|
init_trampoline_kaslr();
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
void __init init_mem_mapping(void)
|
||
|
{
|
||
|
unsigned long end;
|
||
|
|
||
|
pti_check_boottime_disable();
|
||
|
probe_page_size_mask();
|
||
|
setup_pcid();
|
||
|
|
||
|
#ifdef CONFIG_X86_64
|
||
|
end = max_pfn << PAGE_SHIFT;
|
||
|
#else
|
||
|
end = max_low_pfn << PAGE_SHIFT;
|
||
|
#endif
|
||
|
|
||
|
/* the ISA range is always mapped regardless of memory holes */
|
||
|
init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL);
|
||
|
|
||
|
/* Init the trampoline, possibly with KASLR memory offset */
|
||
|
init_trampoline();
|
||
|
|
||
|
/*
|
||
|
* If the allocation is in bottom-up direction, we setup direct mapping
|
||
|
* in bottom-up, otherwise we setup direct mapping in top-down.
|
||
|
*/
|
||
|
if (memblock_bottom_up()) {
|
||
|
unsigned long kernel_end = __pa_symbol(_end);
|
||
|
|
||
|
/*
|
||
|
* we need two separate calls here. This is because we want to
|
||
|
* allocate page tables above the kernel. So we first map
|
||
|
* [kernel_end, end) to make memory above the kernel be mapped
|
||
|
* as soon as possible. And then use page tables allocated above
|
||
|
* the kernel to map [ISA_END_ADDRESS, kernel_end).
|
||
|
*/
|
||
|
memory_map_bottom_up(kernel_end, end);
|
||
|
memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
|
||
|
} else {
|
||
|
memory_map_top_down(ISA_END_ADDRESS, end);
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_X86_64
|
||
|
if (max_pfn > max_low_pfn) {
|
||
|
/* can we preserve max_low_pfn ?*/
|
||
|
max_low_pfn = max_pfn;
|
||
|
}
|
||
|
#else
|
||
|
early_ioremap_page_table_range_init();
|
||
|
#endif
|
||
|
|
||
|
load_cr3(swapper_pg_dir);
|
||
|
__flush_tlb_all();
|
||
|
|
||
|
x86_init.hyper.init_mem_mapping();
|
||
|
|
||
|
early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Initialize an mm_struct to be used during poking and a pointer to be used
|
||
|
* during patching.
|
||
|
*/
|
||
|
void __init poking_init(void)
|
||
|
{
|
||
|
spinlock_t *ptl;
|
||
|
pte_t *ptep;
|
||
|
|
||
|
poking_mm = mm_alloc();
|
||
|
BUG_ON(!poking_mm);
|
||
|
|
||
|
/* Xen PV guests need the PGD to be pinned. */
|
||
|
paravirt_arch_dup_mmap(NULL, poking_mm);
|
||
|
|
||
|
/*
|
||
|
* Randomize the poking address, but make sure that the following page
|
||
|
* will be mapped at the same PMD. We need 2 pages, so find space for 3,
|
||
|
* and adjust the address if the PMD ends after the first one.
|
||
|
*/
|
||
|
poking_addr = TASK_UNMAPPED_BASE;
|
||
|
if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
|
||
|
poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
|
||
|
(TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
|
||
|
|
||
|
if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
|
||
|
poking_addr += PAGE_SIZE;
|
||
|
|
||
|
/*
|
||
|
* We need to trigger the allocation of the page-tables that will be
|
||
|
* needed for poking now. Later, poking may be performed in an atomic
|
||
|
* section, which might cause allocation to fail.
|
||
|
*/
|
||
|
ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
|
||
|
BUG_ON(!ptep);
|
||
|
pte_unmap_unlock(ptep, ptl);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* devmem_is_allowed() checks to see if /dev/mem access to a certain address
|
||
|
* is valid. The argument is a physical page number.
|
||
|
*
|
||
|
* On x86, access has to be given to the first megabyte of RAM because that
|
||
|
* area traditionally contains BIOS code and data regions used by X, dosemu,
|
||
|
* and similar apps. Since they map the entire memory range, the whole range
|
||
|
* must be allowed (for mapping), but any areas that would otherwise be
|
||
|
* disallowed are flagged as being "zero filled" instead of rejected.
|
||
|
* Access has to be given to non-kernel-ram areas as well, these contain the
|
||
|
* PCI mmio resources as well as potential bios/acpi data regions.
|
||
|
*/
|
||
|
int devmem_is_allowed(unsigned long pagenr)
|
||
|
{
|
||
|
if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
|
||
|
IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
|
||
|
!= REGION_DISJOINT) {
|
||
|
/*
|
||
|
* For disallowed memory regions in the low 1MB range,
|
||
|
* request that the page be shown as all zeros.
|
||
|
*/
|
||
|
if (pagenr < 256)
|
||
|
return 2;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This must follow RAM test, since System RAM is considered a
|
||
|
* restricted resource under CONFIG_STRICT_IOMEM.
|
||
|
*/
|
||
|
if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
|
||
|
/* Low 1MB bypasses iomem restrictions. */
|
||
|
if (pagenr < 256)
|
||
|
return 1;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
void free_init_pages(const char *what, unsigned long begin, unsigned long end)
|
||
|
{
|
||
|
unsigned long begin_aligned, end_aligned;
|
||
|
|
||
|
/* Make sure boundaries are page aligned */
|
||
|
begin_aligned = PAGE_ALIGN(begin);
|
||
|
end_aligned = end & PAGE_MASK;
|
||
|
|
||
|
if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
|
||
|
begin = begin_aligned;
|
||
|
end = end_aligned;
|
||
|
}
|
||
|
|
||
|
if (begin >= end)
|
||
|
return;
|
||
|
|
||
|
/*
|
||
|
* If debugging page accesses then do not free this memory but
|
||
|
* mark them not present - any buggy init-section access will
|
||
|
* create a kernel page fault:
|
||
|
*/
|
||
|
if (debug_pagealloc_enabled()) {
|
||
|
pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
|
||
|
begin, end - 1);
|
||
|
/*
|
||
|
* Inform kmemleak about the hole in the memory since the
|
||
|
* corresponding pages will be unmapped.
|
||
|
*/
|
||
|
kmemleak_free_part((void *)begin, end - begin);
|
||
|
set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
|
||
|
} else {
|
||
|
/*
|
||
|
* We just marked the kernel text read only above, now that
|
||
|
* we are going to free part of that, we need to make that
|
||
|
* writeable and non-executable first.
|
||
|
*/
|
||
|
set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
|
||
|
set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
|
||
|
|
||
|
free_reserved_area((void *)begin, (void *)end,
|
||
|
POISON_FREE_INITMEM, what);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* begin/end can be in the direct map or the "high kernel mapping"
|
||
|
* used for the kernel image only. free_init_pages() will do the
|
||
|
* right thing for either kind of address.
|
||
|
*/
|
||
|
void free_kernel_image_pages(const char *what, void *begin, void *end)
|
||
|
{
|
||
|
unsigned long begin_ul = (unsigned long)begin;
|
||
|
unsigned long end_ul = (unsigned long)end;
|
||
|
unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
|
||
|
|
||
|
free_init_pages(what, begin_ul, end_ul);
|
||
|
|
||
|
/*
|
||
|
* PTI maps some of the kernel into userspace. For performance,
|
||
|
* this includes some kernel areas that do not contain secrets.
|
||
|
* Those areas might be adjacent to the parts of the kernel image
|
||
|
* being freed, which may contain secrets. Remove the "high kernel
|
||
|
* image mapping" for these freed areas, ensuring they are not even
|
||
|
* potentially vulnerable to Meltdown regardless of the specific
|
||
|
* optimizations PTI is currently using.
|
||
|
*
|
||
|
* The "noalias" prevents unmapping the direct map alias which is
|
||
|
* needed to access the freed pages.
|
||
|
*
|
||
|
* This is only valid for 64bit kernels. 32bit has only one mapping
|
||
|
* which can't be treated in this way for obvious reasons.
|
||
|
*/
|
||
|
if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
|
||
|
set_memory_np_noalias(begin_ul, len_pages);
|
||
|
}
|
||
|
|
||
|
void __ref free_initmem(void)
|
||
|
{
|
||
|
e820__reallocate_tables();
|
||
|
|
||
|
mem_encrypt_free_decrypted_mem();
|
||
|
|
||
|
free_kernel_image_pages("unused kernel image (initmem)",
|
||
|
&__init_begin, &__init_end);
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_BLK_DEV_INITRD
|
||
|
void __init free_initrd_mem(unsigned long start, unsigned long end)
|
||
|
{
|
||
|
/*
|
||
|
* end could be not aligned, and We can not align that,
|
||
|
* decompressor could be confused by aligned initrd_end
|
||
|
* We already reserve the end partial page before in
|
||
|
* - i386_start_kernel()
|
||
|
* - x86_64_start_kernel()
|
||
|
* - relocate_initrd()
|
||
|
* So here We can do PAGE_ALIGN() safely to get partial page to be freed
|
||
|
*/
|
||
|
free_init_pages("initrd", start, PAGE_ALIGN(end));
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Calculate the precise size of the DMA zone (first 16 MB of RAM),
|
||
|
* and pass it to the MM layer - to help it set zone watermarks more
|
||
|
* accurately.
|
||
|
*
|
||
|
* Done on 64-bit systems only for the time being, although 32-bit systems
|
||
|
* might benefit from this as well.
|
||
|
*/
|
||
|
void __init memblock_find_dma_reserve(void)
|
||
|
{
|
||
|
#ifdef CONFIG_X86_64
|
||
|
u64 nr_pages = 0, nr_free_pages = 0;
|
||
|
unsigned long start_pfn, end_pfn;
|
||
|
phys_addr_t start_addr, end_addr;
|
||
|
int i;
|
||
|
u64 u;
|
||
|
|
||
|
/*
|
||
|
* Iterate over all memory ranges (free and reserved ones alike),
|
||
|
* to calculate the total number of pages in the first 16 MB of RAM:
|
||
|
*/
|
||
|
nr_pages = 0;
|
||
|
for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
|
||
|
start_pfn = min(start_pfn, MAX_DMA_PFN);
|
||
|
end_pfn = min(end_pfn, MAX_DMA_PFN);
|
||
|
|
||
|
nr_pages += end_pfn - start_pfn;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Iterate over free memory ranges to calculate the number of free
|
||
|
* pages in the DMA zone, while not counting potential partial
|
||
|
* pages at the beginning or the end of the range:
|
||
|
*/
|
||
|
nr_free_pages = 0;
|
||
|
for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
|
||
|
start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
|
||
|
end_pfn = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
|
||
|
|
||
|
if (start_pfn < end_pfn)
|
||
|
nr_free_pages += end_pfn - start_pfn;
|
||
|
}
|
||
|
|
||
|
set_dma_reserve(nr_pages - nr_free_pages);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
void __init zone_sizes_init(void)
|
||
|
{
|
||
|
unsigned long max_zone_pfns[MAX_NR_ZONES];
|
||
|
|
||
|
memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
|
||
|
|
||
|
#ifdef CONFIG_ZONE_DMA
|
||
|
max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn);
|
||
|
#endif
|
||
|
#ifdef CONFIG_ZONE_DMA32
|
||
|
max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn);
|
||
|
#endif
|
||
|
max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
|
||
|
#ifdef CONFIG_HIGHMEM
|
||
|
max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
|
||
|
#endif
|
||
|
|
||
|
free_area_init(max_zone_pfns);
|
||
|
}
|
||
|
|
||
|
__visible DEFINE_PER_CPU_ALIGNED(struct tlb_state, cpu_tlbstate) = {
|
||
|
.loaded_mm = &init_mm,
|
||
|
.next_asid = 1,
|
||
|
.cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */
|
||
|
};
|
||
|
|
||
|
void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
|
||
|
{
|
||
|
/* entry 0 MUST be WB (hardwired to speed up translations) */
|
||
|
BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
|
||
|
|
||
|
__cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
|
||
|
__pte2cachemode_tbl[entry] = cache;
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_SWAP
|
||
|
unsigned long max_swapfile_size(void)
|
||
|
{
|
||
|
unsigned long pages;
|
||
|
|
||
|
pages = generic_max_swapfile_size();
|
||
|
|
||
|
if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
|
||
|
/* Limit the swap file size to MAX_PA/2 for L1TF workaround */
|
||
|
unsigned long long l1tf_limit = l1tf_pfn_limit();
|
||
|
/*
|
||
|
* We encode swap offsets also with 3 bits below those for pfn
|
||
|
* which makes the usable limit higher.
|
||
|
*/
|
||
|
#if CONFIG_PGTABLE_LEVELS > 2
|
||
|
l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
|
||
|
#endif
|
||
|
pages = min_t(unsigned long long, l1tf_limit, pages);
|
||
|
}
|
||
|
return pages;
|
||
|
}
|
||
|
#endif
|