268 lines
7.6 KiB
C
268 lines
7.6 KiB
C
|
// SPDX-License-Identifier: GPL-2.0-only
|
||
|
#include <linux/extable.h>
|
||
|
#include <linux/uaccess.h>
|
||
|
#include <linux/sched/debug.h>
|
||
|
#include <linux/bitfield.h>
|
||
|
#include <xen/xen.h>
|
||
|
|
||
|
#include <asm/fpu/internal.h>
|
||
|
#include <asm/sev.h>
|
||
|
#include <asm/traps.h>
|
||
|
#include <asm/kdebug.h>
|
||
|
#include <asm/insn-eval.h>
|
||
|
|
||
|
static inline unsigned long *pt_regs_nr(struct pt_regs *regs, int nr)
|
||
|
{
|
||
|
int reg_offset = pt_regs_offset(regs, nr);
|
||
|
static unsigned long __dummy;
|
||
|
|
||
|
if (WARN_ON_ONCE(reg_offset < 0))
|
||
|
return &__dummy;
|
||
|
|
||
|
return (unsigned long *)((unsigned long)regs + reg_offset);
|
||
|
}
|
||
|
|
||
|
static inline unsigned long
|
||
|
ex_fixup_addr(const struct exception_table_entry *x)
|
||
|
{
|
||
|
return (unsigned long)&x->fixup + x->fixup;
|
||
|
}
|
||
|
|
||
|
static bool ex_handler_default(const struct exception_table_entry *e,
|
||
|
struct pt_regs *regs)
|
||
|
{
|
||
|
if (e->data & EX_FLAG_CLEAR_AX)
|
||
|
regs->ax = 0;
|
||
|
if (e->data & EX_FLAG_CLEAR_DX)
|
||
|
regs->dx = 0;
|
||
|
|
||
|
regs->ip = ex_fixup_addr(e);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static bool ex_handler_fault(const struct exception_table_entry *fixup,
|
||
|
struct pt_regs *regs, int trapnr)
|
||
|
{
|
||
|
regs->ax = trapnr;
|
||
|
return ex_handler_default(fixup, regs);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Handler for when we fail to restore a task's FPU state. We should never get
|
||
|
* here because the FPU state of a task using the FPU (task->thread.fpu.state)
|
||
|
* should always be valid. However, past bugs have allowed userspace to set
|
||
|
* reserved bits in the XSAVE area using PTRACE_SETREGSET or sys_rt_sigreturn().
|
||
|
* These caused XRSTOR to fail when switching to the task, leaking the FPU
|
||
|
* registers of the task previously executing on the CPU. Mitigate this class
|
||
|
* of vulnerability by restoring from the initial state (essentially, zeroing
|
||
|
* out all the FPU registers) if we can't restore from the task's FPU state.
|
||
|
*/
|
||
|
static bool ex_handler_fprestore(const struct exception_table_entry *fixup,
|
||
|
struct pt_regs *regs)
|
||
|
{
|
||
|
regs->ip = ex_fixup_addr(fixup);
|
||
|
|
||
|
WARN_ONCE(1, "Bad FPU state detected at %pB, reinitializing FPU registers.",
|
||
|
(void *)instruction_pointer(regs));
|
||
|
|
||
|
__restore_fpregs_from_fpstate(&init_fpstate, xfeatures_mask_fpstate());
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static bool ex_handler_uaccess(const struct exception_table_entry *fixup,
|
||
|
struct pt_regs *regs, int trapnr)
|
||
|
{
|
||
|
WARN_ONCE(trapnr == X86_TRAP_GP, "General protection fault in user access. Non-canonical address?");
|
||
|
return ex_handler_default(fixup, regs);
|
||
|
}
|
||
|
|
||
|
static bool ex_handler_copy(const struct exception_table_entry *fixup,
|
||
|
struct pt_regs *regs, int trapnr)
|
||
|
{
|
||
|
WARN_ONCE(trapnr == X86_TRAP_GP, "General protection fault in user access. Non-canonical address?");
|
||
|
return ex_handler_fault(fixup, regs, trapnr);
|
||
|
}
|
||
|
|
||
|
static bool ex_handler_msr(const struct exception_table_entry *fixup,
|
||
|
struct pt_regs *regs, bool wrmsr, bool safe, int reg)
|
||
|
{
|
||
|
if (__ONCE_LITE_IF(!safe && wrmsr)) {
|
||
|
pr_warn("unchecked MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n",
|
||
|
(unsigned int)regs->cx, (unsigned int)regs->dx,
|
||
|
(unsigned int)regs->ax, regs->ip, (void *)regs->ip);
|
||
|
show_stack_regs(regs);
|
||
|
}
|
||
|
|
||
|
if (__ONCE_LITE_IF(!safe && !wrmsr)) {
|
||
|
pr_warn("unchecked MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n",
|
||
|
(unsigned int)regs->cx, regs->ip, (void *)regs->ip);
|
||
|
show_stack_regs(regs);
|
||
|
}
|
||
|
|
||
|
if (!wrmsr) {
|
||
|
/* Pretend that the read succeeded and returned 0. */
|
||
|
regs->ax = 0;
|
||
|
regs->dx = 0;
|
||
|
}
|
||
|
|
||
|
if (safe)
|
||
|
*pt_regs_nr(regs, reg) = -EIO;
|
||
|
|
||
|
return ex_handler_default(fixup, regs);
|
||
|
}
|
||
|
|
||
|
static bool ex_handler_clear_fs(const struct exception_table_entry *fixup,
|
||
|
struct pt_regs *regs)
|
||
|
{
|
||
|
if (static_cpu_has(X86_BUG_NULL_SEG))
|
||
|
asm volatile ("mov %0, %%fs" : : "rm" (__USER_DS));
|
||
|
asm volatile ("mov %0, %%fs" : : "rm" (0));
|
||
|
return ex_handler_default(fixup, regs);
|
||
|
}
|
||
|
|
||
|
static bool ex_handler_imm_reg(const struct exception_table_entry *fixup,
|
||
|
struct pt_regs *regs, int reg, int imm)
|
||
|
{
|
||
|
*pt_regs_nr(regs, reg) = (long)imm;
|
||
|
return ex_handler_default(fixup, regs);
|
||
|
}
|
||
|
|
||
|
int ex_get_fixup_type(unsigned long ip)
|
||
|
{
|
||
|
const struct exception_table_entry *e = search_exception_tables(ip);
|
||
|
|
||
|
return e ? FIELD_GET(EX_DATA_TYPE_MASK, e->data) : EX_TYPE_NONE;
|
||
|
}
|
||
|
|
||
|
int fixup_exception(struct pt_regs *regs, int trapnr, unsigned long error_code,
|
||
|
unsigned long fault_addr)
|
||
|
{
|
||
|
const struct exception_table_entry *e;
|
||
|
int type, reg, imm;
|
||
|
|
||
|
#ifdef CONFIG_PNPBIOS
|
||
|
if (unlikely(SEGMENT_IS_PNP_CODE(regs->cs))) {
|
||
|
extern u32 pnp_bios_fault_eip, pnp_bios_fault_esp;
|
||
|
extern u32 pnp_bios_is_utter_crap;
|
||
|
pnp_bios_is_utter_crap = 1;
|
||
|
printk(KERN_CRIT "PNPBIOS fault.. attempting recovery.\n");
|
||
|
__asm__ volatile(
|
||
|
"movl %0, %%esp\n\t"
|
||
|
"jmp *%1\n\t"
|
||
|
: : "g" (pnp_bios_fault_esp), "g" (pnp_bios_fault_eip));
|
||
|
panic("do_trap: can't hit this");
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
e = search_exception_tables(regs->ip);
|
||
|
if (!e)
|
||
|
return 0;
|
||
|
|
||
|
type = FIELD_GET(EX_DATA_TYPE_MASK, e->data);
|
||
|
reg = FIELD_GET(EX_DATA_REG_MASK, e->data);
|
||
|
imm = FIELD_GET(EX_DATA_IMM_MASK, e->data);
|
||
|
|
||
|
switch (type) {
|
||
|
case EX_TYPE_DEFAULT:
|
||
|
case EX_TYPE_DEFAULT_MCE_SAFE:
|
||
|
return ex_handler_default(e, regs);
|
||
|
case EX_TYPE_FAULT:
|
||
|
case EX_TYPE_FAULT_MCE_SAFE:
|
||
|
return ex_handler_fault(e, regs, trapnr);
|
||
|
case EX_TYPE_UACCESS:
|
||
|
return ex_handler_uaccess(e, regs, trapnr);
|
||
|
case EX_TYPE_COPY:
|
||
|
return ex_handler_copy(e, regs, trapnr);
|
||
|
case EX_TYPE_CLEAR_FS:
|
||
|
return ex_handler_clear_fs(e, regs);
|
||
|
case EX_TYPE_FPU_RESTORE:
|
||
|
return ex_handler_fprestore(e, regs);
|
||
|
case EX_TYPE_BPF:
|
||
|
return ex_handler_bpf(e, regs);
|
||
|
case EX_TYPE_WRMSR:
|
||
|
return ex_handler_msr(e, regs, true, false, reg);
|
||
|
case EX_TYPE_RDMSR:
|
||
|
return ex_handler_msr(e, regs, false, false, reg);
|
||
|
case EX_TYPE_WRMSR_SAFE:
|
||
|
return ex_handler_msr(e, regs, true, true, reg);
|
||
|
case EX_TYPE_RDMSR_SAFE:
|
||
|
return ex_handler_msr(e, regs, false, true, reg);
|
||
|
case EX_TYPE_WRMSR_IN_MCE:
|
||
|
ex_handler_msr_mce(regs, true);
|
||
|
break;
|
||
|
case EX_TYPE_RDMSR_IN_MCE:
|
||
|
ex_handler_msr_mce(regs, false);
|
||
|
break;
|
||
|
case EX_TYPE_POP_REG:
|
||
|
regs->sp += sizeof(long);
|
||
|
fallthrough;
|
||
|
case EX_TYPE_IMM_REG:
|
||
|
return ex_handler_imm_reg(e, regs, reg, imm);
|
||
|
}
|
||
|
BUG();
|
||
|
}
|
||
|
|
||
|
extern unsigned int early_recursion_flag;
|
||
|
|
||
|
/* Restricted version used during very early boot */
|
||
|
void __init early_fixup_exception(struct pt_regs *regs, int trapnr)
|
||
|
{
|
||
|
/* Ignore early NMIs. */
|
||
|
if (trapnr == X86_TRAP_NMI)
|
||
|
return;
|
||
|
|
||
|
if (early_recursion_flag > 2)
|
||
|
goto halt_loop;
|
||
|
|
||
|
/*
|
||
|
* Old CPUs leave the high bits of CS on the stack
|
||
|
* undefined. I'm not sure which CPUs do this, but at least
|
||
|
* the 486 DX works this way.
|
||
|
* Xen pv domains are not using the default __KERNEL_CS.
|
||
|
*/
|
||
|
if (!xen_pv_domain() && regs->cs != __KERNEL_CS)
|
||
|
goto fail;
|
||
|
|
||
|
/*
|
||
|
* The full exception fixup machinery is available as soon as
|
||
|
* the early IDT is loaded. This means that it is the
|
||
|
* responsibility of extable users to either function correctly
|
||
|
* when handlers are invoked early or to simply avoid causing
|
||
|
* exceptions before they're ready to handle them.
|
||
|
*
|
||
|
* This is better than filtering which handlers can be used,
|
||
|
* because refusing to call a handler here is guaranteed to
|
||
|
* result in a hard-to-debug panic.
|
||
|
*
|
||
|
* Keep in mind that not all vectors actually get here. Early
|
||
|
* page faults, for example, are special.
|
||
|
*/
|
||
|
if (fixup_exception(regs, trapnr, regs->orig_ax, 0))
|
||
|
return;
|
||
|
|
||
|
if (trapnr == X86_TRAP_UD) {
|
||
|
if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN) {
|
||
|
/* Skip the ud2. */
|
||
|
regs->ip += LEN_UD2;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If this was a BUG and report_bug returns or if this
|
||
|
* was just a normal #UD, we want to continue onward and
|
||
|
* crash.
|
||
|
*/
|
||
|
}
|
||
|
|
||
|
fail:
|
||
|
early_printk("PANIC: early exception 0x%02x IP %lx:%lx error %lx cr2 0x%lx\n",
|
||
|
(unsigned)trapnr, (unsigned long)regs->cs, regs->ip,
|
||
|
regs->orig_ax, read_cr2());
|
||
|
|
||
|
show_regs(regs);
|
||
|
|
||
|
halt_loop:
|
||
|
while (true)
|
||
|
halt();
|
||
|
}
|