335 lines
9.4 KiB
C
335 lines
9.4 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
/*
|
||
|
* Copyright (C) 2012 Regents of the University of California
|
||
|
* Copyright (C) 2017 SiFive
|
||
|
* Copyright (C) 2021 Western Digital Corporation or its affiliates.
|
||
|
*/
|
||
|
|
||
|
#include <linux/bitops.h>
|
||
|
#include <linux/cpumask.h>
|
||
|
#include <linux/mm.h>
|
||
|
#include <linux/percpu.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/spinlock.h>
|
||
|
#include <linux/static_key.h>
|
||
|
#include <asm/tlbflush.h>
|
||
|
#include <asm/cacheflush.h>
|
||
|
#include <asm/mmu_context.h>
|
||
|
|
||
|
#ifdef CONFIG_MMU
|
||
|
|
||
|
DEFINE_STATIC_KEY_FALSE(use_asid_allocator);
|
||
|
|
||
|
static unsigned long asid_bits;
|
||
|
static unsigned long num_asids;
|
||
|
unsigned long asid_mask;
|
||
|
|
||
|
static atomic_long_t current_version;
|
||
|
|
||
|
static DEFINE_RAW_SPINLOCK(context_lock);
|
||
|
static cpumask_t context_tlb_flush_pending;
|
||
|
static unsigned long *context_asid_map;
|
||
|
|
||
|
static DEFINE_PER_CPU(atomic_long_t, active_context);
|
||
|
static DEFINE_PER_CPU(unsigned long, reserved_context);
|
||
|
|
||
|
static bool check_update_reserved_context(unsigned long cntx,
|
||
|
unsigned long newcntx)
|
||
|
{
|
||
|
int cpu;
|
||
|
bool hit = false;
|
||
|
|
||
|
/*
|
||
|
* Iterate over the set of reserved CONTEXT looking for a match.
|
||
|
* If we find one, then we can update our mm to use new CONTEXT
|
||
|
* (i.e. the same CONTEXT in the current_version) but we can't
|
||
|
* exit the loop early, since we need to ensure that all copies
|
||
|
* of the old CONTEXT are updated to reflect the mm. Failure to do
|
||
|
* so could result in us missing the reserved CONTEXT in a future
|
||
|
* version.
|
||
|
*/
|
||
|
for_each_possible_cpu(cpu) {
|
||
|
if (per_cpu(reserved_context, cpu) == cntx) {
|
||
|
hit = true;
|
||
|
per_cpu(reserved_context, cpu) = newcntx;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return hit;
|
||
|
}
|
||
|
|
||
|
static void __flush_context(void)
|
||
|
{
|
||
|
int i;
|
||
|
unsigned long cntx;
|
||
|
|
||
|
/* Must be called with context_lock held */
|
||
|
lockdep_assert_held(&context_lock);
|
||
|
|
||
|
/* Update the list of reserved ASIDs and the ASID bitmap. */
|
||
|
bitmap_clear(context_asid_map, 0, num_asids);
|
||
|
|
||
|
/* Mark already active ASIDs as used */
|
||
|
for_each_possible_cpu(i) {
|
||
|
cntx = atomic_long_xchg_relaxed(&per_cpu(active_context, i), 0);
|
||
|
/*
|
||
|
* If this CPU has already been through a rollover, but
|
||
|
* hasn't run another task in the meantime, we must preserve
|
||
|
* its reserved CONTEXT, as this is the only trace we have of
|
||
|
* the process it is still running.
|
||
|
*/
|
||
|
if (cntx == 0)
|
||
|
cntx = per_cpu(reserved_context, i);
|
||
|
|
||
|
__set_bit(cntx & asid_mask, context_asid_map);
|
||
|
per_cpu(reserved_context, i) = cntx;
|
||
|
}
|
||
|
|
||
|
/* Mark ASID #0 as used because it is used at boot-time */
|
||
|
__set_bit(0, context_asid_map);
|
||
|
|
||
|
/* Queue a TLB invalidation for each CPU on next context-switch */
|
||
|
cpumask_setall(&context_tlb_flush_pending);
|
||
|
}
|
||
|
|
||
|
static unsigned long __new_context(struct mm_struct *mm)
|
||
|
{
|
||
|
static u32 cur_idx = 1;
|
||
|
unsigned long cntx = atomic_long_read(&mm->context.id);
|
||
|
unsigned long asid, ver = atomic_long_read(¤t_version);
|
||
|
|
||
|
/* Must be called with context_lock held */
|
||
|
lockdep_assert_held(&context_lock);
|
||
|
|
||
|
if (cntx != 0) {
|
||
|
unsigned long newcntx = ver | (cntx & asid_mask);
|
||
|
|
||
|
/*
|
||
|
* If our current CONTEXT was active during a rollover, we
|
||
|
* can continue to use it and this was just a false alarm.
|
||
|
*/
|
||
|
if (check_update_reserved_context(cntx, newcntx))
|
||
|
return newcntx;
|
||
|
|
||
|
/*
|
||
|
* We had a valid CONTEXT in a previous life, so try to
|
||
|
* re-use it if possible.
|
||
|
*/
|
||
|
if (!__test_and_set_bit(cntx & asid_mask, context_asid_map))
|
||
|
return newcntx;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Allocate a free ASID. If we can't find one then increment
|
||
|
* current_version and flush all ASIDs.
|
||
|
*/
|
||
|
asid = find_next_zero_bit(context_asid_map, num_asids, cur_idx);
|
||
|
if (asid != num_asids)
|
||
|
goto set_asid;
|
||
|
|
||
|
/* We're out of ASIDs, so increment current_version */
|
||
|
ver = atomic_long_add_return_relaxed(num_asids, ¤t_version);
|
||
|
|
||
|
/* Flush everything */
|
||
|
__flush_context();
|
||
|
|
||
|
/* We have more ASIDs than CPUs, so this will always succeed */
|
||
|
asid = find_next_zero_bit(context_asid_map, num_asids, 1);
|
||
|
|
||
|
set_asid:
|
||
|
__set_bit(asid, context_asid_map);
|
||
|
cur_idx = asid;
|
||
|
return asid | ver;
|
||
|
}
|
||
|
|
||
|
static void set_mm_asid(struct mm_struct *mm, unsigned int cpu)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
bool need_flush_tlb = false;
|
||
|
unsigned long cntx, old_active_cntx;
|
||
|
|
||
|
cntx = atomic_long_read(&mm->context.id);
|
||
|
|
||
|
/*
|
||
|
* If our active_context is non-zero and the context matches the
|
||
|
* current_version, then we update the active_context entry with a
|
||
|
* relaxed cmpxchg.
|
||
|
*
|
||
|
* Following is how we handle racing with a concurrent rollover:
|
||
|
*
|
||
|
* - We get a zero back from the cmpxchg and end up waiting on the
|
||
|
* lock. Taking the lock synchronises with the rollover and so
|
||
|
* we are forced to see the updated verion.
|
||
|
*
|
||
|
* - We get a valid context back from the cmpxchg then we continue
|
||
|
* using old ASID because __flush_context() would have marked ASID
|
||
|
* of active_context as used and next context switch we will
|
||
|
* allocate new context.
|
||
|
*/
|
||
|
old_active_cntx = atomic_long_read(&per_cpu(active_context, cpu));
|
||
|
if (old_active_cntx &&
|
||
|
((cntx & ~asid_mask) == atomic_long_read(¤t_version)) &&
|
||
|
atomic_long_cmpxchg_relaxed(&per_cpu(active_context, cpu),
|
||
|
old_active_cntx, cntx))
|
||
|
goto switch_mm_fast;
|
||
|
|
||
|
raw_spin_lock_irqsave(&context_lock, flags);
|
||
|
|
||
|
/* Check that our ASID belongs to the current_version. */
|
||
|
cntx = atomic_long_read(&mm->context.id);
|
||
|
if ((cntx & ~asid_mask) != atomic_long_read(¤t_version)) {
|
||
|
cntx = __new_context(mm);
|
||
|
atomic_long_set(&mm->context.id, cntx);
|
||
|
}
|
||
|
|
||
|
if (cpumask_test_and_clear_cpu(cpu, &context_tlb_flush_pending))
|
||
|
need_flush_tlb = true;
|
||
|
|
||
|
atomic_long_set(&per_cpu(active_context, cpu), cntx);
|
||
|
|
||
|
raw_spin_unlock_irqrestore(&context_lock, flags);
|
||
|
|
||
|
switch_mm_fast:
|
||
|
csr_write(CSR_SATP, virt_to_pfn(mm->pgd) |
|
||
|
((cntx & asid_mask) << SATP_ASID_SHIFT) |
|
||
|
SATP_MODE);
|
||
|
|
||
|
if (need_flush_tlb)
|
||
|
local_flush_tlb_all();
|
||
|
}
|
||
|
|
||
|
static void set_mm_noasid(struct mm_struct *mm)
|
||
|
{
|
||
|
/* Switch the page table and blindly nuke entire local TLB */
|
||
|
csr_write(CSR_SATP, virt_to_pfn(mm->pgd) | SATP_MODE);
|
||
|
local_flush_tlb_all();
|
||
|
}
|
||
|
|
||
|
static inline void set_mm(struct mm_struct *prev,
|
||
|
struct mm_struct *next, unsigned int cpu)
|
||
|
{
|
||
|
/*
|
||
|
* The mm_cpumask indicates which harts' TLBs contain the virtual
|
||
|
* address mapping of the mm. Compared to noasid, using asid
|
||
|
* can't guarantee that stale TLB entries are invalidated because
|
||
|
* the asid mechanism wouldn't flush TLB for every switch_mm for
|
||
|
* performance. So when using asid, keep all CPUs footmarks in
|
||
|
* cpumask() until mm reset.
|
||
|
*/
|
||
|
cpumask_set_cpu(cpu, mm_cpumask(next));
|
||
|
if (static_branch_unlikely(&use_asid_allocator)) {
|
||
|
set_mm_asid(next, cpu);
|
||
|
} else {
|
||
|
cpumask_clear_cpu(cpu, mm_cpumask(prev));
|
||
|
set_mm_noasid(next);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int __init asids_init(void)
|
||
|
{
|
||
|
unsigned long old;
|
||
|
|
||
|
/* Figure-out number of ASID bits in HW */
|
||
|
old = csr_read(CSR_SATP);
|
||
|
asid_bits = old | (SATP_ASID_MASK << SATP_ASID_SHIFT);
|
||
|
csr_write(CSR_SATP, asid_bits);
|
||
|
asid_bits = (csr_read(CSR_SATP) >> SATP_ASID_SHIFT) & SATP_ASID_MASK;
|
||
|
asid_bits = fls_long(asid_bits);
|
||
|
csr_write(CSR_SATP, old);
|
||
|
|
||
|
/*
|
||
|
* In the process of determining number of ASID bits (above)
|
||
|
* we polluted the TLB of current HART so let's do TLB flushed
|
||
|
* to remove unwanted TLB enteries.
|
||
|
*/
|
||
|
local_flush_tlb_all();
|
||
|
|
||
|
/* Pre-compute ASID details */
|
||
|
num_asids = 1 << asid_bits;
|
||
|
asid_mask = num_asids - 1;
|
||
|
|
||
|
/*
|
||
|
* Use ASID allocator only if number of HW ASIDs are
|
||
|
* at-least twice more than CPUs
|
||
|
*/
|
||
|
if (num_asids > (2 * num_possible_cpus())) {
|
||
|
atomic_long_set(¤t_version, num_asids);
|
||
|
|
||
|
context_asid_map = bitmap_zalloc(num_asids, GFP_KERNEL);
|
||
|
if (!context_asid_map)
|
||
|
panic("Failed to allocate bitmap for %lu ASIDs\n",
|
||
|
num_asids);
|
||
|
|
||
|
__set_bit(0, context_asid_map);
|
||
|
|
||
|
static_branch_enable(&use_asid_allocator);
|
||
|
|
||
|
pr_info("ASID allocator using %lu bits (%lu entries)\n",
|
||
|
asid_bits, num_asids);
|
||
|
} else {
|
||
|
pr_info("ASID allocator disabled\n");
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
early_initcall(asids_init);
|
||
|
#else
|
||
|
static inline void set_mm(struct mm_struct *prev,
|
||
|
struct mm_struct *next, unsigned int cpu)
|
||
|
{
|
||
|
/* Nothing to do here when there is no MMU */
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* When necessary, performs a deferred icache flush for the given MM context,
|
||
|
* on the local CPU. RISC-V has no direct mechanism for instruction cache
|
||
|
* shoot downs, so instead we send an IPI that informs the remote harts they
|
||
|
* need to flush their local instruction caches. To avoid pathologically slow
|
||
|
* behavior in a common case (a bunch of single-hart processes on a many-hart
|
||
|
* machine, ie 'make -j') we avoid the IPIs for harts that are not currently
|
||
|
* executing a MM context and instead schedule a deferred local instruction
|
||
|
* cache flush to be performed before execution resumes on each hart. This
|
||
|
* actually performs that local instruction cache flush, which implicitly only
|
||
|
* refers to the current hart.
|
||
|
*
|
||
|
* The "cpu" argument must be the current local CPU number.
|
||
|
*/
|
||
|
static inline void flush_icache_deferred(struct mm_struct *mm, unsigned int cpu)
|
||
|
{
|
||
|
#ifdef CONFIG_SMP
|
||
|
cpumask_t *mask = &mm->context.icache_stale_mask;
|
||
|
|
||
|
if (cpumask_test_cpu(cpu, mask)) {
|
||
|
cpumask_clear_cpu(cpu, mask);
|
||
|
/*
|
||
|
* Ensure the remote hart's writes are visible to this hart.
|
||
|
* This pairs with a barrier in flush_icache_mm.
|
||
|
*/
|
||
|
smp_mb();
|
||
|
local_flush_icache_all();
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
void switch_mm(struct mm_struct *prev, struct mm_struct *next,
|
||
|
struct task_struct *task)
|
||
|
{
|
||
|
unsigned int cpu;
|
||
|
|
||
|
if (unlikely(prev == next))
|
||
|
return;
|
||
|
|
||
|
/*
|
||
|
* Mark the current MM context as inactive, and the next as
|
||
|
* active. This is at least used by the icache flushing
|
||
|
* routines in order to determine who should be flushed.
|
||
|
*/
|
||
|
cpu = smp_processor_id();
|
||
|
|
||
|
set_mm(prev, next, cpu);
|
||
|
|
||
|
flush_icache_deferred(next, cpu);
|
||
|
}
|