388 lines
9.8 KiB
C
388 lines
9.8 KiB
C
|
// SPDX-License-Identifier: GPL-2.0-only
|
||
|
/*
|
||
|
* Copyright (C) 2012,2013 - ARM Ltd
|
||
|
* Author: Marc Zyngier <marc.zyngier@arm.com>
|
||
|
*
|
||
|
* Derived from arch/arm/kvm/reset.c
|
||
|
* Copyright (C) 2012 - Virtual Open Systems and Columbia University
|
||
|
* Author: Christoffer Dall <c.dall@virtualopensystems.com>
|
||
|
*/
|
||
|
|
||
|
#include <linux/errno.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/kvm_host.h>
|
||
|
#include <linux/kvm.h>
|
||
|
#include <linux/hw_breakpoint.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/string.h>
|
||
|
#include <linux/types.h>
|
||
|
|
||
|
#include <kvm/arm_arch_timer.h>
|
||
|
|
||
|
#include <asm/cpufeature.h>
|
||
|
#include <asm/cputype.h>
|
||
|
#include <asm/fpsimd.h>
|
||
|
#include <asm/ptrace.h>
|
||
|
#include <asm/kvm_arm.h>
|
||
|
#include <asm/kvm_asm.h>
|
||
|
#include <asm/kvm_emulate.h>
|
||
|
#include <asm/kvm_mmu.h>
|
||
|
#include <asm/virt.h>
|
||
|
|
||
|
/* Maximum phys_shift supported for any VM on this host */
|
||
|
static u32 kvm_ipa_limit;
|
||
|
|
||
|
/*
|
||
|
* ARMv8 Reset Values
|
||
|
*/
|
||
|
#define VCPU_RESET_PSTATE_EL1 (PSR_MODE_EL1h | PSR_A_BIT | PSR_I_BIT | \
|
||
|
PSR_F_BIT | PSR_D_BIT)
|
||
|
|
||
|
#define VCPU_RESET_PSTATE_SVC (PSR_AA32_MODE_SVC | PSR_AA32_A_BIT | \
|
||
|
PSR_AA32_I_BIT | PSR_AA32_F_BIT)
|
||
|
|
||
|
unsigned int kvm_sve_max_vl;
|
||
|
|
||
|
int kvm_arm_init_sve(void)
|
||
|
{
|
||
|
if (system_supports_sve()) {
|
||
|
kvm_sve_max_vl = sve_max_virtualisable_vl;
|
||
|
|
||
|
/*
|
||
|
* The get_sve_reg()/set_sve_reg() ioctl interface will need
|
||
|
* to be extended with multiple register slice support in
|
||
|
* order to support vector lengths greater than
|
||
|
* SVE_VL_ARCH_MAX:
|
||
|
*/
|
||
|
if (WARN_ON(kvm_sve_max_vl > SVE_VL_ARCH_MAX))
|
||
|
kvm_sve_max_vl = SVE_VL_ARCH_MAX;
|
||
|
|
||
|
/*
|
||
|
* Don't even try to make use of vector lengths that
|
||
|
* aren't available on all CPUs, for now:
|
||
|
*/
|
||
|
if (kvm_sve_max_vl < sve_max_vl)
|
||
|
pr_warn("KVM: SVE vector length for guests limited to %u bytes\n",
|
||
|
kvm_sve_max_vl);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int kvm_vcpu_enable_sve(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
if (!system_supports_sve())
|
||
|
return -EINVAL;
|
||
|
|
||
|
vcpu->arch.sve_max_vl = kvm_sve_max_vl;
|
||
|
|
||
|
/*
|
||
|
* Userspace can still customize the vector lengths by writing
|
||
|
* KVM_REG_ARM64_SVE_VLS. Allocation is deferred until
|
||
|
* kvm_arm_vcpu_finalize(), which freezes the configuration.
|
||
|
*/
|
||
|
vcpu->arch.flags |= KVM_ARM64_GUEST_HAS_SVE;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Finalize vcpu's maximum SVE vector length, allocating
|
||
|
* vcpu->arch.sve_state as necessary.
|
||
|
*/
|
||
|
static int kvm_vcpu_finalize_sve(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
void *buf;
|
||
|
unsigned int vl;
|
||
|
|
||
|
vl = vcpu->arch.sve_max_vl;
|
||
|
|
||
|
/*
|
||
|
* Responsibility for these properties is shared between
|
||
|
* kvm_arm_init_arch_resources(), kvm_vcpu_enable_sve() and
|
||
|
* set_sve_vls(). Double-check here just to be sure:
|
||
|
*/
|
||
|
if (WARN_ON(!sve_vl_valid(vl) || vl > sve_max_virtualisable_vl ||
|
||
|
vl > SVE_VL_ARCH_MAX))
|
||
|
return -EIO;
|
||
|
|
||
|
buf = kzalloc(SVE_SIG_REGS_SIZE(sve_vq_from_vl(vl)), GFP_KERNEL);
|
||
|
if (!buf)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
vcpu->arch.sve_state = buf;
|
||
|
vcpu->arch.flags |= KVM_ARM64_VCPU_SVE_FINALIZED;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature)
|
||
|
{
|
||
|
switch (feature) {
|
||
|
case KVM_ARM_VCPU_SVE:
|
||
|
if (!vcpu_has_sve(vcpu))
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (kvm_arm_vcpu_sve_finalized(vcpu))
|
||
|
return -EPERM;
|
||
|
|
||
|
return kvm_vcpu_finalize_sve(vcpu);
|
||
|
}
|
||
|
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
if (vcpu_has_sve(vcpu) && !kvm_arm_vcpu_sve_finalized(vcpu))
|
||
|
return false;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
kfree(vcpu->arch.sve_state);
|
||
|
}
|
||
|
|
||
|
static void kvm_vcpu_reset_sve(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
if (vcpu_has_sve(vcpu))
|
||
|
memset(vcpu->arch.sve_state, 0, vcpu_sve_state_size(vcpu));
|
||
|
}
|
||
|
|
||
|
static int kvm_vcpu_enable_ptrauth(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
/*
|
||
|
* For now make sure that both address/generic pointer authentication
|
||
|
* features are requested by the userspace together and the system
|
||
|
* supports these capabilities.
|
||
|
*/
|
||
|
if (!test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, vcpu->arch.features) ||
|
||
|
!test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, vcpu->arch.features) ||
|
||
|
!system_has_full_ptr_auth())
|
||
|
return -EINVAL;
|
||
|
|
||
|
vcpu->arch.flags |= KVM_ARM64_GUEST_HAS_PTRAUTH;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static bool vcpu_allowed_register_width(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
struct kvm_vcpu *tmp;
|
||
|
bool is32bit;
|
||
|
int i;
|
||
|
|
||
|
is32bit = vcpu_has_feature(vcpu, KVM_ARM_VCPU_EL1_32BIT);
|
||
|
if (!cpus_have_const_cap(ARM64_HAS_32BIT_EL1) && is32bit)
|
||
|
return false;
|
||
|
|
||
|
/* MTE is incompatible with AArch32 */
|
||
|
if (kvm_has_mte(vcpu->kvm) && is32bit)
|
||
|
return false;
|
||
|
|
||
|
/* Check that the vcpus are either all 32bit or all 64bit */
|
||
|
kvm_for_each_vcpu(i, tmp, vcpu->kvm) {
|
||
|
if (vcpu_has_feature(tmp, KVM_ARM_VCPU_EL1_32BIT) != is32bit)
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* kvm_reset_vcpu - sets core registers and sys_regs to reset value
|
||
|
* @vcpu: The VCPU pointer
|
||
|
*
|
||
|
* This function finds the right table above and sets the registers on
|
||
|
* the virtual CPU struct to their architecturally defined reset
|
||
|
* values, except for registers whose reset is deferred until
|
||
|
* kvm_arm_vcpu_finalize().
|
||
|
*
|
||
|
* Note: This function can be called from two paths: The KVM_ARM_VCPU_INIT
|
||
|
* ioctl or as part of handling a request issued by another VCPU in the PSCI
|
||
|
* handling code. In the first case, the VCPU will not be loaded, and in the
|
||
|
* second case the VCPU will be loaded. Because this function operates purely
|
||
|
* on the memory-backed values of system registers, we want to do a full put if
|
||
|
* we were loaded (handling a request) and load the values back at the end of
|
||
|
* the function. Otherwise we leave the state alone. In both cases, we
|
||
|
* disable preemption around the vcpu reset as we would otherwise race with
|
||
|
* preempt notifiers which also call put/load.
|
||
|
*/
|
||
|
int kvm_reset_vcpu(struct kvm_vcpu *vcpu)
|
||
|
{
|
||
|
struct vcpu_reset_state reset_state;
|
||
|
int ret;
|
||
|
bool loaded;
|
||
|
u32 pstate;
|
||
|
|
||
|
mutex_lock(&vcpu->kvm->lock);
|
||
|
reset_state = vcpu->arch.reset_state;
|
||
|
WRITE_ONCE(vcpu->arch.reset_state.reset, false);
|
||
|
mutex_unlock(&vcpu->kvm->lock);
|
||
|
|
||
|
/* Reset PMU outside of the non-preemptible section */
|
||
|
kvm_pmu_vcpu_reset(vcpu);
|
||
|
|
||
|
preempt_disable();
|
||
|
loaded = (vcpu->cpu != -1);
|
||
|
if (loaded)
|
||
|
kvm_arch_vcpu_put(vcpu);
|
||
|
|
||
|
if (!kvm_arm_vcpu_sve_finalized(vcpu)) {
|
||
|
if (test_bit(KVM_ARM_VCPU_SVE, vcpu->arch.features)) {
|
||
|
ret = kvm_vcpu_enable_sve(vcpu);
|
||
|
if (ret)
|
||
|
goto out;
|
||
|
}
|
||
|
} else {
|
||
|
kvm_vcpu_reset_sve(vcpu);
|
||
|
}
|
||
|
|
||
|
if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, vcpu->arch.features) ||
|
||
|
test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, vcpu->arch.features)) {
|
||
|
if (kvm_vcpu_enable_ptrauth(vcpu)) {
|
||
|
ret = -EINVAL;
|
||
|
goto out;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (!vcpu_allowed_register_width(vcpu)) {
|
||
|
ret = -EINVAL;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
switch (vcpu->arch.target) {
|
||
|
default:
|
||
|
if (test_bit(KVM_ARM_VCPU_EL1_32BIT, vcpu->arch.features)) {
|
||
|
pstate = VCPU_RESET_PSTATE_SVC;
|
||
|
} else {
|
||
|
pstate = VCPU_RESET_PSTATE_EL1;
|
||
|
}
|
||
|
|
||
|
if (kvm_vcpu_has_pmu(vcpu) && !kvm_arm_support_pmu_v3()) {
|
||
|
ret = -EINVAL;
|
||
|
goto out;
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* Reset core registers */
|
||
|
memset(vcpu_gp_regs(vcpu), 0, sizeof(*vcpu_gp_regs(vcpu)));
|
||
|
memset(&vcpu->arch.ctxt.fp_regs, 0, sizeof(vcpu->arch.ctxt.fp_regs));
|
||
|
vcpu->arch.ctxt.spsr_abt = 0;
|
||
|
vcpu->arch.ctxt.spsr_und = 0;
|
||
|
vcpu->arch.ctxt.spsr_irq = 0;
|
||
|
vcpu->arch.ctxt.spsr_fiq = 0;
|
||
|
vcpu_gp_regs(vcpu)->pstate = pstate;
|
||
|
|
||
|
/* Reset system registers */
|
||
|
kvm_reset_sys_regs(vcpu);
|
||
|
|
||
|
/*
|
||
|
* Additional reset state handling that PSCI may have imposed on us.
|
||
|
* Must be done after all the sys_reg reset.
|
||
|
*/
|
||
|
if (reset_state.reset) {
|
||
|
unsigned long target_pc = reset_state.pc;
|
||
|
|
||
|
/* Gracefully handle Thumb2 entry point */
|
||
|
if (vcpu_mode_is_32bit(vcpu) && (target_pc & 1)) {
|
||
|
target_pc &= ~1UL;
|
||
|
vcpu_set_thumb(vcpu);
|
||
|
}
|
||
|
|
||
|
/* Propagate caller endianness */
|
||
|
if (reset_state.be)
|
||
|
kvm_vcpu_set_be(vcpu);
|
||
|
|
||
|
*vcpu_pc(vcpu) = target_pc;
|
||
|
vcpu_set_reg(vcpu, 0, reset_state.r0);
|
||
|
}
|
||
|
|
||
|
/* Reset timer */
|
||
|
ret = kvm_timer_vcpu_reset(vcpu);
|
||
|
out:
|
||
|
if (loaded)
|
||
|
kvm_arch_vcpu_load(vcpu, smp_processor_id());
|
||
|
preempt_enable();
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
u32 get_kvm_ipa_limit(void)
|
||
|
{
|
||
|
return kvm_ipa_limit;
|
||
|
}
|
||
|
|
||
|
int kvm_set_ipa_limit(void)
|
||
|
{
|
||
|
unsigned int parange;
|
||
|
u64 mmfr0;
|
||
|
|
||
|
mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
|
||
|
parange = cpuid_feature_extract_unsigned_field(mmfr0,
|
||
|
ID_AA64MMFR0_PARANGE_SHIFT);
|
||
|
/*
|
||
|
* IPA size beyond 48 bits could not be supported
|
||
|
* on either 4K or 16K page size. Hence let's cap
|
||
|
* it to 48 bits, in case it's reported as larger
|
||
|
* on the system.
|
||
|
*/
|
||
|
if (PAGE_SIZE != SZ_64K)
|
||
|
parange = min(parange, (unsigned int)ID_AA64MMFR0_PARANGE_48);
|
||
|
|
||
|
/*
|
||
|
* Check with ARMv8.5-GTG that our PAGE_SIZE is supported at
|
||
|
* Stage-2. If not, things will stop very quickly.
|
||
|
*/
|
||
|
switch (cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_TGRAN_2_SHIFT)) {
|
||
|
case ID_AA64MMFR0_TGRAN_2_SUPPORTED_NONE:
|
||
|
kvm_err("PAGE_SIZE not supported at Stage-2, giving up\n");
|
||
|
return -EINVAL;
|
||
|
case ID_AA64MMFR0_TGRAN_2_SUPPORTED_DEFAULT:
|
||
|
kvm_debug("PAGE_SIZE supported at Stage-2 (default)\n");
|
||
|
break;
|
||
|
case ID_AA64MMFR0_TGRAN_2_SUPPORTED_MIN ... ID_AA64MMFR0_TGRAN_2_SUPPORTED_MAX:
|
||
|
kvm_debug("PAGE_SIZE supported at Stage-2 (advertised)\n");
|
||
|
break;
|
||
|
default:
|
||
|
kvm_err("Unsupported value for TGRAN_2, giving up\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
kvm_ipa_limit = id_aa64mmfr0_parange_to_phys_shift(parange);
|
||
|
kvm_info("IPA Size Limit: %d bits%s\n", kvm_ipa_limit,
|
||
|
((kvm_ipa_limit < KVM_PHYS_SHIFT) ?
|
||
|
" (Reduced IPA size, limited VM/VMM compatibility)" : ""));
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type)
|
||
|
{
|
||
|
u64 mmfr0, mmfr1;
|
||
|
u32 phys_shift;
|
||
|
|
||
|
if (type & ~KVM_VM_TYPE_ARM_IPA_SIZE_MASK)
|
||
|
return -EINVAL;
|
||
|
|
||
|
phys_shift = KVM_VM_TYPE_ARM_IPA_SIZE(type);
|
||
|
if (phys_shift) {
|
||
|
if (phys_shift > kvm_ipa_limit ||
|
||
|
phys_shift < ARM64_MIN_PARANGE_BITS)
|
||
|
return -EINVAL;
|
||
|
} else {
|
||
|
phys_shift = KVM_PHYS_SHIFT;
|
||
|
if (phys_shift > kvm_ipa_limit) {
|
||
|
pr_warn_once("%s using unsupported default IPA limit, upgrade your VMM\n",
|
||
|
current->comm);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
|
||
|
mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
|
||
|
kvm->arch.vtcr = kvm_get_vtcr(mmfr0, mmfr1, phys_shift);
|
||
|
|
||
|
return 0;
|
||
|
}
|