1029 lines
29 KiB
C
1029 lines
29 KiB
C
|
/* SPDX-License-Identifier: GPL-2.0-only */
|
||
|
/*
|
||
|
* Copyright (C) 2012 ARM Ltd.
|
||
|
*/
|
||
|
#ifndef __ASM_PGTABLE_H
|
||
|
#define __ASM_PGTABLE_H
|
||
|
|
||
|
#include <asm/bug.h>
|
||
|
#include <asm/proc-fns.h>
|
||
|
|
||
|
#include <asm/memory.h>
|
||
|
#include <asm/mte.h>
|
||
|
#include <asm/pgtable-hwdef.h>
|
||
|
#include <asm/pgtable-prot.h>
|
||
|
#include <asm/tlbflush.h>
|
||
|
|
||
|
/*
|
||
|
* VMALLOC range.
|
||
|
*
|
||
|
* VMALLOC_START: beginning of the kernel vmalloc space
|
||
|
* VMALLOC_END: extends to the available space below vmemmap, PCI I/O space
|
||
|
* and fixed mappings
|
||
|
*/
|
||
|
#define VMALLOC_START (MODULES_END)
|
||
|
#define VMALLOC_END (VMEMMAP_START - SZ_256M)
|
||
|
|
||
|
#define vmemmap ((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT))
|
||
|
|
||
|
#ifndef __ASSEMBLY__
|
||
|
|
||
|
#include <asm/cmpxchg.h>
|
||
|
#include <asm/fixmap.h>
|
||
|
#include <linux/mmdebug.h>
|
||
|
#include <linux/mm_types.h>
|
||
|
#include <linux/sched.h>
|
||
|
|
||
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
||
|
#define __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
|
||
|
|
||
|
/* Set stride and tlb_level in flush_*_tlb_range */
|
||
|
#define flush_pmd_tlb_range(vma, addr, end) \
|
||
|
__flush_tlb_range(vma, addr, end, PMD_SIZE, false, 2)
|
||
|
#define flush_pud_tlb_range(vma, addr, end) \
|
||
|
__flush_tlb_range(vma, addr, end, PUD_SIZE, false, 1)
|
||
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
||
|
|
||
|
/*
|
||
|
* Outside of a few very special situations (e.g. hibernation), we always
|
||
|
* use broadcast TLB invalidation instructions, therefore a spurious page
|
||
|
* fault on one CPU which has been handled concurrently by another CPU
|
||
|
* does not need to perform additional invalidation.
|
||
|
*/
|
||
|
#define flush_tlb_fix_spurious_fault(vma, address) do { } while (0)
|
||
|
|
||
|
/*
|
||
|
* ZERO_PAGE is a global shared page that is always zero: used
|
||
|
* for zero-mapped memory areas etc..
|
||
|
*/
|
||
|
extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
|
||
|
#define ZERO_PAGE(vaddr) phys_to_page(__pa_symbol(empty_zero_page))
|
||
|
|
||
|
#define pte_ERROR(e) \
|
||
|
pr_err("%s:%d: bad pte %016llx.\n", __FILE__, __LINE__, pte_val(e))
|
||
|
|
||
|
/*
|
||
|
* Macros to convert between a physical address and its placement in a
|
||
|
* page table entry, taking care of 52-bit addresses.
|
||
|
*/
|
||
|
#ifdef CONFIG_ARM64_PA_BITS_52
|
||
|
static inline phys_addr_t __pte_to_phys(pte_t pte)
|
||
|
{
|
||
|
return (pte_val(pte) & PTE_ADDR_LOW) |
|
||
|
((pte_val(pte) & PTE_ADDR_HIGH) << 36);
|
||
|
}
|
||
|
static inline pteval_t __phys_to_pte_val(phys_addr_t phys)
|
||
|
{
|
||
|
return (phys | (phys >> 36)) & PTE_ADDR_MASK;
|
||
|
}
|
||
|
#else
|
||
|
#define __pte_to_phys(pte) (pte_val(pte) & PTE_ADDR_MASK)
|
||
|
#define __phys_to_pte_val(phys) (phys)
|
||
|
#endif
|
||
|
|
||
|
#define pte_pfn(pte) (__pte_to_phys(pte) >> PAGE_SHIFT)
|
||
|
#define pfn_pte(pfn,prot) \
|
||
|
__pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
|
||
|
|
||
|
#define pte_none(pte) (!pte_val(pte))
|
||
|
#define pte_clear(mm,addr,ptep) set_pte(ptep, __pte(0))
|
||
|
#define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
|
||
|
|
||
|
/*
|
||
|
* The following only work if pte_present(). Undefined behaviour otherwise.
|
||
|
*/
|
||
|
#define pte_present(pte) (!!(pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)))
|
||
|
#define pte_young(pte) (!!(pte_val(pte) & PTE_AF))
|
||
|
#define pte_special(pte) (!!(pte_val(pte) & PTE_SPECIAL))
|
||
|
#define pte_write(pte) (!!(pte_val(pte) & PTE_WRITE))
|
||
|
#define pte_user_exec(pte) (!(pte_val(pte) & PTE_UXN))
|
||
|
#define pte_cont(pte) (!!(pte_val(pte) & PTE_CONT))
|
||
|
#define pte_devmap(pte) (!!(pte_val(pte) & PTE_DEVMAP))
|
||
|
#define pte_tagged(pte) ((pte_val(pte) & PTE_ATTRINDX_MASK) == \
|
||
|
PTE_ATTRINDX(MT_NORMAL_TAGGED))
|
||
|
|
||
|
#define pte_cont_addr_end(addr, end) \
|
||
|
({ unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK; \
|
||
|
(__boundary - 1 < (end) - 1) ? __boundary : (end); \
|
||
|
})
|
||
|
|
||
|
#define pmd_cont_addr_end(addr, end) \
|
||
|
({ unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK; \
|
||
|
(__boundary - 1 < (end) - 1) ? __boundary : (end); \
|
||
|
})
|
||
|
|
||
|
#define pte_hw_dirty(pte) (pte_write(pte) && !(pte_val(pte) & PTE_RDONLY))
|
||
|
#define pte_sw_dirty(pte) (!!(pte_val(pte) & PTE_DIRTY))
|
||
|
#define pte_dirty(pte) (pte_sw_dirty(pte) || pte_hw_dirty(pte))
|
||
|
|
||
|
#define pte_valid(pte) (!!(pte_val(pte) & PTE_VALID))
|
||
|
/*
|
||
|
* Execute-only user mappings do not have the PTE_USER bit set. All valid
|
||
|
* kernel mappings have the PTE_UXN bit set.
|
||
|
*/
|
||
|
#define pte_valid_not_user(pte) \
|
||
|
((pte_val(pte) & (PTE_VALID | PTE_USER | PTE_UXN)) == (PTE_VALID | PTE_UXN))
|
||
|
/*
|
||
|
* Could the pte be present in the TLB? We must check mm_tlb_flush_pending
|
||
|
* so that we don't erroneously return false for pages that have been
|
||
|
* remapped as PROT_NONE but are yet to be flushed from the TLB.
|
||
|
* Note that we can't make any assumptions based on the state of the access
|
||
|
* flag, since ptep_clear_flush_young() elides a DSB when invalidating the
|
||
|
* TLB.
|
||
|
*/
|
||
|
#define pte_accessible(mm, pte) \
|
||
|
(mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
|
||
|
|
||
|
/*
|
||
|
* p??_access_permitted() is true for valid user mappings (PTE_USER
|
||
|
* bit set, subject to the write permission check). For execute-only
|
||
|
* mappings, like PROT_EXEC with EPAN (both PTE_USER and PTE_UXN bits
|
||
|
* not set) must return false. PROT_NONE mappings do not have the
|
||
|
* PTE_VALID bit set.
|
||
|
*/
|
||
|
#define pte_access_permitted(pte, write) \
|
||
|
(((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER)) && (!(write) || pte_write(pte)))
|
||
|
#define pmd_access_permitted(pmd, write) \
|
||
|
(pte_access_permitted(pmd_pte(pmd), (write)))
|
||
|
#define pud_access_permitted(pud, write) \
|
||
|
(pte_access_permitted(pud_pte(pud), (write)))
|
||
|
|
||
|
static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
|
||
|
{
|
||
|
pte_val(pte) &= ~pgprot_val(prot);
|
||
|
return pte;
|
||
|
}
|
||
|
|
||
|
static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
|
||
|
{
|
||
|
pte_val(pte) |= pgprot_val(prot);
|
||
|
return pte;
|
||
|
}
|
||
|
|
||
|
static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
|
||
|
{
|
||
|
pmd_val(pmd) &= ~pgprot_val(prot);
|
||
|
return pmd;
|
||
|
}
|
||
|
|
||
|
static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
|
||
|
{
|
||
|
pmd_val(pmd) |= pgprot_val(prot);
|
||
|
return pmd;
|
||
|
}
|
||
|
|
||
|
static inline pte_t pte_mkwrite(pte_t pte)
|
||
|
{
|
||
|
pte = set_pte_bit(pte, __pgprot(PTE_WRITE));
|
||
|
pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
|
||
|
return pte;
|
||
|
}
|
||
|
|
||
|
static inline pte_t pte_mkclean(pte_t pte)
|
||
|
{
|
||
|
pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY));
|
||
|
pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
|
||
|
|
||
|
return pte;
|
||
|
}
|
||
|
|
||
|
static inline pte_t pte_mkdirty(pte_t pte)
|
||
|
{
|
||
|
pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
|
||
|
|
||
|
if (pte_write(pte))
|
||
|
pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
|
||
|
|
||
|
return pte;
|
||
|
}
|
||
|
|
||
|
static inline pte_t pte_wrprotect(pte_t pte)
|
||
|
{
|
||
|
/*
|
||
|
* If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY
|
||
|
* clear), set the PTE_DIRTY bit.
|
||
|
*/
|
||
|
if (pte_hw_dirty(pte))
|
||
|
pte = pte_mkdirty(pte);
|
||
|
|
||
|
pte = clear_pte_bit(pte, __pgprot(PTE_WRITE));
|
||
|
pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
|
||
|
return pte;
|
||
|
}
|
||
|
|
||
|
static inline pte_t pte_mkold(pte_t pte)
|
||
|
{
|
||
|
return clear_pte_bit(pte, __pgprot(PTE_AF));
|
||
|
}
|
||
|
|
||
|
static inline pte_t pte_mkyoung(pte_t pte)
|
||
|
{
|
||
|
return set_pte_bit(pte, __pgprot(PTE_AF));
|
||
|
}
|
||
|
|
||
|
static inline pte_t pte_mkspecial(pte_t pte)
|
||
|
{
|
||
|
return set_pte_bit(pte, __pgprot(PTE_SPECIAL));
|
||
|
}
|
||
|
|
||
|
static inline pte_t pte_mkcont(pte_t pte)
|
||
|
{
|
||
|
pte = set_pte_bit(pte, __pgprot(PTE_CONT));
|
||
|
return set_pte_bit(pte, __pgprot(PTE_TYPE_PAGE));
|
||
|
}
|
||
|
|
||
|
static inline pte_t pte_mknoncont(pte_t pte)
|
||
|
{
|
||
|
return clear_pte_bit(pte, __pgprot(PTE_CONT));
|
||
|
}
|
||
|
|
||
|
static inline pte_t pte_mkpresent(pte_t pte)
|
||
|
{
|
||
|
return set_pte_bit(pte, __pgprot(PTE_VALID));
|
||
|
}
|
||
|
|
||
|
static inline pmd_t pmd_mkcont(pmd_t pmd)
|
||
|
{
|
||
|
return __pmd(pmd_val(pmd) | PMD_SECT_CONT);
|
||
|
}
|
||
|
|
||
|
static inline pte_t pte_mkdevmap(pte_t pte)
|
||
|
{
|
||
|
return set_pte_bit(pte, __pgprot(PTE_DEVMAP | PTE_SPECIAL));
|
||
|
}
|
||
|
|
||
|
static inline void set_pte(pte_t *ptep, pte_t pte)
|
||
|
{
|
||
|
WRITE_ONCE(*ptep, pte);
|
||
|
|
||
|
/*
|
||
|
* Only if the new pte is valid and kernel, otherwise TLB maintenance
|
||
|
* or update_mmu_cache() have the necessary barriers.
|
||
|
*/
|
||
|
if (pte_valid_not_user(pte)) {
|
||
|
dsb(ishst);
|
||
|
isb();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
extern void __sync_icache_dcache(pte_t pteval);
|
||
|
|
||
|
/*
|
||
|
* PTE bits configuration in the presence of hardware Dirty Bit Management
|
||
|
* (PTE_WRITE == PTE_DBM):
|
||
|
*
|
||
|
* Dirty Writable | PTE_RDONLY PTE_WRITE PTE_DIRTY (sw)
|
||
|
* 0 0 | 1 0 0
|
||
|
* 0 1 | 1 1 0
|
||
|
* 1 0 | 1 0 1
|
||
|
* 1 1 | 0 1 x
|
||
|
*
|
||
|
* When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via
|
||
|
* the page fault mechanism. Checking the dirty status of a pte becomes:
|
||
|
*
|
||
|
* PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY)
|
||
|
*/
|
||
|
|
||
|
static inline void __check_racy_pte_update(struct mm_struct *mm, pte_t *ptep,
|
||
|
pte_t pte)
|
||
|
{
|
||
|
pte_t old_pte;
|
||
|
|
||
|
if (!IS_ENABLED(CONFIG_DEBUG_VM))
|
||
|
return;
|
||
|
|
||
|
old_pte = READ_ONCE(*ptep);
|
||
|
|
||
|
if (!pte_valid(old_pte) || !pte_valid(pte))
|
||
|
return;
|
||
|
if (mm != current->active_mm && atomic_read(&mm->mm_users) <= 1)
|
||
|
return;
|
||
|
|
||
|
/*
|
||
|
* Check for potential race with hardware updates of the pte
|
||
|
* (ptep_set_access_flags safely changes valid ptes without going
|
||
|
* through an invalid entry).
|
||
|
*/
|
||
|
VM_WARN_ONCE(!pte_young(pte),
|
||
|
"%s: racy access flag clearing: 0x%016llx -> 0x%016llx",
|
||
|
__func__, pte_val(old_pte), pte_val(pte));
|
||
|
VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte),
|
||
|
"%s: racy dirty state clearing: 0x%016llx -> 0x%016llx",
|
||
|
__func__, pte_val(old_pte), pte_val(pte));
|
||
|
}
|
||
|
|
||
|
static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
|
||
|
pte_t *ptep, pte_t pte)
|
||
|
{
|
||
|
if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte))
|
||
|
__sync_icache_dcache(pte);
|
||
|
|
||
|
/*
|
||
|
* If the PTE would provide user space access to the tags associated
|
||
|
* with it then ensure that the MTE tags are synchronised. Although
|
||
|
* pte_access_permitted() returns false for exec only mappings, they
|
||
|
* don't expose tags (instruction fetches don't check tags).
|
||
|
*/
|
||
|
if (system_supports_mte() && pte_access_permitted(pte, false) &&
|
||
|
!pte_special(pte)) {
|
||
|
pte_t old_pte = READ_ONCE(*ptep);
|
||
|
/*
|
||
|
* We only need to synchronise if the new PTE has tags enabled
|
||
|
* or if swapping in (in which case another mapping may have
|
||
|
* set tags in the past even if this PTE isn't tagged).
|
||
|
* (!pte_none() && !pte_present()) is an open coded version of
|
||
|
* is_swap_pte()
|
||
|
*/
|
||
|
if (pte_tagged(pte) || (!pte_none(old_pte) && !pte_present(old_pte)))
|
||
|
mte_sync_tags(old_pte, pte);
|
||
|
}
|
||
|
|
||
|
__check_racy_pte_update(mm, ptep, pte);
|
||
|
|
||
|
set_pte(ptep, pte);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Huge pte definitions.
|
||
|
*/
|
||
|
#define pte_mkhuge(pte) (__pte(pte_val(pte) & ~PTE_TABLE_BIT))
|
||
|
|
||
|
/*
|
||
|
* Hugetlb definitions.
|
||
|
*/
|
||
|
#define HUGE_MAX_HSTATE 4
|
||
|
#define HPAGE_SHIFT PMD_SHIFT
|
||
|
#define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT)
|
||
|
#define HPAGE_MASK (~(HPAGE_SIZE - 1))
|
||
|
#define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT)
|
||
|
|
||
|
static inline pte_t pgd_pte(pgd_t pgd)
|
||
|
{
|
||
|
return __pte(pgd_val(pgd));
|
||
|
}
|
||
|
|
||
|
static inline pte_t p4d_pte(p4d_t p4d)
|
||
|
{
|
||
|
return __pte(p4d_val(p4d));
|
||
|
}
|
||
|
|
||
|
static inline pte_t pud_pte(pud_t pud)
|
||
|
{
|
||
|
return __pte(pud_val(pud));
|
||
|
}
|
||
|
|
||
|
static inline pud_t pte_pud(pte_t pte)
|
||
|
{
|
||
|
return __pud(pte_val(pte));
|
||
|
}
|
||
|
|
||
|
static inline pmd_t pud_pmd(pud_t pud)
|
||
|
{
|
||
|
return __pmd(pud_val(pud));
|
||
|
}
|
||
|
|
||
|
static inline pte_t pmd_pte(pmd_t pmd)
|
||
|
{
|
||
|
return __pte(pmd_val(pmd));
|
||
|
}
|
||
|
|
||
|
static inline pmd_t pte_pmd(pte_t pte)
|
||
|
{
|
||
|
return __pmd(pte_val(pte));
|
||
|
}
|
||
|
|
||
|
static inline pgprot_t mk_pud_sect_prot(pgprot_t prot)
|
||
|
{
|
||
|
return __pgprot((pgprot_val(prot) & ~PUD_TABLE_BIT) | PUD_TYPE_SECT);
|
||
|
}
|
||
|
|
||
|
static inline pgprot_t mk_pmd_sect_prot(pgprot_t prot)
|
||
|
{
|
||
|
return __pgprot((pgprot_val(prot) & ~PMD_TABLE_BIT) | PMD_TYPE_SECT);
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_NUMA_BALANCING
|
||
|
/*
|
||
|
* See the comment in include/linux/pgtable.h
|
||
|
*/
|
||
|
static inline int pte_protnone(pte_t pte)
|
||
|
{
|
||
|
return (pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)) == PTE_PROT_NONE;
|
||
|
}
|
||
|
|
||
|
static inline int pmd_protnone(pmd_t pmd)
|
||
|
{
|
||
|
return pte_protnone(pmd_pte(pmd));
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#define pmd_present_invalid(pmd) (!!(pmd_val(pmd) & PMD_PRESENT_INVALID))
|
||
|
|
||
|
static inline int pmd_present(pmd_t pmd)
|
||
|
{
|
||
|
return pte_present(pmd_pte(pmd)) || pmd_present_invalid(pmd);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* THP definitions.
|
||
|
*/
|
||
|
|
||
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
||
|
static inline int pmd_trans_huge(pmd_t pmd)
|
||
|
{
|
||
|
return pmd_val(pmd) && pmd_present(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT);
|
||
|
}
|
||
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
||
|
|
||
|
#define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd))
|
||
|
#define pmd_young(pmd) pte_young(pmd_pte(pmd))
|
||
|
#define pmd_valid(pmd) pte_valid(pmd_pte(pmd))
|
||
|
#define pmd_cont(pmd) pte_cont(pmd_pte(pmd))
|
||
|
#define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
|
||
|
#define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
|
||
|
#define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd)))
|
||
|
#define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd)))
|
||
|
#define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
|
||
|
#define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
|
||
|
|
||
|
static inline pmd_t pmd_mkinvalid(pmd_t pmd)
|
||
|
{
|
||
|
pmd = set_pmd_bit(pmd, __pgprot(PMD_PRESENT_INVALID));
|
||
|
pmd = clear_pmd_bit(pmd, __pgprot(PMD_SECT_VALID));
|
||
|
|
||
|
return pmd;
|
||
|
}
|
||
|
|
||
|
#define pmd_thp_or_huge(pmd) (pmd_huge(pmd) || pmd_trans_huge(pmd))
|
||
|
|
||
|
#define pmd_write(pmd) pte_write(pmd_pte(pmd))
|
||
|
|
||
|
#define pmd_mkhuge(pmd) (__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT))
|
||
|
|
||
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
||
|
#define pmd_devmap(pmd) pte_devmap(pmd_pte(pmd))
|
||
|
#endif
|
||
|
static inline pmd_t pmd_mkdevmap(pmd_t pmd)
|
||
|
{
|
||
|
return pte_pmd(set_pte_bit(pmd_pte(pmd), __pgprot(PTE_DEVMAP)));
|
||
|
}
|
||
|
|
||
|
#define __pmd_to_phys(pmd) __pte_to_phys(pmd_pte(pmd))
|
||
|
#define __phys_to_pmd_val(phys) __phys_to_pte_val(phys)
|
||
|
#define pmd_pfn(pmd) ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT)
|
||
|
#define pfn_pmd(pfn,prot) __pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
|
||
|
#define mk_pmd(page,prot) pfn_pmd(page_to_pfn(page),prot)
|
||
|
|
||
|
#define pud_young(pud) pte_young(pud_pte(pud))
|
||
|
#define pud_mkyoung(pud) pte_pud(pte_mkyoung(pud_pte(pud)))
|
||
|
#define pud_write(pud) pte_write(pud_pte(pud))
|
||
|
|
||
|
#define pud_mkhuge(pud) (__pud(pud_val(pud) & ~PUD_TABLE_BIT))
|
||
|
|
||
|
#define __pud_to_phys(pud) __pte_to_phys(pud_pte(pud))
|
||
|
#define __phys_to_pud_val(phys) __phys_to_pte_val(phys)
|
||
|
#define pud_pfn(pud) ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT)
|
||
|
#define pfn_pud(pfn,prot) __pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
|
||
|
|
||
|
#define set_pmd_at(mm, addr, pmdp, pmd) set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd))
|
||
|
#define set_pud_at(mm, addr, pudp, pud) set_pte_at(mm, addr, (pte_t *)pudp, pud_pte(pud))
|
||
|
|
||
|
#define __p4d_to_phys(p4d) __pte_to_phys(p4d_pte(p4d))
|
||
|
#define __phys_to_p4d_val(phys) __phys_to_pte_val(phys)
|
||
|
|
||
|
#define __pgd_to_phys(pgd) __pte_to_phys(pgd_pte(pgd))
|
||
|
#define __phys_to_pgd_val(phys) __phys_to_pte_val(phys)
|
||
|
|
||
|
#define __pgprot_modify(prot,mask,bits) \
|
||
|
__pgprot((pgprot_val(prot) & ~(mask)) | (bits))
|
||
|
|
||
|
#define pgprot_nx(prot) \
|
||
|
__pgprot_modify(prot, PTE_MAYBE_GP, PTE_PXN)
|
||
|
|
||
|
/*
|
||
|
* Mark the prot value as uncacheable and unbufferable.
|
||
|
*/
|
||
|
#define pgprot_noncached(prot) \
|
||
|
__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN)
|
||
|
#define pgprot_writecombine(prot) \
|
||
|
__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
|
||
|
#define pgprot_device(prot) \
|
||
|
__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN)
|
||
|
#define pgprot_tagged(prot) \
|
||
|
__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_TAGGED))
|
||
|
#define pgprot_mhp pgprot_tagged
|
||
|
/*
|
||
|
* DMA allocations for non-coherent devices use what the Arm architecture calls
|
||
|
* "Normal non-cacheable" memory, which permits speculation, unaligned accesses
|
||
|
* and merging of writes. This is different from "Device-nGnR[nE]" memory which
|
||
|
* is intended for MMIO and thus forbids speculation, preserves access size,
|
||
|
* requires strict alignment and can also force write responses to come from the
|
||
|
* endpoint.
|
||
|
*/
|
||
|
#define pgprot_dmacoherent(prot) \
|
||
|
__pgprot_modify(prot, PTE_ATTRINDX_MASK, \
|
||
|
PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
|
||
|
|
||
|
#define __HAVE_PHYS_MEM_ACCESS_PROT
|
||
|
struct file;
|
||
|
extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
|
||
|
unsigned long size, pgprot_t vma_prot);
|
||
|
|
||
|
#define pmd_none(pmd) (!pmd_val(pmd))
|
||
|
|
||
|
#define pmd_table(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
|
||
|
PMD_TYPE_TABLE)
|
||
|
#define pmd_sect(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
|
||
|
PMD_TYPE_SECT)
|
||
|
#define pmd_leaf(pmd) (pmd_present(pmd) && !pmd_table(pmd))
|
||
|
#define pmd_bad(pmd) (!pmd_table(pmd))
|
||
|
|
||
|
#define pmd_leaf_size(pmd) (pmd_cont(pmd) ? CONT_PMD_SIZE : PMD_SIZE)
|
||
|
#define pte_leaf_size(pte) (pte_cont(pte) ? CONT_PTE_SIZE : PAGE_SIZE)
|
||
|
|
||
|
#if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3
|
||
|
static inline bool pud_sect(pud_t pud) { return false; }
|
||
|
static inline bool pud_table(pud_t pud) { return true; }
|
||
|
#else
|
||
|
#define pud_sect(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \
|
||
|
PUD_TYPE_SECT)
|
||
|
#define pud_table(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \
|
||
|
PUD_TYPE_TABLE)
|
||
|
#endif
|
||
|
|
||
|
extern pgd_t init_pg_dir[PTRS_PER_PGD];
|
||
|
extern pgd_t init_pg_end[];
|
||
|
extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
|
||
|
extern pgd_t idmap_pg_dir[PTRS_PER_PGD];
|
||
|
extern pgd_t idmap_pg_end[];
|
||
|
extern pgd_t tramp_pg_dir[PTRS_PER_PGD];
|
||
|
extern pgd_t reserved_pg_dir[PTRS_PER_PGD];
|
||
|
|
||
|
extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd);
|
||
|
|
||
|
static inline bool in_swapper_pgdir(void *addr)
|
||
|
{
|
||
|
return ((unsigned long)addr & PAGE_MASK) ==
|
||
|
((unsigned long)swapper_pg_dir & PAGE_MASK);
|
||
|
}
|
||
|
|
||
|
static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
|
||
|
{
|
||
|
#ifdef __PAGETABLE_PMD_FOLDED
|
||
|
if (in_swapper_pgdir(pmdp)) {
|
||
|
set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd)));
|
||
|
return;
|
||
|
}
|
||
|
#endif /* __PAGETABLE_PMD_FOLDED */
|
||
|
|
||
|
WRITE_ONCE(*pmdp, pmd);
|
||
|
|
||
|
if (pmd_valid(pmd)) {
|
||
|
dsb(ishst);
|
||
|
isb();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static inline void pmd_clear(pmd_t *pmdp)
|
||
|
{
|
||
|
set_pmd(pmdp, __pmd(0));
|
||
|
}
|
||
|
|
||
|
static inline phys_addr_t pmd_page_paddr(pmd_t pmd)
|
||
|
{
|
||
|
return __pmd_to_phys(pmd);
|
||
|
}
|
||
|
|
||
|
static inline unsigned long pmd_page_vaddr(pmd_t pmd)
|
||
|
{
|
||
|
return (unsigned long)__va(pmd_page_paddr(pmd));
|
||
|
}
|
||
|
|
||
|
/* Find an entry in the third-level page table. */
|
||
|
#define pte_offset_phys(dir,addr) (pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t))
|
||
|
|
||
|
#define pte_set_fixmap(addr) ((pte_t *)set_fixmap_offset(FIX_PTE, addr))
|
||
|
#define pte_set_fixmap_offset(pmd, addr) pte_set_fixmap(pte_offset_phys(pmd, addr))
|
||
|
#define pte_clear_fixmap() clear_fixmap(FIX_PTE)
|
||
|
|
||
|
#define pmd_page(pmd) phys_to_page(__pmd_to_phys(pmd))
|
||
|
|
||
|
/* use ONLY for statically allocated translation tables */
|
||
|
#define pte_offset_kimg(dir,addr) ((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr))))
|
||
|
|
||
|
/*
|
||
|
* Conversion functions: convert a page and protection to a page entry,
|
||
|
* and a page entry and page directory to the page they refer to.
|
||
|
*/
|
||
|
#define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot)
|
||
|
|
||
|
#if CONFIG_PGTABLE_LEVELS > 2
|
||
|
|
||
|
#define pmd_ERROR(e) \
|
||
|
pr_err("%s:%d: bad pmd %016llx.\n", __FILE__, __LINE__, pmd_val(e))
|
||
|
|
||
|
#define pud_none(pud) (!pud_val(pud))
|
||
|
#define pud_bad(pud) (!pud_table(pud))
|
||
|
#define pud_present(pud) pte_present(pud_pte(pud))
|
||
|
#define pud_leaf(pud) (pud_present(pud) && !pud_table(pud))
|
||
|
#define pud_valid(pud) pte_valid(pud_pte(pud))
|
||
|
|
||
|
static inline void set_pud(pud_t *pudp, pud_t pud)
|
||
|
{
|
||
|
#ifdef __PAGETABLE_PUD_FOLDED
|
||
|
if (in_swapper_pgdir(pudp)) {
|
||
|
set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud)));
|
||
|
return;
|
||
|
}
|
||
|
#endif /* __PAGETABLE_PUD_FOLDED */
|
||
|
|
||
|
WRITE_ONCE(*pudp, pud);
|
||
|
|
||
|
if (pud_valid(pud)) {
|
||
|
dsb(ishst);
|
||
|
isb();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static inline void pud_clear(pud_t *pudp)
|
||
|
{
|
||
|
set_pud(pudp, __pud(0));
|
||
|
}
|
||
|
|
||
|
static inline phys_addr_t pud_page_paddr(pud_t pud)
|
||
|
{
|
||
|
return __pud_to_phys(pud);
|
||
|
}
|
||
|
|
||
|
static inline pmd_t *pud_pgtable(pud_t pud)
|
||
|
{
|
||
|
return (pmd_t *)__va(pud_page_paddr(pud));
|
||
|
}
|
||
|
|
||
|
/* Find an entry in the second-level page table. */
|
||
|
#define pmd_offset_phys(dir, addr) (pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t))
|
||
|
|
||
|
#define pmd_set_fixmap(addr) ((pmd_t *)set_fixmap_offset(FIX_PMD, addr))
|
||
|
#define pmd_set_fixmap_offset(pud, addr) pmd_set_fixmap(pmd_offset_phys(pud, addr))
|
||
|
#define pmd_clear_fixmap() clear_fixmap(FIX_PMD)
|
||
|
|
||
|
#define pud_page(pud) phys_to_page(__pud_to_phys(pud))
|
||
|
|
||
|
/* use ONLY for statically allocated translation tables */
|
||
|
#define pmd_offset_kimg(dir,addr) ((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr))))
|
||
|
|
||
|
#else
|
||
|
|
||
|
#define pud_page_paddr(pud) ({ BUILD_BUG(); 0; })
|
||
|
|
||
|
/* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */
|
||
|
#define pmd_set_fixmap(addr) NULL
|
||
|
#define pmd_set_fixmap_offset(pudp, addr) ((pmd_t *)pudp)
|
||
|
#define pmd_clear_fixmap()
|
||
|
|
||
|
#define pmd_offset_kimg(dir,addr) ((pmd_t *)dir)
|
||
|
|
||
|
#endif /* CONFIG_PGTABLE_LEVELS > 2 */
|
||
|
|
||
|
#if CONFIG_PGTABLE_LEVELS > 3
|
||
|
|
||
|
#define pud_ERROR(e) \
|
||
|
pr_err("%s:%d: bad pud %016llx.\n", __FILE__, __LINE__, pud_val(e))
|
||
|
|
||
|
#define p4d_none(p4d) (!p4d_val(p4d))
|
||
|
#define p4d_bad(p4d) (!(p4d_val(p4d) & 2))
|
||
|
#define p4d_present(p4d) (p4d_val(p4d))
|
||
|
|
||
|
static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
|
||
|
{
|
||
|
if (in_swapper_pgdir(p4dp)) {
|
||
|
set_swapper_pgd((pgd_t *)p4dp, __pgd(p4d_val(p4d)));
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
WRITE_ONCE(*p4dp, p4d);
|
||
|
dsb(ishst);
|
||
|
isb();
|
||
|
}
|
||
|
|
||
|
static inline void p4d_clear(p4d_t *p4dp)
|
||
|
{
|
||
|
set_p4d(p4dp, __p4d(0));
|
||
|
}
|
||
|
|
||
|
static inline phys_addr_t p4d_page_paddr(p4d_t p4d)
|
||
|
{
|
||
|
return __p4d_to_phys(p4d);
|
||
|
}
|
||
|
|
||
|
static inline pud_t *p4d_pgtable(p4d_t p4d)
|
||
|
{
|
||
|
return (pud_t *)__va(p4d_page_paddr(p4d));
|
||
|
}
|
||
|
|
||
|
/* Find an entry in the first-level page table. */
|
||
|
#define pud_offset_phys(dir, addr) (p4d_page_paddr(READ_ONCE(*(dir))) + pud_index(addr) * sizeof(pud_t))
|
||
|
|
||
|
#define pud_set_fixmap(addr) ((pud_t *)set_fixmap_offset(FIX_PUD, addr))
|
||
|
#define pud_set_fixmap_offset(p4d, addr) pud_set_fixmap(pud_offset_phys(p4d, addr))
|
||
|
#define pud_clear_fixmap() clear_fixmap(FIX_PUD)
|
||
|
|
||
|
#define p4d_page(p4d) pfn_to_page(__phys_to_pfn(__p4d_to_phys(p4d)))
|
||
|
|
||
|
/* use ONLY for statically allocated translation tables */
|
||
|
#define pud_offset_kimg(dir,addr) ((pud_t *)__phys_to_kimg(pud_offset_phys((dir), (addr))))
|
||
|
|
||
|
#else
|
||
|
|
||
|
#define p4d_page_paddr(p4d) ({ BUILD_BUG(); 0;})
|
||
|
#define pgd_page_paddr(pgd) ({ BUILD_BUG(); 0;})
|
||
|
|
||
|
/* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */
|
||
|
#define pud_set_fixmap(addr) NULL
|
||
|
#define pud_set_fixmap_offset(pgdp, addr) ((pud_t *)pgdp)
|
||
|
#define pud_clear_fixmap()
|
||
|
|
||
|
#define pud_offset_kimg(dir,addr) ((pud_t *)dir)
|
||
|
|
||
|
#endif /* CONFIG_PGTABLE_LEVELS > 3 */
|
||
|
|
||
|
#define pgd_ERROR(e) \
|
||
|
pr_err("%s:%d: bad pgd %016llx.\n", __FILE__, __LINE__, pgd_val(e))
|
||
|
|
||
|
#define pgd_set_fixmap(addr) ((pgd_t *)set_fixmap_offset(FIX_PGD, addr))
|
||
|
#define pgd_clear_fixmap() clear_fixmap(FIX_PGD)
|
||
|
|
||
|
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
|
||
|
{
|
||
|
/*
|
||
|
* Normal and Normal-Tagged are two different memory types and indices
|
||
|
* in MAIR_EL1. The mask below has to include PTE_ATTRINDX_MASK.
|
||
|
*/
|
||
|
const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY |
|
||
|
PTE_PROT_NONE | PTE_VALID | PTE_WRITE | PTE_GP |
|
||
|
PTE_ATTRINDX_MASK;
|
||
|
/* preserve the hardware dirty information */
|
||
|
if (pte_hw_dirty(pte))
|
||
|
pte = pte_mkdirty(pte);
|
||
|
pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
|
||
|
/*
|
||
|
* If we end up clearing hw dirtiness for a sw-dirty PTE, set hardware
|
||
|
* dirtiness again.
|
||
|
*/
|
||
|
if (pte_sw_dirty(pte))
|
||
|
pte = pte_mkdirty(pte);
|
||
|
return pte;
|
||
|
}
|
||
|
|
||
|
static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
|
||
|
{
|
||
|
return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
|
||
|
}
|
||
|
|
||
|
#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
|
||
|
extern int ptep_set_access_flags(struct vm_area_struct *vma,
|
||
|
unsigned long address, pte_t *ptep,
|
||
|
pte_t entry, int dirty);
|
||
|
|
||
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
||
|
#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
|
||
|
static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
|
||
|
unsigned long address, pmd_t *pmdp,
|
||
|
pmd_t entry, int dirty)
|
||
|
{
|
||
|
return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty);
|
||
|
}
|
||
|
|
||
|
static inline int pud_devmap(pud_t pud)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static inline int pgd_devmap(pgd_t pgd)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Atomic pte/pmd modifications.
|
||
|
*/
|
||
|
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
|
||
|
static inline int __ptep_test_and_clear_young(pte_t *ptep)
|
||
|
{
|
||
|
pte_t old_pte, pte;
|
||
|
|
||
|
pte = READ_ONCE(*ptep);
|
||
|
do {
|
||
|
old_pte = pte;
|
||
|
pte = pte_mkold(pte);
|
||
|
pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
|
||
|
pte_val(old_pte), pte_val(pte));
|
||
|
} while (pte_val(pte) != pte_val(old_pte));
|
||
|
|
||
|
return pte_young(pte);
|
||
|
}
|
||
|
|
||
|
static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
|
||
|
unsigned long address,
|
||
|
pte_t *ptep)
|
||
|
{
|
||
|
return __ptep_test_and_clear_young(ptep);
|
||
|
}
|
||
|
|
||
|
#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
|
||
|
static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
|
||
|
unsigned long address, pte_t *ptep)
|
||
|
{
|
||
|
int young = ptep_test_and_clear_young(vma, address, ptep);
|
||
|
|
||
|
if (young) {
|
||
|
/*
|
||
|
* We can elide the trailing DSB here since the worst that can
|
||
|
* happen is that a CPU continues to use the young entry in its
|
||
|
* TLB and we mistakenly reclaim the associated page. The
|
||
|
* window for such an event is bounded by the next
|
||
|
* context-switch, which provides a DSB to complete the TLB
|
||
|
* invalidation.
|
||
|
*/
|
||
|
flush_tlb_page_nosync(vma, address);
|
||
|
}
|
||
|
|
||
|
return young;
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
||
|
#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
|
||
|
static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
|
||
|
unsigned long address,
|
||
|
pmd_t *pmdp)
|
||
|
{
|
||
|
return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
|
||
|
}
|
||
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
||
|
|
||
|
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
|
||
|
static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
|
||
|
unsigned long address, pte_t *ptep)
|
||
|
{
|
||
|
return __pte(xchg_relaxed(&pte_val(*ptep), 0));
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
||
|
#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
|
||
|
static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
|
||
|
unsigned long address, pmd_t *pmdp)
|
||
|
{
|
||
|
return pte_pmd(ptep_get_and_clear(mm, address, (pte_t *)pmdp));
|
||
|
}
|
||
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
||
|
|
||
|
/*
|
||
|
* ptep_set_wrprotect - mark read-only while trasferring potential hardware
|
||
|
* dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit.
|
||
|
*/
|
||
|
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
|
||
|
static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
|
||
|
{
|
||
|
pte_t old_pte, pte;
|
||
|
|
||
|
pte = READ_ONCE(*ptep);
|
||
|
do {
|
||
|
old_pte = pte;
|
||
|
pte = pte_wrprotect(pte);
|
||
|
pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
|
||
|
pte_val(old_pte), pte_val(pte));
|
||
|
} while (pte_val(pte) != pte_val(old_pte));
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
||
|
#define __HAVE_ARCH_PMDP_SET_WRPROTECT
|
||
|
static inline void pmdp_set_wrprotect(struct mm_struct *mm,
|
||
|
unsigned long address, pmd_t *pmdp)
|
||
|
{
|
||
|
ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
|
||
|
}
|
||
|
|
||
|
#define pmdp_establish pmdp_establish
|
||
|
static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
|
||
|
unsigned long address, pmd_t *pmdp, pmd_t pmd)
|
||
|
{
|
||
|
return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd)));
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Encode and decode a swap entry:
|
||
|
* bits 0-1: present (must be zero)
|
||
|
* bits 2-7: swap type
|
||
|
* bits 8-57: swap offset
|
||
|
* bit 58: PTE_PROT_NONE (must be zero)
|
||
|
*/
|
||
|
#define __SWP_TYPE_SHIFT 2
|
||
|
#define __SWP_TYPE_BITS 6
|
||
|
#define __SWP_OFFSET_BITS 50
|
||
|
#define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1)
|
||
|
#define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
|
||
|
#define __SWP_OFFSET_MASK ((1UL << __SWP_OFFSET_BITS) - 1)
|
||
|
|
||
|
#define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
|
||
|
#define __swp_offset(x) (((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK)
|
||
|
#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
|
||
|
|
||
|
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
|
||
|
#define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
|
||
|
|
||
|
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
|
||
|
#define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) })
|
||
|
#define __swp_entry_to_pmd(swp) __pmd((swp).val)
|
||
|
#endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
|
||
|
|
||
|
/*
|
||
|
* Ensure that there are not more swap files than can be encoded in the kernel
|
||
|
* PTEs.
|
||
|
*/
|
||
|
#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
|
||
|
|
||
|
extern int kern_addr_valid(unsigned long addr);
|
||
|
|
||
|
#ifdef CONFIG_ARM64_MTE
|
||
|
|
||
|
#define __HAVE_ARCH_PREPARE_TO_SWAP
|
||
|
static inline int arch_prepare_to_swap(struct page *page)
|
||
|
{
|
||
|
if (system_supports_mte())
|
||
|
return mte_save_tags(page);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#define __HAVE_ARCH_SWAP_INVALIDATE
|
||
|
static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
|
||
|
{
|
||
|
if (system_supports_mte())
|
||
|
mte_invalidate_tags(type, offset);
|
||
|
}
|
||
|
|
||
|
static inline void arch_swap_invalidate_area(int type)
|
||
|
{
|
||
|
if (system_supports_mte())
|
||
|
mte_invalidate_tags_area(type);
|
||
|
}
|
||
|
|
||
|
#define __HAVE_ARCH_SWAP_RESTORE
|
||
|
static inline void arch_swap_restore(swp_entry_t entry, struct page *page)
|
||
|
{
|
||
|
if (system_supports_mte() && mte_restore_tags(entry, page))
|
||
|
set_bit(PG_mte_tagged, &page->flags);
|
||
|
}
|
||
|
|
||
|
#endif /* CONFIG_ARM64_MTE */
|
||
|
|
||
|
/*
|
||
|
* On AArch64, the cache coherency is handled via the set_pte_at() function.
|
||
|
*/
|
||
|
static inline void update_mmu_cache(struct vm_area_struct *vma,
|
||
|
unsigned long addr, pte_t *ptep)
|
||
|
{
|
||
|
/*
|
||
|
* We don't do anything here, so there's a very small chance of
|
||
|
* us retaking a user fault which we just fixed up. The alternative
|
||
|
* is doing a dsb(ishst), but that penalises the fastpath.
|
||
|
*/
|
||
|
}
|
||
|
|
||
|
#define update_mmu_cache_pmd(vma, address, pmd) do { } while (0)
|
||
|
|
||
|
#ifdef CONFIG_ARM64_PA_BITS_52
|
||
|
#define phys_to_ttbr(addr) (((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52)
|
||
|
#else
|
||
|
#define phys_to_ttbr(addr) (addr)
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* On arm64 without hardware Access Flag, copying from user will fail because
|
||
|
* the pte is old and cannot be marked young. So we always end up with zeroed
|
||
|
* page after fork() + CoW for pfn mappings. We don't always have a
|
||
|
* hardware-managed access flag on arm64.
|
||
|
*/
|
||
|
static inline bool arch_faults_on_old_pte(void)
|
||
|
{
|
||
|
WARN_ON(preemptible());
|
||
|
|
||
|
return !cpu_has_hw_af();
|
||
|
}
|
||
|
#define arch_faults_on_old_pte arch_faults_on_old_pte
|
||
|
|
||
|
/*
|
||
|
* Experimentally, it's cheap to set the access flag in hardware and we
|
||
|
* benefit from prefaulting mappings as 'old' to start with.
|
||
|
*/
|
||
|
static inline bool arch_wants_old_prefaulted_pte(void)
|
||
|
{
|
||
|
return !arch_faults_on_old_pte();
|
||
|
}
|
||
|
#define arch_wants_old_prefaulted_pte arch_wants_old_prefaulted_pte
|
||
|
|
||
|
#endif /* !__ASSEMBLY__ */
|
||
|
|
||
|
#endif /* __ASM_PGTABLE_H */
|