kernel/tools/testing/selftests/kvm/x86_64/xen_shinfo_test.c

306 lines
8.5 KiB
C
Raw Normal View History

2024-07-22 17:22:30 +08:00
// SPDX-License-Identifier: GPL-2.0-only
/*
* svm_vmcall_test
*
* Copyright © 2021 Amazon.com, Inc. or its affiliates.
*
* Xen shared_info / pvclock testing
*/
#include "test_util.h"
#include "kvm_util.h"
#include "processor.h"
#include <stdint.h>
#include <time.h>
#include <sched.h>
#define VCPU_ID 5
#define SHINFO_REGION_GVA 0xc0000000ULL
#define SHINFO_REGION_GPA 0xc0000000ULL
#define SHINFO_REGION_SLOT 10
#define PAGE_SIZE 4096
#define PVTIME_ADDR (SHINFO_REGION_GPA + PAGE_SIZE)
#define RUNSTATE_ADDR (SHINFO_REGION_GPA + PAGE_SIZE + 0x20)
#define RUNSTATE_VADDR (SHINFO_REGION_GVA + PAGE_SIZE + 0x20)
static struct kvm_vm *vm;
#define XEN_HYPERCALL_MSR 0x40000000
#define MIN_STEAL_TIME 50000
struct pvclock_vcpu_time_info {
u32 version;
u32 pad0;
u64 tsc_timestamp;
u64 system_time;
u32 tsc_to_system_mul;
s8 tsc_shift;
u8 flags;
u8 pad[2];
} __attribute__((__packed__)); /* 32 bytes */
struct pvclock_wall_clock {
u32 version;
u32 sec;
u32 nsec;
} __attribute__((__packed__));
struct vcpu_runstate_info {
uint32_t state;
uint64_t state_entry_time;
uint64_t time[4];
};
#define RUNSTATE_running 0
#define RUNSTATE_runnable 1
#define RUNSTATE_blocked 2
#define RUNSTATE_offline 3
static void guest_code(void)
{
struct vcpu_runstate_info *rs = (void *)RUNSTATE_VADDR;
/* Test having the host set runstates manually */
GUEST_SYNC(RUNSTATE_runnable);
GUEST_ASSERT(rs->time[RUNSTATE_runnable] != 0);
GUEST_ASSERT(rs->state == 0);
GUEST_SYNC(RUNSTATE_blocked);
GUEST_ASSERT(rs->time[RUNSTATE_blocked] != 0);
GUEST_ASSERT(rs->state == 0);
GUEST_SYNC(RUNSTATE_offline);
GUEST_ASSERT(rs->time[RUNSTATE_offline] != 0);
GUEST_ASSERT(rs->state == 0);
/* Test runstate time adjust */
GUEST_SYNC(4);
GUEST_ASSERT(rs->time[RUNSTATE_blocked] == 0x5a);
GUEST_ASSERT(rs->time[RUNSTATE_offline] == 0x6b6b);
/* Test runstate time set */
GUEST_SYNC(5);
GUEST_ASSERT(rs->state_entry_time >= 0x8000);
GUEST_ASSERT(rs->time[RUNSTATE_runnable] == 0);
GUEST_ASSERT(rs->time[RUNSTATE_blocked] == 0x6b6b);
GUEST_ASSERT(rs->time[RUNSTATE_offline] == 0x5a);
/* sched_yield() should result in some 'runnable' time */
GUEST_SYNC(6);
GUEST_ASSERT(rs->time[RUNSTATE_runnable] >= MIN_STEAL_TIME);
GUEST_DONE();
}
static int cmp_timespec(struct timespec *a, struct timespec *b)
{
if (a->tv_sec > b->tv_sec)
return 1;
else if (a->tv_sec < b->tv_sec)
return -1;
else if (a->tv_nsec > b->tv_nsec)
return 1;
else if (a->tv_nsec < b->tv_nsec)
return -1;
else
return 0;
}
int main(int argc, char *argv[])
{
struct timespec min_ts, max_ts, vm_ts;
int xen_caps = kvm_check_cap(KVM_CAP_XEN_HVM);
if (!(xen_caps & KVM_XEN_HVM_CONFIG_SHARED_INFO) ) {
print_skip("KVM_XEN_HVM_CONFIG_SHARED_INFO not available");
exit(KSFT_SKIP);
}
bool do_runstate_tests = !!(xen_caps & KVM_XEN_HVM_CONFIG_RUNSTATE);
clock_gettime(CLOCK_REALTIME, &min_ts);
vm = vm_create_default(VCPU_ID, 0, (void *) guest_code);
vcpu_set_cpuid(vm, VCPU_ID, kvm_get_supported_cpuid());
/* Map a region for the shared_info page */
vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS,
SHINFO_REGION_GPA, SHINFO_REGION_SLOT, 2, 0);
virt_map(vm, SHINFO_REGION_GVA, SHINFO_REGION_GPA, 2);
struct kvm_xen_hvm_config hvmc = {
.flags = KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL,
.msr = XEN_HYPERCALL_MSR,
};
vm_ioctl(vm, KVM_XEN_HVM_CONFIG, &hvmc);
struct kvm_xen_hvm_attr lm = {
.type = KVM_XEN_ATTR_TYPE_LONG_MODE,
.u.long_mode = 1,
};
vm_ioctl(vm, KVM_XEN_HVM_SET_ATTR, &lm);
struct kvm_xen_hvm_attr ha = {
.type = KVM_XEN_ATTR_TYPE_SHARED_INFO,
.u.shared_info.gfn = SHINFO_REGION_GPA / PAGE_SIZE,
};
vm_ioctl(vm, KVM_XEN_HVM_SET_ATTR, &ha);
struct kvm_xen_vcpu_attr vi = {
.type = KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO,
.u.gpa = SHINFO_REGION_GPA + 0x40,
};
vcpu_ioctl(vm, VCPU_ID, KVM_XEN_VCPU_SET_ATTR, &vi);
struct kvm_xen_vcpu_attr pvclock = {
.type = KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO,
.u.gpa = PVTIME_ADDR,
};
vcpu_ioctl(vm, VCPU_ID, KVM_XEN_VCPU_SET_ATTR, &pvclock);
if (do_runstate_tests) {
struct kvm_xen_vcpu_attr st = {
.type = KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR,
.u.gpa = RUNSTATE_ADDR,
};
vcpu_ioctl(vm, VCPU_ID, KVM_XEN_VCPU_SET_ATTR, &st);
}
struct vcpu_runstate_info *rs = addr_gpa2hva(vm, RUNSTATE_ADDR);
rs->state = 0x5a;
for (;;) {
volatile struct kvm_run *run = vcpu_state(vm, VCPU_ID);
struct ucall uc;
vcpu_run(vm, VCPU_ID);
TEST_ASSERT(run->exit_reason == KVM_EXIT_IO,
"Got exit_reason other than KVM_EXIT_IO: %u (%s)\n",
run->exit_reason,
exit_reason_str(run->exit_reason));
switch (get_ucall(vm, VCPU_ID, &uc)) {
case UCALL_ABORT:
TEST_FAIL("%s", (const char *)uc.args[0]);
/* NOT REACHED */
case UCALL_SYNC: {
struct kvm_xen_vcpu_attr rst;
long rundelay;
/* If no runstate support, bail out early */
if (!do_runstate_tests)
goto done;
TEST_ASSERT(rs->state_entry_time == rs->time[0] +
rs->time[1] + rs->time[2] + rs->time[3],
"runstate times don't add up");
switch (uc.args[1]) {
case RUNSTATE_running...RUNSTATE_offline:
rst.type = KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT;
rst.u.runstate.state = uc.args[1];
vcpu_ioctl(vm, VCPU_ID, KVM_XEN_VCPU_SET_ATTR, &rst);
break;
case 4:
rst.type = KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST;
memset(&rst.u, 0, sizeof(rst.u));
rst.u.runstate.state = (uint64_t)-1;
rst.u.runstate.time_blocked =
0x5a - rs->time[RUNSTATE_blocked];
rst.u.runstate.time_offline =
0x6b6b - rs->time[RUNSTATE_offline];
rst.u.runstate.time_runnable = -rst.u.runstate.time_blocked -
rst.u.runstate.time_offline;
vcpu_ioctl(vm, VCPU_ID, KVM_XEN_VCPU_SET_ATTR, &rst);
break;
case 5:
rst.type = KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA;
memset(&rst.u, 0, sizeof(rst.u));
rst.u.runstate.state = RUNSTATE_running;
rst.u.runstate.state_entry_time = 0x6b6b + 0x5a;
rst.u.runstate.time_blocked = 0x6b6b;
rst.u.runstate.time_offline = 0x5a;
vcpu_ioctl(vm, VCPU_ID, KVM_XEN_VCPU_SET_ATTR, &rst);
break;
case 6:
/* Yield until scheduler delay exceeds target */
rundelay = get_run_delay() + MIN_STEAL_TIME;
do {
sched_yield();
} while (get_run_delay() < rundelay);
break;
}
break;
}
case UCALL_DONE:
goto done;
default:
TEST_FAIL("Unknown ucall 0x%lx.", uc.cmd);
}
}
done:
clock_gettime(CLOCK_REALTIME, &max_ts);
/*
* Just a *really* basic check that things are being put in the
* right place. The actual calculations are much the same for
* Xen as they are for the KVM variants, so no need to check.
*/
struct pvclock_wall_clock *wc;
struct pvclock_vcpu_time_info *ti, *ti2;
wc = addr_gpa2hva(vm, SHINFO_REGION_GPA + 0xc00);
ti = addr_gpa2hva(vm, SHINFO_REGION_GPA + 0x40 + 0x20);
ti2 = addr_gpa2hva(vm, PVTIME_ADDR);
vm_ts.tv_sec = wc->sec;
vm_ts.tv_nsec = wc->nsec;
TEST_ASSERT(wc->version && !(wc->version & 1),
"Bad wallclock version %x", wc->version);
TEST_ASSERT(cmp_timespec(&min_ts, &vm_ts) <= 0, "VM time too old");
TEST_ASSERT(cmp_timespec(&max_ts, &vm_ts) >= 0, "VM time too new");
TEST_ASSERT(ti->version && !(ti->version & 1),
"Bad time_info version %x", ti->version);
TEST_ASSERT(ti2->version && !(ti2->version & 1),
"Bad time_info version %x", ti->version);
if (do_runstate_tests) {
/*
* Fetch runstate and check sanity. Strictly speaking in the
* general case we might not expect the numbers to be identical
* but in this case we know we aren't running the vCPU any more.
*/
struct kvm_xen_vcpu_attr rst = {
.type = KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA,
};
vcpu_ioctl(vm, VCPU_ID, KVM_XEN_VCPU_GET_ATTR, &rst);
TEST_ASSERT(rs->state == rst.u.runstate.state, "Runstate mismatch");
TEST_ASSERT(rs->state_entry_time == rst.u.runstate.state_entry_time,
"State entry time mismatch");
TEST_ASSERT(rs->time[RUNSTATE_running] == rst.u.runstate.time_running,
"Running time mismatch");
TEST_ASSERT(rs->time[RUNSTATE_runnable] == rst.u.runstate.time_runnable,
"Runnable time mismatch");
TEST_ASSERT(rs->time[RUNSTATE_blocked] == rst.u.runstate.time_blocked,
"Blocked time mismatch");
TEST_ASSERT(rs->time[RUNSTATE_offline] == rst.u.runstate.time_offline,
"Offline time mismatch");
TEST_ASSERT(rs->state_entry_time == rs->time[0] +
rs->time[1] + rs->time[2] + rs->time[3],
"runstate times don't add up");
}
kvm_vm_free(vm);
return 0;
}