729 lines
17 KiB
C
729 lines
17 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
/*
|
||
|
* Data Access Monitor
|
||
|
*
|
||
|
* Author: SeongJae Park <sjpark@amazon.de>
|
||
|
*/
|
||
|
|
||
|
#define pr_fmt(fmt) "damon: " fmt
|
||
|
|
||
|
#include <linux/damon.h>
|
||
|
#include <linux/delay.h>
|
||
|
#include <linux/kthread.h>
|
||
|
#include <linux/random.h>
|
||
|
#include <linux/slab.h>
|
||
|
|
||
|
#define CREATE_TRACE_POINTS
|
||
|
#include <trace/events/damon.h>
|
||
|
|
||
|
#ifdef CONFIG_DAMON_KUNIT_TEST
|
||
|
#undef DAMON_MIN_REGION
|
||
|
#define DAMON_MIN_REGION 1
|
||
|
#endif
|
||
|
|
||
|
/* Get a random number in [l, r) */
|
||
|
#define damon_rand(l, r) (l + prandom_u32_max(r - l))
|
||
|
|
||
|
static DEFINE_MUTEX(damon_lock);
|
||
|
static int nr_running_ctxs;
|
||
|
|
||
|
/*
|
||
|
* Construct a damon_region struct
|
||
|
*
|
||
|
* Returns the pointer to the new struct if success, or NULL otherwise
|
||
|
*/
|
||
|
struct damon_region *damon_new_region(unsigned long start, unsigned long end)
|
||
|
{
|
||
|
struct damon_region *region;
|
||
|
|
||
|
region = kmalloc(sizeof(*region), GFP_KERNEL);
|
||
|
if (!region)
|
||
|
return NULL;
|
||
|
|
||
|
region->ar.start = start;
|
||
|
region->ar.end = end;
|
||
|
region->nr_accesses = 0;
|
||
|
INIT_LIST_HEAD(®ion->list);
|
||
|
|
||
|
return region;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Add a region between two other regions
|
||
|
*/
|
||
|
inline void damon_insert_region(struct damon_region *r,
|
||
|
struct damon_region *prev, struct damon_region *next,
|
||
|
struct damon_target *t)
|
||
|
{
|
||
|
__list_add(&r->list, &prev->list, &next->list);
|
||
|
t->nr_regions++;
|
||
|
}
|
||
|
|
||
|
void damon_add_region(struct damon_region *r, struct damon_target *t)
|
||
|
{
|
||
|
list_add_tail(&r->list, &t->regions_list);
|
||
|
t->nr_regions++;
|
||
|
}
|
||
|
|
||
|
static void damon_del_region(struct damon_region *r, struct damon_target *t)
|
||
|
{
|
||
|
list_del(&r->list);
|
||
|
t->nr_regions--;
|
||
|
}
|
||
|
|
||
|
static void damon_free_region(struct damon_region *r)
|
||
|
{
|
||
|
kfree(r);
|
||
|
}
|
||
|
|
||
|
void damon_destroy_region(struct damon_region *r, struct damon_target *t)
|
||
|
{
|
||
|
damon_del_region(r, t);
|
||
|
damon_free_region(r);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Construct a damon_target struct
|
||
|
*
|
||
|
* Returns the pointer to the new struct if success, or NULL otherwise
|
||
|
*/
|
||
|
struct damon_target *damon_new_target(unsigned long id)
|
||
|
{
|
||
|
struct damon_target *t;
|
||
|
|
||
|
t = kmalloc(sizeof(*t), GFP_KERNEL);
|
||
|
if (!t)
|
||
|
return NULL;
|
||
|
|
||
|
t->id = id;
|
||
|
t->nr_regions = 0;
|
||
|
INIT_LIST_HEAD(&t->regions_list);
|
||
|
|
||
|
return t;
|
||
|
}
|
||
|
|
||
|
void damon_add_target(struct damon_ctx *ctx, struct damon_target *t)
|
||
|
{
|
||
|
list_add_tail(&t->list, &ctx->adaptive_targets);
|
||
|
}
|
||
|
|
||
|
static void damon_del_target(struct damon_target *t)
|
||
|
{
|
||
|
list_del(&t->list);
|
||
|
}
|
||
|
|
||
|
void damon_free_target(struct damon_target *t)
|
||
|
{
|
||
|
struct damon_region *r, *next;
|
||
|
|
||
|
damon_for_each_region_safe(r, next, t)
|
||
|
damon_free_region(r);
|
||
|
kfree(t);
|
||
|
}
|
||
|
|
||
|
void damon_destroy_target(struct damon_target *t)
|
||
|
{
|
||
|
damon_del_target(t);
|
||
|
damon_free_target(t);
|
||
|
}
|
||
|
|
||
|
unsigned int damon_nr_regions(struct damon_target *t)
|
||
|
{
|
||
|
return t->nr_regions;
|
||
|
}
|
||
|
|
||
|
struct damon_ctx *damon_new_ctx(void)
|
||
|
{
|
||
|
struct damon_ctx *ctx;
|
||
|
|
||
|
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
|
||
|
if (!ctx)
|
||
|
return NULL;
|
||
|
|
||
|
ctx->sample_interval = 5 * 1000;
|
||
|
ctx->aggr_interval = 100 * 1000;
|
||
|
ctx->primitive_update_interval = 60 * 1000 * 1000;
|
||
|
|
||
|
ktime_get_coarse_ts64(&ctx->last_aggregation);
|
||
|
ctx->last_primitive_update = ctx->last_aggregation;
|
||
|
|
||
|
mutex_init(&ctx->kdamond_lock);
|
||
|
|
||
|
ctx->min_nr_regions = 10;
|
||
|
ctx->max_nr_regions = 1000;
|
||
|
|
||
|
INIT_LIST_HEAD(&ctx->adaptive_targets);
|
||
|
|
||
|
return ctx;
|
||
|
}
|
||
|
|
||
|
static void damon_destroy_targets(struct damon_ctx *ctx)
|
||
|
{
|
||
|
struct damon_target *t, *next_t;
|
||
|
|
||
|
if (ctx->primitive.cleanup) {
|
||
|
ctx->primitive.cleanup(ctx);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
damon_for_each_target_safe(t, next_t, ctx)
|
||
|
damon_destroy_target(t);
|
||
|
}
|
||
|
|
||
|
void damon_destroy_ctx(struct damon_ctx *ctx)
|
||
|
{
|
||
|
damon_destroy_targets(ctx);
|
||
|
kfree(ctx);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* damon_set_targets() - Set monitoring targets.
|
||
|
* @ctx: monitoring context
|
||
|
* @ids: array of target ids
|
||
|
* @nr_ids: number of entries in @ids
|
||
|
*
|
||
|
* This function should not be called while the kdamond is running.
|
||
|
*
|
||
|
* Return: 0 on success, negative error code otherwise.
|
||
|
*/
|
||
|
int damon_set_targets(struct damon_ctx *ctx,
|
||
|
unsigned long *ids, ssize_t nr_ids)
|
||
|
{
|
||
|
ssize_t i;
|
||
|
struct damon_target *t, *next;
|
||
|
|
||
|
damon_destroy_targets(ctx);
|
||
|
|
||
|
for (i = 0; i < nr_ids; i++) {
|
||
|
t = damon_new_target(ids[i]);
|
||
|
if (!t) {
|
||
|
pr_err("Failed to alloc damon_target\n");
|
||
|
/* The caller should do cleanup of the ids itself */
|
||
|
damon_for_each_target_safe(t, next, ctx)
|
||
|
damon_destroy_target(t);
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
damon_add_target(ctx, t);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* damon_set_attrs() - Set attributes for the monitoring.
|
||
|
* @ctx: monitoring context
|
||
|
* @sample_int: time interval between samplings
|
||
|
* @aggr_int: time interval between aggregations
|
||
|
* @primitive_upd_int: time interval between monitoring primitive updates
|
||
|
* @min_nr_reg: minimal number of regions
|
||
|
* @max_nr_reg: maximum number of regions
|
||
|
*
|
||
|
* This function should not be called while the kdamond is running.
|
||
|
* Every time interval is in micro-seconds.
|
||
|
*
|
||
|
* Return: 0 on success, negative error code otherwise.
|
||
|
*/
|
||
|
int damon_set_attrs(struct damon_ctx *ctx, unsigned long sample_int,
|
||
|
unsigned long aggr_int, unsigned long primitive_upd_int,
|
||
|
unsigned long min_nr_reg, unsigned long max_nr_reg)
|
||
|
{
|
||
|
if (min_nr_reg < 3) {
|
||
|
pr_err("min_nr_regions (%lu) must be at least 3\n",
|
||
|
min_nr_reg);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
if (min_nr_reg > max_nr_reg) {
|
||
|
pr_err("invalid nr_regions. min (%lu) > max (%lu)\n",
|
||
|
min_nr_reg, max_nr_reg);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
ctx->sample_interval = sample_int;
|
||
|
ctx->aggr_interval = aggr_int;
|
||
|
ctx->primitive_update_interval = primitive_upd_int;
|
||
|
ctx->min_nr_regions = min_nr_reg;
|
||
|
ctx->max_nr_regions = max_nr_reg;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* damon_nr_running_ctxs() - Return number of currently running contexts.
|
||
|
*/
|
||
|
int damon_nr_running_ctxs(void)
|
||
|
{
|
||
|
int nr_ctxs;
|
||
|
|
||
|
mutex_lock(&damon_lock);
|
||
|
nr_ctxs = nr_running_ctxs;
|
||
|
mutex_unlock(&damon_lock);
|
||
|
|
||
|
return nr_ctxs;
|
||
|
}
|
||
|
|
||
|
/* Returns the size upper limit for each monitoring region */
|
||
|
static unsigned long damon_region_sz_limit(struct damon_ctx *ctx)
|
||
|
{
|
||
|
struct damon_target *t;
|
||
|
struct damon_region *r;
|
||
|
unsigned long sz = 0;
|
||
|
|
||
|
damon_for_each_target(t, ctx) {
|
||
|
damon_for_each_region(r, t)
|
||
|
sz += r->ar.end - r->ar.start;
|
||
|
}
|
||
|
|
||
|
if (ctx->min_nr_regions)
|
||
|
sz /= ctx->min_nr_regions;
|
||
|
if (sz < DAMON_MIN_REGION)
|
||
|
sz = DAMON_MIN_REGION;
|
||
|
|
||
|
return sz;
|
||
|
}
|
||
|
|
||
|
static bool damon_kdamond_running(struct damon_ctx *ctx)
|
||
|
{
|
||
|
bool running;
|
||
|
|
||
|
mutex_lock(&ctx->kdamond_lock);
|
||
|
running = ctx->kdamond != NULL;
|
||
|
mutex_unlock(&ctx->kdamond_lock);
|
||
|
|
||
|
return running;
|
||
|
}
|
||
|
|
||
|
static int kdamond_fn(void *data);
|
||
|
|
||
|
/*
|
||
|
* __damon_start() - Starts monitoring with given context.
|
||
|
* @ctx: monitoring context
|
||
|
*
|
||
|
* This function should be called while damon_lock is hold.
|
||
|
*
|
||
|
* Return: 0 on success, negative error code otherwise.
|
||
|
*/
|
||
|
static int __damon_start(struct damon_ctx *ctx)
|
||
|
{
|
||
|
int err = -EBUSY;
|
||
|
|
||
|
mutex_lock(&ctx->kdamond_lock);
|
||
|
if (!ctx->kdamond) {
|
||
|
err = 0;
|
||
|
ctx->kdamond_stop = false;
|
||
|
ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d",
|
||
|
nr_running_ctxs);
|
||
|
if (IS_ERR(ctx->kdamond)) {
|
||
|
err = PTR_ERR(ctx->kdamond);
|
||
|
ctx->kdamond = 0;
|
||
|
}
|
||
|
}
|
||
|
mutex_unlock(&ctx->kdamond_lock);
|
||
|
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* damon_start() - Starts the monitorings for a given group of contexts.
|
||
|
* @ctxs: an array of the pointers for contexts to start monitoring
|
||
|
* @nr_ctxs: size of @ctxs
|
||
|
*
|
||
|
* This function starts a group of monitoring threads for a group of monitoring
|
||
|
* contexts. One thread per each context is created and run in parallel. The
|
||
|
* caller should handle synchronization between the threads by itself. If a
|
||
|
* group of threads that created by other 'damon_start()' call is currently
|
||
|
* running, this function does nothing but returns -EBUSY.
|
||
|
*
|
||
|
* Return: 0 on success, negative error code otherwise.
|
||
|
*/
|
||
|
int damon_start(struct damon_ctx **ctxs, int nr_ctxs)
|
||
|
{
|
||
|
int i;
|
||
|
int err = 0;
|
||
|
|
||
|
mutex_lock(&damon_lock);
|
||
|
if (nr_running_ctxs) {
|
||
|
mutex_unlock(&damon_lock);
|
||
|
return -EBUSY;
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < nr_ctxs; i++) {
|
||
|
err = __damon_start(ctxs[i]);
|
||
|
if (err)
|
||
|
break;
|
||
|
nr_running_ctxs++;
|
||
|
}
|
||
|
mutex_unlock(&damon_lock);
|
||
|
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
static void kdamond_usleep(unsigned long usecs)
|
||
|
{
|
||
|
/* See Documentation/timers/timers-howto.rst for the thresholds */
|
||
|
if (usecs > 20 * 1000)
|
||
|
schedule_timeout_idle(usecs_to_jiffies(usecs));
|
||
|
else
|
||
|
usleep_idle_range(usecs, usecs + 1);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* __damon_stop() - Stops monitoring of given context.
|
||
|
* @ctx: monitoring context
|
||
|
*
|
||
|
* Return: 0 on success, negative error code otherwise.
|
||
|
*/
|
||
|
static int __damon_stop(struct damon_ctx *ctx)
|
||
|
{
|
||
|
mutex_lock(&ctx->kdamond_lock);
|
||
|
if (ctx->kdamond) {
|
||
|
ctx->kdamond_stop = true;
|
||
|
mutex_unlock(&ctx->kdamond_lock);
|
||
|
while (damon_kdamond_running(ctx))
|
||
|
kdamond_usleep(ctx->sample_interval);
|
||
|
return 0;
|
||
|
}
|
||
|
mutex_unlock(&ctx->kdamond_lock);
|
||
|
|
||
|
return -EPERM;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* damon_stop() - Stops the monitorings for a given group of contexts.
|
||
|
* @ctxs: an array of the pointers for contexts to stop monitoring
|
||
|
* @nr_ctxs: size of @ctxs
|
||
|
*
|
||
|
* Return: 0 on success, negative error code otherwise.
|
||
|
*/
|
||
|
int damon_stop(struct damon_ctx **ctxs, int nr_ctxs)
|
||
|
{
|
||
|
int i, err = 0;
|
||
|
|
||
|
for (i = 0; i < nr_ctxs; i++) {
|
||
|
/* nr_running_ctxs is decremented in kdamond_fn */
|
||
|
err = __damon_stop(ctxs[i]);
|
||
|
if (err)
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* damon_check_reset_time_interval() - Check if a time interval is elapsed.
|
||
|
* @baseline: the time to check whether the interval has elapsed since
|
||
|
* @interval: the time interval (microseconds)
|
||
|
*
|
||
|
* See whether the given time interval has passed since the given baseline
|
||
|
* time. If so, it also updates the baseline to current time for next check.
|
||
|
*
|
||
|
* Return: true if the time interval has passed, or false otherwise.
|
||
|
*/
|
||
|
static bool damon_check_reset_time_interval(struct timespec64 *baseline,
|
||
|
unsigned long interval)
|
||
|
{
|
||
|
struct timespec64 now;
|
||
|
|
||
|
ktime_get_coarse_ts64(&now);
|
||
|
if ((timespec64_to_ns(&now) - timespec64_to_ns(baseline)) <
|
||
|
interval * 1000)
|
||
|
return false;
|
||
|
*baseline = now;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Check whether it is time to flush the aggregated information
|
||
|
*/
|
||
|
static bool kdamond_aggregate_interval_passed(struct damon_ctx *ctx)
|
||
|
{
|
||
|
return damon_check_reset_time_interval(&ctx->last_aggregation,
|
||
|
ctx->aggr_interval);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Reset the aggregated monitoring results ('nr_accesses' of each region).
|
||
|
*/
|
||
|
static void kdamond_reset_aggregated(struct damon_ctx *c)
|
||
|
{
|
||
|
struct damon_target *t;
|
||
|
|
||
|
damon_for_each_target(t, c) {
|
||
|
struct damon_region *r;
|
||
|
|
||
|
damon_for_each_region(r, t) {
|
||
|
trace_damon_aggregated(t, r, damon_nr_regions(t));
|
||
|
r->nr_accesses = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#define sz_damon_region(r) (r->ar.end - r->ar.start)
|
||
|
|
||
|
/*
|
||
|
* Merge two adjacent regions into one region
|
||
|
*/
|
||
|
static void damon_merge_two_regions(struct damon_target *t,
|
||
|
struct damon_region *l, struct damon_region *r)
|
||
|
{
|
||
|
unsigned long sz_l = sz_damon_region(l), sz_r = sz_damon_region(r);
|
||
|
|
||
|
l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) /
|
||
|
(sz_l + sz_r);
|
||
|
l->ar.end = r->ar.end;
|
||
|
damon_destroy_region(r, t);
|
||
|
}
|
||
|
|
||
|
#define diff_of(a, b) (a > b ? a - b : b - a)
|
||
|
|
||
|
/*
|
||
|
* Merge adjacent regions having similar access frequencies
|
||
|
*
|
||
|
* t target affected by this merge operation
|
||
|
* thres '->nr_accesses' diff threshold for the merge
|
||
|
* sz_limit size upper limit of each region
|
||
|
*/
|
||
|
static void damon_merge_regions_of(struct damon_target *t, unsigned int thres,
|
||
|
unsigned long sz_limit)
|
||
|
{
|
||
|
struct damon_region *r, *prev = NULL, *next;
|
||
|
|
||
|
damon_for_each_region_safe(r, next, t) {
|
||
|
if (prev && prev->ar.end == r->ar.start &&
|
||
|
diff_of(prev->nr_accesses, r->nr_accesses) <= thres &&
|
||
|
sz_damon_region(prev) + sz_damon_region(r) <= sz_limit)
|
||
|
damon_merge_two_regions(t, prev, r);
|
||
|
else
|
||
|
prev = r;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Merge adjacent regions having similar access frequencies
|
||
|
*
|
||
|
* threshold '->nr_accesses' diff threshold for the merge
|
||
|
* sz_limit size upper limit of each region
|
||
|
*
|
||
|
* This function merges monitoring target regions which are adjacent and their
|
||
|
* access frequencies are similar. This is for minimizing the monitoring
|
||
|
* overhead under the dynamically changeable access pattern. If a merge was
|
||
|
* unnecessarily made, later 'kdamond_split_regions()' will revert it.
|
||
|
*/
|
||
|
static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold,
|
||
|
unsigned long sz_limit)
|
||
|
{
|
||
|
struct damon_target *t;
|
||
|
|
||
|
damon_for_each_target(t, c)
|
||
|
damon_merge_regions_of(t, threshold, sz_limit);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Split a region in two
|
||
|
*
|
||
|
* r the region to be split
|
||
|
* sz_r size of the first sub-region that will be made
|
||
|
*/
|
||
|
static void damon_split_region_at(struct damon_ctx *ctx,
|
||
|
struct damon_target *t, struct damon_region *r,
|
||
|
unsigned long sz_r)
|
||
|
{
|
||
|
struct damon_region *new;
|
||
|
|
||
|
new = damon_new_region(r->ar.start + sz_r, r->ar.end);
|
||
|
if (!new)
|
||
|
return;
|
||
|
|
||
|
r->ar.end = new->ar.start;
|
||
|
|
||
|
damon_insert_region(new, r, damon_next_region(r), t);
|
||
|
}
|
||
|
|
||
|
/* Split every region in the given target into 'nr_subs' regions */
|
||
|
static void damon_split_regions_of(struct damon_ctx *ctx,
|
||
|
struct damon_target *t, int nr_subs)
|
||
|
{
|
||
|
struct damon_region *r, *next;
|
||
|
unsigned long sz_region, sz_sub = 0;
|
||
|
int i;
|
||
|
|
||
|
damon_for_each_region_safe(r, next, t) {
|
||
|
sz_region = r->ar.end - r->ar.start;
|
||
|
|
||
|
for (i = 0; i < nr_subs - 1 &&
|
||
|
sz_region > 2 * DAMON_MIN_REGION; i++) {
|
||
|
/*
|
||
|
* Randomly select size of left sub-region to be at
|
||
|
* least 10 percent and at most 90% of original region
|
||
|
*/
|
||
|
sz_sub = ALIGN_DOWN(damon_rand(1, 10) *
|
||
|
sz_region / 10, DAMON_MIN_REGION);
|
||
|
/* Do not allow blank region */
|
||
|
if (sz_sub == 0 || sz_sub >= sz_region)
|
||
|
continue;
|
||
|
|
||
|
damon_split_region_at(ctx, t, r, sz_sub);
|
||
|
sz_region = sz_sub;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Split every target region into randomly-sized small regions
|
||
|
*
|
||
|
* This function splits every target region into random-sized small regions if
|
||
|
* current total number of the regions is equal or smaller than half of the
|
||
|
* user-specified maximum number of regions. This is for maximizing the
|
||
|
* monitoring accuracy under the dynamically changeable access patterns. If a
|
||
|
* split was unnecessarily made, later 'kdamond_merge_regions()' will revert
|
||
|
* it.
|
||
|
*/
|
||
|
static void kdamond_split_regions(struct damon_ctx *ctx)
|
||
|
{
|
||
|
struct damon_target *t;
|
||
|
unsigned int nr_regions = 0;
|
||
|
static unsigned int last_nr_regions;
|
||
|
int nr_subregions = 2;
|
||
|
|
||
|
damon_for_each_target(t, ctx)
|
||
|
nr_regions += damon_nr_regions(t);
|
||
|
|
||
|
if (nr_regions > ctx->max_nr_regions / 2)
|
||
|
return;
|
||
|
|
||
|
/* Maybe the middle of the region has different access frequency */
|
||
|
if (last_nr_regions == nr_regions &&
|
||
|
nr_regions < ctx->max_nr_regions / 3)
|
||
|
nr_subregions = 3;
|
||
|
|
||
|
damon_for_each_target(t, ctx)
|
||
|
damon_split_regions_of(ctx, t, nr_subregions);
|
||
|
|
||
|
last_nr_regions = nr_regions;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Check whether it is time to check and apply the target monitoring regions
|
||
|
*
|
||
|
* Returns true if it is.
|
||
|
*/
|
||
|
static bool kdamond_need_update_primitive(struct damon_ctx *ctx)
|
||
|
{
|
||
|
return damon_check_reset_time_interval(&ctx->last_primitive_update,
|
||
|
ctx->primitive_update_interval);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Check whether current monitoring should be stopped
|
||
|
*
|
||
|
* The monitoring is stopped when either the user requested to stop, or all
|
||
|
* monitoring targets are invalid.
|
||
|
*
|
||
|
* Returns true if need to stop current monitoring.
|
||
|
*/
|
||
|
static bool kdamond_need_stop(struct damon_ctx *ctx)
|
||
|
{
|
||
|
struct damon_target *t;
|
||
|
bool stop;
|
||
|
|
||
|
mutex_lock(&ctx->kdamond_lock);
|
||
|
stop = ctx->kdamond_stop;
|
||
|
mutex_unlock(&ctx->kdamond_lock);
|
||
|
if (stop)
|
||
|
return true;
|
||
|
|
||
|
if (!ctx->primitive.target_valid)
|
||
|
return false;
|
||
|
|
||
|
damon_for_each_target(t, ctx) {
|
||
|
if (ctx->primitive.target_valid(t))
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static void set_kdamond_stop(struct damon_ctx *ctx)
|
||
|
{
|
||
|
mutex_lock(&ctx->kdamond_lock);
|
||
|
ctx->kdamond_stop = true;
|
||
|
mutex_unlock(&ctx->kdamond_lock);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The monitoring daemon that runs as a kernel thread
|
||
|
*/
|
||
|
static int kdamond_fn(void *data)
|
||
|
{
|
||
|
struct damon_ctx *ctx = (struct damon_ctx *)data;
|
||
|
struct damon_target *t;
|
||
|
struct damon_region *r, *next;
|
||
|
unsigned int max_nr_accesses = 0;
|
||
|
unsigned long sz_limit = 0;
|
||
|
|
||
|
mutex_lock(&ctx->kdamond_lock);
|
||
|
pr_info("kdamond (%d) starts\n", ctx->kdamond->pid);
|
||
|
mutex_unlock(&ctx->kdamond_lock);
|
||
|
|
||
|
if (ctx->primitive.init)
|
||
|
ctx->primitive.init(ctx);
|
||
|
if (ctx->callback.before_start && ctx->callback.before_start(ctx))
|
||
|
set_kdamond_stop(ctx);
|
||
|
|
||
|
sz_limit = damon_region_sz_limit(ctx);
|
||
|
|
||
|
while (!kdamond_need_stop(ctx)) {
|
||
|
if (ctx->primitive.prepare_access_checks)
|
||
|
ctx->primitive.prepare_access_checks(ctx);
|
||
|
if (ctx->callback.after_sampling &&
|
||
|
ctx->callback.after_sampling(ctx))
|
||
|
set_kdamond_stop(ctx);
|
||
|
|
||
|
kdamond_usleep(ctx->sample_interval);
|
||
|
|
||
|
if (ctx->primitive.check_accesses)
|
||
|
max_nr_accesses = ctx->primitive.check_accesses(ctx);
|
||
|
|
||
|
if (kdamond_aggregate_interval_passed(ctx)) {
|
||
|
kdamond_merge_regions(ctx,
|
||
|
max_nr_accesses / 10,
|
||
|
sz_limit);
|
||
|
if (ctx->callback.after_aggregation &&
|
||
|
ctx->callback.after_aggregation(ctx))
|
||
|
set_kdamond_stop(ctx);
|
||
|
kdamond_reset_aggregated(ctx);
|
||
|
kdamond_split_regions(ctx);
|
||
|
if (ctx->primitive.reset_aggregated)
|
||
|
ctx->primitive.reset_aggregated(ctx);
|
||
|
}
|
||
|
|
||
|
if (kdamond_need_update_primitive(ctx)) {
|
||
|
if (ctx->primitive.update)
|
||
|
ctx->primitive.update(ctx);
|
||
|
sz_limit = damon_region_sz_limit(ctx);
|
||
|
}
|
||
|
}
|
||
|
damon_for_each_target(t, ctx) {
|
||
|
damon_for_each_region_safe(r, next, t)
|
||
|
damon_destroy_region(r, t);
|
||
|
}
|
||
|
|
||
|
if (ctx->callback.before_terminate &&
|
||
|
ctx->callback.before_terminate(ctx))
|
||
|
set_kdamond_stop(ctx);
|
||
|
if (ctx->primitive.cleanup)
|
||
|
ctx->primitive.cleanup(ctx);
|
||
|
|
||
|
pr_debug("kdamond (%d) finishes\n", ctx->kdamond->pid);
|
||
|
mutex_lock(&ctx->kdamond_lock);
|
||
|
ctx->kdamond = NULL;
|
||
|
mutex_unlock(&ctx->kdamond_lock);
|
||
|
|
||
|
mutex_lock(&damon_lock);
|
||
|
nr_running_ctxs--;
|
||
|
mutex_unlock(&damon_lock);
|
||
|
|
||
|
do_exit(0);
|
||
|
}
|
||
|
|
||
|
#include "core-test.h"
|