kernel/drivers/scsi/lpfc/lpfc_nvme.c

2755 lines
80 KiB
C
Raw Normal View History

2024-07-22 17:22:30 +08:00
/*******************************************************************
* This file is part of the Emulex Linux Device Driver for *
* Fibre Channel Host Bus Adapters. *
* Copyright (C) 2017-2021 Broadcom. All Rights Reserved. The term *
* Broadcom refers to Broadcom Inc. and/or its subsidiaries. *
* Copyright (C) 2004-2016 Emulex. All rights reserved. *
* EMULEX and SLI are trademarks of Emulex. *
* www.broadcom.com *
* Portions Copyright (C) 2004-2005 Christoph Hellwig *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of version 2 of the GNU General *
* Public License as published by the Free Software Foundation. *
* This program is distributed in the hope that it will be useful. *
* ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND *
* WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, *
* FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE *
* DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
* TO BE LEGALLY INVALID. See the GNU General Public License for *
* more details, a copy of which can be found in the file COPYING *
* included with this package. *
********************************************************************/
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <asm/unaligned.h>
#include <linux/crc-t10dif.h>
#include <net/checksum.h>
#include <scsi/scsi.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_eh.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_tcq.h>
#include <scsi/scsi_transport_fc.h>
#include <scsi/fc/fc_fs.h>
#include "lpfc_version.h"
#include "lpfc_hw4.h"
#include "lpfc_hw.h"
#include "lpfc_sli.h"
#include "lpfc_sli4.h"
#include "lpfc_nl.h"
#include "lpfc_disc.h"
#include "lpfc.h"
#include "lpfc_nvme.h"
#include "lpfc_scsi.h"
#include "lpfc_logmsg.h"
#include "lpfc_crtn.h"
#include "lpfc_vport.h"
#include "lpfc_debugfs.h"
/* NVME initiator-based functions */
static struct lpfc_io_buf *
lpfc_get_nvme_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
int idx, int expedite);
static void
lpfc_release_nvme_buf(struct lpfc_hba *, struct lpfc_io_buf *);
static struct nvme_fc_port_template lpfc_nvme_template;
/**
* lpfc_nvme_create_queue -
* @pnvme_lport: Transport localport that LS is to be issued from
* @qidx: An cpu index used to affinitize IO queues and MSIX vectors.
* @qsize: Size of the queue in bytes
* @handle: An opaque driver handle used in follow-up calls.
*
* Driver registers this routine to preallocate and initialize any
* internal data structures to bind the @qidx to its internal IO queues.
* A hardware queue maps (qidx) to a specific driver MSI-X vector/EQ/CQ/WQ.
*
* Return value :
* 0 - Success
* -EINVAL - Unsupported input value.
* -ENOMEM - Could not alloc necessary memory
**/
static int
lpfc_nvme_create_queue(struct nvme_fc_local_port *pnvme_lport,
unsigned int qidx, u16 qsize,
void **handle)
{
struct lpfc_nvme_lport *lport;
struct lpfc_vport *vport;
struct lpfc_nvme_qhandle *qhandle;
char *str;
if (!pnvme_lport->private)
return -ENOMEM;
lport = (struct lpfc_nvme_lport *)pnvme_lport->private;
vport = lport->vport;
qhandle = kzalloc(sizeof(struct lpfc_nvme_qhandle), GFP_KERNEL);
if (qhandle == NULL)
return -ENOMEM;
qhandle->cpu_id = raw_smp_processor_id();
qhandle->qidx = qidx;
/*
* NVME qidx == 0 is the admin queue, so both admin queue
* and first IO queue will use MSI-X vector and associated
* EQ/CQ/WQ at index 0. After that they are sequentially assigned.
*/
if (qidx) {
str = "IO "; /* IO queue */
qhandle->index = ((qidx - 1) %
lpfc_nvme_template.max_hw_queues);
} else {
str = "ADM"; /* Admin queue */
qhandle->index = qidx;
}
lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME,
"6073 Binding %s HdwQueue %d (cpu %d) to "
"hdw_queue %d qhandle x%px\n", str,
qidx, qhandle->cpu_id, qhandle->index, qhandle);
*handle = (void *)qhandle;
return 0;
}
/**
* lpfc_nvme_delete_queue -
* @pnvme_lport: Transport localport that LS is to be issued from
* @qidx: An cpu index used to affinitize IO queues and MSIX vectors.
* @handle: An opaque driver handle from lpfc_nvme_create_queue
*
* Driver registers this routine to free
* any internal data structures to bind the @qidx to its internal
* IO queues.
*
* Return value :
* 0 - Success
* TODO: What are the failure codes.
**/
static void
lpfc_nvme_delete_queue(struct nvme_fc_local_port *pnvme_lport,
unsigned int qidx,
void *handle)
{
struct lpfc_nvme_lport *lport;
struct lpfc_vport *vport;
if (!pnvme_lport->private)
return;
lport = (struct lpfc_nvme_lport *)pnvme_lport->private;
vport = lport->vport;
lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME,
"6001 ENTER. lpfc_pnvme x%px, qidx x%x qhandle x%px\n",
lport, qidx, handle);
kfree(handle);
}
static void
lpfc_nvme_localport_delete(struct nvme_fc_local_port *localport)
{
struct lpfc_nvme_lport *lport = localport->private;
lpfc_printf_vlog(lport->vport, KERN_INFO, LOG_NVME,
"6173 localport x%px delete complete\n",
lport);
/* release any threads waiting for the unreg to complete */
if (lport->vport->localport)
complete(lport->lport_unreg_cmp);
}
/* lpfc_nvme_remoteport_delete
*
* @remoteport: Pointer to an nvme transport remoteport instance.
*
* This is a template downcall. NVME transport calls this function
* when it has completed the unregistration of a previously
* registered remoteport.
*
* Return value :
* None
*/
static void
lpfc_nvme_remoteport_delete(struct nvme_fc_remote_port *remoteport)
{
struct lpfc_nvme_rport *rport = remoteport->private;
struct lpfc_vport *vport;
struct lpfc_nodelist *ndlp;
u32 fc4_xpt_flags;
ndlp = rport->ndlp;
if (!ndlp) {
pr_err("**** %s: NULL ndlp on rport x%px remoteport x%px\n",
__func__, rport, remoteport);
goto rport_err;
}
vport = ndlp->vport;
if (!vport) {
pr_err("**** %s: Null vport on ndlp x%px, ste x%x rport x%px\n",
__func__, ndlp, ndlp->nlp_state, rport);
goto rport_err;
}
fc4_xpt_flags = NVME_XPT_REGD | SCSI_XPT_REGD;
/* Remove this rport from the lport's list - memory is owned by the
* transport. Remove the ndlp reference for the NVME transport before
* calling state machine to remove the node.
*/
lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_DISC,
"6146 remoteport delete of remoteport x%px, ndlp x%px "
"DID x%x xflags x%x\n",
remoteport, ndlp, ndlp->nlp_DID, ndlp->fc4_xpt_flags);
spin_lock_irq(&ndlp->lock);
/* The register rebind might have occurred before the delete
* downcall. Guard against this race.
*/
if (ndlp->fc4_xpt_flags & NVME_XPT_UNREG_WAIT)
ndlp->fc4_xpt_flags &= ~(NVME_XPT_UNREG_WAIT | NVME_XPT_REGD);
spin_unlock_irq(&ndlp->lock);
/* On a devloss timeout event, one more put is executed provided the
* NVME and SCSI rport unregister requests are complete. If the vport
* is unloading, this extra put is executed by lpfc_drop_node.
*/
if (!(ndlp->fc4_xpt_flags & fc4_xpt_flags))
lpfc_disc_state_machine(vport, ndlp, NULL, NLP_EVT_DEVICE_RM);
rport_err:
return;
}
/**
* lpfc_nvme_handle_lsreq - Process an unsolicited NVME LS request
* @phba: pointer to lpfc hba data structure.
* @axchg: pointer to exchange context for the NVME LS request
*
* This routine is used for processing an asychronously received NVME LS
* request. Any remaining validation is done and the LS is then forwarded
* to the nvme-fc transport via nvme_fc_rcv_ls_req().
*
* The calling sequence should be: nvme_fc_rcv_ls_req() -> (processing)
* -> lpfc_nvme_xmt_ls_rsp/cmp -> req->done.
* __lpfc_nvme_xmt_ls_rsp_cmp should free the allocated axchg.
*
* Returns 0 if LS was handled and delivered to the transport
* Returns 1 if LS failed to be handled and should be dropped
*/
int
lpfc_nvme_handle_lsreq(struct lpfc_hba *phba,
struct lpfc_async_xchg_ctx *axchg)
{
#if (IS_ENABLED(CONFIG_NVME_FC))
struct lpfc_vport *vport;
struct lpfc_nvme_rport *lpfc_rport;
struct nvme_fc_remote_port *remoteport;
struct lpfc_nvme_lport *lport;
uint32_t *payload = axchg->payload;
int rc;
vport = axchg->ndlp->vport;
lpfc_rport = axchg->ndlp->nrport;
if (!lpfc_rport)
return -EINVAL;
remoteport = lpfc_rport->remoteport;
if (!vport->localport)
return -EINVAL;
lport = vport->localport->private;
if (!lport)
return -EINVAL;
rc = nvme_fc_rcv_ls_req(remoteport, &axchg->ls_rsp, axchg->payload,
axchg->size);
lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
"6205 NVME Unsol rcv: sz %d rc %d: %08x %08x %08x "
"%08x %08x %08x\n",
axchg->size, rc,
*payload, *(payload+1), *(payload+2),
*(payload+3), *(payload+4), *(payload+5));
if (!rc)
return 0;
#endif
return 1;
}
/**
* __lpfc_nvme_ls_req_cmp - Generic completion handler for a NVME
* LS request.
* @phba: Pointer to HBA context object
* @vport: The local port that issued the LS
* @cmdwqe: Pointer to driver command WQE object.
* @wcqe: Pointer to driver response CQE object.
*
* This function is the generic completion handler for NVME LS requests.
* The function updates any states and statistics, calls the transport
* ls_req done() routine, then tears down the command and buffers used
* for the LS request.
**/
void
__lpfc_nvme_ls_req_cmp(struct lpfc_hba *phba, struct lpfc_vport *vport,
struct lpfc_iocbq *cmdwqe,
struct lpfc_wcqe_complete *wcqe)
{
struct nvmefc_ls_req *pnvme_lsreq;
struct lpfc_dmabuf *buf_ptr;
struct lpfc_nodelist *ndlp;
uint32_t status;
pnvme_lsreq = (struct nvmefc_ls_req *)cmdwqe->context2;
ndlp = (struct lpfc_nodelist *)cmdwqe->context1;
status = bf_get(lpfc_wcqe_c_status, wcqe) & LPFC_IOCB_STATUS_MASK;
lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_DISC,
"6047 NVMEx LS REQ x%px cmpl DID %x Xri: %x "
"status %x reason x%x cmd:x%px lsreg:x%px bmp:x%px "
"ndlp:x%px\n",
pnvme_lsreq, ndlp ? ndlp->nlp_DID : 0,
cmdwqe->sli4_xritag, status,
(wcqe->parameter & 0xffff),
cmdwqe, pnvme_lsreq, cmdwqe->context3, ndlp);
lpfc_nvmeio_data(phba, "NVMEx LS CMPL: xri x%x stat x%x parm x%x\n",
cmdwqe->sli4_xritag, status, wcqe->parameter);
if (cmdwqe->context3) {
buf_ptr = (struct lpfc_dmabuf *)cmdwqe->context3;
lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
kfree(buf_ptr);
cmdwqe->context3 = NULL;
}
if (pnvme_lsreq->done)
pnvme_lsreq->done(pnvme_lsreq, status);
else
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"6046 NVMEx cmpl without done call back? "
"Data x%px DID %x Xri: %x status %x\n",
pnvme_lsreq, ndlp ? ndlp->nlp_DID : 0,
cmdwqe->sli4_xritag, status);
if (ndlp) {
lpfc_nlp_put(ndlp);
cmdwqe->context1 = NULL;
}
lpfc_sli_release_iocbq(phba, cmdwqe);
}
static void
lpfc_nvme_ls_req_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
struct lpfc_wcqe_complete *wcqe)
{
struct lpfc_vport *vport = cmdwqe->vport;
struct lpfc_nvme_lport *lport;
uint32_t status;
status = bf_get(lpfc_wcqe_c_status, wcqe) & LPFC_IOCB_STATUS_MASK;
if (vport->localport) {
lport = (struct lpfc_nvme_lport *)vport->localport->private;
if (lport) {
atomic_inc(&lport->fc4NvmeLsCmpls);
if (status) {
if (bf_get(lpfc_wcqe_c_xb, wcqe))
atomic_inc(&lport->cmpl_ls_xb);
atomic_inc(&lport->cmpl_ls_err);
}
}
}
__lpfc_nvme_ls_req_cmp(phba, vport, cmdwqe, wcqe);
}
static int
lpfc_nvme_gen_req(struct lpfc_vport *vport, struct lpfc_dmabuf *bmp,
struct lpfc_dmabuf *inp,
struct nvmefc_ls_req *pnvme_lsreq,
void (*cmpl)(struct lpfc_hba *, struct lpfc_iocbq *,
struct lpfc_wcqe_complete *),
struct lpfc_nodelist *ndlp, uint32_t num_entry,
uint32_t tmo, uint8_t retry)
{
struct lpfc_hba *phba = vport->phba;
union lpfc_wqe128 *wqe;
struct lpfc_iocbq *genwqe;
struct ulp_bde64 *bpl;
struct ulp_bde64 bde;
int i, rc, xmit_len, first_len;
/* Allocate buffer for command WQE */
genwqe = lpfc_sli_get_iocbq(phba);
if (genwqe == NULL)
return 1;
wqe = &genwqe->wqe;
/* Initialize only 64 bytes */
memset(wqe, 0, sizeof(union lpfc_wqe));
genwqe->context3 = (uint8_t *)bmp;
genwqe->iocb_flag |= LPFC_IO_NVME_LS;
/* Save for completion so we can release these resources */
genwqe->context1 = lpfc_nlp_get(ndlp);
if (!genwqe->context1) {
dev_warn(&phba->pcidev->dev,
"Warning: Failed node ref, not sending LS_REQ\n");
lpfc_sli_release_iocbq(phba, genwqe);
return 1;
}
genwqe->context2 = (uint8_t *)pnvme_lsreq;
/* Fill in payload, bp points to frame payload */
if (!tmo)
/* FC spec states we need 3 * ratov for CT requests */
tmo = (3 * phba->fc_ratov);
/* For this command calculate the xmit length of the request bde. */
xmit_len = 0;
first_len = 0;
bpl = (struct ulp_bde64 *)bmp->virt;
for (i = 0; i < num_entry; i++) {
bde.tus.w = bpl[i].tus.w;
if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
break;
xmit_len += bde.tus.f.bdeSize;
if (i == 0)
first_len = xmit_len;
}
genwqe->rsvd2 = num_entry;
genwqe->hba_wqidx = 0;
/* Words 0 - 2 */
wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64;
wqe->generic.bde.tus.f.bdeSize = first_len;
wqe->generic.bde.addrLow = bpl[0].addrLow;
wqe->generic.bde.addrHigh = bpl[0].addrHigh;
/* Word 3 */
wqe->gen_req.request_payload_len = first_len;
/* Word 4 */
/* Word 5 */
bf_set(wqe_dfctl, &wqe->gen_req.wge_ctl, 0);
bf_set(wqe_si, &wqe->gen_req.wge_ctl, 1);
bf_set(wqe_la, &wqe->gen_req.wge_ctl, 1);
bf_set(wqe_rctl, &wqe->gen_req.wge_ctl, FC_RCTL_ELS4_REQ);
bf_set(wqe_type, &wqe->gen_req.wge_ctl, FC_TYPE_NVME);
/* Word 6 */
bf_set(wqe_ctxt_tag, &wqe->gen_req.wqe_com,
phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
bf_set(wqe_xri_tag, &wqe->gen_req.wqe_com, genwqe->sli4_xritag);
/* Word 7 */
bf_set(wqe_tmo, &wqe->gen_req.wqe_com, tmo);
bf_set(wqe_class, &wqe->gen_req.wqe_com, CLASS3);
bf_set(wqe_cmnd, &wqe->gen_req.wqe_com, CMD_GEN_REQUEST64_WQE);
bf_set(wqe_ct, &wqe->gen_req.wqe_com, SLI4_CT_RPI);
/* Word 8 */
wqe->gen_req.wqe_com.abort_tag = genwqe->iotag;
/* Word 9 */
bf_set(wqe_reqtag, &wqe->gen_req.wqe_com, genwqe->iotag);
/* Word 10 */
bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1);
bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ);
bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1);
bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE);
bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0);
/* Word 11 */
bf_set(wqe_cqid, &wqe->gen_req.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
bf_set(wqe_cmd_type, &wqe->gen_req.wqe_com, OTHER_COMMAND);
/* Issue GEN REQ WQE for NPORT <did> */
genwqe->wqe_cmpl = cmpl;
genwqe->iocb_cmpl = NULL;
genwqe->drvrTimeout = tmo + LPFC_DRVR_TIMEOUT;
genwqe->vport = vport;
genwqe->retry = retry;
lpfc_nvmeio_data(phba, "NVME LS XMIT: xri x%x iotag x%x to x%06x\n",
genwqe->sli4_xritag, genwqe->iotag, ndlp->nlp_DID);
rc = lpfc_sli4_issue_wqe(phba, &phba->sli4_hba.hdwq[0], genwqe);
if (rc) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"6045 Issue GEN REQ WQE to NPORT x%x "
"Data: x%x x%x rc x%x\n",
ndlp->nlp_DID, genwqe->iotag,
vport->port_state, rc);
lpfc_nlp_put(ndlp);
lpfc_sli_release_iocbq(phba, genwqe);
return 1;
}
lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_DISC | LOG_ELS,
"6050 Issue GEN REQ WQE to NPORT x%x "
"Data: oxid: x%x state: x%x wq:x%px lsreq:x%px "
"bmp:x%px xmit:%d 1st:%d\n",
ndlp->nlp_DID, genwqe->sli4_xritag,
vport->port_state,
genwqe, pnvme_lsreq, bmp, xmit_len, first_len);
return 0;
}
/**
* __lpfc_nvme_ls_req - Generic service routine to issue an NVME LS request
* @vport: The local port issuing the LS
* @ndlp: The remote port to send the LS to
* @pnvme_lsreq: Pointer to LS request structure from the transport
* @gen_req_cmp: Completion call-back
*
* Routine validates the ndlp, builds buffers and sends a GEN_REQUEST
* WQE to perform the LS operation.
*
* Return value :
* 0 - Success
* non-zero: various error codes, in form of -Exxx
**/
int
__lpfc_nvme_ls_req(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
struct nvmefc_ls_req *pnvme_lsreq,
void (*gen_req_cmp)(struct lpfc_hba *phba,
struct lpfc_iocbq *cmdwqe,
struct lpfc_wcqe_complete *wcqe))
{
struct lpfc_dmabuf *bmp;
struct ulp_bde64 *bpl;
int ret;
uint16_t ntype, nstate;
if (!ndlp) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"6051 NVMEx LS REQ: Bad NDLP x%px, Failing "
"LS Req\n",
ndlp);
return -ENODEV;
}
ntype = ndlp->nlp_type;
nstate = ndlp->nlp_state;
if ((ntype & NLP_NVME_TARGET && nstate != NLP_STE_MAPPED_NODE) ||
(ntype & NLP_NVME_INITIATOR && nstate != NLP_STE_UNMAPPED_NODE)) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"6088 NVMEx LS REQ: Fail DID x%06x not "
"ready for IO. Type x%x, State x%x\n",
ndlp->nlp_DID, ntype, nstate);
return -ENODEV;
}
if (!vport->phba->sli4_hba.nvmels_wq)
return -ENOMEM;
/*
* there are two dma buf in the request, actually there is one and
* the second one is just the start address + cmd size.
* Before calling lpfc_nvme_gen_req these buffers need to be wrapped
* in a lpfc_dmabuf struct. When freeing we just free the wrapper
* because the nvem layer owns the data bufs.
* We do not have to break these packets open, we don't care what is
* in them. And we do not have to look at the resonse data, we only
* care that we got a response. All of the caring is going to happen
* in the nvme-fc layer.
*/
bmp = kmalloc(sizeof(*bmp), GFP_KERNEL);
if (!bmp) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"6044 NVMEx LS REQ: Could not alloc LS buf "
"for DID %x\n",
ndlp->nlp_DID);
return -ENOMEM;
}
bmp->virt = lpfc_mbuf_alloc(vport->phba, MEM_PRI, &(bmp->phys));
if (!bmp->virt) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"6042 NVMEx LS REQ: Could not alloc mbuf "
"for DID %x\n",
ndlp->nlp_DID);
kfree(bmp);
return -ENOMEM;
}
INIT_LIST_HEAD(&bmp->list);
bpl = (struct ulp_bde64 *)bmp->virt;
bpl->addrHigh = le32_to_cpu(putPaddrHigh(pnvme_lsreq->rqstdma));
bpl->addrLow = le32_to_cpu(putPaddrLow(pnvme_lsreq->rqstdma));
bpl->tus.f.bdeFlags = 0;
bpl->tus.f.bdeSize = pnvme_lsreq->rqstlen;
bpl->tus.w = le32_to_cpu(bpl->tus.w);
bpl++;
bpl->addrHigh = le32_to_cpu(putPaddrHigh(pnvme_lsreq->rspdma));
bpl->addrLow = le32_to_cpu(putPaddrLow(pnvme_lsreq->rspdma));
bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64I;
bpl->tus.f.bdeSize = pnvme_lsreq->rsplen;
bpl->tus.w = le32_to_cpu(bpl->tus.w);
lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_DISC,
"6149 NVMEx LS REQ: Issue to DID 0x%06x lsreq x%px, "
"rqstlen:%d rsplen:%d %pad %pad\n",
ndlp->nlp_DID, pnvme_lsreq, pnvme_lsreq->rqstlen,
pnvme_lsreq->rsplen, &pnvme_lsreq->rqstdma,
&pnvme_lsreq->rspdma);
ret = lpfc_nvme_gen_req(vport, bmp, pnvme_lsreq->rqstaddr,
pnvme_lsreq, gen_req_cmp, ndlp, 2,
pnvme_lsreq->timeout, 0);
if (ret != WQE_SUCCESS) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"6052 NVMEx REQ: EXIT. issue ls wqe failed "
"lsreq x%px Status %x DID %x\n",
pnvme_lsreq, ret, ndlp->nlp_DID);
lpfc_mbuf_free(vport->phba, bmp->virt, bmp->phys);
kfree(bmp);
return -EIO;
}
return 0;
}
/**
* lpfc_nvme_ls_req - Issue an NVME Link Service request
* @pnvme_lport: Transport localport that LS is to be issued from.
* @pnvme_rport: Transport remoteport that LS is to be sent to.
* @pnvme_lsreq: the transport nvme_ls_req structure for the LS
*
* Driver registers this routine to handle any link service request
* from the nvme_fc transport to a remote nvme-aware port.
*
* Return value :
* 0 - Success
* non-zero: various error codes, in form of -Exxx
**/
static int
lpfc_nvme_ls_req(struct nvme_fc_local_port *pnvme_lport,
struct nvme_fc_remote_port *pnvme_rport,
struct nvmefc_ls_req *pnvme_lsreq)
{
struct lpfc_nvme_lport *lport;
struct lpfc_nvme_rport *rport;
struct lpfc_vport *vport;
int ret;
lport = (struct lpfc_nvme_lport *)pnvme_lport->private;
rport = (struct lpfc_nvme_rport *)pnvme_rport->private;
if (unlikely(!lport) || unlikely(!rport))
return -EINVAL;
vport = lport->vport;
if (vport->load_flag & FC_UNLOADING)
return -ENODEV;
atomic_inc(&lport->fc4NvmeLsRequests);
ret = __lpfc_nvme_ls_req(vport, rport->ndlp, pnvme_lsreq,
lpfc_nvme_ls_req_cmp);
if (ret)
atomic_inc(&lport->xmt_ls_err);
return ret;
}
/**
* __lpfc_nvme_ls_abort - Generic service routine to abort a prior
* NVME LS request
* @vport: The local port that issued the LS
* @ndlp: The remote port the LS was sent to
* @pnvme_lsreq: Pointer to LS request structure from the transport
*
* The driver validates the ndlp, looks for the LS, and aborts the
* LS if found.
*
* Returns:
* 0 : if LS found and aborted
* non-zero: various error conditions in form -Exxx
**/
int
__lpfc_nvme_ls_abort(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp,
struct nvmefc_ls_req *pnvme_lsreq)
{
struct lpfc_hba *phba = vport->phba;
struct lpfc_sli_ring *pring;
struct lpfc_iocbq *wqe, *next_wqe;
bool foundit = false;
if (!ndlp) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"6049 NVMEx LS REQ Abort: Bad NDLP x%px DID "
"x%06x, Failing LS Req\n",
ndlp, ndlp ? ndlp->nlp_DID : 0);
return -EINVAL;
}
lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_DISC | LOG_NVME_ABTS,
"6040 NVMEx LS REQ Abort: Issue LS_ABORT for lsreq "
"x%px rqstlen:%d rsplen:%d %pad %pad\n",
pnvme_lsreq, pnvme_lsreq->rqstlen,
pnvme_lsreq->rsplen, &pnvme_lsreq->rqstdma,
&pnvme_lsreq->rspdma);
/*
* Lock the ELS ring txcmplq and look for the wqe that matches
* this ELS. If found, issue an abort on the wqe.
*/
pring = phba->sli4_hba.nvmels_wq->pring;
spin_lock_irq(&phba->hbalock);
spin_lock(&pring->ring_lock);
list_for_each_entry_safe(wqe, next_wqe, &pring->txcmplq, list) {
if (wqe->context2 == pnvme_lsreq) {
wqe->iocb_flag |= LPFC_DRIVER_ABORTED;
foundit = true;
break;
}
}
spin_unlock(&pring->ring_lock);
if (foundit)
lpfc_sli_issue_abort_iotag(phba, pring, wqe, NULL);
spin_unlock_irq(&phba->hbalock);
if (foundit)
return 0;
lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_DISC | LOG_NVME_ABTS,
"6213 NVMEx LS REQ Abort: Unable to locate req x%px\n",
pnvme_lsreq);
return -EINVAL;
}
static int
lpfc_nvme_xmt_ls_rsp(struct nvme_fc_local_port *localport,
struct nvme_fc_remote_port *remoteport,
struct nvmefc_ls_rsp *ls_rsp)
{
struct lpfc_async_xchg_ctx *axchg =
container_of(ls_rsp, struct lpfc_async_xchg_ctx, ls_rsp);
struct lpfc_nvme_lport *lport;
int rc;
if (axchg->phba->pport->load_flag & FC_UNLOADING)
return -ENODEV;
lport = (struct lpfc_nvme_lport *)localport->private;
rc = __lpfc_nvme_xmt_ls_rsp(axchg, ls_rsp, __lpfc_nvme_xmt_ls_rsp_cmp);
if (rc) {
/*
* unless the failure is due to having already sent
* the response, an abort will be generated for the
* exchange if the rsp can't be sent.
*/
if (rc != -EALREADY)
atomic_inc(&lport->xmt_ls_abort);
return rc;
}
return 0;
}
/**
* lpfc_nvme_ls_abort - Abort a prior NVME LS request
* @pnvme_lport: Transport localport that LS is to be issued from.
* @pnvme_rport: Transport remoteport that LS is to be sent to.
* @pnvme_lsreq: the transport nvme_ls_req structure for the LS
*
* Driver registers this routine to abort a NVME LS request that is
* in progress (from the transports perspective).
**/
static void
lpfc_nvme_ls_abort(struct nvme_fc_local_port *pnvme_lport,
struct nvme_fc_remote_port *pnvme_rport,
struct nvmefc_ls_req *pnvme_lsreq)
{
struct lpfc_nvme_lport *lport;
struct lpfc_vport *vport;
struct lpfc_nodelist *ndlp;
int ret;
lport = (struct lpfc_nvme_lport *)pnvme_lport->private;
if (unlikely(!lport))
return;
vport = lport->vport;
if (vport->load_flag & FC_UNLOADING)
return;
ndlp = lpfc_findnode_did(vport, pnvme_rport->port_id);
ret = __lpfc_nvme_ls_abort(vport, ndlp, pnvme_lsreq);
if (!ret)
atomic_inc(&lport->xmt_ls_abort);
}
/* Fix up the existing sgls for NVME IO. */
static inline void
lpfc_nvme_adj_fcp_sgls(struct lpfc_vport *vport,
struct lpfc_io_buf *lpfc_ncmd,
struct nvmefc_fcp_req *nCmd)
{
struct lpfc_hba *phba = vport->phba;
struct sli4_sge *sgl;
union lpfc_wqe128 *wqe;
uint32_t *wptr, *dptr;
/*
* Get a local pointer to the built-in wqe and correct
* the cmd size to match NVME's 96 bytes and fix
* the dma address.
*/
wqe = &lpfc_ncmd->cur_iocbq.wqe;
/*
* Adjust the FCP_CMD and FCP_RSP DMA data and sge_len to
* match NVME. NVME sends 96 bytes. Also, use the
* nvme commands command and response dma addresses
* rather than the virtual memory to ease the restore
* operation.
*/
sgl = lpfc_ncmd->dma_sgl;
sgl->sge_len = cpu_to_le32(nCmd->cmdlen);
if (phba->cfg_nvme_embed_cmd) {
sgl->addr_hi = 0;
sgl->addr_lo = 0;
/* Word 0-2 - NVME CMND IU (embedded payload) */
wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_IMMED;
wqe->generic.bde.tus.f.bdeSize = 56;
wqe->generic.bde.addrHigh = 0;
wqe->generic.bde.addrLow = 64; /* Word 16 */
/* Word 10 - dbde is 0, wqes is 1 in template */
/*
* Embed the payload in the last half of the WQE
* WQE words 16-30 get the NVME CMD IU payload
*
* WQE words 16-19 get payload Words 1-4
* WQE words 20-21 get payload Words 6-7
* WQE words 22-29 get payload Words 16-23
*/
wptr = &wqe->words[16]; /* WQE ptr */
dptr = (uint32_t *)nCmd->cmdaddr; /* payload ptr */
dptr++; /* Skip Word 0 in payload */
*wptr++ = *dptr++; /* Word 1 */
*wptr++ = *dptr++; /* Word 2 */
*wptr++ = *dptr++; /* Word 3 */
*wptr++ = *dptr++; /* Word 4 */
dptr++; /* Skip Word 5 in payload */
*wptr++ = *dptr++; /* Word 6 */
*wptr++ = *dptr++; /* Word 7 */
dptr += 8; /* Skip Words 8-15 in payload */
*wptr++ = *dptr++; /* Word 16 */
*wptr++ = *dptr++; /* Word 17 */
*wptr++ = *dptr++; /* Word 18 */
*wptr++ = *dptr++; /* Word 19 */
*wptr++ = *dptr++; /* Word 20 */
*wptr++ = *dptr++; /* Word 21 */
*wptr++ = *dptr++; /* Word 22 */
*wptr = *dptr; /* Word 23 */
} else {
sgl->addr_hi = cpu_to_le32(putPaddrHigh(nCmd->cmddma));
sgl->addr_lo = cpu_to_le32(putPaddrLow(nCmd->cmddma));
/* Word 0-2 - NVME CMND IU Inline BDE */
wqe->generic.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64;
wqe->generic.bde.tus.f.bdeSize = nCmd->cmdlen;
wqe->generic.bde.addrHigh = sgl->addr_hi;
wqe->generic.bde.addrLow = sgl->addr_lo;
/* Word 10 */
bf_set(wqe_dbde, &wqe->generic.wqe_com, 1);
bf_set(wqe_wqes, &wqe->generic.wqe_com, 0);
}
sgl++;
/* Setup the physical region for the FCP RSP */
sgl->addr_hi = cpu_to_le32(putPaddrHigh(nCmd->rspdma));
sgl->addr_lo = cpu_to_le32(putPaddrLow(nCmd->rspdma));
sgl->word2 = le32_to_cpu(sgl->word2);
if (nCmd->sg_cnt)
bf_set(lpfc_sli4_sge_last, sgl, 0);
else
bf_set(lpfc_sli4_sge_last, sgl, 1);
sgl->word2 = cpu_to_le32(sgl->word2);
sgl->sge_len = cpu_to_le32(nCmd->rsplen);
}
/*
* lpfc_nvme_io_cmd_wqe_cmpl - Complete an NVME-over-FCP IO
*
* Driver registers this routine as it io request handler. This
* routine issues an fcp WQE with data from the @lpfc_nvme_fcpreq
* data structure to the rport indicated in @lpfc_nvme_rport.
*
* Return value :
* 0 - Success
* TODO: What are the failure codes.
**/
static void
lpfc_nvme_io_cmd_wqe_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeIn,
struct lpfc_wcqe_complete *wcqe)
{
struct lpfc_io_buf *lpfc_ncmd =
(struct lpfc_io_buf *)pwqeIn->context1;
struct lpfc_vport *vport = pwqeIn->vport;
struct nvmefc_fcp_req *nCmd;
struct nvme_fc_ersp_iu *ep;
struct nvme_fc_cmd_iu *cp;
struct lpfc_nodelist *ndlp;
struct lpfc_nvme_fcpreq_priv *freqpriv;
struct lpfc_nvme_lport *lport;
uint32_t code, status, idx;
uint16_t cid, sqhd, data;
uint32_t *ptr;
uint32_t lat;
bool call_done = false;
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
int cpu;
#endif
int offline = 0;
/* Sanity check on return of outstanding command */
if (!lpfc_ncmd) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"6071 Null lpfc_ncmd pointer. No "
"release, skip completion\n");
return;
}
/* Guard against abort handler being called at same time */
spin_lock(&lpfc_ncmd->buf_lock);
if (!lpfc_ncmd->nvmeCmd) {
spin_unlock(&lpfc_ncmd->buf_lock);
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"6066 Missing cmpl ptrs: lpfc_ncmd x%px, "
"nvmeCmd x%px\n",
lpfc_ncmd, lpfc_ncmd->nvmeCmd);
/* Release the lpfc_ncmd regardless of the missing elements. */
lpfc_release_nvme_buf(phba, lpfc_ncmd);
return;
}
nCmd = lpfc_ncmd->nvmeCmd;
status = bf_get(lpfc_wcqe_c_status, wcqe);
idx = lpfc_ncmd->cur_iocbq.hba_wqidx;
phba->sli4_hba.hdwq[idx].nvme_cstat.io_cmpls++;
if (unlikely(status && vport->localport)) {
lport = (struct lpfc_nvme_lport *)vport->localport->private;
if (lport) {
if (bf_get(lpfc_wcqe_c_xb, wcqe))
atomic_inc(&lport->cmpl_fcp_xb);
atomic_inc(&lport->cmpl_fcp_err);
}
}
lpfc_nvmeio_data(phba, "NVME FCP CMPL: xri x%x stat x%x parm x%x\n",
lpfc_ncmd->cur_iocbq.sli4_xritag,
status, wcqe->parameter);
/*
* Catch race where our node has transitioned, but the
* transport is still transitioning.
*/
ndlp = lpfc_ncmd->ndlp;
if (!ndlp) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"6062 Ignoring NVME cmpl. No ndlp\n");
goto out_err;
}
code = bf_get(lpfc_wcqe_c_code, wcqe);
if (code == CQE_CODE_NVME_ERSP) {
/* For this type of CQE, we need to rebuild the rsp */
ep = (struct nvme_fc_ersp_iu *)nCmd->rspaddr;
/*
* Get Command Id from cmd to plug into response. This
* code is not needed in the next NVME Transport drop.
*/
cp = (struct nvme_fc_cmd_iu *)nCmd->cmdaddr;
cid = cp->sqe.common.command_id;
/*
* RSN is in CQE word 2
* SQHD is in CQE Word 3 bits 15:0
* Cmd Specific info is in CQE Word 1
* and in CQE Word 0 bits 15:0
*/
sqhd = bf_get(lpfc_wcqe_c_sqhead, wcqe);
/* Now lets build the NVME ERSP IU */
ep->iu_len = cpu_to_be16(8);
ep->rsn = wcqe->parameter;
ep->xfrd_len = cpu_to_be32(nCmd->payload_length);
ep->rsvd12 = 0;
ptr = (uint32_t *)&ep->cqe.result.u64;
*ptr++ = wcqe->total_data_placed;
data = bf_get(lpfc_wcqe_c_ersp0, wcqe);
*ptr = (uint32_t)data;
ep->cqe.sq_head = sqhd;
ep->cqe.sq_id = nCmd->sqid;
ep->cqe.command_id = cid;
ep->cqe.status = 0;
lpfc_ncmd->status = IOSTAT_SUCCESS;
lpfc_ncmd->result = 0;
nCmd->rcv_rsplen = LPFC_NVME_ERSP_LEN;
nCmd->transferred_length = nCmd->payload_length;
} else {
lpfc_ncmd->status = (status & LPFC_IOCB_STATUS_MASK);
lpfc_ncmd->result = (wcqe->parameter & IOERR_PARAM_MASK);
/* For NVME, the only failure path that results in an
* IO error is when the adapter rejects it. All other
* conditions are a success case and resolved by the
* transport.
* IOSTAT_FCP_RSP_ERROR means:
* 1. Length of data received doesn't match total
* transfer length in WQE
* 2. If the RSP payload does NOT match these cases:
* a. RSP length 12/24 bytes and all zeros
* b. NVME ERSP
*/
switch (lpfc_ncmd->status) {
case IOSTAT_SUCCESS:
nCmd->transferred_length = wcqe->total_data_placed;
nCmd->rcv_rsplen = 0;
nCmd->status = 0;
break;
case IOSTAT_FCP_RSP_ERROR:
nCmd->transferred_length = wcqe->total_data_placed;
nCmd->rcv_rsplen = wcqe->parameter;
nCmd->status = 0;
/* Check if this is really an ERSP */
if (nCmd->rcv_rsplen == LPFC_NVME_ERSP_LEN) {
lpfc_ncmd->status = IOSTAT_SUCCESS;
lpfc_ncmd->result = 0;
lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME,
"6084 NVME Completion ERSP: "
"xri %x placed x%x\n",
lpfc_ncmd->cur_iocbq.sli4_xritag,
wcqe->total_data_placed);
break;
}
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"6081 NVME Completion Protocol Error: "
"xri %x status x%x result x%x "
"placed x%x\n",
lpfc_ncmd->cur_iocbq.sli4_xritag,
lpfc_ncmd->status, lpfc_ncmd->result,
wcqe->total_data_placed);
break;
case IOSTAT_LOCAL_REJECT:
/* Let fall through to set command final state. */
if (lpfc_ncmd->result == IOERR_ABORT_REQUESTED)
lpfc_printf_vlog(vport, KERN_INFO,
LOG_NVME_IOERR,
"6032 Delay Aborted cmd x%px "
"nvme cmd x%px, xri x%x, "
"xb %d\n",
lpfc_ncmd, nCmd,
lpfc_ncmd->cur_iocbq.sli4_xritag,
bf_get(lpfc_wcqe_c_xb, wcqe));
fallthrough;
default:
out_err:
lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_IOERR,
"6072 NVME Completion Error: xri %x "
"status x%x result x%x [x%x] "
"placed x%x\n",
lpfc_ncmd->cur_iocbq.sli4_xritag,
lpfc_ncmd->status, lpfc_ncmd->result,
wcqe->parameter,
wcqe->total_data_placed);
nCmd->transferred_length = 0;
nCmd->rcv_rsplen = 0;
nCmd->status = NVME_SC_INTERNAL;
offline = pci_channel_offline(vport->phba->pcidev);
}
}
/* pick up SLI4 exhange busy condition */
if (bf_get(lpfc_wcqe_c_xb, wcqe) && !offline)
lpfc_ncmd->flags |= LPFC_SBUF_XBUSY;
else
lpfc_ncmd->flags &= ~LPFC_SBUF_XBUSY;
/* Update stats and complete the IO. There is
* no need for dma unprep because the nvme_transport
* owns the dma address.
*/
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
if (lpfc_ncmd->ts_cmd_start) {
lpfc_ncmd->ts_isr_cmpl = pwqeIn->isr_timestamp;
lpfc_ncmd->ts_data_io = ktime_get_ns();
phba->ktime_last_cmd = lpfc_ncmd->ts_data_io;
lpfc_io_ktime(phba, lpfc_ncmd);
}
if (unlikely(phba->hdwqstat_on & LPFC_CHECK_NVME_IO)) {
cpu = raw_smp_processor_id();
this_cpu_inc(phba->sli4_hba.c_stat->cmpl_io);
if (lpfc_ncmd->cpu != cpu)
lpfc_printf_vlog(vport,
KERN_INFO, LOG_NVME_IOERR,
"6701 CPU Check cmpl: "
"cpu %d expect %d\n",
cpu, lpfc_ncmd->cpu);
}
#endif
/* NVME targets need completion held off until the abort exchange
* completes unless the NVME Rport is getting unregistered.
*/
if (!(lpfc_ncmd->flags & LPFC_SBUF_XBUSY)) {
freqpriv = nCmd->private;
freqpriv->nvme_buf = NULL;
lpfc_ncmd->nvmeCmd = NULL;
call_done = true;
}
spin_unlock(&lpfc_ncmd->buf_lock);
/* Check if IO qualified for CMF */
if (phba->cmf_active_mode != LPFC_CFG_OFF &&
nCmd->io_dir == NVMEFC_FCP_READ &&
nCmd->payload_length) {
/* Used when calculating average latency */
lat = ktime_get_ns() - lpfc_ncmd->rx_cmd_start;
lpfc_update_cmf_cmpl(phba, lat, nCmd->payload_length, NULL);
}
if (call_done)
nCmd->done(nCmd);
/* Call release with XB=1 to queue the IO into the abort list. */
lpfc_release_nvme_buf(phba, lpfc_ncmd);
}
/**
* lpfc_nvme_prep_io_cmd - Issue an NVME-over-FCP IO
* @vport: pointer to a host virtual N_Port data structure
* @lpfc_ncmd: Pointer to lpfc scsi command
* @pnode: pointer to a node-list data structure
* @cstat: pointer to the control status structure
*
* Driver registers this routine as it io request handler. This
* routine issues an fcp WQE with data from the @lpfc_nvme_fcpreq
* data structure to the rport indicated in @lpfc_nvme_rport.
*
* Return value :
* 0 - Success
* TODO: What are the failure codes.
**/
static int
lpfc_nvme_prep_io_cmd(struct lpfc_vport *vport,
struct lpfc_io_buf *lpfc_ncmd,
struct lpfc_nodelist *pnode,
struct lpfc_fc4_ctrl_stat *cstat)
{
struct lpfc_hba *phba = vport->phba;
struct nvmefc_fcp_req *nCmd = lpfc_ncmd->nvmeCmd;
struct nvme_common_command *sqe;
struct lpfc_iocbq *pwqeq = &lpfc_ncmd->cur_iocbq;
union lpfc_wqe128 *wqe = &pwqeq->wqe;
uint32_t req_len;
/*
* There are three possibilities here - use scatter-gather segment, use
* the single mapping, or neither.
*/
if (nCmd->sg_cnt) {
if (nCmd->io_dir == NVMEFC_FCP_WRITE) {
/* From the iwrite template, initialize words 7 - 11 */
memcpy(&wqe->words[7],
&lpfc_iwrite_cmd_template.words[7],
sizeof(uint32_t) * 5);
/* Word 4 */
wqe->fcp_iwrite.total_xfer_len = nCmd->payload_length;
/* Word 5 */
if ((phba->cfg_nvme_enable_fb) &&
(pnode->nlp_flag & NLP_FIRSTBURST)) {
req_len = lpfc_ncmd->nvmeCmd->payload_length;
if (req_len < pnode->nvme_fb_size)
wqe->fcp_iwrite.initial_xfer_len =
req_len;
else
wqe->fcp_iwrite.initial_xfer_len =
pnode->nvme_fb_size;
} else {
wqe->fcp_iwrite.initial_xfer_len = 0;
}
cstat->output_requests++;
} else {
/* From the iread template, initialize words 7 - 11 */
memcpy(&wqe->words[7],
&lpfc_iread_cmd_template.words[7],
sizeof(uint32_t) * 5);
/* Word 4 */
wqe->fcp_iread.total_xfer_len = nCmd->payload_length;
/* Word 5 */
wqe->fcp_iread.rsrvd5 = 0;
/* For a CMF Managed port, iod must be zero'ed */
if (phba->cmf_active_mode == LPFC_CFG_MANAGED)
bf_set(wqe_iod, &wqe->fcp_iread.wqe_com,
LPFC_WQE_IOD_NONE);
cstat->input_requests++;
}
} else {
/* From the icmnd template, initialize words 4 - 11 */
memcpy(&wqe->words[4], &lpfc_icmnd_cmd_template.words[4],
sizeof(uint32_t) * 8);
cstat->control_requests++;
}
if (pnode->nlp_nvme_info & NLP_NVME_NSLER) {
bf_set(wqe_erp, &wqe->generic.wqe_com, 1);
sqe = &((struct nvme_fc_cmd_iu *)
nCmd->cmdaddr)->sqe.common;
if (sqe->opcode == nvme_admin_async_event)
bf_set(wqe_ffrq, &wqe->generic.wqe_com, 1);
}
/*
* Finish initializing those WQE fields that are independent
* of the nvme_cmnd request_buffer
*/
/* Word 3 */
bf_set(payload_offset_len, &wqe->fcp_icmd,
(nCmd->rsplen + nCmd->cmdlen));
/* Word 6 */
bf_set(wqe_ctxt_tag, &wqe->generic.wqe_com,
phba->sli4_hba.rpi_ids[pnode->nlp_rpi]);
bf_set(wqe_xri_tag, &wqe->generic.wqe_com, pwqeq->sli4_xritag);
/* Word 8 */
wqe->generic.wqe_com.abort_tag = pwqeq->iotag;
/* Word 9 */
bf_set(wqe_reqtag, &wqe->generic.wqe_com, pwqeq->iotag);
/* Word 10 */
bf_set(wqe_xchg, &wqe->fcp_iwrite.wqe_com, LPFC_NVME_XCHG);
/* Words 13 14 15 are for PBDE support */
pwqeq->vport = vport;
return 0;
}
/**
* lpfc_nvme_prep_io_dma - Issue an NVME-over-FCP IO
* @vport: pointer to a host virtual N_Port data structure
* @lpfc_ncmd: Pointer to lpfc scsi command
*
* Driver registers this routine as it io request handler. This
* routine issues an fcp WQE with data from the @lpfc_nvme_fcpreq
* data structure to the rport indicated in @lpfc_nvme_rport.
*
* Return value :
* 0 - Success
* TODO: What are the failure codes.
**/
static int
lpfc_nvme_prep_io_dma(struct lpfc_vport *vport,
struct lpfc_io_buf *lpfc_ncmd)
{
struct lpfc_hba *phba = vport->phba;
struct nvmefc_fcp_req *nCmd = lpfc_ncmd->nvmeCmd;
union lpfc_wqe128 *wqe = &lpfc_ncmd->cur_iocbq.wqe;
struct sli4_sge *sgl = lpfc_ncmd->dma_sgl;
struct sli4_hybrid_sgl *sgl_xtra = NULL;
struct scatterlist *data_sg;
struct sli4_sge *first_data_sgl;
struct ulp_bde64 *bde;
dma_addr_t physaddr = 0;
uint32_t num_bde = 0;
uint32_t dma_len = 0;
uint32_t dma_offset = 0;
int nseg, i, j;
bool lsp_just_set = false;
/* Fix up the command and response DMA stuff. */
lpfc_nvme_adj_fcp_sgls(vport, lpfc_ncmd, nCmd);
/*
* There are three possibilities here - use scatter-gather segment, use
* the single mapping, or neither.
*/
if (nCmd->sg_cnt) {
/*
* Jump over the cmd and rsp SGEs. The fix routine
* has already adjusted for this.
*/
sgl += 2;
first_data_sgl = sgl;
lpfc_ncmd->seg_cnt = nCmd->sg_cnt;
if (lpfc_ncmd->seg_cnt > lpfc_nvme_template.max_sgl_segments) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6058 Too many sg segments from "
"NVME Transport. Max %d, "
"nvmeIO sg_cnt %d\n",
phba->cfg_nvme_seg_cnt + 1,
lpfc_ncmd->seg_cnt);
lpfc_ncmd->seg_cnt = 0;
return 1;
}
/*
* The driver established a maximum scatter-gather segment count
* during probe that limits the number of sg elements in any
* single nvme command. Just run through the seg_cnt and format
* the sge's.
*/
nseg = nCmd->sg_cnt;
data_sg = nCmd->first_sgl;
/* for tracking the segment boundaries */
j = 2;
for (i = 0; i < nseg; i++) {
if (data_sg == NULL) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6059 dptr err %d, nseg %d\n",
i, nseg);
lpfc_ncmd->seg_cnt = 0;
return 1;
}
sgl->word2 = 0;
if ((num_bde + 1) == nseg) {
bf_set(lpfc_sli4_sge_last, sgl, 1);
bf_set(lpfc_sli4_sge_type, sgl,
LPFC_SGE_TYPE_DATA);
} else {
bf_set(lpfc_sli4_sge_last, sgl, 0);
/* expand the segment */
if (!lsp_just_set &&
!((j + 1) % phba->border_sge_num) &&
((nseg - 1) != i)) {
/* set LSP type */
bf_set(lpfc_sli4_sge_type, sgl,
LPFC_SGE_TYPE_LSP);
sgl_xtra = lpfc_get_sgl_per_hdwq(
phba, lpfc_ncmd);
if (unlikely(!sgl_xtra)) {
lpfc_ncmd->seg_cnt = 0;
return 1;
}
sgl->addr_lo = cpu_to_le32(putPaddrLow(
sgl_xtra->dma_phys_sgl));
sgl->addr_hi = cpu_to_le32(putPaddrHigh(
sgl_xtra->dma_phys_sgl));
} else {
bf_set(lpfc_sli4_sge_type, sgl,
LPFC_SGE_TYPE_DATA);
}
}
if (!(bf_get(lpfc_sli4_sge_type, sgl) &
LPFC_SGE_TYPE_LSP)) {
if ((nseg - 1) == i)
bf_set(lpfc_sli4_sge_last, sgl, 1);
physaddr = data_sg->dma_address;
dma_len = data_sg->length;
sgl->addr_lo = cpu_to_le32(
putPaddrLow(physaddr));
sgl->addr_hi = cpu_to_le32(
putPaddrHigh(physaddr));
bf_set(lpfc_sli4_sge_offset, sgl, dma_offset);
sgl->word2 = cpu_to_le32(sgl->word2);
sgl->sge_len = cpu_to_le32(dma_len);
dma_offset += dma_len;
data_sg = sg_next(data_sg);
sgl++;
lsp_just_set = false;
} else {
sgl->word2 = cpu_to_le32(sgl->word2);
sgl->sge_len = cpu_to_le32(
phba->cfg_sg_dma_buf_size);
sgl = (struct sli4_sge *)sgl_xtra->dma_sgl;
i = i - 1;
lsp_just_set = true;
}
j++;
}
if (phba->cfg_enable_pbde) {
/* Use PBDE support for first SGL only, offset == 0 */
/* Words 13-15 */
bde = (struct ulp_bde64 *)
&wqe->words[13];
bde->addrLow = first_data_sgl->addr_lo;
bde->addrHigh = first_data_sgl->addr_hi;
bde->tus.f.bdeSize =
le32_to_cpu(first_data_sgl->sge_len);
bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
bde->tus.w = cpu_to_le32(bde->tus.w);
/* Word 11 */
bf_set(wqe_pbde, &wqe->generic.wqe_com, 1);
} else {
memset(&wqe->words[13], 0, (sizeof(uint32_t) * 3));
bf_set(wqe_pbde, &wqe->generic.wqe_com, 0);
}
} else {
lpfc_ncmd->seg_cnt = 0;
/* For this clause to be valid, the payload_length
* and sg_cnt must zero.
*/
if (nCmd->payload_length != 0) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6063 NVME DMA Prep Err: sg_cnt %d "
"payload_length x%x\n",
nCmd->sg_cnt, nCmd->payload_length);
return 1;
}
}
return 0;
}
/**
* lpfc_nvme_fcp_io_submit - Issue an NVME-over-FCP IO
* @pnvme_lport: Pointer to the driver's local port data
* @pnvme_rport: Pointer to the rport getting the @lpfc_nvme_ereq
* @hw_queue_handle: Driver-returned handle in lpfc_nvme_create_queue
* @pnvme_fcreq: IO request from nvme fc to driver.
*
* Driver registers this routine as it io request handler. This
* routine issues an fcp WQE with data from the @lpfc_nvme_fcpreq
* data structure to the rport indicated in @lpfc_nvme_rport.
*
* Return value :
* 0 - Success
* TODO: What are the failure codes.
**/
static int
lpfc_nvme_fcp_io_submit(struct nvme_fc_local_port *pnvme_lport,
struct nvme_fc_remote_port *pnvme_rport,
void *hw_queue_handle,
struct nvmefc_fcp_req *pnvme_fcreq)
{
int ret = 0;
int expedite = 0;
int idx, cpu;
struct lpfc_nvme_lport *lport;
struct lpfc_fc4_ctrl_stat *cstat;
struct lpfc_vport *vport;
struct lpfc_hba *phba;
struct lpfc_nodelist *ndlp;
struct lpfc_io_buf *lpfc_ncmd;
struct lpfc_nvme_rport *rport;
struct lpfc_nvme_qhandle *lpfc_queue_info;
struct lpfc_nvme_fcpreq_priv *freqpriv;
struct nvme_common_command *sqe;
uint64_t start = 0;
/* Validate pointers. LLDD fault handling with transport does
* have timing races.
*/
lport = (struct lpfc_nvme_lport *)pnvme_lport->private;
if (unlikely(!lport)) {
ret = -EINVAL;
goto out_fail;
}
vport = lport->vport;
if (unlikely(!hw_queue_handle)) {
lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_IOERR,
"6117 Fail IO, NULL hw_queue_handle\n");
atomic_inc(&lport->xmt_fcp_err);
ret = -EBUSY;
goto out_fail;
}
phba = vport->phba;
if (unlikely(vport->load_flag & FC_UNLOADING)) {
lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_IOERR,
"6124 Fail IO, Driver unload\n");
atomic_inc(&lport->xmt_fcp_err);
ret = -ENODEV;
goto out_fail;
}
freqpriv = pnvme_fcreq->private;
if (unlikely(!freqpriv)) {
lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_IOERR,
"6158 Fail IO, NULL request data\n");
atomic_inc(&lport->xmt_fcp_err);
ret = -EINVAL;
goto out_fail;
}
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
if (phba->ktime_on)
start = ktime_get_ns();
#endif
rport = (struct lpfc_nvme_rport *)pnvme_rport->private;
lpfc_queue_info = (struct lpfc_nvme_qhandle *)hw_queue_handle;
/*
* Catch race where our node has transitioned, but the
* transport is still transitioning.
*/
ndlp = rport->ndlp;
if (!ndlp) {
lpfc_printf_vlog(vport, KERN_INFO, LOG_NODE | LOG_NVME_IOERR,
"6053 Busy IO, ndlp not ready: rport x%px "
"ndlp x%px, DID x%06x\n",
rport, ndlp, pnvme_rport->port_id);
atomic_inc(&lport->xmt_fcp_err);
ret = -EBUSY;
goto out_fail;
}
/* The remote node has to be a mapped target or it's an error. */
if ((ndlp->nlp_type & NLP_NVME_TARGET) &&
(ndlp->nlp_state != NLP_STE_MAPPED_NODE)) {
lpfc_printf_vlog(vport, KERN_INFO, LOG_NODE | LOG_NVME_IOERR,
"6036 Fail IO, DID x%06x not ready for "
"IO. State x%x, Type x%x Flg x%x\n",
pnvme_rport->port_id,
ndlp->nlp_state, ndlp->nlp_type,
ndlp->fc4_xpt_flags);
atomic_inc(&lport->xmt_fcp_bad_ndlp);
ret = -EBUSY;
goto out_fail;
}
/* Currently only NVME Keep alive commands should be expedited
* if the driver runs out of a resource. These should only be
* issued on the admin queue, qidx 0
*/
if (!lpfc_queue_info->qidx && !pnvme_fcreq->sg_cnt) {
sqe = &((struct nvme_fc_cmd_iu *)
pnvme_fcreq->cmdaddr)->sqe.common;
if (sqe->opcode == nvme_admin_keep_alive)
expedite = 1;
}
/* Check if IO qualifies for CMF */
if (phba->cmf_active_mode != LPFC_CFG_OFF &&
pnvme_fcreq->io_dir == NVMEFC_FCP_READ &&
pnvme_fcreq->payload_length) {
ret = lpfc_update_cmf_cmd(phba, pnvme_fcreq->payload_length);
if (ret) {
ret = -EBUSY;
goto out_fail;
}
/* Get start time for IO latency */
start = ktime_get_ns();
}
/* The node is shared with FCP IO, make sure the IO pending count does
* not exceed the programmed depth.
*/
if (lpfc_ndlp_check_qdepth(phba, ndlp)) {
if ((atomic_read(&ndlp->cmd_pending) >= ndlp->cmd_qdepth) &&
!expedite) {
lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_IOERR,
"6174 Fail IO, ndlp qdepth exceeded: "
"idx %d DID %x pend %d qdepth %d\n",
lpfc_queue_info->index, ndlp->nlp_DID,
atomic_read(&ndlp->cmd_pending),
ndlp->cmd_qdepth);
atomic_inc(&lport->xmt_fcp_qdepth);
ret = -EBUSY;
goto out_fail1;
}
}
/* Lookup Hardware Queue index based on fcp_io_sched module parameter */
if (phba->cfg_fcp_io_sched == LPFC_FCP_SCHED_BY_HDWQ) {
idx = lpfc_queue_info->index;
} else {
cpu = raw_smp_processor_id();
idx = phba->sli4_hba.cpu_map[cpu].hdwq;
}
lpfc_ncmd = lpfc_get_nvme_buf(phba, ndlp, idx, expedite);
if (lpfc_ncmd == NULL) {
atomic_inc(&lport->xmt_fcp_noxri);
lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_IOERR,
"6065 Fail IO, driver buffer pool is empty: "
"idx %d DID %x\n",
lpfc_queue_info->index, ndlp->nlp_DID);
ret = -EBUSY;
goto out_fail1;
}
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
if (start) {
lpfc_ncmd->ts_cmd_start = start;
lpfc_ncmd->ts_last_cmd = phba->ktime_last_cmd;
} else {
lpfc_ncmd->ts_cmd_start = 0;
}
#endif
lpfc_ncmd->rx_cmd_start = start;
/*
* Store the data needed by the driver to issue, abort, and complete
* an IO.
* Do not let the IO hang out forever. There is no midlayer issuing
* an abort so inform the FW of the maximum IO pending time.
*/
freqpriv->nvme_buf = lpfc_ncmd;
lpfc_ncmd->nvmeCmd = pnvme_fcreq;
lpfc_ncmd->ndlp = ndlp;
lpfc_ncmd->qidx = lpfc_queue_info->qidx;
/*
* Issue the IO on the WQ indicated by index in the hw_queue_handle.
* This identfier was create in our hardware queue create callback
* routine. The driver now is dependent on the IO queue steering from
* the transport. We are trusting the upper NVME layers know which
* index to use and that they have affinitized a CPU to this hardware
* queue. A hardware queue maps to a driver MSI-X vector/EQ/CQ/WQ.
*/
lpfc_ncmd->cur_iocbq.hba_wqidx = idx;
cstat = &phba->sli4_hba.hdwq[idx].nvme_cstat;
lpfc_nvme_prep_io_cmd(vport, lpfc_ncmd, ndlp, cstat);
ret = lpfc_nvme_prep_io_dma(vport, lpfc_ncmd);
if (ret) {
lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_IOERR,
"6175 Fail IO, Prep DMA: "
"idx %d DID %x\n",
lpfc_queue_info->index, ndlp->nlp_DID);
atomic_inc(&lport->xmt_fcp_err);
ret = -ENOMEM;
goto out_free_nvme_buf;
}
lpfc_nvmeio_data(phba, "NVME FCP XMIT: xri x%x idx %d to %06x\n",
lpfc_ncmd->cur_iocbq.sli4_xritag,
lpfc_queue_info->index, ndlp->nlp_DID);
ret = lpfc_sli4_issue_wqe(phba, lpfc_ncmd->hdwq, &lpfc_ncmd->cur_iocbq);
if (ret) {
atomic_inc(&lport->xmt_fcp_wqerr);
lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_IOERR,
"6113 Fail IO, Could not issue WQE err %x "
"sid: x%x did: x%x oxid: x%x\n",
ret, vport->fc_myDID, ndlp->nlp_DID,
lpfc_ncmd->cur_iocbq.sli4_xritag);
goto out_free_nvme_buf;
}
if (phba->cfg_xri_rebalancing)
lpfc_keep_pvt_pool_above_lowwm(phba, lpfc_ncmd->hdwq_no);
#ifdef CONFIG_SCSI_LPFC_DEBUG_FS
if (lpfc_ncmd->ts_cmd_start)
lpfc_ncmd->ts_cmd_wqput = ktime_get_ns();
if (phba->hdwqstat_on & LPFC_CHECK_NVME_IO) {
cpu = raw_smp_processor_id();
this_cpu_inc(phba->sli4_hba.c_stat->xmt_io);
lpfc_ncmd->cpu = cpu;
if (idx != cpu)
lpfc_printf_vlog(vport,
KERN_INFO, LOG_NVME_IOERR,
"6702 CPU Check cmd: "
"cpu %d wq %d\n",
lpfc_ncmd->cpu,
lpfc_queue_info->index);
}
#endif
return 0;
out_free_nvme_buf:
if (lpfc_ncmd->nvmeCmd->sg_cnt) {
if (lpfc_ncmd->nvmeCmd->io_dir == NVMEFC_FCP_WRITE)
cstat->output_requests--;
else
cstat->input_requests--;
} else
cstat->control_requests--;
lpfc_release_nvme_buf(phba, lpfc_ncmd);
out_fail1:
lpfc_update_cmf_cmpl(phba, LPFC_CGN_NOT_SENT,
pnvme_fcreq->payload_length, NULL);
out_fail:
return ret;
}
/**
* lpfc_nvme_abort_fcreq_cmpl - Complete an NVME FCP abort request.
* @phba: Pointer to HBA context object
* @cmdiocb: Pointer to command iocb object.
* @abts_cmpl: Pointer to wcqe complete object.
*
* This is the callback function for any NVME FCP IO that was aborted.
*
* Return value:
* None
**/
void
lpfc_nvme_abort_fcreq_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
struct lpfc_wcqe_complete *abts_cmpl)
{
lpfc_printf_log(phba, KERN_INFO, LOG_NVME,
"6145 ABORT_XRI_CN completing on rpi x%x "
"original iotag x%x, abort cmd iotag x%x "
"req_tag x%x, status x%x, hwstatus x%x\n",
cmdiocb->iocb.un.acxri.abortContextTag,
cmdiocb->iocb.un.acxri.abortIoTag,
cmdiocb->iotag,
bf_get(lpfc_wcqe_c_request_tag, abts_cmpl),
bf_get(lpfc_wcqe_c_status, abts_cmpl),
bf_get(lpfc_wcqe_c_hw_status, abts_cmpl));
lpfc_sli_release_iocbq(phba, cmdiocb);
}
/**
* lpfc_nvme_fcp_abort - Issue an NVME-over-FCP ABTS
* @pnvme_lport: Pointer to the driver's local port data
* @pnvme_rport: Pointer to the rport getting the @lpfc_nvme_ereq
* @hw_queue_handle: Driver-returned handle in lpfc_nvme_create_queue
* @pnvme_fcreq: IO request from nvme fc to driver.
*
* Driver registers this routine as its nvme request io abort handler. This
* routine issues an fcp Abort WQE with data from the @lpfc_nvme_fcpreq
* data structure to the rport indicated in @lpfc_nvme_rport. This routine
* is executed asynchronously - one the target is validated as "MAPPED" and
* ready for IO, the driver issues the abort request and returns.
*
* Return value:
* None
**/
static void
lpfc_nvme_fcp_abort(struct nvme_fc_local_port *pnvme_lport,
struct nvme_fc_remote_port *pnvme_rport,
void *hw_queue_handle,
struct nvmefc_fcp_req *pnvme_fcreq)
{
struct lpfc_nvme_lport *lport;
struct lpfc_vport *vport;
struct lpfc_hba *phba;
struct lpfc_io_buf *lpfc_nbuf;
struct lpfc_iocbq *nvmereq_wqe;
struct lpfc_nvme_fcpreq_priv *freqpriv;
unsigned long flags;
int ret_val;
/* Validate pointers. LLDD fault handling with transport does
* have timing races.
*/
lport = (struct lpfc_nvme_lport *)pnvme_lport->private;
if (unlikely(!lport))
return;
vport = lport->vport;
if (unlikely(!hw_queue_handle)) {
lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_ABTS,
"6129 Fail Abort, HW Queue Handle NULL.\n");
return;
}
phba = vport->phba;
freqpriv = pnvme_fcreq->private;
if (unlikely(!freqpriv))
return;
if (vport->load_flag & FC_UNLOADING)
return;
/* Announce entry to new IO submit field. */
lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_ABTS,
"6002 Abort Request to rport DID x%06x "
"for nvme_fc_req x%px\n",
pnvme_rport->port_id,
pnvme_fcreq);
/* If the hba is getting reset, this flag is set. It is
* cleared when the reset is complete and rings reestablished.
*/
spin_lock_irqsave(&phba->hbalock, flags);
/* driver queued commands are in process of being flushed */
if (phba->hba_flag & HBA_IOQ_FLUSH) {
spin_unlock_irqrestore(&phba->hbalock, flags);
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"6139 Driver in reset cleanup - flushing "
"NVME Req now. hba_flag x%x\n",
phba->hba_flag);
return;
}
lpfc_nbuf = freqpriv->nvme_buf;
if (!lpfc_nbuf) {
spin_unlock_irqrestore(&phba->hbalock, flags);
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"6140 NVME IO req has no matching lpfc nvme "
"io buffer. Skipping abort req.\n");
return;
} else if (!lpfc_nbuf->nvmeCmd) {
spin_unlock_irqrestore(&phba->hbalock, flags);
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"6141 lpfc NVME IO req has no nvme_fcreq "
"io buffer. Skipping abort req.\n");
return;
}
nvmereq_wqe = &lpfc_nbuf->cur_iocbq;
/* Guard against IO completion being called at same time */
spin_lock(&lpfc_nbuf->buf_lock);
/*
* The lpfc_nbuf and the mapped nvme_fcreq in the driver's
* state must match the nvme_fcreq passed by the nvme
* transport. If they don't match, it is likely the driver
* has already completed the NVME IO and the nvme transport
* has not seen it yet.
*/
if (lpfc_nbuf->nvmeCmd != pnvme_fcreq) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"6143 NVME req mismatch: "
"lpfc_nbuf x%px nvmeCmd x%px, "
"pnvme_fcreq x%px. Skipping Abort xri x%x\n",
lpfc_nbuf, lpfc_nbuf->nvmeCmd,
pnvme_fcreq, nvmereq_wqe->sli4_xritag);
goto out_unlock;
}
/* Don't abort IOs no longer on the pending queue. */
if (!(nvmereq_wqe->iocb_flag & LPFC_IO_ON_TXCMPLQ)) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"6142 NVME IO req x%px not queued - skipping "
"abort req xri x%x\n",
pnvme_fcreq, nvmereq_wqe->sli4_xritag);
goto out_unlock;
}
atomic_inc(&lport->xmt_fcp_abort);
lpfc_nvmeio_data(phba, "NVME FCP ABORT: xri x%x idx %d to %06x\n",
nvmereq_wqe->sli4_xritag,
nvmereq_wqe->hba_wqidx, pnvme_rport->port_id);
/* Outstanding abort is in progress */
if (nvmereq_wqe->iocb_flag & LPFC_DRIVER_ABORTED) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"6144 Outstanding NVME I/O Abort Request "
"still pending on nvme_fcreq x%px, "
"lpfc_ncmd x%px xri x%x\n",
pnvme_fcreq, lpfc_nbuf,
nvmereq_wqe->sli4_xritag);
goto out_unlock;
}
ret_val = lpfc_sli4_issue_abort_iotag(phba, nvmereq_wqe,
lpfc_nvme_abort_fcreq_cmpl);
spin_unlock(&lpfc_nbuf->buf_lock);
spin_unlock_irqrestore(&phba->hbalock, flags);
/* Make sure HBA is alive */
lpfc_issue_hb_tmo(phba);
if (ret_val != WQE_SUCCESS) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"6137 Failed abts issue_wqe with status x%x "
"for nvme_fcreq x%px.\n",
ret_val, pnvme_fcreq);
return;
}
lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_ABTS,
"6138 Transport Abort NVME Request Issued for "
"ox_id x%x\n",
nvmereq_wqe->sli4_xritag);
return;
out_unlock:
spin_unlock(&lpfc_nbuf->buf_lock);
spin_unlock_irqrestore(&phba->hbalock, flags);
return;
}
/* Declare and initialization an instance of the FC NVME template. */
static struct nvme_fc_port_template lpfc_nvme_template = {
/* initiator-based functions */
.localport_delete = lpfc_nvme_localport_delete,
.remoteport_delete = lpfc_nvme_remoteport_delete,
.create_queue = lpfc_nvme_create_queue,
.delete_queue = lpfc_nvme_delete_queue,
.ls_req = lpfc_nvme_ls_req,
.fcp_io = lpfc_nvme_fcp_io_submit,
.ls_abort = lpfc_nvme_ls_abort,
.fcp_abort = lpfc_nvme_fcp_abort,
.xmt_ls_rsp = lpfc_nvme_xmt_ls_rsp,
.max_hw_queues = 1,
.max_sgl_segments = LPFC_NVME_DEFAULT_SEGS,
.max_dif_sgl_segments = LPFC_NVME_DEFAULT_SEGS,
.dma_boundary = 0xFFFFFFFF,
/* Sizes of additional private data for data structures.
* No use for the last two sizes at this time.
*/
.local_priv_sz = sizeof(struct lpfc_nvme_lport),
.remote_priv_sz = sizeof(struct lpfc_nvme_rport),
.lsrqst_priv_sz = 0,
.fcprqst_priv_sz = sizeof(struct lpfc_nvme_fcpreq_priv),
};
/*
* lpfc_get_nvme_buf - Get a nvme buffer from io_buf_list of the HBA
*
* This routine removes a nvme buffer from head of @hdwq io_buf_list
* and returns to caller.
*
* Return codes:
* NULL - Error
* Pointer to lpfc_nvme_buf - Success
**/
static struct lpfc_io_buf *
lpfc_get_nvme_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
int idx, int expedite)
{
struct lpfc_io_buf *lpfc_ncmd;
struct lpfc_sli4_hdw_queue *qp;
struct sli4_sge *sgl;
struct lpfc_iocbq *pwqeq;
union lpfc_wqe128 *wqe;
lpfc_ncmd = lpfc_get_io_buf(phba, NULL, idx, expedite);
if (lpfc_ncmd) {
pwqeq = &(lpfc_ncmd->cur_iocbq);
wqe = &pwqeq->wqe;
/* Setup key fields in buffer that may have been changed
* if other protocols used this buffer.
*/
pwqeq->iocb_flag = LPFC_IO_NVME;
pwqeq->wqe_cmpl = lpfc_nvme_io_cmd_wqe_cmpl;
lpfc_ncmd->start_time = jiffies;
lpfc_ncmd->flags = 0;
/* Rsp SGE will be filled in when we rcv an IO
* from the NVME Layer to be sent.
* The cmd is going to be embedded so we need a SKIP SGE.
*/
sgl = lpfc_ncmd->dma_sgl;
bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP);
bf_set(lpfc_sli4_sge_last, sgl, 0);
sgl->word2 = cpu_to_le32(sgl->word2);
/* Fill in word 3 / sgl_len during cmd submission */
/* Initialize 64 bytes only */
memset(wqe, 0, sizeof(union lpfc_wqe));
if (lpfc_ndlp_check_qdepth(phba, ndlp)) {
atomic_inc(&ndlp->cmd_pending);
lpfc_ncmd->flags |= LPFC_SBUF_BUMP_QDEPTH;
}
} else {
qp = &phba->sli4_hba.hdwq[idx];
qp->empty_io_bufs++;
}
return lpfc_ncmd;
}
/**
* lpfc_release_nvme_buf: Return a nvme buffer back to hba nvme buf list.
* @phba: The Hba for which this call is being executed.
* @lpfc_ncmd: The nvme buffer which is being released.
*
* This routine releases @lpfc_ncmd nvme buffer by adding it to tail of @phba
* lpfc_io_buf_list list. For SLI4 XRI's are tied to the nvme buffer
* and cannot be reused for at least RA_TOV amount of time if it was
* aborted.
**/
static void
lpfc_release_nvme_buf(struct lpfc_hba *phba, struct lpfc_io_buf *lpfc_ncmd)
{
struct lpfc_sli4_hdw_queue *qp;
unsigned long iflag = 0;
if ((lpfc_ncmd->flags & LPFC_SBUF_BUMP_QDEPTH) && lpfc_ncmd->ndlp)
atomic_dec(&lpfc_ncmd->ndlp->cmd_pending);
lpfc_ncmd->ndlp = NULL;
lpfc_ncmd->flags &= ~LPFC_SBUF_BUMP_QDEPTH;
qp = lpfc_ncmd->hdwq;
if (unlikely(lpfc_ncmd->flags & LPFC_SBUF_XBUSY)) {
lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
"6310 XB release deferred for "
"ox_id x%x on reqtag x%x\n",
lpfc_ncmd->cur_iocbq.sli4_xritag,
lpfc_ncmd->cur_iocbq.iotag);
spin_lock_irqsave(&qp->abts_io_buf_list_lock, iflag);
list_add_tail(&lpfc_ncmd->list,
&qp->lpfc_abts_io_buf_list);
qp->abts_nvme_io_bufs++;
spin_unlock_irqrestore(&qp->abts_io_buf_list_lock, iflag);
} else
lpfc_release_io_buf(phba, (struct lpfc_io_buf *)lpfc_ncmd, qp);
}
/**
* lpfc_nvme_create_localport - Create/Bind an nvme localport instance.
* @vport: the lpfc_vport instance requesting a localport.
*
* This routine is invoked to create an nvme localport instance to bind
* to the nvme_fc_transport. It is called once during driver load
* like lpfc_create_shost after all other services are initialized.
* It requires a vport, vpi, and wwns at call time. Other localport
* parameters are modified as the driver's FCID and the Fabric WWN
* are established.
*
* Return codes
* 0 - successful
* -ENOMEM - no heap memory available
* other values - from nvme registration upcall
**/
int
lpfc_nvme_create_localport(struct lpfc_vport *vport)
{
int ret = 0;
struct lpfc_hba *phba = vport->phba;
struct nvme_fc_port_info nfcp_info;
struct nvme_fc_local_port *localport;
struct lpfc_nvme_lport *lport;
/* Initialize this localport instance. The vport wwn usage ensures
* that NPIV is accounted for.
*/
memset(&nfcp_info, 0, sizeof(struct nvme_fc_port_info));
nfcp_info.port_role = FC_PORT_ROLE_NVME_INITIATOR;
nfcp_info.node_name = wwn_to_u64(vport->fc_nodename.u.wwn);
nfcp_info.port_name = wwn_to_u64(vport->fc_portname.u.wwn);
/* We need to tell the transport layer + 1 because it takes page
* alignment into account. When space for the SGL is allocated we
* allocate + 3, one for cmd, one for rsp and one for this alignment
*/
lpfc_nvme_template.max_sgl_segments = phba->cfg_nvme_seg_cnt + 1;
/* Advertise how many hw queues we support based on cfg_hdw_queue,
* which will not exceed cpu count.
*/
lpfc_nvme_template.max_hw_queues = phba->cfg_hdw_queue;
if (!IS_ENABLED(CONFIG_NVME_FC))
return ret;
/* localport is allocated from the stack, but the registration
* call allocates heap memory as well as the private area.
*/
ret = nvme_fc_register_localport(&nfcp_info, &lpfc_nvme_template,
&vport->phba->pcidev->dev, &localport);
if (!ret) {
lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME | LOG_NVME_DISC,
"6005 Successfully registered local "
"NVME port num %d, localP x%px, private "
"x%px, sg_seg %d\n",
localport->port_num, localport,
localport->private,
lpfc_nvme_template.max_sgl_segments);
/* Private is our lport size declared in the template. */
lport = (struct lpfc_nvme_lport *)localport->private;
vport->localport = localport;
lport->vport = vport;
vport->nvmei_support = 1;
atomic_set(&lport->xmt_fcp_noxri, 0);
atomic_set(&lport->xmt_fcp_bad_ndlp, 0);
atomic_set(&lport->xmt_fcp_qdepth, 0);
atomic_set(&lport->xmt_fcp_err, 0);
atomic_set(&lport->xmt_fcp_wqerr, 0);
atomic_set(&lport->xmt_fcp_abort, 0);
atomic_set(&lport->xmt_ls_abort, 0);
atomic_set(&lport->xmt_ls_err, 0);
atomic_set(&lport->cmpl_fcp_xb, 0);
atomic_set(&lport->cmpl_fcp_err, 0);
atomic_set(&lport->cmpl_ls_xb, 0);
atomic_set(&lport->cmpl_ls_err, 0);
atomic_set(&lport->fc4NvmeLsRequests, 0);
atomic_set(&lport->fc4NvmeLsCmpls, 0);
}
return ret;
}
#if (IS_ENABLED(CONFIG_NVME_FC))
/* lpfc_nvme_lport_unreg_wait - Wait for the host to complete an lport unreg.
*
* The driver has to wait for the host nvme transport to callback
* indicating the localport has successfully unregistered all
* resources. Since this is an uninterruptible wait, loop every ten
* seconds and print a message indicating no progress.
*
* An uninterruptible wait is used because of the risk of transport-to-
* driver state mismatch.
*/
static void
lpfc_nvme_lport_unreg_wait(struct lpfc_vport *vport,
struct lpfc_nvme_lport *lport,
struct completion *lport_unreg_cmp)
{
u32 wait_tmo;
int ret, i, pending = 0;
struct lpfc_sli_ring *pring;
struct lpfc_hba *phba = vport->phba;
struct lpfc_sli4_hdw_queue *qp;
int abts_scsi, abts_nvme;
/* Host transport has to clean up and confirm requiring an indefinite
* wait. Print a message if a 10 second wait expires and renew the
* wait. This is unexpected.
*/
wait_tmo = msecs_to_jiffies(LPFC_NVME_WAIT_TMO * 1000);
while (true) {
ret = wait_for_completion_timeout(lport_unreg_cmp, wait_tmo);
if (unlikely(!ret)) {
pending = 0;
abts_scsi = 0;
abts_nvme = 0;
for (i = 0; i < phba->cfg_hdw_queue; i++) {
qp = &phba->sli4_hba.hdwq[i];
if (!vport || !vport->localport ||
!qp || !qp->io_wq)
return;
pring = qp->io_wq->pring;
if (!pring)
continue;
pending += pring->txcmplq_cnt;
abts_scsi += qp->abts_scsi_io_bufs;
abts_nvme += qp->abts_nvme_io_bufs;
}
if (!vport || !vport->localport ||
vport->phba->hba_flag & HBA_PCI_ERR)
return;
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"6176 Lport x%px Localport x%px wait "
"timed out. Pending %d [%d:%d]. "
"Renewing.\n",
lport, vport->localport, pending,
abts_scsi, abts_nvme);
continue;
}
break;
}
lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_IOERR,
"6177 Lport x%px Localport x%px Complete Success\n",
lport, vport->localport);
}
#endif
/**
* lpfc_nvme_destroy_localport - Destroy lpfc_nvme bound to nvme transport.
* @vport: pointer to a host virtual N_Port data structure
*
* This routine is invoked to destroy all lports bound to the phba.
* The lport memory was allocated by the nvme fc transport and is
* released there. This routine ensures all rports bound to the
* lport have been disconnected.
*
**/
void
lpfc_nvme_destroy_localport(struct lpfc_vport *vport)
{
#if (IS_ENABLED(CONFIG_NVME_FC))
struct nvme_fc_local_port *localport;
struct lpfc_nvme_lport *lport;
int ret;
DECLARE_COMPLETION_ONSTACK(lport_unreg_cmp);
if (vport->nvmei_support == 0)
return;
localport = vport->localport;
if (!localport)
return;
lport = (struct lpfc_nvme_lport *)localport->private;
lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME,
"6011 Destroying NVME localport x%px\n",
localport);
/* lport's rport list is clear. Unregister
* lport and release resources.
*/
lport->lport_unreg_cmp = &lport_unreg_cmp;
ret = nvme_fc_unregister_localport(localport);
/* Wait for completion. This either blocks
* indefinitely or succeeds
*/
lpfc_nvme_lport_unreg_wait(vport, lport, &lport_unreg_cmp);
vport->localport = NULL;
/* Regardless of the unregister upcall response, clear
* nvmei_support. All rports are unregistered and the
* driver will clean up.
*/
vport->nvmei_support = 0;
if (ret == 0) {
lpfc_printf_vlog(vport,
KERN_INFO, LOG_NVME_DISC,
"6009 Unregistered lport Success\n");
} else {
lpfc_printf_vlog(vport,
KERN_INFO, LOG_NVME_DISC,
"6010 Unregistered lport "
"Failed, status x%x\n",
ret);
}
#endif
}
void
lpfc_nvme_update_localport(struct lpfc_vport *vport)
{
#if (IS_ENABLED(CONFIG_NVME_FC))
struct nvme_fc_local_port *localport;
struct lpfc_nvme_lport *lport;
localport = vport->localport;
if (!localport) {
lpfc_printf_vlog(vport, KERN_WARNING, LOG_NVME,
"6710 Update NVME fail. No localport\n");
return;
}
lport = (struct lpfc_nvme_lport *)localport->private;
if (!lport) {
lpfc_printf_vlog(vport, KERN_WARNING, LOG_NVME,
"6171 Update NVME fail. localP x%px, No lport\n",
localport);
return;
}
lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME,
"6012 Update NVME lport x%px did x%x\n",
localport, vport->fc_myDID);
localport->port_id = vport->fc_myDID;
if (localport->port_id == 0)
localport->port_role = FC_PORT_ROLE_NVME_DISCOVERY;
else
localport->port_role = FC_PORT_ROLE_NVME_INITIATOR;
lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_DISC,
"6030 bound lport x%px to DID x%06x\n",
lport, localport->port_id);
#endif
}
int
lpfc_nvme_register_port(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
{
#if (IS_ENABLED(CONFIG_NVME_FC))
int ret = 0;
struct nvme_fc_local_port *localport;
struct lpfc_nvme_lport *lport;
struct lpfc_nvme_rport *rport;
struct lpfc_nvme_rport *oldrport;
struct nvme_fc_remote_port *remote_port;
struct nvme_fc_port_info rpinfo;
struct lpfc_nodelist *prev_ndlp = NULL;
struct fc_rport *srport = ndlp->rport;
lpfc_printf_vlog(ndlp->vport, KERN_INFO, LOG_NVME_DISC,
"6006 Register NVME PORT. DID x%06x nlptype x%x\n",
ndlp->nlp_DID, ndlp->nlp_type);
localport = vport->localport;
if (!localport)
return 0;
lport = (struct lpfc_nvme_lport *)localport->private;
/* NVME rports are not preserved across devloss.
* Just register this instance. Note, rpinfo->dev_loss_tmo
* is left 0 to indicate accept transport defaults. The
* driver communicates port role capabilities consistent
* with the PRLI response data.
*/
memset(&rpinfo, 0, sizeof(struct nvme_fc_port_info));
rpinfo.port_id = ndlp->nlp_DID;
if (ndlp->nlp_type & NLP_NVME_TARGET)
rpinfo.port_role |= FC_PORT_ROLE_NVME_TARGET;
if (ndlp->nlp_type & NLP_NVME_INITIATOR)
rpinfo.port_role |= FC_PORT_ROLE_NVME_INITIATOR;
if (ndlp->nlp_type & NLP_NVME_DISCOVERY)
rpinfo.port_role |= FC_PORT_ROLE_NVME_DISCOVERY;
rpinfo.port_name = wwn_to_u64(ndlp->nlp_portname.u.wwn);
rpinfo.node_name = wwn_to_u64(ndlp->nlp_nodename.u.wwn);
if (srport)
rpinfo.dev_loss_tmo = srport->dev_loss_tmo;
else
rpinfo.dev_loss_tmo = vport->cfg_devloss_tmo;
spin_lock_irq(&ndlp->lock);
oldrport = lpfc_ndlp_get_nrport(ndlp);
if (oldrport) {
prev_ndlp = oldrport->ndlp;
spin_unlock_irq(&ndlp->lock);
} else {
spin_unlock_irq(&ndlp->lock);
if (!lpfc_nlp_get(ndlp)) {
dev_warn(&vport->phba->pcidev->dev,
"Warning - No node ref - exit register\n");
return 0;
}
}
ret = nvme_fc_register_remoteport(localport, &rpinfo, &remote_port);
if (!ret) {
/* If the ndlp already has an nrport, this is just
* a resume of the existing rport. Else this is a
* new rport.
*/
/* Guard against an unregister/reregister
* race that leaves the WAIT flag set.
*/
spin_lock_irq(&ndlp->lock);
ndlp->fc4_xpt_flags &= ~NVME_XPT_UNREG_WAIT;
ndlp->fc4_xpt_flags |= NVME_XPT_REGD;
spin_unlock_irq(&ndlp->lock);
rport = remote_port->private;
if (oldrport) {
/* Sever the ndlp<->rport association
* before dropping the ndlp ref from
* register.
*/
spin_lock_irq(&ndlp->lock);
ndlp->nrport = NULL;
ndlp->fc4_xpt_flags &= ~NVME_XPT_UNREG_WAIT;
spin_unlock_irq(&ndlp->lock);
rport->ndlp = NULL;
rport->remoteport = NULL;
/* Reference only removed if previous NDLP is no longer
* active. It might be just a swap and removing the
* reference would cause a premature cleanup.
*/
if (prev_ndlp && prev_ndlp != ndlp) {
if (!prev_ndlp->nrport)
lpfc_nlp_put(prev_ndlp);
}
}
/* Clean bind the rport to the ndlp. */
rport->remoteport = remote_port;
rport->lport = lport;
rport->ndlp = ndlp;
spin_lock_irq(&ndlp->lock);
ndlp->nrport = rport;
spin_unlock_irq(&ndlp->lock);
lpfc_printf_vlog(vport, KERN_INFO,
LOG_NVME_DISC | LOG_NODE,
"6022 Bind lport x%px to remoteport x%px "
"rport x%px WWNN 0x%llx, "
"Rport WWPN 0x%llx DID "
"x%06x Role x%x, ndlp %p prev_ndlp x%px\n",
lport, remote_port, rport,
rpinfo.node_name, rpinfo.port_name,
rpinfo.port_id, rpinfo.port_role,
ndlp, prev_ndlp);
} else {
lpfc_printf_vlog(vport, KERN_ERR,
LOG_TRACE_EVENT,
"6031 RemotePort Registration failed "
"err: %d, DID x%06x\n",
ret, ndlp->nlp_DID);
}
return ret;
#else
return 0;
#endif
}
/*
* lpfc_nvme_rescan_port - Check to see if we should rescan this remoteport
*
* If the ndlp represents an NVME Target, that we are logged into,
* ping the NVME FC Transport layer to initiate a device rescan
* on this remote NPort.
*/
void
lpfc_nvme_rescan_port(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
{
#if (IS_ENABLED(CONFIG_NVME_FC))
struct lpfc_nvme_rport *nrport;
struct nvme_fc_remote_port *remoteport = NULL;
spin_lock_irq(&ndlp->lock);
nrport = lpfc_ndlp_get_nrport(ndlp);
if (nrport)
remoteport = nrport->remoteport;
spin_unlock_irq(&ndlp->lock);
lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_DISC,
"6170 Rescan NPort DID x%06x type x%x "
"state x%x nrport x%px remoteport x%px\n",
ndlp->nlp_DID, ndlp->nlp_type, ndlp->nlp_state,
nrport, remoteport);
if (!nrport || !remoteport)
goto rescan_exit;
/* Only rescan if we are an NVME target in the MAPPED state */
if (remoteport->port_role & FC_PORT_ROLE_NVME_DISCOVERY &&
ndlp->nlp_state == NLP_STE_MAPPED_NODE) {
nvme_fc_rescan_remoteport(remoteport);
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"6172 NVME rescanned DID x%06x "
"port_state x%x\n",
ndlp->nlp_DID, remoteport->port_state);
}
return;
rescan_exit:
lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_DISC,
"6169 Skip NVME Rport Rescan, NVME remoteport "
"unregistered\n");
#endif
}
/* lpfc_nvme_unregister_port - unbind the DID and port_role from this rport.
*
* There is no notion of Devloss or rport recovery from the current
* nvme_transport perspective. Loss of an rport just means IO cannot
* be sent and recovery is completely up to the initator.
* For now, the driver just unbinds the DID and port_role so that
* no further IO can be issued. Changes are planned for later.
*
* Notes - the ndlp reference count is not decremented here since
* since there is no nvme_transport api for devloss. Node ref count
* is only adjusted in driver unload.
*/
void
lpfc_nvme_unregister_port(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
{
#if (IS_ENABLED(CONFIG_NVME_FC))
int ret;
struct nvme_fc_local_port *localport;
struct lpfc_nvme_lport *lport;
struct lpfc_nvme_rport *rport;
struct nvme_fc_remote_port *remoteport = NULL;
localport = vport->localport;
/* This is fundamental error. The localport is always
* available until driver unload. Just exit.
*/
if (!localport)
return;
lport = (struct lpfc_nvme_lport *)localport->private;
if (!lport)
goto input_err;
spin_lock_irq(&ndlp->lock);
rport = lpfc_ndlp_get_nrport(ndlp);
if (rport)
remoteport = rport->remoteport;
spin_unlock_irq(&ndlp->lock);
if (!remoteport)
goto input_err;
lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME_DISC,
"6033 Unreg nvme remoteport x%px, portname x%llx, "
"port_id x%06x, portstate x%x port type x%x "
"refcnt %d\n",
remoteport, remoteport->port_name,
remoteport->port_id, remoteport->port_state,
ndlp->nlp_type, kref_read(&ndlp->kref));
/* Sanity check ndlp type. Only call for NVME ports. Don't
* clear any rport state until the transport calls back.
*/
if (ndlp->nlp_type & NLP_NVME_TARGET) {
/* No concern about the role change on the nvme remoteport.
* The transport will update it.
*/
spin_lock_irq(&ndlp->lock);
ndlp->fc4_xpt_flags |= NVME_XPT_UNREG_WAIT;
spin_unlock_irq(&ndlp->lock);
/* Don't let the host nvme transport keep sending keep-alives
* on this remoteport. Vport is unloading, no recovery. The
* return values is ignored. The upcall is a courtesy to the
* transport.
*/
if (vport->load_flag & FC_UNLOADING ||
unlikely(vport->phba->hba_flag & HBA_PCI_ERR))
(void)nvme_fc_set_remoteport_devloss(remoteport, 0);
ret = nvme_fc_unregister_remoteport(remoteport);
/* The driver no longer knows if the nrport memory is valid.
* because the controller teardown process has begun and
* is asynchronous. Break the binding in the ndlp. Also
* remove the register ndlp reference to setup node release.
*/
ndlp->nrport = NULL;
lpfc_nlp_put(ndlp);
if (ret != 0) {
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"6167 NVME unregister failed %d "
"port_state x%x\n",
ret, remoteport->port_state);
}
}
return;
input_err:
#endif
lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT,
"6168 State error: lport x%px, rport x%px FCID x%06x\n",
vport->localport, ndlp->rport, ndlp->nlp_DID);
}
/**
* lpfc_sli4_nvme_pci_offline_aborted - Fast-path process of NVME xri abort
* @phba: pointer to lpfc hba data structure.
* @lpfc_ncmd: The nvme job structure for the request being aborted.
*
* This routine is invoked by the worker thread to process a SLI4 fast-path
* NVME aborted xri. Aborted NVME IO commands are completed to the transport
* here.
**/
void
lpfc_sli4_nvme_pci_offline_aborted(struct lpfc_hba *phba,
struct lpfc_io_buf *lpfc_ncmd)
{
struct nvmefc_fcp_req *nvme_cmd = NULL;
lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
"6533 %s nvme_cmd %p tag x%x abort complete and "
"xri released\n", __func__,
lpfc_ncmd->nvmeCmd,
lpfc_ncmd->cur_iocbq.iotag);
/* Aborted NVME commands are required to not complete
* before the abort exchange command fully completes.
* Once completed, it is available via the put list.
*/
if (lpfc_ncmd->nvmeCmd) {
nvme_cmd = lpfc_ncmd->nvmeCmd;
nvme_cmd->transferred_length = 0;
nvme_cmd->rcv_rsplen = 0;
nvme_cmd->status = NVME_SC_INTERNAL;
nvme_cmd->done(nvme_cmd);
lpfc_ncmd->nvmeCmd = NULL;
}
lpfc_release_nvme_buf(phba, lpfc_ncmd);
}
/**
* lpfc_sli4_nvme_xri_aborted - Fast-path process of NVME xri abort
* @phba: pointer to lpfc hba data structure.
* @axri: pointer to the fcp xri abort wcqe structure.
* @lpfc_ncmd: The nvme job structure for the request being aborted.
*
* This routine is invoked by the worker thread to process a SLI4 fast-path
* NVME aborted xri. Aborted NVME IO commands are completed to the transport
* here.
**/
void
lpfc_sli4_nvme_xri_aborted(struct lpfc_hba *phba,
struct sli4_wcqe_xri_aborted *axri,
struct lpfc_io_buf *lpfc_ncmd)
{
uint16_t xri = bf_get(lpfc_wcqe_xa_xri, axri);
struct nvmefc_fcp_req *nvme_cmd = NULL;
struct lpfc_nodelist *ndlp = lpfc_ncmd->ndlp;
if (ndlp)
lpfc_sli4_abts_err_handler(phba, ndlp, axri);
lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
"6311 nvme_cmd %p xri x%x tag x%x abort complete and "
"xri released\n",
lpfc_ncmd->nvmeCmd, xri,
lpfc_ncmd->cur_iocbq.iotag);
/* Aborted NVME commands are required to not complete
* before the abort exchange command fully completes.
* Once completed, it is available via the put list.
*/
if (lpfc_ncmd->nvmeCmd) {
nvme_cmd = lpfc_ncmd->nvmeCmd;
nvme_cmd->done(nvme_cmd);
lpfc_ncmd->nvmeCmd = NULL;
}
lpfc_release_nvme_buf(phba, lpfc_ncmd);
}
/**
* lpfc_nvme_wait_for_io_drain - Wait for all NVME wqes to complete
* @phba: Pointer to HBA context object.
*
* This function flushes all wqes in the nvme rings and frees all resources
* in the txcmplq. This function does not issue abort wqes for the IO
* commands in txcmplq, they will just be returned with
* IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI
* slot has been permanently disabled.
**/
void
lpfc_nvme_wait_for_io_drain(struct lpfc_hba *phba)
{
struct lpfc_sli_ring *pring;
u32 i, wait_cnt = 0;
if (phba->sli_rev < LPFC_SLI_REV4 || !phba->sli4_hba.hdwq)
return;
/* Cycle through all IO rings and make sure all outstanding
* WQEs have been removed from the txcmplqs.
*/
for (i = 0; i < phba->cfg_hdw_queue; i++) {
if (!phba->sli4_hba.hdwq[i].io_wq)
continue;
pring = phba->sli4_hba.hdwq[i].io_wq->pring;
if (!pring)
continue;
/* Retrieve everything on the txcmplq */
while (!list_empty(&pring->txcmplq)) {
msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1);
wait_cnt++;
/* The sleep is 10mS. Every ten seconds,
* dump a message. Something is wrong.
*/
if ((wait_cnt % 1000) == 0) {
lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
"6178 NVME IO not empty, "
"cnt %d\n", wait_cnt);
}
}
}
/* Make sure HBA is alive */
lpfc_issue_hb_tmo(phba);
}
void
lpfc_nvme_cancel_iocb(struct lpfc_hba *phba, struct lpfc_iocbq *pwqeIn,
uint32_t stat, uint32_t param)
{
#if (IS_ENABLED(CONFIG_NVME_FC))
struct lpfc_io_buf *lpfc_ncmd;
struct nvmefc_fcp_req *nCmd;
struct lpfc_wcqe_complete wcqe;
struct lpfc_wcqe_complete *wcqep = &wcqe;
lpfc_ncmd = (struct lpfc_io_buf *)pwqeIn->context1;
if (!lpfc_ncmd) {
lpfc_sli_release_iocbq(phba, pwqeIn);
return;
}
/* For abort iocb just return, IO iocb will do a done call */
if (bf_get(wqe_cmnd, &pwqeIn->wqe.gen_req.wqe_com) ==
CMD_ABORT_XRI_CX) {
lpfc_sli_release_iocbq(phba, pwqeIn);
return;
}
spin_lock(&lpfc_ncmd->buf_lock);
nCmd = lpfc_ncmd->nvmeCmd;
if (!nCmd) {
spin_unlock(&lpfc_ncmd->buf_lock);
lpfc_release_nvme_buf(phba, lpfc_ncmd);
return;
}
spin_unlock(&lpfc_ncmd->buf_lock);
lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR,
"6194 NVME Cancel xri %x\n",
lpfc_ncmd->cur_iocbq.sli4_xritag);
wcqep->word0 = 0;
bf_set(lpfc_wcqe_c_status, wcqep, stat);
wcqep->parameter = param;
wcqep->word3 = 0; /* xb is 0 */
/* Call release with XB=1 to queue the IO into the abort list. */
if (phba->sli.sli_flag & LPFC_SLI_ACTIVE)
bf_set(lpfc_wcqe_c_xb, wcqep, 1);
(pwqeIn->wqe_cmpl)(phba, pwqeIn, wcqep);
#endif
}