1765 lines
48 KiB
C
1765 lines
48 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
/*
|
||
|
* Copyright(C) 2016 Linaro Limited. All rights reserved.
|
||
|
* Author: Mathieu Poirier <mathieu.poirier@linaro.org>
|
||
|
*/
|
||
|
|
||
|
#include <linux/atomic.h>
|
||
|
#include <linux/coresight.h>
|
||
|
#include <linux/dma-mapping.h>
|
||
|
#include <linux/iommu.h>
|
||
|
#include <linux/idr.h>
|
||
|
#include <linux/mutex.h>
|
||
|
#include <linux/refcount.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/vmalloc.h>
|
||
|
#include "coresight-catu.h"
|
||
|
#include "coresight-etm-perf.h"
|
||
|
#include "coresight-priv.h"
|
||
|
#include "coresight-tmc.h"
|
||
|
|
||
|
struct etr_flat_buf {
|
||
|
struct device *dev;
|
||
|
dma_addr_t daddr;
|
||
|
void *vaddr;
|
||
|
size_t size;
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* etr_perf_buffer - Perf buffer used for ETR
|
||
|
* @drvdata - The ETR drvdaga this buffer has been allocated for.
|
||
|
* @etr_buf - Actual buffer used by the ETR
|
||
|
* @pid - The PID this etr_perf_buffer belongs to.
|
||
|
* @snaphost - Perf session mode
|
||
|
* @head - handle->head at the beginning of the session.
|
||
|
* @nr_pages - Number of pages in the ring buffer.
|
||
|
* @pages - Array of Pages in the ring buffer.
|
||
|
*/
|
||
|
struct etr_perf_buffer {
|
||
|
struct tmc_drvdata *drvdata;
|
||
|
struct etr_buf *etr_buf;
|
||
|
pid_t pid;
|
||
|
bool snapshot;
|
||
|
unsigned long head;
|
||
|
int nr_pages;
|
||
|
void **pages;
|
||
|
};
|
||
|
|
||
|
/* Convert the perf index to an offset within the ETR buffer */
|
||
|
#define PERF_IDX2OFF(idx, buf) \
|
||
|
((idx) % ((unsigned long)(buf)->nr_pages << PAGE_SHIFT))
|
||
|
|
||
|
/* Lower limit for ETR hardware buffer */
|
||
|
#define TMC_ETR_PERF_MIN_BUF_SIZE SZ_1M
|
||
|
|
||
|
/*
|
||
|
* The TMC ETR SG has a page size of 4K. The SG table contains pointers
|
||
|
* to 4KB buffers. However, the OS may use a PAGE_SIZE different from
|
||
|
* 4K (i.e, 16KB or 64KB). This implies that a single OS page could
|
||
|
* contain more than one SG buffer and tables.
|
||
|
*
|
||
|
* A table entry has the following format:
|
||
|
*
|
||
|
* ---Bit31------------Bit4-------Bit1-----Bit0--
|
||
|
* | Address[39:12] | SBZ | Entry Type |
|
||
|
* ----------------------------------------------
|
||
|
*
|
||
|
* Address: Bits [39:12] of a physical page address. Bits [11:0] are
|
||
|
* always zero.
|
||
|
*
|
||
|
* Entry type:
|
||
|
* b00 - Reserved.
|
||
|
* b01 - Last entry in the tables, points to 4K page buffer.
|
||
|
* b10 - Normal entry, points to 4K page buffer.
|
||
|
* b11 - Link. The address points to the base of next table.
|
||
|
*/
|
||
|
|
||
|
typedef u32 sgte_t;
|
||
|
|
||
|
#define ETR_SG_PAGE_SHIFT 12
|
||
|
#define ETR_SG_PAGE_SIZE (1UL << ETR_SG_PAGE_SHIFT)
|
||
|
#define ETR_SG_PAGES_PER_SYSPAGE (PAGE_SIZE / ETR_SG_PAGE_SIZE)
|
||
|
#define ETR_SG_PTRS_PER_PAGE (ETR_SG_PAGE_SIZE / sizeof(sgte_t))
|
||
|
#define ETR_SG_PTRS_PER_SYSPAGE (PAGE_SIZE / sizeof(sgte_t))
|
||
|
|
||
|
#define ETR_SG_ET_MASK 0x3
|
||
|
#define ETR_SG_ET_LAST 0x1
|
||
|
#define ETR_SG_ET_NORMAL 0x2
|
||
|
#define ETR_SG_ET_LINK 0x3
|
||
|
|
||
|
#define ETR_SG_ADDR_SHIFT 4
|
||
|
|
||
|
#define ETR_SG_ENTRY(addr, type) \
|
||
|
(sgte_t)((((addr) >> ETR_SG_PAGE_SHIFT) << ETR_SG_ADDR_SHIFT) | \
|
||
|
(type & ETR_SG_ET_MASK))
|
||
|
|
||
|
#define ETR_SG_ADDR(entry) \
|
||
|
(((dma_addr_t)(entry) >> ETR_SG_ADDR_SHIFT) << ETR_SG_PAGE_SHIFT)
|
||
|
#define ETR_SG_ET(entry) ((entry) & ETR_SG_ET_MASK)
|
||
|
|
||
|
/*
|
||
|
* struct etr_sg_table : ETR SG Table
|
||
|
* @sg_table: Generic SG Table holding the data/table pages.
|
||
|
* @hwaddr: hwaddress used by the TMC, which is the base
|
||
|
* address of the table.
|
||
|
*/
|
||
|
struct etr_sg_table {
|
||
|
struct tmc_sg_table *sg_table;
|
||
|
dma_addr_t hwaddr;
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* tmc_etr_sg_table_entries: Total number of table entries required to map
|
||
|
* @nr_pages system pages.
|
||
|
*
|
||
|
* We need to map @nr_pages * ETR_SG_PAGES_PER_SYSPAGE data pages.
|
||
|
* Each TMC page can map (ETR_SG_PTRS_PER_PAGE - 1) buffer pointers,
|
||
|
* with the last entry pointing to another page of table entries.
|
||
|
* If we spill over to a new page for mapping 1 entry, we could as
|
||
|
* well replace the link entry of the previous page with the last entry.
|
||
|
*/
|
||
|
static inline unsigned long __attribute_const__
|
||
|
tmc_etr_sg_table_entries(int nr_pages)
|
||
|
{
|
||
|
unsigned long nr_sgpages = nr_pages * ETR_SG_PAGES_PER_SYSPAGE;
|
||
|
unsigned long nr_sglinks = nr_sgpages / (ETR_SG_PTRS_PER_PAGE - 1);
|
||
|
/*
|
||
|
* If we spill over to a new page for 1 entry, we could as well
|
||
|
* make it the LAST entry in the previous page, skipping the Link
|
||
|
* address.
|
||
|
*/
|
||
|
if (nr_sglinks && (nr_sgpages % (ETR_SG_PTRS_PER_PAGE - 1) < 2))
|
||
|
nr_sglinks--;
|
||
|
return nr_sgpages + nr_sglinks;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* tmc_pages_get_offset: Go through all the pages in the tmc_pages
|
||
|
* and map the device address @addr to an offset within the virtual
|
||
|
* contiguous buffer.
|
||
|
*/
|
||
|
static long
|
||
|
tmc_pages_get_offset(struct tmc_pages *tmc_pages, dma_addr_t addr)
|
||
|
{
|
||
|
int i;
|
||
|
dma_addr_t page_start;
|
||
|
|
||
|
for (i = 0; i < tmc_pages->nr_pages; i++) {
|
||
|
page_start = tmc_pages->daddrs[i];
|
||
|
if (addr >= page_start && addr < (page_start + PAGE_SIZE))
|
||
|
return i * PAGE_SIZE + (addr - page_start);
|
||
|
}
|
||
|
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* tmc_pages_free : Unmap and free the pages used by tmc_pages.
|
||
|
* If the pages were not allocated in tmc_pages_alloc(), we would
|
||
|
* simply drop the refcount.
|
||
|
*/
|
||
|
static void tmc_pages_free(struct tmc_pages *tmc_pages,
|
||
|
struct device *dev, enum dma_data_direction dir)
|
||
|
{
|
||
|
int i;
|
||
|
struct device *real_dev = dev->parent;
|
||
|
|
||
|
for (i = 0; i < tmc_pages->nr_pages; i++) {
|
||
|
if (tmc_pages->daddrs && tmc_pages->daddrs[i])
|
||
|
dma_unmap_page(real_dev, tmc_pages->daddrs[i],
|
||
|
PAGE_SIZE, dir);
|
||
|
if (tmc_pages->pages && tmc_pages->pages[i])
|
||
|
__free_page(tmc_pages->pages[i]);
|
||
|
}
|
||
|
|
||
|
kfree(tmc_pages->pages);
|
||
|
kfree(tmc_pages->daddrs);
|
||
|
tmc_pages->pages = NULL;
|
||
|
tmc_pages->daddrs = NULL;
|
||
|
tmc_pages->nr_pages = 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* tmc_pages_alloc : Allocate and map pages for a given @tmc_pages.
|
||
|
* If @pages is not NULL, the list of page virtual addresses are
|
||
|
* used as the data pages. The pages are then dma_map'ed for @dev
|
||
|
* with dma_direction @dir.
|
||
|
*
|
||
|
* Returns 0 upon success, else the error number.
|
||
|
*/
|
||
|
static int tmc_pages_alloc(struct tmc_pages *tmc_pages,
|
||
|
struct device *dev, int node,
|
||
|
enum dma_data_direction dir, void **pages)
|
||
|
{
|
||
|
int i, nr_pages;
|
||
|
dma_addr_t paddr;
|
||
|
struct page *page;
|
||
|
struct device *real_dev = dev->parent;
|
||
|
|
||
|
nr_pages = tmc_pages->nr_pages;
|
||
|
tmc_pages->daddrs = kcalloc(nr_pages, sizeof(*tmc_pages->daddrs),
|
||
|
GFP_KERNEL);
|
||
|
if (!tmc_pages->daddrs)
|
||
|
return -ENOMEM;
|
||
|
tmc_pages->pages = kcalloc(nr_pages, sizeof(*tmc_pages->pages),
|
||
|
GFP_KERNEL);
|
||
|
if (!tmc_pages->pages) {
|
||
|
kfree(tmc_pages->daddrs);
|
||
|
tmc_pages->daddrs = NULL;
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < nr_pages; i++) {
|
||
|
if (pages && pages[i]) {
|
||
|
page = virt_to_page(pages[i]);
|
||
|
/* Hold a refcount on the page */
|
||
|
get_page(page);
|
||
|
} else {
|
||
|
page = alloc_pages_node(node,
|
||
|
GFP_KERNEL | __GFP_ZERO, 0);
|
||
|
if (!page)
|
||
|
goto err;
|
||
|
}
|
||
|
paddr = dma_map_page(real_dev, page, 0, PAGE_SIZE, dir);
|
||
|
if (dma_mapping_error(real_dev, paddr))
|
||
|
goto err;
|
||
|
tmc_pages->daddrs[i] = paddr;
|
||
|
tmc_pages->pages[i] = page;
|
||
|
}
|
||
|
return 0;
|
||
|
err:
|
||
|
tmc_pages_free(tmc_pages, dev, dir);
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
static inline long
|
||
|
tmc_sg_get_data_page_offset(struct tmc_sg_table *sg_table, dma_addr_t addr)
|
||
|
{
|
||
|
return tmc_pages_get_offset(&sg_table->data_pages, addr);
|
||
|
}
|
||
|
|
||
|
static inline void tmc_free_table_pages(struct tmc_sg_table *sg_table)
|
||
|
{
|
||
|
if (sg_table->table_vaddr)
|
||
|
vunmap(sg_table->table_vaddr);
|
||
|
tmc_pages_free(&sg_table->table_pages, sg_table->dev, DMA_TO_DEVICE);
|
||
|
}
|
||
|
|
||
|
static void tmc_free_data_pages(struct tmc_sg_table *sg_table)
|
||
|
{
|
||
|
if (sg_table->data_vaddr)
|
||
|
vunmap(sg_table->data_vaddr);
|
||
|
tmc_pages_free(&sg_table->data_pages, sg_table->dev, DMA_FROM_DEVICE);
|
||
|
}
|
||
|
|
||
|
void tmc_free_sg_table(struct tmc_sg_table *sg_table)
|
||
|
{
|
||
|
tmc_free_table_pages(sg_table);
|
||
|
tmc_free_data_pages(sg_table);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(tmc_free_sg_table);
|
||
|
|
||
|
/*
|
||
|
* Alloc pages for the table. Since this will be used by the device,
|
||
|
* allocate the pages closer to the device (i.e, dev_to_node(dev)
|
||
|
* rather than the CPU node).
|
||
|
*/
|
||
|
static int tmc_alloc_table_pages(struct tmc_sg_table *sg_table)
|
||
|
{
|
||
|
int rc;
|
||
|
struct tmc_pages *table_pages = &sg_table->table_pages;
|
||
|
|
||
|
rc = tmc_pages_alloc(table_pages, sg_table->dev,
|
||
|
dev_to_node(sg_table->dev),
|
||
|
DMA_TO_DEVICE, NULL);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
sg_table->table_vaddr = vmap(table_pages->pages,
|
||
|
table_pages->nr_pages,
|
||
|
VM_MAP,
|
||
|
PAGE_KERNEL);
|
||
|
if (!sg_table->table_vaddr)
|
||
|
rc = -ENOMEM;
|
||
|
else
|
||
|
sg_table->table_daddr = table_pages->daddrs[0];
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
static int tmc_alloc_data_pages(struct tmc_sg_table *sg_table, void **pages)
|
||
|
{
|
||
|
int rc;
|
||
|
|
||
|
/* Allocate data pages on the node requested by the caller */
|
||
|
rc = tmc_pages_alloc(&sg_table->data_pages,
|
||
|
sg_table->dev, sg_table->node,
|
||
|
DMA_FROM_DEVICE, pages);
|
||
|
if (!rc) {
|
||
|
sg_table->data_vaddr = vmap(sg_table->data_pages.pages,
|
||
|
sg_table->data_pages.nr_pages,
|
||
|
VM_MAP,
|
||
|
PAGE_KERNEL);
|
||
|
if (!sg_table->data_vaddr)
|
||
|
rc = -ENOMEM;
|
||
|
}
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* tmc_alloc_sg_table: Allocate and setup dma pages for the TMC SG table
|
||
|
* and data buffers. TMC writes to the data buffers and reads from the SG
|
||
|
* Table pages.
|
||
|
*
|
||
|
* @dev - Coresight device to which page should be DMA mapped.
|
||
|
* @node - Numa node for mem allocations
|
||
|
* @nr_tpages - Number of pages for the table entries.
|
||
|
* @nr_dpages - Number of pages for Data buffer.
|
||
|
* @pages - Optional list of virtual address of pages.
|
||
|
*/
|
||
|
struct tmc_sg_table *tmc_alloc_sg_table(struct device *dev,
|
||
|
int node,
|
||
|
int nr_tpages,
|
||
|
int nr_dpages,
|
||
|
void **pages)
|
||
|
{
|
||
|
long rc;
|
||
|
struct tmc_sg_table *sg_table;
|
||
|
|
||
|
sg_table = kzalloc(sizeof(*sg_table), GFP_KERNEL);
|
||
|
if (!sg_table)
|
||
|
return ERR_PTR(-ENOMEM);
|
||
|
sg_table->data_pages.nr_pages = nr_dpages;
|
||
|
sg_table->table_pages.nr_pages = nr_tpages;
|
||
|
sg_table->node = node;
|
||
|
sg_table->dev = dev;
|
||
|
|
||
|
rc = tmc_alloc_data_pages(sg_table, pages);
|
||
|
if (!rc)
|
||
|
rc = tmc_alloc_table_pages(sg_table);
|
||
|
if (rc) {
|
||
|
tmc_free_sg_table(sg_table);
|
||
|
kfree(sg_table);
|
||
|
return ERR_PTR(rc);
|
||
|
}
|
||
|
|
||
|
return sg_table;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(tmc_alloc_sg_table);
|
||
|
|
||
|
/*
|
||
|
* tmc_sg_table_sync_data_range: Sync the data buffer written
|
||
|
* by the device from @offset upto a @size bytes.
|
||
|
*/
|
||
|
void tmc_sg_table_sync_data_range(struct tmc_sg_table *table,
|
||
|
u64 offset, u64 size)
|
||
|
{
|
||
|
int i, index, start;
|
||
|
int npages = DIV_ROUND_UP(size, PAGE_SIZE);
|
||
|
struct device *real_dev = table->dev->parent;
|
||
|
struct tmc_pages *data = &table->data_pages;
|
||
|
|
||
|
start = offset >> PAGE_SHIFT;
|
||
|
for (i = start; i < (start + npages); i++) {
|
||
|
index = i % data->nr_pages;
|
||
|
dma_sync_single_for_cpu(real_dev, data->daddrs[index],
|
||
|
PAGE_SIZE, DMA_FROM_DEVICE);
|
||
|
}
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(tmc_sg_table_sync_data_range);
|
||
|
|
||
|
/* tmc_sg_sync_table: Sync the page table */
|
||
|
void tmc_sg_table_sync_table(struct tmc_sg_table *sg_table)
|
||
|
{
|
||
|
int i;
|
||
|
struct device *real_dev = sg_table->dev->parent;
|
||
|
struct tmc_pages *table_pages = &sg_table->table_pages;
|
||
|
|
||
|
for (i = 0; i < table_pages->nr_pages; i++)
|
||
|
dma_sync_single_for_device(real_dev, table_pages->daddrs[i],
|
||
|
PAGE_SIZE, DMA_TO_DEVICE);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(tmc_sg_table_sync_table);
|
||
|
|
||
|
/*
|
||
|
* tmc_sg_table_get_data: Get the buffer pointer for data @offset
|
||
|
* in the SG buffer. The @bufpp is updated to point to the buffer.
|
||
|
* Returns :
|
||
|
* the length of linear data available at @offset.
|
||
|
* or
|
||
|
* <= 0 if no data is available.
|
||
|
*/
|
||
|
ssize_t tmc_sg_table_get_data(struct tmc_sg_table *sg_table,
|
||
|
u64 offset, size_t len, char **bufpp)
|
||
|
{
|
||
|
size_t size;
|
||
|
int pg_idx = offset >> PAGE_SHIFT;
|
||
|
int pg_offset = offset & (PAGE_SIZE - 1);
|
||
|
struct tmc_pages *data_pages = &sg_table->data_pages;
|
||
|
|
||
|
size = tmc_sg_table_buf_size(sg_table);
|
||
|
if (offset >= size)
|
||
|
return -EINVAL;
|
||
|
|
||
|
/* Make sure we don't go beyond the end */
|
||
|
len = (len < (size - offset)) ? len : size - offset;
|
||
|
/* Respect the page boundaries */
|
||
|
len = (len < (PAGE_SIZE - pg_offset)) ? len : (PAGE_SIZE - pg_offset);
|
||
|
if (len > 0)
|
||
|
*bufpp = page_address(data_pages->pages[pg_idx]) + pg_offset;
|
||
|
return len;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(tmc_sg_table_get_data);
|
||
|
|
||
|
#ifdef ETR_SG_DEBUG
|
||
|
/* Map a dma address to virtual address */
|
||
|
static unsigned long
|
||
|
tmc_sg_daddr_to_vaddr(struct tmc_sg_table *sg_table,
|
||
|
dma_addr_t addr, bool table)
|
||
|
{
|
||
|
long offset;
|
||
|
unsigned long base;
|
||
|
struct tmc_pages *tmc_pages;
|
||
|
|
||
|
if (table) {
|
||
|
tmc_pages = &sg_table->table_pages;
|
||
|
base = (unsigned long)sg_table->table_vaddr;
|
||
|
} else {
|
||
|
tmc_pages = &sg_table->data_pages;
|
||
|
base = (unsigned long)sg_table->data_vaddr;
|
||
|
}
|
||
|
|
||
|
offset = tmc_pages_get_offset(tmc_pages, addr);
|
||
|
if (offset < 0)
|
||
|
return 0;
|
||
|
return base + offset;
|
||
|
}
|
||
|
|
||
|
/* Dump the given sg_table */
|
||
|
static void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table)
|
||
|
{
|
||
|
sgte_t *ptr;
|
||
|
int i = 0;
|
||
|
dma_addr_t addr;
|
||
|
struct tmc_sg_table *sg_table = etr_table->sg_table;
|
||
|
|
||
|
ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table,
|
||
|
etr_table->hwaddr, true);
|
||
|
while (ptr) {
|
||
|
addr = ETR_SG_ADDR(*ptr);
|
||
|
switch (ETR_SG_ET(*ptr)) {
|
||
|
case ETR_SG_ET_NORMAL:
|
||
|
dev_dbg(sg_table->dev,
|
||
|
"%05d: %p\t:[N] 0x%llx\n", i, ptr, addr);
|
||
|
ptr++;
|
||
|
break;
|
||
|
case ETR_SG_ET_LINK:
|
||
|
dev_dbg(sg_table->dev,
|
||
|
"%05d: *** %p\t:{L} 0x%llx ***\n",
|
||
|
i, ptr, addr);
|
||
|
ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table,
|
||
|
addr, true);
|
||
|
break;
|
||
|
case ETR_SG_ET_LAST:
|
||
|
dev_dbg(sg_table->dev,
|
||
|
"%05d: ### %p\t:[L] 0x%llx ###\n",
|
||
|
i, ptr, addr);
|
||
|
return;
|
||
|
default:
|
||
|
dev_dbg(sg_table->dev,
|
||
|
"%05d: xxx %p\t:[INVALID] 0x%llx xxx\n",
|
||
|
i, ptr, addr);
|
||
|
return;
|
||
|
}
|
||
|
i++;
|
||
|
}
|
||
|
dev_dbg(sg_table->dev, "******* End of Table *****\n");
|
||
|
}
|
||
|
#else
|
||
|
static inline void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table) {}
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Populate the SG Table page table entries from table/data
|
||
|
* pages allocated. Each Data page has ETR_SG_PAGES_PER_SYSPAGE SG pages.
|
||
|
* So does a Table page. So we keep track of indices of the tables
|
||
|
* in each system page and move the pointers accordingly.
|
||
|
*/
|
||
|
#define INC_IDX_ROUND(idx, size) ((idx) = ((idx) + 1) % (size))
|
||
|
static void tmc_etr_sg_table_populate(struct etr_sg_table *etr_table)
|
||
|
{
|
||
|
dma_addr_t paddr;
|
||
|
int i, type, nr_entries;
|
||
|
int tpidx = 0; /* index to the current system table_page */
|
||
|
int sgtidx = 0; /* index to the sg_table within the current syspage */
|
||
|
int sgtentry = 0; /* the entry within the sg_table */
|
||
|
int dpidx = 0; /* index to the current system data_page */
|
||
|
int spidx = 0; /* index to the SG page within the current data page */
|
||
|
sgte_t *ptr; /* pointer to the table entry to fill */
|
||
|
struct tmc_sg_table *sg_table = etr_table->sg_table;
|
||
|
dma_addr_t *table_daddrs = sg_table->table_pages.daddrs;
|
||
|
dma_addr_t *data_daddrs = sg_table->data_pages.daddrs;
|
||
|
|
||
|
nr_entries = tmc_etr_sg_table_entries(sg_table->data_pages.nr_pages);
|
||
|
/*
|
||
|
* Use the contiguous virtual address of the table to update entries.
|
||
|
*/
|
||
|
ptr = sg_table->table_vaddr;
|
||
|
/*
|
||
|
* Fill all the entries, except the last entry to avoid special
|
||
|
* checks within the loop.
|
||
|
*/
|
||
|
for (i = 0; i < nr_entries - 1; i++) {
|
||
|
if (sgtentry == ETR_SG_PTRS_PER_PAGE - 1) {
|
||
|
/*
|
||
|
* Last entry in a sg_table page is a link address to
|
||
|
* the next table page. If this sg_table is the last
|
||
|
* one in the system page, it links to the first
|
||
|
* sg_table in the next system page. Otherwise, it
|
||
|
* links to the next sg_table page within the system
|
||
|
* page.
|
||
|
*/
|
||
|
if (sgtidx == ETR_SG_PAGES_PER_SYSPAGE - 1) {
|
||
|
paddr = table_daddrs[tpidx + 1];
|
||
|
} else {
|
||
|
paddr = table_daddrs[tpidx] +
|
||
|
(ETR_SG_PAGE_SIZE * (sgtidx + 1));
|
||
|
}
|
||
|
type = ETR_SG_ET_LINK;
|
||
|
} else {
|
||
|
/*
|
||
|
* Update the indices to the data_pages to point to the
|
||
|
* next sg_page in the data buffer.
|
||
|
*/
|
||
|
type = ETR_SG_ET_NORMAL;
|
||
|
paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE;
|
||
|
if (!INC_IDX_ROUND(spidx, ETR_SG_PAGES_PER_SYSPAGE))
|
||
|
dpidx++;
|
||
|
}
|
||
|
*ptr++ = ETR_SG_ENTRY(paddr, type);
|
||
|
/*
|
||
|
* Move to the next table pointer, moving the table page index
|
||
|
* if necessary
|
||
|
*/
|
||
|
if (!INC_IDX_ROUND(sgtentry, ETR_SG_PTRS_PER_PAGE)) {
|
||
|
if (!INC_IDX_ROUND(sgtidx, ETR_SG_PAGES_PER_SYSPAGE))
|
||
|
tpidx++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Set up the last entry, which is always a data pointer */
|
||
|
paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE;
|
||
|
*ptr++ = ETR_SG_ENTRY(paddr, ETR_SG_ET_LAST);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* tmc_init_etr_sg_table: Allocate a TMC ETR SG table, data buffer of @size and
|
||
|
* populate the table.
|
||
|
*
|
||
|
* @dev - Device pointer for the TMC
|
||
|
* @node - NUMA node where the memory should be allocated
|
||
|
* @size - Total size of the data buffer
|
||
|
* @pages - Optional list of page virtual address
|
||
|
*/
|
||
|
static struct etr_sg_table *
|
||
|
tmc_init_etr_sg_table(struct device *dev, int node,
|
||
|
unsigned long size, void **pages)
|
||
|
{
|
||
|
int nr_entries, nr_tpages;
|
||
|
int nr_dpages = size >> PAGE_SHIFT;
|
||
|
struct tmc_sg_table *sg_table;
|
||
|
struct etr_sg_table *etr_table;
|
||
|
|
||
|
etr_table = kzalloc(sizeof(*etr_table), GFP_KERNEL);
|
||
|
if (!etr_table)
|
||
|
return ERR_PTR(-ENOMEM);
|
||
|
nr_entries = tmc_etr_sg_table_entries(nr_dpages);
|
||
|
nr_tpages = DIV_ROUND_UP(nr_entries, ETR_SG_PTRS_PER_SYSPAGE);
|
||
|
|
||
|
sg_table = tmc_alloc_sg_table(dev, node, nr_tpages, nr_dpages, pages);
|
||
|
if (IS_ERR(sg_table)) {
|
||
|
kfree(etr_table);
|
||
|
return ERR_CAST(sg_table);
|
||
|
}
|
||
|
|
||
|
etr_table->sg_table = sg_table;
|
||
|
/* TMC should use table base address for DBA */
|
||
|
etr_table->hwaddr = sg_table->table_daddr;
|
||
|
tmc_etr_sg_table_populate(etr_table);
|
||
|
/* Sync the table pages for the HW */
|
||
|
tmc_sg_table_sync_table(sg_table);
|
||
|
tmc_etr_sg_table_dump(etr_table);
|
||
|
|
||
|
return etr_table;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* tmc_etr_alloc_flat_buf: Allocate a contiguous DMA buffer.
|
||
|
*/
|
||
|
static int tmc_etr_alloc_flat_buf(struct tmc_drvdata *drvdata,
|
||
|
struct etr_buf *etr_buf, int node,
|
||
|
void **pages)
|
||
|
{
|
||
|
struct etr_flat_buf *flat_buf;
|
||
|
struct device *real_dev = drvdata->csdev->dev.parent;
|
||
|
|
||
|
/* We cannot reuse existing pages for flat buf */
|
||
|
if (pages)
|
||
|
return -EINVAL;
|
||
|
|
||
|
flat_buf = kzalloc(sizeof(*flat_buf), GFP_KERNEL);
|
||
|
if (!flat_buf)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
flat_buf->vaddr = dma_alloc_coherent(real_dev, etr_buf->size,
|
||
|
&flat_buf->daddr, GFP_KERNEL);
|
||
|
if (!flat_buf->vaddr) {
|
||
|
kfree(flat_buf);
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
flat_buf->size = etr_buf->size;
|
||
|
flat_buf->dev = &drvdata->csdev->dev;
|
||
|
etr_buf->hwaddr = flat_buf->daddr;
|
||
|
etr_buf->mode = ETR_MODE_FLAT;
|
||
|
etr_buf->private = flat_buf;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void tmc_etr_free_flat_buf(struct etr_buf *etr_buf)
|
||
|
{
|
||
|
struct etr_flat_buf *flat_buf = etr_buf->private;
|
||
|
|
||
|
if (flat_buf && flat_buf->daddr) {
|
||
|
struct device *real_dev = flat_buf->dev->parent;
|
||
|
|
||
|
dma_free_coherent(real_dev, flat_buf->size,
|
||
|
flat_buf->vaddr, flat_buf->daddr);
|
||
|
}
|
||
|
kfree(flat_buf);
|
||
|
}
|
||
|
|
||
|
static void tmc_etr_sync_flat_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp)
|
||
|
{
|
||
|
/*
|
||
|
* Adjust the buffer to point to the beginning of the trace data
|
||
|
* and update the available trace data.
|
||
|
*/
|
||
|
etr_buf->offset = rrp - etr_buf->hwaddr;
|
||
|
if (etr_buf->full)
|
||
|
etr_buf->len = etr_buf->size;
|
||
|
else
|
||
|
etr_buf->len = rwp - rrp;
|
||
|
}
|
||
|
|
||
|
static ssize_t tmc_etr_get_data_flat_buf(struct etr_buf *etr_buf,
|
||
|
u64 offset, size_t len, char **bufpp)
|
||
|
{
|
||
|
struct etr_flat_buf *flat_buf = etr_buf->private;
|
||
|
|
||
|
*bufpp = (char *)flat_buf->vaddr + offset;
|
||
|
/*
|
||
|
* tmc_etr_buf_get_data already adjusts the length to handle
|
||
|
* buffer wrapping around.
|
||
|
*/
|
||
|
return len;
|
||
|
}
|
||
|
|
||
|
static const struct etr_buf_operations etr_flat_buf_ops = {
|
||
|
.alloc = tmc_etr_alloc_flat_buf,
|
||
|
.free = tmc_etr_free_flat_buf,
|
||
|
.sync = tmc_etr_sync_flat_buf,
|
||
|
.get_data = tmc_etr_get_data_flat_buf,
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* tmc_etr_alloc_sg_buf: Allocate an SG buf @etr_buf. Setup the parameters
|
||
|
* appropriately.
|
||
|
*/
|
||
|
static int tmc_etr_alloc_sg_buf(struct tmc_drvdata *drvdata,
|
||
|
struct etr_buf *etr_buf, int node,
|
||
|
void **pages)
|
||
|
{
|
||
|
struct etr_sg_table *etr_table;
|
||
|
struct device *dev = &drvdata->csdev->dev;
|
||
|
|
||
|
etr_table = tmc_init_etr_sg_table(dev, node,
|
||
|
etr_buf->size, pages);
|
||
|
if (IS_ERR(etr_table))
|
||
|
return -ENOMEM;
|
||
|
etr_buf->hwaddr = etr_table->hwaddr;
|
||
|
etr_buf->mode = ETR_MODE_ETR_SG;
|
||
|
etr_buf->private = etr_table;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void tmc_etr_free_sg_buf(struct etr_buf *etr_buf)
|
||
|
{
|
||
|
struct etr_sg_table *etr_table = etr_buf->private;
|
||
|
|
||
|
if (etr_table) {
|
||
|
tmc_free_sg_table(etr_table->sg_table);
|
||
|
kfree(etr_table);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static ssize_t tmc_etr_get_data_sg_buf(struct etr_buf *etr_buf, u64 offset,
|
||
|
size_t len, char **bufpp)
|
||
|
{
|
||
|
struct etr_sg_table *etr_table = etr_buf->private;
|
||
|
|
||
|
return tmc_sg_table_get_data(etr_table->sg_table, offset, len, bufpp);
|
||
|
}
|
||
|
|
||
|
static void tmc_etr_sync_sg_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp)
|
||
|
{
|
||
|
long r_offset, w_offset;
|
||
|
struct etr_sg_table *etr_table = etr_buf->private;
|
||
|
struct tmc_sg_table *table = etr_table->sg_table;
|
||
|
|
||
|
/* Convert hw address to offset in the buffer */
|
||
|
r_offset = tmc_sg_get_data_page_offset(table, rrp);
|
||
|
if (r_offset < 0) {
|
||
|
dev_warn(table->dev,
|
||
|
"Unable to map RRP %llx to offset\n", rrp);
|
||
|
etr_buf->len = 0;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
w_offset = tmc_sg_get_data_page_offset(table, rwp);
|
||
|
if (w_offset < 0) {
|
||
|
dev_warn(table->dev,
|
||
|
"Unable to map RWP %llx to offset\n", rwp);
|
||
|
etr_buf->len = 0;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
etr_buf->offset = r_offset;
|
||
|
if (etr_buf->full)
|
||
|
etr_buf->len = etr_buf->size;
|
||
|
else
|
||
|
etr_buf->len = ((w_offset < r_offset) ? etr_buf->size : 0) +
|
||
|
w_offset - r_offset;
|
||
|
tmc_sg_table_sync_data_range(table, r_offset, etr_buf->len);
|
||
|
}
|
||
|
|
||
|
static const struct etr_buf_operations etr_sg_buf_ops = {
|
||
|
.alloc = tmc_etr_alloc_sg_buf,
|
||
|
.free = tmc_etr_free_sg_buf,
|
||
|
.sync = tmc_etr_sync_sg_buf,
|
||
|
.get_data = tmc_etr_get_data_sg_buf,
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* TMC ETR could be connected to a CATU device, which can provide address
|
||
|
* translation service. This is represented by the Output port of the TMC
|
||
|
* (ETR) connected to the input port of the CATU.
|
||
|
*
|
||
|
* Returns : coresight_device ptr for the CATU device if a CATU is found.
|
||
|
* : NULL otherwise.
|
||
|
*/
|
||
|
struct coresight_device *
|
||
|
tmc_etr_get_catu_device(struct tmc_drvdata *drvdata)
|
||
|
{
|
||
|
int i;
|
||
|
struct coresight_device *tmp, *etr = drvdata->csdev;
|
||
|
|
||
|
if (!IS_ENABLED(CONFIG_CORESIGHT_CATU))
|
||
|
return NULL;
|
||
|
|
||
|
for (i = 0; i < etr->pdata->nr_outport; i++) {
|
||
|
tmp = etr->pdata->conns[i].child_dev;
|
||
|
if (tmp && coresight_is_catu_device(tmp))
|
||
|
return tmp;
|
||
|
}
|
||
|
|
||
|
return NULL;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(tmc_etr_get_catu_device);
|
||
|
|
||
|
static inline int tmc_etr_enable_catu(struct tmc_drvdata *drvdata,
|
||
|
struct etr_buf *etr_buf)
|
||
|
{
|
||
|
struct coresight_device *catu = tmc_etr_get_catu_device(drvdata);
|
||
|
|
||
|
if (catu && helper_ops(catu)->enable)
|
||
|
return helper_ops(catu)->enable(catu, etr_buf);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static inline void tmc_etr_disable_catu(struct tmc_drvdata *drvdata)
|
||
|
{
|
||
|
struct coresight_device *catu = tmc_etr_get_catu_device(drvdata);
|
||
|
|
||
|
if (catu && helper_ops(catu)->disable)
|
||
|
helper_ops(catu)->disable(catu, drvdata->etr_buf);
|
||
|
}
|
||
|
|
||
|
static const struct etr_buf_operations *etr_buf_ops[] = {
|
||
|
[ETR_MODE_FLAT] = &etr_flat_buf_ops,
|
||
|
[ETR_MODE_ETR_SG] = &etr_sg_buf_ops,
|
||
|
[ETR_MODE_CATU] = NULL,
|
||
|
};
|
||
|
|
||
|
void tmc_etr_set_catu_ops(const struct etr_buf_operations *catu)
|
||
|
{
|
||
|
etr_buf_ops[ETR_MODE_CATU] = catu;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(tmc_etr_set_catu_ops);
|
||
|
|
||
|
void tmc_etr_remove_catu_ops(void)
|
||
|
{
|
||
|
etr_buf_ops[ETR_MODE_CATU] = NULL;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(tmc_etr_remove_catu_ops);
|
||
|
|
||
|
static inline int tmc_etr_mode_alloc_buf(int mode,
|
||
|
struct tmc_drvdata *drvdata,
|
||
|
struct etr_buf *etr_buf, int node,
|
||
|
void **pages)
|
||
|
{
|
||
|
int rc = -EINVAL;
|
||
|
|
||
|
switch (mode) {
|
||
|
case ETR_MODE_FLAT:
|
||
|
case ETR_MODE_ETR_SG:
|
||
|
case ETR_MODE_CATU:
|
||
|
if (etr_buf_ops[mode] && etr_buf_ops[mode]->alloc)
|
||
|
rc = etr_buf_ops[mode]->alloc(drvdata, etr_buf,
|
||
|
node, pages);
|
||
|
if (!rc)
|
||
|
etr_buf->ops = etr_buf_ops[mode];
|
||
|
return rc;
|
||
|
default:
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* tmc_alloc_etr_buf: Allocate a buffer use by ETR.
|
||
|
* @drvdata : ETR device details.
|
||
|
* @size : size of the requested buffer.
|
||
|
* @flags : Required properties for the buffer.
|
||
|
* @node : Node for memory allocations.
|
||
|
* @pages : An optional list of pages.
|
||
|
*/
|
||
|
static struct etr_buf *tmc_alloc_etr_buf(struct tmc_drvdata *drvdata,
|
||
|
ssize_t size, int flags,
|
||
|
int node, void **pages)
|
||
|
{
|
||
|
int rc = -ENOMEM;
|
||
|
bool has_etr_sg, has_iommu;
|
||
|
bool has_sg, has_catu;
|
||
|
struct etr_buf *etr_buf;
|
||
|
struct device *dev = &drvdata->csdev->dev;
|
||
|
|
||
|
has_etr_sg = tmc_etr_has_cap(drvdata, TMC_ETR_SG);
|
||
|
has_iommu = iommu_get_domain_for_dev(dev->parent);
|
||
|
has_catu = !!tmc_etr_get_catu_device(drvdata);
|
||
|
|
||
|
has_sg = has_catu || has_etr_sg;
|
||
|
|
||
|
etr_buf = kzalloc(sizeof(*etr_buf), GFP_KERNEL);
|
||
|
if (!etr_buf)
|
||
|
return ERR_PTR(-ENOMEM);
|
||
|
|
||
|
etr_buf->size = size;
|
||
|
|
||
|
/*
|
||
|
* If we have to use an existing list of pages, we cannot reliably
|
||
|
* use a contiguous DMA memory (even if we have an IOMMU). Otherwise,
|
||
|
* we use the contiguous DMA memory if at least one of the following
|
||
|
* conditions is true:
|
||
|
* a) The ETR cannot use Scatter-Gather.
|
||
|
* b) we have a backing IOMMU
|
||
|
* c) The requested memory size is smaller (< 1M).
|
||
|
*
|
||
|
* Fallback to available mechanisms.
|
||
|
*
|
||
|
*/
|
||
|
if (!pages &&
|
||
|
(!has_sg || has_iommu || size < SZ_1M))
|
||
|
rc = tmc_etr_mode_alloc_buf(ETR_MODE_FLAT, drvdata,
|
||
|
etr_buf, node, pages);
|
||
|
if (rc && has_etr_sg)
|
||
|
rc = tmc_etr_mode_alloc_buf(ETR_MODE_ETR_SG, drvdata,
|
||
|
etr_buf, node, pages);
|
||
|
if (rc && has_catu)
|
||
|
rc = tmc_etr_mode_alloc_buf(ETR_MODE_CATU, drvdata,
|
||
|
etr_buf, node, pages);
|
||
|
if (rc) {
|
||
|
kfree(etr_buf);
|
||
|
return ERR_PTR(rc);
|
||
|
}
|
||
|
|
||
|
refcount_set(&etr_buf->refcount, 1);
|
||
|
dev_dbg(dev, "allocated buffer of size %ldKB in mode %d\n",
|
||
|
(unsigned long)size >> 10, etr_buf->mode);
|
||
|
return etr_buf;
|
||
|
}
|
||
|
|
||
|
static void tmc_free_etr_buf(struct etr_buf *etr_buf)
|
||
|
{
|
||
|
WARN_ON(!etr_buf->ops || !etr_buf->ops->free);
|
||
|
etr_buf->ops->free(etr_buf);
|
||
|
kfree(etr_buf);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* tmc_etr_buf_get_data: Get the pointer the trace data at @offset
|
||
|
* with a maximum of @len bytes.
|
||
|
* Returns: The size of the linear data available @pos, with *bufpp
|
||
|
* updated to point to the buffer.
|
||
|
*/
|
||
|
static ssize_t tmc_etr_buf_get_data(struct etr_buf *etr_buf,
|
||
|
u64 offset, size_t len, char **bufpp)
|
||
|
{
|
||
|
/* Adjust the length to limit this transaction to end of buffer */
|
||
|
len = (len < (etr_buf->size - offset)) ? len : etr_buf->size - offset;
|
||
|
|
||
|
return etr_buf->ops->get_data(etr_buf, (u64)offset, len, bufpp);
|
||
|
}
|
||
|
|
||
|
static inline s64
|
||
|
tmc_etr_buf_insert_barrier_packet(struct etr_buf *etr_buf, u64 offset)
|
||
|
{
|
||
|
ssize_t len;
|
||
|
char *bufp;
|
||
|
|
||
|
len = tmc_etr_buf_get_data(etr_buf, offset,
|
||
|
CORESIGHT_BARRIER_PKT_SIZE, &bufp);
|
||
|
if (WARN_ON(len < 0 || len < CORESIGHT_BARRIER_PKT_SIZE))
|
||
|
return -EINVAL;
|
||
|
coresight_insert_barrier_packet(bufp);
|
||
|
return offset + CORESIGHT_BARRIER_PKT_SIZE;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* tmc_sync_etr_buf: Sync the trace buffer availability with drvdata.
|
||
|
* Makes sure the trace data is synced to the memory for consumption.
|
||
|
* @etr_buf->offset will hold the offset to the beginning of the trace data
|
||
|
* within the buffer, with @etr_buf->len bytes to consume.
|
||
|
*/
|
||
|
static void tmc_sync_etr_buf(struct tmc_drvdata *drvdata)
|
||
|
{
|
||
|
struct etr_buf *etr_buf = drvdata->etr_buf;
|
||
|
u64 rrp, rwp;
|
||
|
u32 status;
|
||
|
|
||
|
rrp = tmc_read_rrp(drvdata);
|
||
|
rwp = tmc_read_rwp(drvdata);
|
||
|
status = readl_relaxed(drvdata->base + TMC_STS);
|
||
|
|
||
|
/*
|
||
|
* If there were memory errors in the session, truncate the
|
||
|
* buffer.
|
||
|
*/
|
||
|
if (WARN_ON_ONCE(status & TMC_STS_MEMERR)) {
|
||
|
dev_dbg(&drvdata->csdev->dev,
|
||
|
"tmc memory error detected, truncating buffer\n");
|
||
|
etr_buf->len = 0;
|
||
|
etr_buf->full = false;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
etr_buf->full = !!(status & TMC_STS_FULL);
|
||
|
|
||
|
WARN_ON(!etr_buf->ops || !etr_buf->ops->sync);
|
||
|
|
||
|
etr_buf->ops->sync(etr_buf, rrp, rwp);
|
||
|
}
|
||
|
|
||
|
static void __tmc_etr_enable_hw(struct tmc_drvdata *drvdata)
|
||
|
{
|
||
|
u32 axictl, sts;
|
||
|
struct etr_buf *etr_buf = drvdata->etr_buf;
|
||
|
|
||
|
CS_UNLOCK(drvdata->base);
|
||
|
|
||
|
/* Wait for TMCSReady bit to be set */
|
||
|
tmc_wait_for_tmcready(drvdata);
|
||
|
|
||
|
writel_relaxed(etr_buf->size / 4, drvdata->base + TMC_RSZ);
|
||
|
writel_relaxed(TMC_MODE_CIRCULAR_BUFFER, drvdata->base + TMC_MODE);
|
||
|
|
||
|
axictl = readl_relaxed(drvdata->base + TMC_AXICTL);
|
||
|
axictl &= ~TMC_AXICTL_CLEAR_MASK;
|
||
|
axictl |= (TMC_AXICTL_PROT_CTL_B1 | TMC_AXICTL_WR_BURST_16);
|
||
|
axictl |= TMC_AXICTL_AXCACHE_OS;
|
||
|
|
||
|
if (tmc_etr_has_cap(drvdata, TMC_ETR_AXI_ARCACHE)) {
|
||
|
axictl &= ~TMC_AXICTL_ARCACHE_MASK;
|
||
|
axictl |= TMC_AXICTL_ARCACHE_OS;
|
||
|
}
|
||
|
|
||
|
if (etr_buf->mode == ETR_MODE_ETR_SG)
|
||
|
axictl |= TMC_AXICTL_SCT_GAT_MODE;
|
||
|
|
||
|
writel_relaxed(axictl, drvdata->base + TMC_AXICTL);
|
||
|
tmc_write_dba(drvdata, etr_buf->hwaddr);
|
||
|
/*
|
||
|
* If the TMC pointers must be programmed before the session,
|
||
|
* we have to set it properly (i.e, RRP/RWP to base address and
|
||
|
* STS to "not full").
|
||
|
*/
|
||
|
if (tmc_etr_has_cap(drvdata, TMC_ETR_SAVE_RESTORE)) {
|
||
|
tmc_write_rrp(drvdata, etr_buf->hwaddr);
|
||
|
tmc_write_rwp(drvdata, etr_buf->hwaddr);
|
||
|
sts = readl_relaxed(drvdata->base + TMC_STS) & ~TMC_STS_FULL;
|
||
|
writel_relaxed(sts, drvdata->base + TMC_STS);
|
||
|
}
|
||
|
|
||
|
writel_relaxed(TMC_FFCR_EN_FMT | TMC_FFCR_EN_TI |
|
||
|
TMC_FFCR_FON_FLIN | TMC_FFCR_FON_TRIG_EVT |
|
||
|
TMC_FFCR_TRIGON_TRIGIN,
|
||
|
drvdata->base + TMC_FFCR);
|
||
|
writel_relaxed(drvdata->trigger_cntr, drvdata->base + TMC_TRG);
|
||
|
tmc_enable_hw(drvdata);
|
||
|
|
||
|
CS_LOCK(drvdata->base);
|
||
|
}
|
||
|
|
||
|
static int tmc_etr_enable_hw(struct tmc_drvdata *drvdata,
|
||
|
struct etr_buf *etr_buf)
|
||
|
{
|
||
|
int rc;
|
||
|
|
||
|
/* Callers should provide an appropriate buffer for use */
|
||
|
if (WARN_ON(!etr_buf))
|
||
|
return -EINVAL;
|
||
|
|
||
|
if ((etr_buf->mode == ETR_MODE_ETR_SG) &&
|
||
|
WARN_ON(!tmc_etr_has_cap(drvdata, TMC_ETR_SG)))
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (WARN_ON(drvdata->etr_buf))
|
||
|
return -EBUSY;
|
||
|
|
||
|
/*
|
||
|
* If this ETR is connected to a CATU, enable it before we turn
|
||
|
* this on.
|
||
|
*/
|
||
|
rc = tmc_etr_enable_catu(drvdata, etr_buf);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
rc = coresight_claim_device(drvdata->csdev);
|
||
|
if (!rc) {
|
||
|
drvdata->etr_buf = etr_buf;
|
||
|
__tmc_etr_enable_hw(drvdata);
|
||
|
}
|
||
|
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Return the available trace data in the buffer (starts at etr_buf->offset,
|
||
|
* limited by etr_buf->len) from @pos, with a maximum limit of @len,
|
||
|
* also updating the @bufpp on where to find it. Since the trace data
|
||
|
* starts at anywhere in the buffer, depending on the RRP, we adjust the
|
||
|
* @len returned to handle buffer wrapping around.
|
||
|
*
|
||
|
* We are protected here by drvdata->reading != 0, which ensures the
|
||
|
* sysfs_buf stays alive.
|
||
|
*/
|
||
|
ssize_t tmc_etr_get_sysfs_trace(struct tmc_drvdata *drvdata,
|
||
|
loff_t pos, size_t len, char **bufpp)
|
||
|
{
|
||
|
s64 offset;
|
||
|
ssize_t actual = len;
|
||
|
struct etr_buf *etr_buf = drvdata->sysfs_buf;
|
||
|
|
||
|
if (pos + actual > etr_buf->len)
|
||
|
actual = etr_buf->len - pos;
|
||
|
if (actual <= 0)
|
||
|
return actual;
|
||
|
|
||
|
/* Compute the offset from which we read the data */
|
||
|
offset = etr_buf->offset + pos;
|
||
|
if (offset >= etr_buf->size)
|
||
|
offset -= etr_buf->size;
|
||
|
return tmc_etr_buf_get_data(etr_buf, offset, actual, bufpp);
|
||
|
}
|
||
|
|
||
|
static struct etr_buf *
|
||
|
tmc_etr_setup_sysfs_buf(struct tmc_drvdata *drvdata)
|
||
|
{
|
||
|
return tmc_alloc_etr_buf(drvdata, drvdata->size,
|
||
|
0, cpu_to_node(0), NULL);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
tmc_etr_free_sysfs_buf(struct etr_buf *buf)
|
||
|
{
|
||
|
if (buf)
|
||
|
tmc_free_etr_buf(buf);
|
||
|
}
|
||
|
|
||
|
static void tmc_etr_sync_sysfs_buf(struct tmc_drvdata *drvdata)
|
||
|
{
|
||
|
struct etr_buf *etr_buf = drvdata->etr_buf;
|
||
|
|
||
|
if (WARN_ON(drvdata->sysfs_buf != etr_buf)) {
|
||
|
tmc_etr_free_sysfs_buf(drvdata->sysfs_buf);
|
||
|
drvdata->sysfs_buf = NULL;
|
||
|
} else {
|
||
|
tmc_sync_etr_buf(drvdata);
|
||
|
/*
|
||
|
* Insert barrier packets at the beginning, if there was
|
||
|
* an overflow.
|
||
|
*/
|
||
|
if (etr_buf->full)
|
||
|
tmc_etr_buf_insert_barrier_packet(etr_buf,
|
||
|
etr_buf->offset);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void __tmc_etr_disable_hw(struct tmc_drvdata *drvdata)
|
||
|
{
|
||
|
CS_UNLOCK(drvdata->base);
|
||
|
|
||
|
tmc_flush_and_stop(drvdata);
|
||
|
/*
|
||
|
* When operating in sysFS mode the content of the buffer needs to be
|
||
|
* read before the TMC is disabled.
|
||
|
*/
|
||
|
if (drvdata->mode == CS_MODE_SYSFS)
|
||
|
tmc_etr_sync_sysfs_buf(drvdata);
|
||
|
|
||
|
tmc_disable_hw(drvdata);
|
||
|
|
||
|
CS_LOCK(drvdata->base);
|
||
|
|
||
|
}
|
||
|
|
||
|
void tmc_etr_disable_hw(struct tmc_drvdata *drvdata)
|
||
|
{
|
||
|
__tmc_etr_disable_hw(drvdata);
|
||
|
/* Disable CATU device if this ETR is connected to one */
|
||
|
tmc_etr_disable_catu(drvdata);
|
||
|
coresight_disclaim_device(drvdata->csdev);
|
||
|
/* Reset the ETR buf used by hardware */
|
||
|
drvdata->etr_buf = NULL;
|
||
|
}
|
||
|
|
||
|
static int tmc_enable_etr_sink_sysfs(struct coresight_device *csdev)
|
||
|
{
|
||
|
int ret = 0;
|
||
|
unsigned long flags;
|
||
|
struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
|
||
|
struct etr_buf *sysfs_buf = NULL, *new_buf = NULL, *free_buf = NULL;
|
||
|
|
||
|
/*
|
||
|
* If we are enabling the ETR from disabled state, we need to make
|
||
|
* sure we have a buffer with the right size. The etr_buf is not reset
|
||
|
* immediately after we stop the tracing in SYSFS mode as we wait for
|
||
|
* the user to collect the data. We may be able to reuse the existing
|
||
|
* buffer, provided the size matches. Any allocation has to be done
|
||
|
* with the lock released.
|
||
|
*/
|
||
|
spin_lock_irqsave(&drvdata->spinlock, flags);
|
||
|
sysfs_buf = READ_ONCE(drvdata->sysfs_buf);
|
||
|
if (!sysfs_buf || (sysfs_buf->size != drvdata->size)) {
|
||
|
spin_unlock_irqrestore(&drvdata->spinlock, flags);
|
||
|
|
||
|
/* Allocate memory with the locks released */
|
||
|
free_buf = new_buf = tmc_etr_setup_sysfs_buf(drvdata);
|
||
|
if (IS_ERR(new_buf))
|
||
|
return PTR_ERR(new_buf);
|
||
|
|
||
|
/* Let's try again */
|
||
|
spin_lock_irqsave(&drvdata->spinlock, flags);
|
||
|
}
|
||
|
|
||
|
if (drvdata->reading || drvdata->mode == CS_MODE_PERF) {
|
||
|
ret = -EBUSY;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* In sysFS mode we can have multiple writers per sink. Since this
|
||
|
* sink is already enabled no memory is needed and the HW need not be
|
||
|
* touched, even if the buffer size has changed.
|
||
|
*/
|
||
|
if (drvdata->mode == CS_MODE_SYSFS) {
|
||
|
atomic_inc(csdev->refcnt);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If we don't have a buffer or it doesn't match the requested size,
|
||
|
* use the buffer allocated above. Otherwise reuse the existing buffer.
|
||
|
*/
|
||
|
sysfs_buf = READ_ONCE(drvdata->sysfs_buf);
|
||
|
if (!sysfs_buf || (new_buf && sysfs_buf->size != new_buf->size)) {
|
||
|
free_buf = sysfs_buf;
|
||
|
drvdata->sysfs_buf = new_buf;
|
||
|
}
|
||
|
|
||
|
ret = tmc_etr_enable_hw(drvdata, drvdata->sysfs_buf);
|
||
|
if (!ret) {
|
||
|
drvdata->mode = CS_MODE_SYSFS;
|
||
|
atomic_inc(csdev->refcnt);
|
||
|
}
|
||
|
out:
|
||
|
spin_unlock_irqrestore(&drvdata->spinlock, flags);
|
||
|
|
||
|
/* Free memory outside the spinlock if need be */
|
||
|
if (free_buf)
|
||
|
tmc_etr_free_sysfs_buf(free_buf);
|
||
|
|
||
|
if (!ret)
|
||
|
dev_dbg(&csdev->dev, "TMC-ETR enabled\n");
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* alloc_etr_buf: Allocate ETR buffer for use by perf.
|
||
|
* The size of the hardware buffer is dependent on the size configured
|
||
|
* via sysfs and the perf ring buffer size. We prefer to allocate the
|
||
|
* largest possible size, scaling down the size by half until it
|
||
|
* reaches a minimum limit (1M), beyond which we give up.
|
||
|
*/
|
||
|
static struct etr_buf *
|
||
|
alloc_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
|
||
|
int nr_pages, void **pages, bool snapshot)
|
||
|
{
|
||
|
int node;
|
||
|
struct etr_buf *etr_buf;
|
||
|
unsigned long size;
|
||
|
|
||
|
node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu);
|
||
|
/*
|
||
|
* Try to match the perf ring buffer size if it is larger
|
||
|
* than the size requested via sysfs.
|
||
|
*/
|
||
|
if ((nr_pages << PAGE_SHIFT) > drvdata->size) {
|
||
|
etr_buf = tmc_alloc_etr_buf(drvdata, ((ssize_t)nr_pages << PAGE_SHIFT),
|
||
|
0, node, NULL);
|
||
|
if (!IS_ERR(etr_buf))
|
||
|
goto done;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Else switch to configured size for this ETR
|
||
|
* and scale down until we hit the minimum limit.
|
||
|
*/
|
||
|
size = drvdata->size;
|
||
|
do {
|
||
|
etr_buf = tmc_alloc_etr_buf(drvdata, size, 0, node, NULL);
|
||
|
if (!IS_ERR(etr_buf))
|
||
|
goto done;
|
||
|
size /= 2;
|
||
|
} while (size >= TMC_ETR_PERF_MIN_BUF_SIZE);
|
||
|
|
||
|
return ERR_PTR(-ENOMEM);
|
||
|
|
||
|
done:
|
||
|
return etr_buf;
|
||
|
}
|
||
|
|
||
|
static struct etr_buf *
|
||
|
get_perf_etr_buf_cpu_wide(struct tmc_drvdata *drvdata,
|
||
|
struct perf_event *event, int nr_pages,
|
||
|
void **pages, bool snapshot)
|
||
|
{
|
||
|
int ret;
|
||
|
pid_t pid = task_pid_nr(event->owner);
|
||
|
struct etr_buf *etr_buf;
|
||
|
|
||
|
retry:
|
||
|
/*
|
||
|
* An etr_perf_buffer is associated with an event and holds a reference
|
||
|
* to the AUX ring buffer that was created for that event. In CPU-wide
|
||
|
* N:1 mode multiple events (one per CPU), each with its own AUX ring
|
||
|
* buffer, share a sink. As such an etr_perf_buffer is created for each
|
||
|
* event but a single etr_buf associated with the ETR is shared between
|
||
|
* them. The last event in a trace session will copy the content of the
|
||
|
* etr_buf to its AUX ring buffer. Ring buffer associated to other
|
||
|
* events are simply not used an freed as events are destoyed. We still
|
||
|
* need to allocate a ring buffer for each event since we don't know
|
||
|
* which event will be last.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* The first thing to do here is check if an etr_buf has already been
|
||
|
* allocated for this session. If so it is shared with this event,
|
||
|
* otherwise it is created.
|
||
|
*/
|
||
|
mutex_lock(&drvdata->idr_mutex);
|
||
|
etr_buf = idr_find(&drvdata->idr, pid);
|
||
|
if (etr_buf) {
|
||
|
refcount_inc(&etr_buf->refcount);
|
||
|
mutex_unlock(&drvdata->idr_mutex);
|
||
|
return etr_buf;
|
||
|
}
|
||
|
|
||
|
/* If we made it here no buffer has been allocated, do so now. */
|
||
|
mutex_unlock(&drvdata->idr_mutex);
|
||
|
|
||
|
etr_buf = alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot);
|
||
|
if (IS_ERR(etr_buf))
|
||
|
return etr_buf;
|
||
|
|
||
|
/* Now that we have a buffer, add it to the IDR. */
|
||
|
mutex_lock(&drvdata->idr_mutex);
|
||
|
ret = idr_alloc(&drvdata->idr, etr_buf, pid, pid + 1, GFP_KERNEL);
|
||
|
mutex_unlock(&drvdata->idr_mutex);
|
||
|
|
||
|
/* Another event with this session ID has allocated this buffer. */
|
||
|
if (ret == -ENOSPC) {
|
||
|
tmc_free_etr_buf(etr_buf);
|
||
|
goto retry;
|
||
|
}
|
||
|
|
||
|
/* The IDR can't allocate room for a new session, abandon ship. */
|
||
|
if (ret == -ENOMEM) {
|
||
|
tmc_free_etr_buf(etr_buf);
|
||
|
return ERR_PTR(ret);
|
||
|
}
|
||
|
|
||
|
|
||
|
return etr_buf;
|
||
|
}
|
||
|
|
||
|
static struct etr_buf *
|
||
|
get_perf_etr_buf_per_thread(struct tmc_drvdata *drvdata,
|
||
|
struct perf_event *event, int nr_pages,
|
||
|
void **pages, bool snapshot)
|
||
|
{
|
||
|
/*
|
||
|
* In per-thread mode the etr_buf isn't shared, so just go ahead
|
||
|
* with memory allocation.
|
||
|
*/
|
||
|
return alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot);
|
||
|
}
|
||
|
|
||
|
static struct etr_buf *
|
||
|
get_perf_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
|
||
|
int nr_pages, void **pages, bool snapshot)
|
||
|
{
|
||
|
if (event->cpu == -1)
|
||
|
return get_perf_etr_buf_per_thread(drvdata, event, nr_pages,
|
||
|
pages, snapshot);
|
||
|
|
||
|
return get_perf_etr_buf_cpu_wide(drvdata, event, nr_pages,
|
||
|
pages, snapshot);
|
||
|
}
|
||
|
|
||
|
static struct etr_perf_buffer *
|
||
|
tmc_etr_setup_perf_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
|
||
|
int nr_pages, void **pages, bool snapshot)
|
||
|
{
|
||
|
int node;
|
||
|
struct etr_buf *etr_buf;
|
||
|
struct etr_perf_buffer *etr_perf;
|
||
|
|
||
|
node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu);
|
||
|
|
||
|
etr_perf = kzalloc_node(sizeof(*etr_perf), GFP_KERNEL, node);
|
||
|
if (!etr_perf)
|
||
|
return ERR_PTR(-ENOMEM);
|
||
|
|
||
|
etr_buf = get_perf_etr_buf(drvdata, event, nr_pages, pages, snapshot);
|
||
|
if (!IS_ERR(etr_buf))
|
||
|
goto done;
|
||
|
|
||
|
kfree(etr_perf);
|
||
|
return ERR_PTR(-ENOMEM);
|
||
|
|
||
|
done:
|
||
|
/*
|
||
|
* Keep a reference to the ETR this buffer has been allocated for
|
||
|
* in order to have access to the IDR in tmc_free_etr_buffer().
|
||
|
*/
|
||
|
etr_perf->drvdata = drvdata;
|
||
|
etr_perf->etr_buf = etr_buf;
|
||
|
|
||
|
return etr_perf;
|
||
|
}
|
||
|
|
||
|
|
||
|
static void *tmc_alloc_etr_buffer(struct coresight_device *csdev,
|
||
|
struct perf_event *event, void **pages,
|
||
|
int nr_pages, bool snapshot)
|
||
|
{
|
||
|
struct etr_perf_buffer *etr_perf;
|
||
|
struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
|
||
|
|
||
|
etr_perf = tmc_etr_setup_perf_buf(drvdata, event,
|
||
|
nr_pages, pages, snapshot);
|
||
|
if (IS_ERR(etr_perf)) {
|
||
|
dev_dbg(&csdev->dev, "Unable to allocate ETR buffer\n");
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
etr_perf->pid = task_pid_nr(event->owner);
|
||
|
etr_perf->snapshot = snapshot;
|
||
|
etr_perf->nr_pages = nr_pages;
|
||
|
etr_perf->pages = pages;
|
||
|
|
||
|
return etr_perf;
|
||
|
}
|
||
|
|
||
|
static void tmc_free_etr_buffer(void *config)
|
||
|
{
|
||
|
struct etr_perf_buffer *etr_perf = config;
|
||
|
struct tmc_drvdata *drvdata = etr_perf->drvdata;
|
||
|
struct etr_buf *buf, *etr_buf = etr_perf->etr_buf;
|
||
|
|
||
|
if (!etr_buf)
|
||
|
goto free_etr_perf_buffer;
|
||
|
|
||
|
mutex_lock(&drvdata->idr_mutex);
|
||
|
/* If we are not the last one to use the buffer, don't touch it. */
|
||
|
if (!refcount_dec_and_test(&etr_buf->refcount)) {
|
||
|
mutex_unlock(&drvdata->idr_mutex);
|
||
|
goto free_etr_perf_buffer;
|
||
|
}
|
||
|
|
||
|
/* We are the last one, remove from the IDR and free the buffer. */
|
||
|
buf = idr_remove(&drvdata->idr, etr_perf->pid);
|
||
|
mutex_unlock(&drvdata->idr_mutex);
|
||
|
|
||
|
/*
|
||
|
* Something went very wrong if the buffer associated with this ID
|
||
|
* is not the same in the IDR. Leak to avoid use after free.
|
||
|
*/
|
||
|
if (buf && WARN_ON(buf != etr_buf))
|
||
|
goto free_etr_perf_buffer;
|
||
|
|
||
|
tmc_free_etr_buf(etr_perf->etr_buf);
|
||
|
|
||
|
free_etr_perf_buffer:
|
||
|
kfree(etr_perf);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* tmc_etr_sync_perf_buffer: Copy the actual trace data from the hardware
|
||
|
* buffer to the perf ring buffer.
|
||
|
*/
|
||
|
static void tmc_etr_sync_perf_buffer(struct etr_perf_buffer *etr_perf,
|
||
|
unsigned long src_offset,
|
||
|
unsigned long to_copy)
|
||
|
{
|
||
|
long bytes;
|
||
|
long pg_idx, pg_offset;
|
||
|
unsigned long head = etr_perf->head;
|
||
|
char **dst_pages, *src_buf;
|
||
|
struct etr_buf *etr_buf = etr_perf->etr_buf;
|
||
|
|
||
|
head = etr_perf->head;
|
||
|
pg_idx = head >> PAGE_SHIFT;
|
||
|
pg_offset = head & (PAGE_SIZE - 1);
|
||
|
dst_pages = (char **)etr_perf->pages;
|
||
|
|
||
|
while (to_copy > 0) {
|
||
|
/*
|
||
|
* In one iteration, we can copy minimum of :
|
||
|
* 1) what is available in the source buffer,
|
||
|
* 2) what is available in the source buffer, before it
|
||
|
* wraps around.
|
||
|
* 3) what is available in the destination page.
|
||
|
* in one iteration.
|
||
|
*/
|
||
|
if (src_offset >= etr_buf->size)
|
||
|
src_offset -= etr_buf->size;
|
||
|
bytes = tmc_etr_buf_get_data(etr_buf, src_offset, to_copy,
|
||
|
&src_buf);
|
||
|
if (WARN_ON_ONCE(bytes <= 0))
|
||
|
break;
|
||
|
bytes = min(bytes, (long)(PAGE_SIZE - pg_offset));
|
||
|
|
||
|
memcpy(dst_pages[pg_idx] + pg_offset, src_buf, bytes);
|
||
|
|
||
|
to_copy -= bytes;
|
||
|
|
||
|
/* Move destination pointers */
|
||
|
pg_offset += bytes;
|
||
|
if (pg_offset == PAGE_SIZE) {
|
||
|
pg_offset = 0;
|
||
|
if (++pg_idx == etr_perf->nr_pages)
|
||
|
pg_idx = 0;
|
||
|
}
|
||
|
|
||
|
/* Move source pointers */
|
||
|
src_offset += bytes;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* tmc_update_etr_buffer : Update the perf ring buffer with the
|
||
|
* available trace data. We use software double buffering at the moment.
|
||
|
*
|
||
|
* TODO: Add support for reusing the perf ring buffer.
|
||
|
*/
|
||
|
static unsigned long
|
||
|
tmc_update_etr_buffer(struct coresight_device *csdev,
|
||
|
struct perf_output_handle *handle,
|
||
|
void *config)
|
||
|
{
|
||
|
bool lost = false;
|
||
|
unsigned long flags, offset, size = 0;
|
||
|
struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
|
||
|
struct etr_perf_buffer *etr_perf = config;
|
||
|
struct etr_buf *etr_buf = etr_perf->etr_buf;
|
||
|
|
||
|
spin_lock_irqsave(&drvdata->spinlock, flags);
|
||
|
|
||
|
/* Don't do anything if another tracer is using this sink */
|
||
|
if (atomic_read(csdev->refcnt) != 1) {
|
||
|
spin_unlock_irqrestore(&drvdata->spinlock, flags);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
if (WARN_ON(drvdata->perf_buf != etr_buf)) {
|
||
|
lost = true;
|
||
|
spin_unlock_irqrestore(&drvdata->spinlock, flags);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
CS_UNLOCK(drvdata->base);
|
||
|
|
||
|
tmc_flush_and_stop(drvdata);
|
||
|
tmc_sync_etr_buf(drvdata);
|
||
|
|
||
|
CS_LOCK(drvdata->base);
|
||
|
spin_unlock_irqrestore(&drvdata->spinlock, flags);
|
||
|
|
||
|
lost = etr_buf->full;
|
||
|
offset = etr_buf->offset;
|
||
|
size = etr_buf->len;
|
||
|
|
||
|
/*
|
||
|
* The ETR buffer may be bigger than the space available in the
|
||
|
* perf ring buffer (handle->size). If so advance the offset so that we
|
||
|
* get the latest trace data. In snapshot mode none of that matters
|
||
|
* since we are expected to clobber stale data in favour of the latest
|
||
|
* traces.
|
||
|
*/
|
||
|
if (!etr_perf->snapshot && size > handle->size) {
|
||
|
u32 mask = tmc_get_memwidth_mask(drvdata);
|
||
|
|
||
|
/*
|
||
|
* Make sure the new size is aligned in accordance with the
|
||
|
* requirement explained in function tmc_get_memwidth_mask().
|
||
|
*/
|
||
|
size = handle->size & mask;
|
||
|
offset = etr_buf->offset + etr_buf->len - size;
|
||
|
|
||
|
if (offset >= etr_buf->size)
|
||
|
offset -= etr_buf->size;
|
||
|
lost = true;
|
||
|
}
|
||
|
|
||
|
/* Insert barrier packets at the beginning, if there was an overflow */
|
||
|
if (lost)
|
||
|
tmc_etr_buf_insert_barrier_packet(etr_buf, offset);
|
||
|
tmc_etr_sync_perf_buffer(etr_perf, offset, size);
|
||
|
|
||
|
/*
|
||
|
* In snapshot mode we simply increment the head by the number of byte
|
||
|
* that were written. User space function cs_etm_find_snapshot() will
|
||
|
* figure out how many bytes to get from the AUX buffer based on the
|
||
|
* position of the head.
|
||
|
*/
|
||
|
if (etr_perf->snapshot)
|
||
|
handle->head += size;
|
||
|
out:
|
||
|
/*
|
||
|
* Don't set the TRUNCATED flag in snapshot mode because 1) the
|
||
|
* captured buffer is expected to be truncated and 2) a full buffer
|
||
|
* prevents the event from being re-enabled by the perf core,
|
||
|
* resulting in stale data being send to user space.
|
||
|
*/
|
||
|
if (!etr_perf->snapshot && lost)
|
||
|
perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
|
||
|
return size;
|
||
|
}
|
||
|
|
||
|
static int tmc_enable_etr_sink_perf(struct coresight_device *csdev, void *data)
|
||
|
{
|
||
|
int rc = 0;
|
||
|
pid_t pid;
|
||
|
unsigned long flags;
|
||
|
struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
|
||
|
struct perf_output_handle *handle = data;
|
||
|
struct etr_perf_buffer *etr_perf = etm_perf_sink_config(handle);
|
||
|
|
||
|
spin_lock_irqsave(&drvdata->spinlock, flags);
|
||
|
/* Don't use this sink if it is already claimed by sysFS */
|
||
|
if (drvdata->mode == CS_MODE_SYSFS) {
|
||
|
rc = -EBUSY;
|
||
|
goto unlock_out;
|
||
|
}
|
||
|
|
||
|
if (WARN_ON(!etr_perf || !etr_perf->etr_buf)) {
|
||
|
rc = -EINVAL;
|
||
|
goto unlock_out;
|
||
|
}
|
||
|
|
||
|
/* Get a handle on the pid of the process to monitor */
|
||
|
pid = etr_perf->pid;
|
||
|
|
||
|
/* Do not proceed if this device is associated with another session */
|
||
|
if (drvdata->pid != -1 && drvdata->pid != pid) {
|
||
|
rc = -EBUSY;
|
||
|
goto unlock_out;
|
||
|
}
|
||
|
|
||
|
etr_perf->head = PERF_IDX2OFF(handle->head, etr_perf);
|
||
|
|
||
|
/*
|
||
|
* No HW configuration is needed if the sink is already in
|
||
|
* use for this session.
|
||
|
*/
|
||
|
if (drvdata->pid == pid) {
|
||
|
atomic_inc(csdev->refcnt);
|
||
|
goto unlock_out;
|
||
|
}
|
||
|
|
||
|
rc = tmc_etr_enable_hw(drvdata, etr_perf->etr_buf);
|
||
|
if (!rc) {
|
||
|
/* Associate with monitored process. */
|
||
|
drvdata->pid = pid;
|
||
|
drvdata->mode = CS_MODE_PERF;
|
||
|
drvdata->perf_buf = etr_perf->etr_buf;
|
||
|
atomic_inc(csdev->refcnt);
|
||
|
}
|
||
|
|
||
|
unlock_out:
|
||
|
spin_unlock_irqrestore(&drvdata->spinlock, flags);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
static int tmc_enable_etr_sink(struct coresight_device *csdev,
|
||
|
u32 mode, void *data)
|
||
|
{
|
||
|
switch (mode) {
|
||
|
case CS_MODE_SYSFS:
|
||
|
return tmc_enable_etr_sink_sysfs(csdev);
|
||
|
case CS_MODE_PERF:
|
||
|
return tmc_enable_etr_sink_perf(csdev, data);
|
||
|
}
|
||
|
|
||
|
/* We shouldn't be here */
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
static int tmc_disable_etr_sink(struct coresight_device *csdev)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
|
||
|
|
||
|
spin_lock_irqsave(&drvdata->spinlock, flags);
|
||
|
|
||
|
if (drvdata->reading) {
|
||
|
spin_unlock_irqrestore(&drvdata->spinlock, flags);
|
||
|
return -EBUSY;
|
||
|
}
|
||
|
|
||
|
if (atomic_dec_return(csdev->refcnt)) {
|
||
|
spin_unlock_irqrestore(&drvdata->spinlock, flags);
|
||
|
return -EBUSY;
|
||
|
}
|
||
|
|
||
|
/* Complain if we (somehow) got out of sync */
|
||
|
WARN_ON_ONCE(drvdata->mode == CS_MODE_DISABLED);
|
||
|
tmc_etr_disable_hw(drvdata);
|
||
|
/* Dissociate from monitored process. */
|
||
|
drvdata->pid = -1;
|
||
|
drvdata->mode = CS_MODE_DISABLED;
|
||
|
/* Reset perf specific data */
|
||
|
drvdata->perf_buf = NULL;
|
||
|
|
||
|
spin_unlock_irqrestore(&drvdata->spinlock, flags);
|
||
|
|
||
|
dev_dbg(&csdev->dev, "TMC-ETR disabled\n");
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static const struct coresight_ops_sink tmc_etr_sink_ops = {
|
||
|
.enable = tmc_enable_etr_sink,
|
||
|
.disable = tmc_disable_etr_sink,
|
||
|
.alloc_buffer = tmc_alloc_etr_buffer,
|
||
|
.update_buffer = tmc_update_etr_buffer,
|
||
|
.free_buffer = tmc_free_etr_buffer,
|
||
|
};
|
||
|
|
||
|
const struct coresight_ops tmc_etr_cs_ops = {
|
||
|
.sink_ops = &tmc_etr_sink_ops,
|
||
|
};
|
||
|
|
||
|
int tmc_read_prepare_etr(struct tmc_drvdata *drvdata)
|
||
|
{
|
||
|
int ret = 0;
|
||
|
unsigned long flags;
|
||
|
|
||
|
/* config types are set a boot time and never change */
|
||
|
if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR))
|
||
|
return -EINVAL;
|
||
|
|
||
|
spin_lock_irqsave(&drvdata->spinlock, flags);
|
||
|
if (drvdata->reading) {
|
||
|
ret = -EBUSY;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* We can safely allow reads even if the ETR is operating in PERF mode,
|
||
|
* since the sysfs session is captured in mode specific data.
|
||
|
* If drvdata::sysfs_data is NULL the trace data has been read already.
|
||
|
*/
|
||
|
if (!drvdata->sysfs_buf) {
|
||
|
ret = -EINVAL;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
/* Disable the TMC if we are trying to read from a running session. */
|
||
|
if (drvdata->mode == CS_MODE_SYSFS)
|
||
|
__tmc_etr_disable_hw(drvdata);
|
||
|
|
||
|
drvdata->reading = true;
|
||
|
out:
|
||
|
spin_unlock_irqrestore(&drvdata->spinlock, flags);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
int tmc_read_unprepare_etr(struct tmc_drvdata *drvdata)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
struct etr_buf *sysfs_buf = NULL;
|
||
|
|
||
|
/* config types are set a boot time and never change */
|
||
|
if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR))
|
||
|
return -EINVAL;
|
||
|
|
||
|
spin_lock_irqsave(&drvdata->spinlock, flags);
|
||
|
|
||
|
/* RE-enable the TMC if need be */
|
||
|
if (drvdata->mode == CS_MODE_SYSFS) {
|
||
|
/*
|
||
|
* The trace run will continue with the same allocated trace
|
||
|
* buffer. Since the tracer is still enabled drvdata::buf can't
|
||
|
* be NULL.
|
||
|
*/
|
||
|
__tmc_etr_enable_hw(drvdata);
|
||
|
} else {
|
||
|
/*
|
||
|
* The ETR is not tracing and the buffer was just read.
|
||
|
* As such prepare to free the trace buffer.
|
||
|
*/
|
||
|
sysfs_buf = drvdata->sysfs_buf;
|
||
|
drvdata->sysfs_buf = NULL;
|
||
|
}
|
||
|
|
||
|
drvdata->reading = false;
|
||
|
spin_unlock_irqrestore(&drvdata->spinlock, flags);
|
||
|
|
||
|
/* Free allocated memory out side of the spinlock */
|
||
|
if (sysfs_buf)
|
||
|
tmc_etr_free_sysfs_buf(sysfs_buf);
|
||
|
|
||
|
return 0;
|
||
|
}
|