kernel/drivers/gpu/drm/radeon/radeon_uvd.c

1055 lines
25 KiB
C
Raw Normal View History

2024-07-22 17:22:30 +08:00
/*
* Copyright 2011 Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
*/
/*
* Authors:
* Christian König <deathsimple@vodafone.de>
*/
#include <linux/firmware.h>
#include <linux/module.h>
#include <drm/drm.h>
#include "radeon.h"
#include "radeon_ucode.h"
#include "r600d.h"
/* 1 second timeout */
#define UVD_IDLE_TIMEOUT_MS 1000
/* Firmware Names */
#define FIRMWARE_R600 "radeon/R600_uvd.bin"
#define FIRMWARE_RS780 "radeon/RS780_uvd.bin"
#define FIRMWARE_RV770 "radeon/RV770_uvd.bin"
#define FIRMWARE_RV710 "radeon/RV710_uvd.bin"
#define FIRMWARE_CYPRESS "radeon/CYPRESS_uvd.bin"
#define FIRMWARE_SUMO "radeon/SUMO_uvd.bin"
#define FIRMWARE_TAHITI "radeon/TAHITI_uvd.bin"
#define FIRMWARE_BONAIRE_LEGACY "radeon/BONAIRE_uvd.bin"
#define FIRMWARE_BONAIRE "radeon/bonaire_uvd.bin"
MODULE_FIRMWARE(FIRMWARE_R600);
MODULE_FIRMWARE(FIRMWARE_RS780);
MODULE_FIRMWARE(FIRMWARE_RV770);
MODULE_FIRMWARE(FIRMWARE_RV710);
MODULE_FIRMWARE(FIRMWARE_CYPRESS);
MODULE_FIRMWARE(FIRMWARE_SUMO);
MODULE_FIRMWARE(FIRMWARE_TAHITI);
MODULE_FIRMWARE(FIRMWARE_BONAIRE_LEGACY);
MODULE_FIRMWARE(FIRMWARE_BONAIRE);
static void radeon_uvd_idle_work_handler(struct work_struct *work);
int radeon_uvd_init(struct radeon_device *rdev)
{
unsigned long bo_size;
const char *fw_name = NULL, *legacy_fw_name = NULL;
int i, r;
INIT_DELAYED_WORK(&rdev->uvd.idle_work, radeon_uvd_idle_work_handler);
switch (rdev->family) {
case CHIP_RV610:
case CHIP_RV630:
case CHIP_RV670:
case CHIP_RV620:
case CHIP_RV635:
legacy_fw_name = FIRMWARE_R600;
break;
case CHIP_RS780:
case CHIP_RS880:
legacy_fw_name = FIRMWARE_RS780;
break;
case CHIP_RV770:
legacy_fw_name = FIRMWARE_RV770;
break;
case CHIP_RV710:
case CHIP_RV730:
case CHIP_RV740:
legacy_fw_name = FIRMWARE_RV710;
break;
case CHIP_CYPRESS:
case CHIP_HEMLOCK:
case CHIP_JUNIPER:
case CHIP_REDWOOD:
case CHIP_CEDAR:
legacy_fw_name = FIRMWARE_CYPRESS;
break;
case CHIP_SUMO:
case CHIP_SUMO2:
case CHIP_PALM:
case CHIP_CAYMAN:
case CHIP_BARTS:
case CHIP_TURKS:
case CHIP_CAICOS:
legacy_fw_name = FIRMWARE_SUMO;
break;
case CHIP_TAHITI:
case CHIP_VERDE:
case CHIP_PITCAIRN:
case CHIP_ARUBA:
case CHIP_OLAND:
legacy_fw_name = FIRMWARE_TAHITI;
break;
case CHIP_BONAIRE:
case CHIP_KABINI:
case CHIP_KAVERI:
case CHIP_HAWAII:
case CHIP_MULLINS:
legacy_fw_name = FIRMWARE_BONAIRE_LEGACY;
fw_name = FIRMWARE_BONAIRE;
break;
default:
return -EINVAL;
}
rdev->uvd.fw_header_present = false;
rdev->uvd.max_handles = RADEON_DEFAULT_UVD_HANDLES;
if (fw_name) {
/* Let's try to load the newer firmware first */
r = request_firmware(&rdev->uvd_fw, fw_name, rdev->dev);
if (r) {
dev_err(rdev->dev, "radeon_uvd: Can't load firmware \"%s\"\n",
fw_name);
} else {
struct common_firmware_header *hdr = (void *)rdev->uvd_fw->data;
unsigned version_major, version_minor, family_id;
r = radeon_ucode_validate(rdev->uvd_fw);
if (r)
return r;
rdev->uvd.fw_header_present = true;
family_id = (__force u32)(hdr->ucode_version) & 0xff;
version_major = (le32_to_cpu((__force __le32)(hdr->ucode_version))
>> 24) & 0xff;
version_minor = (le32_to_cpu((__force __le32)(hdr->ucode_version))
>> 8) & 0xff;
DRM_INFO("Found UVD firmware Version: %u.%u Family ID: %u\n",
version_major, version_minor, family_id);
/*
* Limit the number of UVD handles depending on
* microcode major and minor versions.
*/
if ((version_major >= 0x01) && (version_minor >= 0x37))
rdev->uvd.max_handles = RADEON_MAX_UVD_HANDLES;
}
}
/*
* In case there is only legacy firmware, or we encounter an error
* while loading the new firmware, we fall back to loading the legacy
* firmware now.
*/
if (!fw_name || r) {
r = request_firmware(&rdev->uvd_fw, legacy_fw_name, rdev->dev);
if (r) {
dev_err(rdev->dev, "radeon_uvd: Can't load firmware \"%s\"\n",
legacy_fw_name);
return r;
}
}
bo_size = RADEON_GPU_PAGE_ALIGN(rdev->uvd_fw->size + 8) +
RADEON_UVD_STACK_SIZE + RADEON_UVD_HEAP_SIZE +
RADEON_UVD_SESSION_SIZE * rdev->uvd.max_handles;
r = radeon_bo_create(rdev, bo_size, PAGE_SIZE, true,
RADEON_GEM_DOMAIN_VRAM, 0, NULL,
NULL, &rdev->uvd.vcpu_bo);
if (r) {
dev_err(rdev->dev, "(%d) failed to allocate UVD bo\n", r);
return r;
}
r = radeon_bo_reserve(rdev->uvd.vcpu_bo, false);
if (r) {
radeon_bo_unref(&rdev->uvd.vcpu_bo);
dev_err(rdev->dev, "(%d) failed to reserve UVD bo\n", r);
return r;
}
r = radeon_bo_pin(rdev->uvd.vcpu_bo, RADEON_GEM_DOMAIN_VRAM,
&rdev->uvd.gpu_addr);
if (r) {
radeon_bo_unreserve(rdev->uvd.vcpu_bo);
radeon_bo_unref(&rdev->uvd.vcpu_bo);
dev_err(rdev->dev, "(%d) UVD bo pin failed\n", r);
return r;
}
r = radeon_bo_kmap(rdev->uvd.vcpu_bo, &rdev->uvd.cpu_addr);
if (r) {
dev_err(rdev->dev, "(%d) UVD map failed\n", r);
return r;
}
radeon_bo_unreserve(rdev->uvd.vcpu_bo);
for (i = 0; i < rdev->uvd.max_handles; ++i) {
atomic_set(&rdev->uvd.handles[i], 0);
rdev->uvd.filp[i] = NULL;
rdev->uvd.img_size[i] = 0;
}
return 0;
}
void radeon_uvd_fini(struct radeon_device *rdev)
{
int r;
if (rdev->uvd.vcpu_bo == NULL)
return;
r = radeon_bo_reserve(rdev->uvd.vcpu_bo, false);
if (!r) {
radeon_bo_kunmap(rdev->uvd.vcpu_bo);
radeon_bo_unpin(rdev->uvd.vcpu_bo);
radeon_bo_unreserve(rdev->uvd.vcpu_bo);
}
radeon_bo_unref(&rdev->uvd.vcpu_bo);
radeon_ring_fini(rdev, &rdev->ring[R600_RING_TYPE_UVD_INDEX]);
release_firmware(rdev->uvd_fw);
}
int radeon_uvd_suspend(struct radeon_device *rdev)
{
int i, r;
if (rdev->uvd.vcpu_bo == NULL)
return 0;
for (i = 0; i < rdev->uvd.max_handles; ++i) {
uint32_t handle = atomic_read(&rdev->uvd.handles[i]);
if (handle != 0) {
struct radeon_fence *fence;
radeon_uvd_note_usage(rdev);
r = radeon_uvd_get_destroy_msg(rdev,
R600_RING_TYPE_UVD_INDEX, handle, &fence);
if (r) {
DRM_ERROR("Error destroying UVD (%d)!\n", r);
continue;
}
radeon_fence_wait(fence, false);
radeon_fence_unref(&fence);
rdev->uvd.filp[i] = NULL;
atomic_set(&rdev->uvd.handles[i], 0);
}
}
return 0;
}
int radeon_uvd_resume(struct radeon_device *rdev)
{
unsigned size;
void *ptr;
if (rdev->uvd.vcpu_bo == NULL)
return -EINVAL;
memcpy_toio((void __iomem *)rdev->uvd.cpu_addr, rdev->uvd_fw->data, rdev->uvd_fw->size);
size = radeon_bo_size(rdev->uvd.vcpu_bo);
size -= rdev->uvd_fw->size;
ptr = rdev->uvd.cpu_addr;
ptr += rdev->uvd_fw->size;
memset_io((void __iomem *)ptr, 0, size);
return 0;
}
void radeon_uvd_force_into_uvd_segment(struct radeon_bo *rbo,
uint32_t allowed_domains)
{
int i;
for (i = 0; i < rbo->placement.num_placement; ++i) {
rbo->placements[i].fpfn = 0 >> PAGE_SHIFT;
rbo->placements[i].lpfn = (256 * 1024 * 1024) >> PAGE_SHIFT;
}
/* If it must be in VRAM it must be in the first segment as well */
if (allowed_domains == RADEON_GEM_DOMAIN_VRAM)
return;
/* abort if we already have more than one placement */
if (rbo->placement.num_placement > 1)
return;
/* add another 256MB segment */
rbo->placements[1] = rbo->placements[0];
rbo->placements[1].fpfn += (256 * 1024 * 1024) >> PAGE_SHIFT;
rbo->placements[1].lpfn += (256 * 1024 * 1024) >> PAGE_SHIFT;
rbo->placement.num_placement++;
rbo->placement.num_busy_placement++;
}
void radeon_uvd_free_handles(struct radeon_device *rdev, struct drm_file *filp)
{
int i, r;
for (i = 0; i < rdev->uvd.max_handles; ++i) {
uint32_t handle = atomic_read(&rdev->uvd.handles[i]);
if (handle != 0 && rdev->uvd.filp[i] == filp) {
struct radeon_fence *fence;
radeon_uvd_note_usage(rdev);
r = radeon_uvd_get_destroy_msg(rdev,
R600_RING_TYPE_UVD_INDEX, handle, &fence);
if (r) {
DRM_ERROR("Error destroying UVD (%d)!\n", r);
continue;
}
radeon_fence_wait(fence, false);
radeon_fence_unref(&fence);
rdev->uvd.filp[i] = NULL;
atomic_set(&rdev->uvd.handles[i], 0);
}
}
}
static int radeon_uvd_cs_msg_decode(uint32_t *msg, unsigned buf_sizes[])
{
unsigned stream_type = msg[4];
unsigned width = msg[6];
unsigned height = msg[7];
unsigned dpb_size = msg[9];
unsigned pitch = msg[28];
unsigned width_in_mb = width / 16;
unsigned height_in_mb = ALIGN(height / 16, 2);
unsigned image_size, tmp, min_dpb_size;
image_size = width * height;
image_size += image_size / 2;
image_size = ALIGN(image_size, 1024);
switch (stream_type) {
case 0: /* H264 */
/* reference picture buffer */
min_dpb_size = image_size * 17;
/* macroblock context buffer */
min_dpb_size += width_in_mb * height_in_mb * 17 * 192;
/* IT surface buffer */
min_dpb_size += width_in_mb * height_in_mb * 32;
break;
case 1: /* VC1 */
/* reference picture buffer */
min_dpb_size = image_size * 3;
/* CONTEXT_BUFFER */
min_dpb_size += width_in_mb * height_in_mb * 128;
/* IT surface buffer */
min_dpb_size += width_in_mb * 64;
/* DB surface buffer */
min_dpb_size += width_in_mb * 128;
/* BP */
tmp = max(width_in_mb, height_in_mb);
min_dpb_size += ALIGN(tmp * 7 * 16, 64);
break;
case 3: /* MPEG2 */
/* reference picture buffer */
min_dpb_size = image_size * 3;
break;
case 4: /* MPEG4 */
/* reference picture buffer */
min_dpb_size = image_size * 3;
/* CM */
min_dpb_size += width_in_mb * height_in_mb * 64;
/* IT surface buffer */
min_dpb_size += ALIGN(width_in_mb * height_in_mb * 32, 64);
break;
default:
DRM_ERROR("UVD codec not handled %d!\n", stream_type);
return -EINVAL;
}
if (width > pitch) {
DRM_ERROR("Invalid UVD decoding target pitch!\n");
return -EINVAL;
}
if (dpb_size < min_dpb_size) {
DRM_ERROR("Invalid dpb_size in UVD message (%d / %d)!\n",
dpb_size, min_dpb_size);
return -EINVAL;
}
buf_sizes[0x1] = dpb_size;
buf_sizes[0x2] = image_size;
return 0;
}
static int radeon_uvd_validate_codec(struct radeon_cs_parser *p,
unsigned stream_type)
{
switch (stream_type) {
case 0: /* H264 */
case 1: /* VC1 */
/* always supported */
return 0;
case 3: /* MPEG2 */
case 4: /* MPEG4 */
/* only since UVD 3 */
if (p->rdev->family >= CHIP_PALM)
return 0;
fallthrough;
default:
DRM_ERROR("UVD codec not supported by hardware %d!\n",
stream_type);
return -EINVAL;
}
}
static int radeon_uvd_cs_msg(struct radeon_cs_parser *p, struct radeon_bo *bo,
unsigned offset, unsigned buf_sizes[])
{
int32_t *msg, msg_type, handle;
unsigned img_size = 0;
struct dma_fence *f;
void *ptr;
int i, r;
if (offset & 0x3F) {
DRM_ERROR("UVD messages must be 64 byte aligned!\n");
return -EINVAL;
}
f = dma_resv_excl_fence(bo->tbo.base.resv);
if (f) {
r = radeon_fence_wait((struct radeon_fence *)f, false);
if (r) {
DRM_ERROR("Failed waiting for UVD message (%d)!\n", r);
return r;
}
}
r = radeon_bo_kmap(bo, &ptr);
if (r) {
DRM_ERROR("Failed mapping the UVD message (%d)!\n", r);
return r;
}
msg = ptr + offset;
msg_type = msg[1];
handle = msg[2];
if (handle == 0) {
DRM_ERROR("Invalid UVD handle!\n");
return -EINVAL;
}
switch (msg_type) {
case 0:
/* it's a create msg, calc image size (width * height) */
img_size = msg[7] * msg[8];
r = radeon_uvd_validate_codec(p, msg[4]);
radeon_bo_kunmap(bo);
if (r)
return r;
/* try to alloc a new handle */
for (i = 0; i < p->rdev->uvd.max_handles; ++i) {
if (atomic_read(&p->rdev->uvd.handles[i]) == handle) {
DRM_ERROR("Handle 0x%x already in use!\n", handle);
return -EINVAL;
}
if (!atomic_cmpxchg(&p->rdev->uvd.handles[i], 0, handle)) {
p->rdev->uvd.filp[i] = p->filp;
p->rdev->uvd.img_size[i] = img_size;
return 0;
}
}
DRM_ERROR("No more free UVD handles!\n");
return -EINVAL;
case 1:
/* it's a decode msg, validate codec and calc buffer sizes */
r = radeon_uvd_validate_codec(p, msg[4]);
if (!r)
r = radeon_uvd_cs_msg_decode(msg, buf_sizes);
radeon_bo_kunmap(bo);
if (r)
return r;
/* validate the handle */
for (i = 0; i < p->rdev->uvd.max_handles; ++i) {
if (atomic_read(&p->rdev->uvd.handles[i]) == handle) {
if (p->rdev->uvd.filp[i] != p->filp) {
DRM_ERROR("UVD handle collision detected!\n");
return -EINVAL;
}
return 0;
}
}
DRM_ERROR("Invalid UVD handle 0x%x!\n", handle);
return -ENOENT;
case 2:
/* it's a destroy msg, free the handle */
for (i = 0; i < p->rdev->uvd.max_handles; ++i)
atomic_cmpxchg(&p->rdev->uvd.handles[i], handle, 0);
radeon_bo_kunmap(bo);
return 0;
default:
DRM_ERROR("Illegal UVD message type (%d)!\n", msg_type);
return -EINVAL;
}
BUG();
return -EINVAL;
}
static int radeon_uvd_cs_reloc(struct radeon_cs_parser *p,
int data0, int data1,
unsigned buf_sizes[], bool *has_msg_cmd)
{
struct radeon_cs_chunk *relocs_chunk;
struct radeon_bo_list *reloc;
unsigned idx, cmd, offset;
uint64_t start, end;
int r;
relocs_chunk = p->chunk_relocs;
offset = radeon_get_ib_value(p, data0);
idx = radeon_get_ib_value(p, data1);
if (idx >= relocs_chunk->length_dw) {
DRM_ERROR("Relocs at %d after relocations chunk end %d !\n",
idx, relocs_chunk->length_dw);
return -EINVAL;
}
reloc = &p->relocs[(idx / 4)];
start = reloc->gpu_offset;
end = start + radeon_bo_size(reloc->robj);
start += offset;
p->ib.ptr[data0] = start & 0xFFFFFFFF;
p->ib.ptr[data1] = start >> 32;
cmd = radeon_get_ib_value(p, p->idx) >> 1;
if (cmd < 0x4) {
if (end <= start) {
DRM_ERROR("invalid reloc offset %X!\n", offset);
return -EINVAL;
}
if ((end - start) < buf_sizes[cmd]) {
DRM_ERROR("buffer (%d) to small (%d / %d)!\n", cmd,
(unsigned)(end - start), buf_sizes[cmd]);
return -EINVAL;
}
} else if (cmd != 0x100) {
DRM_ERROR("invalid UVD command %X!\n", cmd);
return -EINVAL;
}
if ((start >> 28) != ((end - 1) >> 28)) {
DRM_ERROR("reloc %LX-%LX crossing 256MB boundary!\n",
start, end);
return -EINVAL;
}
/* TODO: is this still necessary on NI+ ? */
if ((cmd == 0 || cmd == 0x3) &&
(start >> 28) != (p->rdev->uvd.gpu_addr >> 28)) {
DRM_ERROR("msg/fb buffer %LX-%LX out of 256MB segment!\n",
start, end);
return -EINVAL;
}
if (cmd == 0) {
if (*has_msg_cmd) {
DRM_ERROR("More than one message in a UVD-IB!\n");
return -EINVAL;
}
*has_msg_cmd = true;
r = radeon_uvd_cs_msg(p, reloc->robj, offset, buf_sizes);
if (r)
return r;
} else if (!*has_msg_cmd) {
DRM_ERROR("Message needed before other commands are send!\n");
return -EINVAL;
}
return 0;
}
static int radeon_uvd_cs_reg(struct radeon_cs_parser *p,
struct radeon_cs_packet *pkt,
int *data0, int *data1,
unsigned buf_sizes[],
bool *has_msg_cmd)
{
int i, r;
p->idx++;
for (i = 0; i <= pkt->count; ++i) {
switch (pkt->reg + i*4) {
case UVD_GPCOM_VCPU_DATA0:
*data0 = p->idx;
break;
case UVD_GPCOM_VCPU_DATA1:
*data1 = p->idx;
break;
case UVD_GPCOM_VCPU_CMD:
r = radeon_uvd_cs_reloc(p, *data0, *data1,
buf_sizes, has_msg_cmd);
if (r)
return r;
break;
case UVD_ENGINE_CNTL:
case UVD_NO_OP:
break;
default:
DRM_ERROR("Invalid reg 0x%X!\n",
pkt->reg + i*4);
return -EINVAL;
}
p->idx++;
}
return 0;
}
int radeon_uvd_cs_parse(struct radeon_cs_parser *p)
{
struct radeon_cs_packet pkt;
int r, data0 = 0, data1 = 0;
/* does the IB has a msg command */
bool has_msg_cmd = false;
/* minimum buffer sizes */
unsigned buf_sizes[] = {
[0x00000000] = 2048,
[0x00000001] = 32 * 1024 * 1024,
[0x00000002] = 2048 * 1152 * 3,
[0x00000003] = 2048,
};
if (p->chunk_ib->length_dw % 16) {
DRM_ERROR("UVD IB length (%d) not 16 dwords aligned!\n",
p->chunk_ib->length_dw);
return -EINVAL;
}
if (p->chunk_relocs == NULL) {
DRM_ERROR("No relocation chunk !\n");
return -EINVAL;
}
do {
r = radeon_cs_packet_parse(p, &pkt, p->idx);
if (r)
return r;
switch (pkt.type) {
case RADEON_PACKET_TYPE0:
r = radeon_uvd_cs_reg(p, &pkt, &data0, &data1,
buf_sizes, &has_msg_cmd);
if (r)
return r;
break;
case RADEON_PACKET_TYPE2:
p->idx += pkt.count + 2;
break;
default:
DRM_ERROR("Unknown packet type %d !\n", pkt.type);
return -EINVAL;
}
} while (p->idx < p->chunk_ib->length_dw);
if (!has_msg_cmd) {
DRM_ERROR("UVD-IBs need a msg command!\n");
return -EINVAL;
}
return 0;
}
static int radeon_uvd_send_msg(struct radeon_device *rdev,
int ring, uint64_t addr,
struct radeon_fence **fence)
{
struct radeon_ib ib;
int i, r;
r = radeon_ib_get(rdev, ring, &ib, NULL, 64);
if (r)
return r;
ib.ptr[0] = PACKET0(UVD_GPCOM_VCPU_DATA0, 0);
ib.ptr[1] = addr;
ib.ptr[2] = PACKET0(UVD_GPCOM_VCPU_DATA1, 0);
ib.ptr[3] = addr >> 32;
ib.ptr[4] = PACKET0(UVD_GPCOM_VCPU_CMD, 0);
ib.ptr[5] = 0;
for (i = 6; i < 16; i += 2) {
ib.ptr[i] = PACKET0(UVD_NO_OP, 0);
ib.ptr[i+1] = 0;
}
ib.length_dw = 16;
r = radeon_ib_schedule(rdev, &ib, NULL, false);
if (fence)
*fence = radeon_fence_ref(ib.fence);
radeon_ib_free(rdev, &ib);
return r;
}
/*
* multiple fence commands without any stream commands in between can
* crash the vcpu so just try to emmit a dummy create/destroy msg to
* avoid this
*/
int radeon_uvd_get_create_msg(struct radeon_device *rdev, int ring,
uint32_t handle, struct radeon_fence **fence)
{
/* we use the last page of the vcpu bo for the UVD message */
uint64_t offs = radeon_bo_size(rdev->uvd.vcpu_bo) -
RADEON_GPU_PAGE_SIZE;
uint32_t __iomem *msg = (void __iomem *)(rdev->uvd.cpu_addr + offs);
uint64_t addr = rdev->uvd.gpu_addr + offs;
int r, i;
r = radeon_bo_reserve(rdev->uvd.vcpu_bo, true);
if (r)
return r;
/* stitch together an UVD create msg */
writel((__force u32)cpu_to_le32(0x00000de4), &msg[0]);
writel(0x0, (void __iomem *)&msg[1]);
writel((__force u32)cpu_to_le32(handle), &msg[2]);
writel(0x0, &msg[3]);
writel(0x0, &msg[4]);
writel(0x0, &msg[5]);
writel(0x0, &msg[6]);
writel((__force u32)cpu_to_le32(0x00000780), &msg[7]);
writel((__force u32)cpu_to_le32(0x00000440), &msg[8]);
writel(0x0, &msg[9]);
writel((__force u32)cpu_to_le32(0x01b37000), &msg[10]);
for (i = 11; i < 1024; ++i)
writel(0x0, &msg[i]);
r = radeon_uvd_send_msg(rdev, ring, addr, fence);
radeon_bo_unreserve(rdev->uvd.vcpu_bo);
return r;
}
int radeon_uvd_get_destroy_msg(struct radeon_device *rdev, int ring,
uint32_t handle, struct radeon_fence **fence)
{
/* we use the last page of the vcpu bo for the UVD message */
uint64_t offs = radeon_bo_size(rdev->uvd.vcpu_bo) -
RADEON_GPU_PAGE_SIZE;
uint32_t __iomem *msg = (void __iomem *)(rdev->uvd.cpu_addr + offs);
uint64_t addr = rdev->uvd.gpu_addr + offs;
int r, i;
r = radeon_bo_reserve(rdev->uvd.vcpu_bo, true);
if (r)
return r;
/* stitch together an UVD destroy msg */
writel((__force u32)cpu_to_le32(0x00000de4), &msg[0]);
writel((__force u32)cpu_to_le32(0x00000002), &msg[1]);
writel((__force u32)cpu_to_le32(handle), &msg[2]);
writel(0x0, &msg[3]);
for (i = 4; i < 1024; ++i)
writel(0x0, &msg[i]);
r = radeon_uvd_send_msg(rdev, ring, addr, fence);
radeon_bo_unreserve(rdev->uvd.vcpu_bo);
return r;
}
/**
* radeon_uvd_count_handles - count number of open streams
*
* @rdev: radeon_device pointer
* @sd: number of SD streams
* @hd: number of HD streams
*
* Count the number of open SD/HD streams as a hint for power mangement
*/
static void radeon_uvd_count_handles(struct radeon_device *rdev,
unsigned *sd, unsigned *hd)
{
unsigned i;
*sd = 0;
*hd = 0;
for (i = 0; i < rdev->uvd.max_handles; ++i) {
if (!atomic_read(&rdev->uvd.handles[i]))
continue;
if (rdev->uvd.img_size[i] >= 720*576)
++(*hd);
else
++(*sd);
}
}
static void radeon_uvd_idle_work_handler(struct work_struct *work)
{
struct radeon_device *rdev =
container_of(work, struct radeon_device, uvd.idle_work.work);
if (radeon_fence_count_emitted(rdev, R600_RING_TYPE_UVD_INDEX) == 0) {
if ((rdev->pm.pm_method == PM_METHOD_DPM) && rdev->pm.dpm_enabled) {
radeon_uvd_count_handles(rdev, &rdev->pm.dpm.sd,
&rdev->pm.dpm.hd);
radeon_dpm_enable_uvd(rdev, false);
} else {
radeon_set_uvd_clocks(rdev, 0, 0);
}
} else {
schedule_delayed_work(&rdev->uvd.idle_work,
msecs_to_jiffies(UVD_IDLE_TIMEOUT_MS));
}
}
void radeon_uvd_note_usage(struct radeon_device *rdev)
{
bool streams_changed = false;
bool set_clocks = !cancel_delayed_work_sync(&rdev->uvd.idle_work);
set_clocks &= schedule_delayed_work(&rdev->uvd.idle_work,
msecs_to_jiffies(UVD_IDLE_TIMEOUT_MS));
if ((rdev->pm.pm_method == PM_METHOD_DPM) && rdev->pm.dpm_enabled) {
unsigned hd = 0, sd = 0;
radeon_uvd_count_handles(rdev, &sd, &hd);
if ((rdev->pm.dpm.sd != sd) ||
(rdev->pm.dpm.hd != hd)) {
rdev->pm.dpm.sd = sd;
rdev->pm.dpm.hd = hd;
/* disable this for now */
/*streams_changed = true;*/
}
}
if (set_clocks || streams_changed) {
if ((rdev->pm.pm_method == PM_METHOD_DPM) && rdev->pm.dpm_enabled) {
radeon_dpm_enable_uvd(rdev, true);
} else {
radeon_set_uvd_clocks(rdev, 53300, 40000);
}
}
}
static unsigned radeon_uvd_calc_upll_post_div(unsigned vco_freq,
unsigned target_freq,
unsigned pd_min,
unsigned pd_even)
{
unsigned post_div = vco_freq / target_freq;
/* adjust to post divider minimum value */
if (post_div < pd_min)
post_div = pd_min;
/* we alway need a frequency less than or equal the target */
if ((vco_freq / post_div) > target_freq)
post_div += 1;
/* post dividers above a certain value must be even */
if (post_div > pd_even && post_div % 2)
post_div += 1;
return post_div;
}
/**
* radeon_uvd_calc_upll_dividers - calc UPLL clock dividers
*
* @rdev: radeon_device pointer
* @vclk: wanted VCLK
* @dclk: wanted DCLK
* @vco_min: minimum VCO frequency
* @vco_max: maximum VCO frequency
* @fb_factor: factor to multiply vco freq with
* @fb_mask: limit and bitmask for feedback divider
* @pd_min: post divider minimum
* @pd_max: post divider maximum
* @pd_even: post divider must be even above this value
* @optimal_fb_div: resulting feedback divider
* @optimal_vclk_div: resulting vclk post divider
* @optimal_dclk_div: resulting dclk post divider
*
* Calculate dividers for UVDs UPLL (R6xx-SI, except APUs).
* Returns zero on success -EINVAL on error.
*/
int radeon_uvd_calc_upll_dividers(struct radeon_device *rdev,
unsigned vclk, unsigned dclk,
unsigned vco_min, unsigned vco_max,
unsigned fb_factor, unsigned fb_mask,
unsigned pd_min, unsigned pd_max,
unsigned pd_even,
unsigned *optimal_fb_div,
unsigned *optimal_vclk_div,
unsigned *optimal_dclk_div)
{
unsigned vco_freq, ref_freq = rdev->clock.spll.reference_freq;
/* start off with something large */
unsigned optimal_score = ~0;
/* loop through vco from low to high */
vco_min = max(max(vco_min, vclk), dclk);
for (vco_freq = vco_min; vco_freq <= vco_max; vco_freq += 100) {
uint64_t fb_div = (uint64_t)vco_freq * fb_factor;
unsigned vclk_div, dclk_div, score;
do_div(fb_div, ref_freq);
/* fb div out of range ? */
if (fb_div > fb_mask)
break; /* it can oly get worse */
fb_div &= fb_mask;
/* calc vclk divider with current vco freq */
vclk_div = radeon_uvd_calc_upll_post_div(vco_freq, vclk,
pd_min, pd_even);
if (vclk_div > pd_max)
break; /* vco is too big, it has to stop */
/* calc dclk divider with current vco freq */
dclk_div = radeon_uvd_calc_upll_post_div(vco_freq, dclk,
pd_min, pd_even);
if (dclk_div > pd_max)
break; /* vco is too big, it has to stop */
/* calc score with current vco freq */
score = vclk - (vco_freq / vclk_div) + dclk - (vco_freq / dclk_div);
/* determine if this vco setting is better than current optimal settings */
if (score < optimal_score) {
*optimal_fb_div = fb_div;
*optimal_vclk_div = vclk_div;
*optimal_dclk_div = dclk_div;
optimal_score = score;
if (optimal_score == 0)
break; /* it can't get better than this */
}
}
/* did we found a valid setup ? */
if (optimal_score == ~0)
return -EINVAL;
return 0;
}
int radeon_uvd_send_upll_ctlreq(struct radeon_device *rdev,
unsigned cg_upll_func_cntl)
{
unsigned i;
/* make sure UPLL_CTLREQ is deasserted */
WREG32_P(cg_upll_func_cntl, 0, ~UPLL_CTLREQ_MASK);
mdelay(10);
/* assert UPLL_CTLREQ */
WREG32_P(cg_upll_func_cntl, UPLL_CTLREQ_MASK, ~UPLL_CTLREQ_MASK);
/* wait for CTLACK and CTLACK2 to get asserted */
for (i = 0; i < 100; ++i) {
uint32_t mask = UPLL_CTLACK_MASK | UPLL_CTLACK2_MASK;
if ((RREG32(cg_upll_func_cntl) & mask) == mask)
break;
mdelay(10);
}
/* deassert UPLL_CTLREQ */
WREG32_P(cg_upll_func_cntl, 0, ~UPLL_CTLREQ_MASK);
if (i == 100) {
DRM_ERROR("Timeout setting UVD clocks!\n");
return -ETIMEDOUT;
}
return 0;
}