467 lines
13 KiB
C
467 lines
13 KiB
C
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
||
|
/*
|
||
|
* PowerPC version
|
||
|
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
|
||
|
*
|
||
|
* Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
|
||
|
* and Cort Dougan (PReP) (cort@cs.nmt.edu)
|
||
|
* Copyright (C) 1996 Paul Mackerras
|
||
|
*
|
||
|
* Derived from "arch/i386/mm/init.c"
|
||
|
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
|
||
|
*
|
||
|
* Dave Engebretsen <engebret@us.ibm.com>
|
||
|
* Rework for PPC64 port.
|
||
|
*/
|
||
|
|
||
|
#undef DEBUG
|
||
|
|
||
|
#include <linux/signal.h>
|
||
|
#include <linux/sched.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/errno.h>
|
||
|
#include <linux/string.h>
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/mman.h>
|
||
|
#include <linux/mm.h>
|
||
|
#include <linux/swap.h>
|
||
|
#include <linux/stddef.h>
|
||
|
#include <linux/vmalloc.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/delay.h>
|
||
|
#include <linux/highmem.h>
|
||
|
#include <linux/idr.h>
|
||
|
#include <linux/nodemask.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/poison.h>
|
||
|
#include <linux/memblock.h>
|
||
|
#include <linux/hugetlb.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/of_fdt.h>
|
||
|
#include <linux/libfdt.h>
|
||
|
#include <linux/memremap.h>
|
||
|
|
||
|
#include <asm/pgalloc.h>
|
||
|
#include <asm/page.h>
|
||
|
#include <asm/prom.h>
|
||
|
#include <asm/rtas.h>
|
||
|
#include <asm/io.h>
|
||
|
#include <asm/mmu_context.h>
|
||
|
#include <asm/mmu.h>
|
||
|
#include <linux/uaccess.h>
|
||
|
#include <asm/smp.h>
|
||
|
#include <asm/machdep.h>
|
||
|
#include <asm/tlb.h>
|
||
|
#include <asm/eeh.h>
|
||
|
#include <asm/processor.h>
|
||
|
#include <asm/mmzone.h>
|
||
|
#include <asm/cputable.h>
|
||
|
#include <asm/sections.h>
|
||
|
#include <asm/iommu.h>
|
||
|
#include <asm/vdso.h>
|
||
|
|
||
|
#include <mm/mmu_decl.h>
|
||
|
|
||
|
#ifdef CONFIG_SPARSEMEM_VMEMMAP
|
||
|
/*
|
||
|
* Given an address within the vmemmap, determine the page that
|
||
|
* represents the start of the subsection it is within. Note that we have to
|
||
|
* do this by hand as the proffered address may not be correctly aligned.
|
||
|
* Subtraction of non-aligned pointers produces undefined results.
|
||
|
*/
|
||
|
static struct page * __meminit vmemmap_subsection_start(unsigned long vmemmap_addr)
|
||
|
{
|
||
|
unsigned long start_pfn;
|
||
|
unsigned long offset = vmemmap_addr - ((unsigned long)(vmemmap));
|
||
|
|
||
|
/* Return the pfn of the start of the section. */
|
||
|
start_pfn = (offset / sizeof(struct page)) & PAGE_SUBSECTION_MASK;
|
||
|
return pfn_to_page(start_pfn);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Since memory is added in sub-section chunks, before creating a new vmemmap
|
||
|
* mapping, the kernel should check whether there is an existing memmap mapping
|
||
|
* covering the new subsection added. This is needed because kernel can map
|
||
|
* vmemmap area using 16MB pages which will cover a memory range of 16G. Such
|
||
|
* a range covers multiple subsections (2M)
|
||
|
*
|
||
|
* If any subsection in the 16G range mapped by vmemmap is valid we consider the
|
||
|
* vmemmap populated (There is a page table entry already present). We can't do
|
||
|
* a page table lookup here because with the hash translation we don't keep
|
||
|
* vmemmap details in linux page table.
|
||
|
*/
|
||
|
static int __meminit vmemmap_populated(unsigned long vmemmap_addr, int vmemmap_map_size)
|
||
|
{
|
||
|
struct page *start;
|
||
|
unsigned long vmemmap_end = vmemmap_addr + vmemmap_map_size;
|
||
|
start = vmemmap_subsection_start(vmemmap_addr);
|
||
|
|
||
|
for (; (unsigned long)start < vmemmap_end; start += PAGES_PER_SUBSECTION)
|
||
|
/*
|
||
|
* pfn valid check here is intended to really check
|
||
|
* whether we have any subsection already initialized
|
||
|
* in this range.
|
||
|
*/
|
||
|
if (pfn_valid(page_to_pfn(start)))
|
||
|
return 1;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* vmemmap virtual address space management does not have a traditonal page
|
||
|
* table to track which virtual struct pages are backed by physical mapping.
|
||
|
* The virtual to physical mappings are tracked in a simple linked list
|
||
|
* format. 'vmemmap_list' maintains the entire vmemmap physical mapping at
|
||
|
* all times where as the 'next' list maintains the available
|
||
|
* vmemmap_backing structures which have been deleted from the
|
||
|
* 'vmemmap_global' list during system runtime (memory hotplug remove
|
||
|
* operation). The freed 'vmemmap_backing' structures are reused later when
|
||
|
* new requests come in without allocating fresh memory. This pointer also
|
||
|
* tracks the allocated 'vmemmap_backing' structures as we allocate one
|
||
|
* full page memory at a time when we dont have any.
|
||
|
*/
|
||
|
struct vmemmap_backing *vmemmap_list;
|
||
|
static struct vmemmap_backing *next;
|
||
|
|
||
|
/*
|
||
|
* The same pointer 'next' tracks individual chunks inside the allocated
|
||
|
* full page during the boot time and again tracks the freeed nodes during
|
||
|
* runtime. It is racy but it does not happen as they are separated by the
|
||
|
* boot process. Will create problem if some how we have memory hotplug
|
||
|
* operation during boot !!
|
||
|
*/
|
||
|
static int num_left;
|
||
|
static int num_freed;
|
||
|
|
||
|
static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
|
||
|
{
|
||
|
struct vmemmap_backing *vmem_back;
|
||
|
/* get from freed entries first */
|
||
|
if (num_freed) {
|
||
|
num_freed--;
|
||
|
vmem_back = next;
|
||
|
next = next->list;
|
||
|
|
||
|
return vmem_back;
|
||
|
}
|
||
|
|
||
|
/* allocate a page when required and hand out chunks */
|
||
|
if (!num_left) {
|
||
|
next = vmemmap_alloc_block(PAGE_SIZE, node);
|
||
|
if (unlikely(!next)) {
|
||
|
WARN_ON(1);
|
||
|
return NULL;
|
||
|
}
|
||
|
num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
|
||
|
}
|
||
|
|
||
|
num_left--;
|
||
|
|
||
|
return next++;
|
||
|
}
|
||
|
|
||
|
static __meminit int vmemmap_list_populate(unsigned long phys,
|
||
|
unsigned long start,
|
||
|
int node)
|
||
|
{
|
||
|
struct vmemmap_backing *vmem_back;
|
||
|
|
||
|
vmem_back = vmemmap_list_alloc(node);
|
||
|
if (unlikely(!vmem_back)) {
|
||
|
pr_debug("vmemap list allocation failed\n");
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
vmem_back->phys = phys;
|
||
|
vmem_back->virt_addr = start;
|
||
|
vmem_back->list = vmemmap_list;
|
||
|
|
||
|
vmemmap_list = vmem_back;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static bool altmap_cross_boundary(struct vmem_altmap *altmap, unsigned long start,
|
||
|
unsigned long page_size)
|
||
|
{
|
||
|
unsigned long nr_pfn = page_size / sizeof(struct page);
|
||
|
unsigned long start_pfn = page_to_pfn((struct page *)start);
|
||
|
|
||
|
if ((start_pfn + nr_pfn - 1) > altmap->end_pfn)
|
||
|
return true;
|
||
|
|
||
|
if (start_pfn < altmap->base_pfn)
|
||
|
return true;
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
|
||
|
struct vmem_altmap *altmap)
|
||
|
{
|
||
|
bool altmap_alloc;
|
||
|
unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
|
||
|
|
||
|
/* Align to the page size of the linear mapping. */
|
||
|
start = ALIGN_DOWN(start, page_size);
|
||
|
|
||
|
pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node);
|
||
|
|
||
|
for (; start < end; start += page_size) {
|
||
|
void *p = NULL;
|
||
|
int rc;
|
||
|
|
||
|
/*
|
||
|
* This vmemmap range is backing different subsections. If any
|
||
|
* of that subsection is marked valid, that means we already
|
||
|
* have initialized a page table covering this range and hence
|
||
|
* the vmemmap range is populated.
|
||
|
*/
|
||
|
if (vmemmap_populated(start, page_size))
|
||
|
continue;
|
||
|
|
||
|
/*
|
||
|
* Allocate from the altmap first if we have one. This may
|
||
|
* fail due to alignment issues when using 16MB hugepages, so
|
||
|
* fall back to system memory if the altmap allocation fail.
|
||
|
*/
|
||
|
if (altmap && !altmap_cross_boundary(altmap, start, page_size)) {
|
||
|
p = vmemmap_alloc_block_buf(page_size, node, altmap);
|
||
|
if (!p)
|
||
|
pr_debug("altmap block allocation failed, falling back to system memory");
|
||
|
else
|
||
|
altmap_alloc = true;
|
||
|
}
|
||
|
if (!p) {
|
||
|
p = vmemmap_alloc_block_buf(page_size, node, NULL);
|
||
|
altmap_alloc = false;
|
||
|
}
|
||
|
if (!p)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
if (vmemmap_list_populate(__pa(p), start, node)) {
|
||
|
/*
|
||
|
* If we don't populate vmemap list, we don't have
|
||
|
* the ability to free the allocated vmemmap
|
||
|
* pages in section_deactivate. Hence free them
|
||
|
* here.
|
||
|
*/
|
||
|
int nr_pfns = page_size >> PAGE_SHIFT;
|
||
|
unsigned long page_order = get_order(page_size);
|
||
|
|
||
|
if (altmap_alloc)
|
||
|
vmem_altmap_free(altmap, nr_pfns);
|
||
|
else
|
||
|
free_pages((unsigned long)p, page_order);
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
pr_debug(" * %016lx..%016lx allocated at %p\n",
|
||
|
start, start + page_size, p);
|
||
|
|
||
|
rc = vmemmap_create_mapping(start, page_size, __pa(p));
|
||
|
if (rc < 0) {
|
||
|
pr_warn("%s: Unable to create vmemmap mapping: %d\n",
|
||
|
__func__, rc);
|
||
|
return -EFAULT;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
||
|
static unsigned long vmemmap_list_free(unsigned long start)
|
||
|
{
|
||
|
struct vmemmap_backing *vmem_back, *vmem_back_prev;
|
||
|
|
||
|
vmem_back_prev = vmem_back = vmemmap_list;
|
||
|
|
||
|
/* look for it with prev pointer recorded */
|
||
|
for (; vmem_back; vmem_back = vmem_back->list) {
|
||
|
if (vmem_back->virt_addr == start)
|
||
|
break;
|
||
|
vmem_back_prev = vmem_back;
|
||
|
}
|
||
|
|
||
|
if (unlikely(!vmem_back))
|
||
|
return 0;
|
||
|
|
||
|
/* remove it from vmemmap_list */
|
||
|
if (vmem_back == vmemmap_list) /* remove head */
|
||
|
vmemmap_list = vmem_back->list;
|
||
|
else
|
||
|
vmem_back_prev->list = vmem_back->list;
|
||
|
|
||
|
/* next point to this freed entry */
|
||
|
vmem_back->list = next;
|
||
|
next = vmem_back;
|
||
|
num_freed++;
|
||
|
|
||
|
return vmem_back->phys;
|
||
|
}
|
||
|
|
||
|
void __ref vmemmap_free(unsigned long start, unsigned long end,
|
||
|
struct vmem_altmap *altmap)
|
||
|
{
|
||
|
unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
|
||
|
unsigned long page_order = get_order(page_size);
|
||
|
unsigned long alt_start = ~0, alt_end = ~0;
|
||
|
unsigned long base_pfn;
|
||
|
|
||
|
start = ALIGN_DOWN(start, page_size);
|
||
|
if (altmap) {
|
||
|
alt_start = altmap->base_pfn;
|
||
|
alt_end = altmap->base_pfn + altmap->reserve + altmap->free;
|
||
|
}
|
||
|
|
||
|
pr_debug("vmemmap_free %lx...%lx\n", start, end);
|
||
|
|
||
|
for (; start < end; start += page_size) {
|
||
|
unsigned long nr_pages, addr;
|
||
|
struct page *page;
|
||
|
|
||
|
/*
|
||
|
* We have already marked the subsection we are trying to remove
|
||
|
* invalid. So if we want to remove the vmemmap range, we
|
||
|
* need to make sure there is no subsection marked valid
|
||
|
* in this range.
|
||
|
*/
|
||
|
if (vmemmap_populated(start, page_size))
|
||
|
continue;
|
||
|
|
||
|
addr = vmemmap_list_free(start);
|
||
|
if (!addr)
|
||
|
continue;
|
||
|
|
||
|
page = pfn_to_page(addr >> PAGE_SHIFT);
|
||
|
nr_pages = 1 << page_order;
|
||
|
base_pfn = PHYS_PFN(addr);
|
||
|
|
||
|
if (base_pfn >= alt_start && base_pfn < alt_end) {
|
||
|
vmem_altmap_free(altmap, nr_pages);
|
||
|
} else if (PageReserved(page)) {
|
||
|
/* allocated from bootmem */
|
||
|
if (page_size < PAGE_SIZE) {
|
||
|
/*
|
||
|
* this shouldn't happen, but if it is
|
||
|
* the case, leave the memory there
|
||
|
*/
|
||
|
WARN_ON_ONCE(1);
|
||
|
} else {
|
||
|
while (nr_pages--)
|
||
|
free_reserved_page(page++);
|
||
|
}
|
||
|
} else {
|
||
|
free_pages((unsigned long)(__va(addr)), page_order);
|
||
|
}
|
||
|
|
||
|
vmemmap_remove_mapping(start, page_size);
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
void register_page_bootmem_memmap(unsigned long section_nr,
|
||
|
struct page *start_page, unsigned long size)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
#endif /* CONFIG_SPARSEMEM_VMEMMAP */
|
||
|
|
||
|
#ifdef CONFIG_PPC_BOOK3S_64
|
||
|
static bool disable_radix = !IS_ENABLED(CONFIG_PPC_RADIX_MMU_DEFAULT);
|
||
|
|
||
|
static int __init parse_disable_radix(char *p)
|
||
|
{
|
||
|
bool val;
|
||
|
|
||
|
if (!p)
|
||
|
val = true;
|
||
|
else if (kstrtobool(p, &val))
|
||
|
return -EINVAL;
|
||
|
|
||
|
disable_radix = val;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
early_param("disable_radix", parse_disable_radix);
|
||
|
|
||
|
/*
|
||
|
* If we're running under a hypervisor, we need to check the contents of
|
||
|
* /chosen/ibm,architecture-vec-5 to see if the hypervisor is willing to do
|
||
|
* radix. If not, we clear the radix feature bit so we fall back to hash.
|
||
|
*/
|
||
|
static void __init early_check_vec5(void)
|
||
|
{
|
||
|
unsigned long root, chosen;
|
||
|
int size;
|
||
|
const u8 *vec5;
|
||
|
u8 mmu_supported;
|
||
|
|
||
|
root = of_get_flat_dt_root();
|
||
|
chosen = of_get_flat_dt_subnode_by_name(root, "chosen");
|
||
|
if (chosen == -FDT_ERR_NOTFOUND) {
|
||
|
cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
|
||
|
return;
|
||
|
}
|
||
|
vec5 = of_get_flat_dt_prop(chosen, "ibm,architecture-vec-5", &size);
|
||
|
if (!vec5) {
|
||
|
cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
|
||
|
return;
|
||
|
}
|
||
|
if (size <= OV5_INDX(OV5_MMU_SUPPORT)) {
|
||
|
cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* Check for supported configuration */
|
||
|
mmu_supported = vec5[OV5_INDX(OV5_MMU_SUPPORT)] &
|
||
|
OV5_FEAT(OV5_MMU_SUPPORT);
|
||
|
if (mmu_supported == OV5_FEAT(OV5_MMU_RADIX)) {
|
||
|
/* Hypervisor only supports radix - check enabled && GTSE */
|
||
|
if (!early_radix_enabled()) {
|
||
|
pr_warn("WARNING: Ignoring cmdline option disable_radix\n");
|
||
|
}
|
||
|
if (!(vec5[OV5_INDX(OV5_RADIX_GTSE)] &
|
||
|
OV5_FEAT(OV5_RADIX_GTSE))) {
|
||
|
cur_cpu_spec->mmu_features &= ~MMU_FTR_GTSE;
|
||
|
} else
|
||
|
cur_cpu_spec->mmu_features |= MMU_FTR_GTSE;
|
||
|
/* Do radix anyway - the hypervisor said we had to */
|
||
|
cur_cpu_spec->mmu_features |= MMU_FTR_TYPE_RADIX;
|
||
|
} else if (mmu_supported == OV5_FEAT(OV5_MMU_HASH)) {
|
||
|
/* Hypervisor only supports hash - disable radix */
|
||
|
cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
|
||
|
cur_cpu_spec->mmu_features &= ~MMU_FTR_GTSE;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void __init mmu_early_init_devtree(void)
|
||
|
{
|
||
|
/* Disable radix mode based on kernel command line. */
|
||
|
if (disable_radix)
|
||
|
cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
|
||
|
|
||
|
/*
|
||
|
* Check /chosen/ibm,architecture-vec-5 if running as a guest.
|
||
|
* When running bare-metal, we can use radix if we like
|
||
|
* even though the ibm,architecture-vec-5 property created by
|
||
|
* skiboot doesn't have the necessary bits set.
|
||
|
*/
|
||
|
if (!(mfmsr() & MSR_HV))
|
||
|
early_check_vec5();
|
||
|
|
||
|
if (early_radix_enabled()) {
|
||
|
radix__early_init_devtree();
|
||
|
/*
|
||
|
* We have finalized the translation we are going to use by now.
|
||
|
* Radix mode is not limited by RMA / VRMA addressing.
|
||
|
* Hence don't limit memblock allocations.
|
||
|
*/
|
||
|
ppc64_rma_size = ULONG_MAX;
|
||
|
memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
|
||
|
} else
|
||
|
hash__early_init_devtree();
|
||
|
}
|
||
|
#endif /* CONFIG_PPC_BOOK3S_64 */
|