285 lines
6.0 KiB
C
285 lines
6.0 KiB
C
|
/* SPDX-License-Identifier: GPL-2.0-only */
|
||
|
/*
|
||
|
* Bit operations for the Hexagon architecture
|
||
|
*
|
||
|
* Copyright (c) 2010-2011, The Linux Foundation. All rights reserved.
|
||
|
*/
|
||
|
|
||
|
#ifndef _ASM_BITOPS_H
|
||
|
#define _ASM_BITOPS_H
|
||
|
|
||
|
#include <linux/compiler.h>
|
||
|
#include <asm/byteorder.h>
|
||
|
#include <asm/atomic.h>
|
||
|
#include <asm/barrier.h>
|
||
|
|
||
|
#ifdef __KERNEL__
|
||
|
|
||
|
/*
|
||
|
* The offset calculations for these are based on BITS_PER_LONG == 32
|
||
|
* (i.e. I get to shift by #5-2 (32 bits per long, 4 bytes per access),
|
||
|
* mask by 0x0000001F)
|
||
|
*
|
||
|
* Typically, R10 is clobbered for address, R11 bit nr, and R12 is temp
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* test_and_clear_bit - clear a bit and return its old value
|
||
|
* @nr: bit number to clear
|
||
|
* @addr: pointer to memory
|
||
|
*/
|
||
|
static inline int test_and_clear_bit(int nr, volatile void *addr)
|
||
|
{
|
||
|
int oldval;
|
||
|
|
||
|
__asm__ __volatile__ (
|
||
|
" {R10 = %1; R11 = asr(%2,#5); }\n"
|
||
|
" {R10 += asl(R11,#2); R11 = and(%2,#0x1f)}\n"
|
||
|
"1: R12 = memw_locked(R10);\n"
|
||
|
" { P0 = tstbit(R12,R11); R12 = clrbit(R12,R11); }\n"
|
||
|
" memw_locked(R10,P1) = R12;\n"
|
||
|
" {if (!P1) jump 1b; %0 = mux(P0,#1,#0);}\n"
|
||
|
: "=&r" (oldval)
|
||
|
: "r" (addr), "r" (nr)
|
||
|
: "r10", "r11", "r12", "p0", "p1", "memory"
|
||
|
);
|
||
|
|
||
|
return oldval;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* test_and_set_bit - set a bit and return its old value
|
||
|
* @nr: bit number to set
|
||
|
* @addr: pointer to memory
|
||
|
*/
|
||
|
static inline int test_and_set_bit(int nr, volatile void *addr)
|
||
|
{
|
||
|
int oldval;
|
||
|
|
||
|
__asm__ __volatile__ (
|
||
|
" {R10 = %1; R11 = asr(%2,#5); }\n"
|
||
|
" {R10 += asl(R11,#2); R11 = and(%2,#0x1f)}\n"
|
||
|
"1: R12 = memw_locked(R10);\n"
|
||
|
" { P0 = tstbit(R12,R11); R12 = setbit(R12,R11); }\n"
|
||
|
" memw_locked(R10,P1) = R12;\n"
|
||
|
" {if (!P1) jump 1b; %0 = mux(P0,#1,#0);}\n"
|
||
|
: "=&r" (oldval)
|
||
|
: "r" (addr), "r" (nr)
|
||
|
: "r10", "r11", "r12", "p0", "p1", "memory"
|
||
|
);
|
||
|
|
||
|
|
||
|
return oldval;
|
||
|
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* test_and_change_bit - toggle a bit and return its old value
|
||
|
* @nr: bit number to set
|
||
|
* @addr: pointer to memory
|
||
|
*/
|
||
|
static inline int test_and_change_bit(int nr, volatile void *addr)
|
||
|
{
|
||
|
int oldval;
|
||
|
|
||
|
__asm__ __volatile__ (
|
||
|
" {R10 = %1; R11 = asr(%2,#5); }\n"
|
||
|
" {R10 += asl(R11,#2); R11 = and(%2,#0x1f)}\n"
|
||
|
"1: R12 = memw_locked(R10);\n"
|
||
|
" { P0 = tstbit(R12,R11); R12 = togglebit(R12,R11); }\n"
|
||
|
" memw_locked(R10,P1) = R12;\n"
|
||
|
" {if (!P1) jump 1b; %0 = mux(P0,#1,#0);}\n"
|
||
|
: "=&r" (oldval)
|
||
|
: "r" (addr), "r" (nr)
|
||
|
: "r10", "r11", "r12", "p0", "p1", "memory"
|
||
|
);
|
||
|
|
||
|
return oldval;
|
||
|
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Atomic, but doesn't care about the return value.
|
||
|
* Rewrite later to save a cycle or two.
|
||
|
*/
|
||
|
|
||
|
static inline void clear_bit(int nr, volatile void *addr)
|
||
|
{
|
||
|
test_and_clear_bit(nr, addr);
|
||
|
}
|
||
|
|
||
|
static inline void set_bit(int nr, volatile void *addr)
|
||
|
{
|
||
|
test_and_set_bit(nr, addr);
|
||
|
}
|
||
|
|
||
|
static inline void change_bit(int nr, volatile void *addr)
|
||
|
{
|
||
|
test_and_change_bit(nr, addr);
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* These are allowed to be non-atomic. In fact the generic flavors are
|
||
|
* in non-atomic.h. Would it be better to use intrinsics for this?
|
||
|
*
|
||
|
* OK, writes in our architecture do not invalidate LL/SC, so this has to
|
||
|
* be atomic, particularly for things like slab_lock and slab_unlock.
|
||
|
*
|
||
|
*/
|
||
|
static inline void __clear_bit(int nr, volatile unsigned long *addr)
|
||
|
{
|
||
|
test_and_clear_bit(nr, addr);
|
||
|
}
|
||
|
|
||
|
static inline void __set_bit(int nr, volatile unsigned long *addr)
|
||
|
{
|
||
|
test_and_set_bit(nr, addr);
|
||
|
}
|
||
|
|
||
|
static inline void __change_bit(int nr, volatile unsigned long *addr)
|
||
|
{
|
||
|
test_and_change_bit(nr, addr);
|
||
|
}
|
||
|
|
||
|
/* Apparently, at least some of these are allowed to be non-atomic */
|
||
|
static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr)
|
||
|
{
|
||
|
return test_and_clear_bit(nr, addr);
|
||
|
}
|
||
|
|
||
|
static inline int __test_and_set_bit(int nr, volatile unsigned long *addr)
|
||
|
{
|
||
|
return test_and_set_bit(nr, addr);
|
||
|
}
|
||
|
|
||
|
static inline int __test_and_change_bit(int nr, volatile unsigned long *addr)
|
||
|
{
|
||
|
return test_and_change_bit(nr, addr);
|
||
|
}
|
||
|
|
||
|
static inline int __test_bit(int nr, const volatile unsigned long *addr)
|
||
|
{
|
||
|
int retval;
|
||
|
|
||
|
asm volatile(
|
||
|
"{P0 = tstbit(%1,%2); if (P0.new) %0 = #1; if (!P0.new) %0 = #0;}\n"
|
||
|
: "=&r" (retval)
|
||
|
: "r" (addr[BIT_WORD(nr)]), "r" (nr % BITS_PER_LONG)
|
||
|
: "p0"
|
||
|
);
|
||
|
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
#define test_bit(nr, addr) __test_bit(nr, addr)
|
||
|
|
||
|
/*
|
||
|
* ffz - find first zero in word.
|
||
|
* @word: The word to search
|
||
|
*
|
||
|
* Undefined if no zero exists, so code should check against ~0UL first.
|
||
|
*/
|
||
|
static inline long ffz(int x)
|
||
|
{
|
||
|
int r;
|
||
|
|
||
|
asm("%0 = ct1(%1);\n"
|
||
|
: "=&r" (r)
|
||
|
: "r" (x));
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* fls - find last (most-significant) bit set
|
||
|
* @x: the word to search
|
||
|
*
|
||
|
* This is defined the same way as ffs.
|
||
|
* Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
|
||
|
*/
|
||
|
static inline int fls(unsigned int x)
|
||
|
{
|
||
|
int r;
|
||
|
|
||
|
asm("{ %0 = cl0(%1);}\n"
|
||
|
"%0 = sub(#32,%0);\n"
|
||
|
: "=&r" (r)
|
||
|
: "r" (x)
|
||
|
: "p0");
|
||
|
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* ffs - find first bit set
|
||
|
* @x: the word to search
|
||
|
*
|
||
|
* This is defined the same way as
|
||
|
* the libc and compiler builtin ffs routines, therefore
|
||
|
* differs in spirit from the above ffz (man ffs).
|
||
|
*/
|
||
|
static inline int ffs(int x)
|
||
|
{
|
||
|
int r;
|
||
|
|
||
|
asm("{ P0 = cmp.eq(%1,#0); %0 = ct0(%1);}\n"
|
||
|
"{ if (P0) %0 = #0; if (!P0) %0 = add(%0,#1);}\n"
|
||
|
: "=&r" (r)
|
||
|
: "r" (x)
|
||
|
: "p0");
|
||
|
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* __ffs - find first bit in word.
|
||
|
* @word: The word to search
|
||
|
*
|
||
|
* Undefined if no bit exists, so code should check against 0 first.
|
||
|
*
|
||
|
* bits_per_long assumed to be 32
|
||
|
* numbering starts at 0 I think (instead of 1 like ffs)
|
||
|
*/
|
||
|
static inline unsigned long __ffs(unsigned long word)
|
||
|
{
|
||
|
int num;
|
||
|
|
||
|
asm("%0 = ct0(%1);\n"
|
||
|
: "=&r" (num)
|
||
|
: "r" (word));
|
||
|
|
||
|
return num;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* __fls - find last (most-significant) set bit in a long word
|
||
|
* @word: the word to search
|
||
|
*
|
||
|
* Undefined if no set bit exists, so code should check against 0 first.
|
||
|
* bits_per_long assumed to be 32
|
||
|
*/
|
||
|
static inline unsigned long __fls(unsigned long word)
|
||
|
{
|
||
|
int num;
|
||
|
|
||
|
asm("%0 = cl0(%1);\n"
|
||
|
"%0 = sub(#31,%0);\n"
|
||
|
: "=&r" (num)
|
||
|
: "r" (word));
|
||
|
|
||
|
return num;
|
||
|
}
|
||
|
|
||
|
#include <asm-generic/bitops/lock.h>
|
||
|
#include <asm-generic/bitops/find.h>
|
||
|
|
||
|
#include <asm-generic/bitops/fls64.h>
|
||
|
#include <asm-generic/bitops/sched.h>
|
||
|
#include <asm-generic/bitops/hweight.h>
|
||
|
|
||
|
#include <asm-generic/bitops/le.h>
|
||
|
#include <asm-generic/bitops/ext2-atomic.h>
|
||
|
|
||
|
#endif /* __KERNEL__ */
|
||
|
#endif
|